mesa/src/gallium/drivers/radeonsi/si_clear.c

1362 lines
53 KiB
C

/*
* Copyright 2017 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_pipe.h"
#include "sid.h"
#include "util/format/u_format.h"
#include "util/u_pack_color.h"
#include "util/u_surface.h"
enum
{
SI_CLEAR = SI_SAVE_FRAGMENT_STATE,
SI_CLEAR_SURFACE = SI_SAVE_FRAMEBUFFER | SI_SAVE_FRAGMENT_STATE,
};
void si_init_buffer_clear(struct si_clear_info *info,
struct pipe_resource *resource, uint64_t offset,
uint32_t size, uint32_t clear_value)
{
info->resource = resource;
info->offset = offset;
info->size = size;
info->clear_value = clear_value;
info->writemask = 0xffffffff;
info->is_dcc_msaa = false;
}
static void si_init_buffer_clear_rmw(struct si_clear_info *info,
struct pipe_resource *resource, uint64_t offset,
uint32_t size, uint32_t clear_value, uint32_t writemask)
{
si_init_buffer_clear(info, resource, offset, size, clear_value);
info->writemask = writemask;
}
void si_execute_clears(struct si_context *sctx, struct si_clear_info *info,
unsigned num_clears, unsigned types)
{
if (!num_clears)
return;
/* Flush caches and wait for idle. */
if (types & (SI_CLEAR_TYPE_CMASK | SI_CLEAR_TYPE_DCC))
sctx->flags |= si_get_flush_flags(sctx, SI_COHERENCY_CB_META, L2_LRU);
if (types & SI_CLEAR_TYPE_HTILE)
sctx->flags |= si_get_flush_flags(sctx, SI_COHERENCY_DB_META, L2_LRU);
/* Flush caches in case we use compute. */
sctx->flags |= SI_CONTEXT_INV_VCACHE;
/* GFX6-8: CB and DB don't use L2. */
if (sctx->gfx_level <= GFX8)
sctx->flags |= SI_CONTEXT_INV_L2;
/* Execute clears. */
for (unsigned i = 0; i < num_clears; i++) {
if (info[i].is_dcc_msaa) {
gfx9_clear_dcc_msaa(sctx, info[i].resource, info[i].clear_value,
SI_OP_SKIP_CACHE_INV_BEFORE, SI_COHERENCY_CP);
continue;
}
assert(info[i].size > 0);
if (info[i].writemask != 0xffffffff) {
si_compute_clear_buffer_rmw(sctx, info[i].resource, info[i].offset, info[i].size,
info[i].clear_value, info[i].writemask,
SI_OP_SKIP_CACHE_INV_BEFORE, SI_COHERENCY_CP);
} else {
/* Compute shaders are much faster on both dGPUs and APUs. Don't use CP DMA. */
si_clear_buffer(sctx, info[i].resource, info[i].offset, info[i].size,
&info[i].clear_value, 4, SI_OP_SKIP_CACHE_INV_BEFORE,
SI_COHERENCY_CP, SI_COMPUTE_CLEAR_METHOD);
}
}
/* Wait for idle. */
sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH;
/* GFX6-8: CB and DB don't use L2. */
if (sctx->gfx_level <= GFX8)
sctx->flags |= SI_CONTEXT_WB_L2;
}
static bool si_alloc_separate_cmask(struct si_screen *sscreen, struct si_texture *tex)
{
assert(sscreen->info.gfx_level < GFX11);
/* CMASK for MSAA is allocated in advance or always disabled
* by "nofmask" option.
*/
if (tex->cmask_buffer)
return true;
if (!tex->surface.cmask_size)
return false;
tex->cmask_buffer =
si_aligned_buffer_create(&sscreen->b, PIPE_RESOURCE_FLAG_UNMAPPABLE, PIPE_USAGE_DEFAULT,
tex->surface.cmask_size, 1 << tex->surface.cmask_alignment_log2);
if (tex->cmask_buffer == NULL)
return false;
tex->cmask_base_address_reg = tex->cmask_buffer->gpu_address >> 8;
tex->cb_color_info |= S_028C70_FAST_CLEAR(1);
p_atomic_inc(&sscreen->compressed_colortex_counter);
return true;
}
static bool si_set_clear_color(struct si_texture *tex, enum pipe_format surface_format,
const union pipe_color_union *color)
{
union util_color uc;
memset(&uc, 0, sizeof(uc));
if (tex->surface.bpe == 16) {
/* DCC fast clear only:
* CLEAR_WORD0 = R = G = B
* CLEAR_WORD1 = A
*/
assert(color->ui[0] == color->ui[1] && color->ui[0] == color->ui[2]);
uc.ui[0] = color->ui[0];
uc.ui[1] = color->ui[3];
} else {
if (tex->swap_rgb_to_bgr)
surface_format = util_format_rgb_to_bgr(surface_format);
util_pack_color_union(surface_format, &uc, color);
}
if (memcmp(tex->color_clear_value, &uc, 2 * sizeof(uint32_t)) == 0)
return false;
memcpy(tex->color_clear_value, &uc, 2 * sizeof(uint32_t));
return true;
}
/** Linearize and convert luminance/intensity to red. */
enum pipe_format si_simplify_cb_format(enum pipe_format format)
{
format = util_format_linear(format);
format = util_format_luminance_to_red(format);
return util_format_intensity_to_red(format);
}
bool vi_alpha_is_on_msb(struct si_screen *sscreen, enum pipe_format format)
{
format = si_simplify_cb_format(format);
const struct util_format_description *desc = util_format_description(format);
unsigned comp_swap = si_translate_colorswap(sscreen->info.gfx_level, format, false);
/* The following code matches the hw behavior. */
if (desc->nr_channels == 1) {
return (comp_swap == V_028C70_SWAP_ALT_REV) != (sscreen->info.family == CHIP_RAVEN2 ||
sscreen->info.family == CHIP_RENOIR);
}
return comp_swap != V_028C70_SWAP_STD_REV && comp_swap != V_028C70_SWAP_ALT_REV;
}
static bool gfx8_get_dcc_clear_parameters(struct si_screen *sscreen, enum pipe_format base_format,
enum pipe_format surface_format,
const union pipe_color_union *color, uint32_t *clear_value,
bool *eliminate_needed)
{
/* If we want to clear without needing a fast clear eliminate step, we
* can set color and alpha independently to 0 or 1 (or 0/max for integer
* formats).
*/
bool values[4] = {}; /* whether to clear to 0 or 1 */
bool color_value = false; /* clear color to 0 or 1 */
bool alpha_value = false; /* clear alpha to 0 or 1 */
int alpha_channel; /* index of the alpha component */
bool has_color = false;
bool has_alpha = false;
const struct util_format_description *desc =
util_format_description(si_simplify_cb_format(surface_format));
/* 128-bit fast clear with different R,G,B values is unsupported. */
if (desc->block.bits == 128 && (color->ui[0] != color->ui[1] || color->ui[0] != color->ui[2]))
return false;
*eliminate_needed = true;
*clear_value = GFX8_DCC_CLEAR_REG;
if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN)
return true; /* need ELIMINATE_FAST_CLEAR */
bool base_alpha_is_on_msb = vi_alpha_is_on_msb(sscreen, base_format);
bool surf_alpha_is_on_msb = vi_alpha_is_on_msb(sscreen, surface_format);
/* Formats with 3 channels can't have alpha. */
if (desc->nr_channels == 3)
alpha_channel = -1;
else if (surf_alpha_is_on_msb)
alpha_channel = desc->nr_channels - 1;
else
alpha_channel = 0;
for (int i = 0; i < 4; ++i) {
if (desc->swizzle[i] >= PIPE_SWIZZLE_0)
continue;
if (desc->channel[i].pure_integer && desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
/* Use the maximum value for clamping the clear color. */
int max = u_bit_consecutive(0, desc->channel[i].size - 1);
values[i] = color->i[i] != 0;
if (color->i[i] != 0 && MIN2(color->i[i], max) != max)
return true; /* need ELIMINATE_FAST_CLEAR */
} else if (desc->channel[i].pure_integer &&
desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED) {
/* Use the maximum value for clamping the clear color. */
unsigned max = u_bit_consecutive(0, desc->channel[i].size);
values[i] = color->ui[i] != 0U;
if (color->ui[i] != 0U && MIN2(color->ui[i], max) != max)
return true; /* need ELIMINATE_FAST_CLEAR */
} else {
values[i] = color->f[i] != 0.0F;
if (color->f[i] != 0.0F && color->f[i] != 1.0F)
return true; /* need ELIMINATE_FAST_CLEAR */
}
if (desc->swizzle[i] == alpha_channel) {
alpha_value = values[i];
has_alpha = true;
} else {
color_value = values[i];
has_color = true;
}
}
/* If alpha isn't present, make it the same as color, and vice versa. */
if (!has_alpha)
alpha_value = color_value;
else if (!has_color)
color_value = alpha_value;
if (color_value != alpha_value && base_alpha_is_on_msb != surf_alpha_is_on_msb)
return true; /* require ELIMINATE_FAST_CLEAR */
/* Check if all color values are equal if they are present. */
for (int i = 0; i < 4; ++i) {
if (desc->swizzle[i] <= PIPE_SWIZZLE_W && desc->swizzle[i] != alpha_channel &&
values[i] != color_value)
return true; /* require ELIMINATE_FAST_CLEAR */
}
/* This doesn't need ELIMINATE_FAST_CLEAR.
* On chips predating Raven2, the DCC clear codes and the CB clear
* color registers must match.
*/
*eliminate_needed = false;
if (color_value) {
if (alpha_value)
*clear_value = GFX8_DCC_CLEAR_1111;
else
*clear_value = GFX8_DCC_CLEAR_1110;
} else {
if (alpha_value)
*clear_value = GFX8_DCC_CLEAR_0001;
else
*clear_value = GFX8_DCC_CLEAR_0000;
}
return true;
}
static bool gfx11_get_dcc_clear_parameters(struct si_screen *sscreen, enum pipe_format surface_format,
const union pipe_color_union *color, uint32_t *clear_value)
{
const struct util_format_description *desc =
util_format_description(si_simplify_cb_format(surface_format));
unsigned start_bit = UINT_MAX;
unsigned end_bit = 0;
/* TODO: 8bpp and 16bpp fast DCC clears don't work. */
if (desc->block.bits <= 16)
return false;
/* Find the used bit range. */
for (unsigned i = 0; i < 4; i++) {
unsigned swizzle = desc->swizzle[i];
if (swizzle >= PIPE_SWIZZLE_0)
continue;
start_bit = MIN2(start_bit, desc->channel[swizzle].shift);
end_bit = MAX2(end_bit, desc->channel[swizzle].shift + desc->channel[swizzle].size);
}
union {
uint8_t ub[16];
uint16_t us[8];
uint32_t ui[4];
} value = {};
util_pack_color_union(surface_format, (union util_color*)&value, color);
/* Check the cases where all components or bits are either all 0 or all 1. */
bool all_bits_are_0 = true;
bool all_bits_are_1 = true;
bool all_words_are_fp16_1 = false;
bool all_words_are_fp32_1 = false;
for (unsigned i = start_bit; i < end_bit; i++) {
bool bit = value.ub[i / 8] & BITFIELD_BIT(i % 8);
all_bits_are_0 &= !bit;
all_bits_are_1 &= bit;
}
if (start_bit % 16 == 0 && end_bit % 16 == 0) {
all_words_are_fp16_1 = true;
for (unsigned i = start_bit / 16; i < end_bit / 16; i++)
all_words_are_fp16_1 &= value.us[i] == 0x3c00;
}
if (start_bit % 32 == 0 && end_bit % 32 == 0) {
all_words_are_fp32_1 = true;
for (unsigned i = start_bit / 32; i < end_bit / 32; i++)
all_words_are_fp32_1 &= value.ui[i] == 0x3f800000;
}
#if 0 /* debug code */
int i = util_format_get_first_non_void_channel(surface_format);
if (desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED && desc->channel[i].pure_integer) {
printf("%i %i %i %i\n", color->i[0], color->i[1], color->i[2], color->i[3]);
} else if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED && desc->channel[i].pure_integer) {
printf("%u %u %u %u\n", color->ui[0], color->ui[1], color->ui[2], color->ui[3]);
} else {
printf("%f %f %f %f\n", color->f[0], color->f[1], color->f[2], color->f[3]);
}
for (unsigned i = 0; i < end_bit / 8; i++)
printf("%02x", value.ub[i]);
printf("\n");
printf("bits=[%u..%u)%s%s%s%s\n", start_bit, end_bit,
all_bits_are_0 ? ", all 0" : "",
all_bits_are_1 ? ", all 1" : "",
all_words_are_fp16_1 ? ", all fp16 1" : "",
all_words_are_fp32_1 ? ", all fp32 1" : "");
#endif
*clear_value = 0;
if (all_bits_are_0 || all_bits_are_1 || all_words_are_fp16_1 || all_words_are_fp32_1) {
if (all_bits_are_0)
*clear_value = GFX11_DCC_CLEAR_0000;
else if (all_bits_are_1)
*clear_value = GFX11_DCC_CLEAR_1111_UNORM;
else if (all_words_are_fp16_1)
*clear_value = GFX11_DCC_CLEAR_1111_FP16;
else if (all_words_are_fp32_1)
*clear_value = GFX11_DCC_CLEAR_1111_FP32;
return true;
}
/* Check 0001 and 1110 cases. */
if (vi_alpha_is_on_msb(sscreen, surface_format)) {
if (desc->nr_channels == 2 && desc->channel[0].size == 8) {
if (value.ub[0] == 0x00 && value.ub[1] == 0xff) {
*clear_value = GFX11_DCC_CLEAR_0001_UNORM;
return true;
} else if (value.ub[0] == 0xff && value.ub[1] == 0x00) {
*clear_value = GFX11_DCC_CLEAR_1110_UNORM;
return true;
}
} else if (desc->nr_channels == 4 && desc->channel[0].size == 8) {
if (value.ub[0] == 0x00 && value.ub[1] == 0x00 &&
value.ub[2] == 0x00 && value.ub[3] == 0xff) {
*clear_value = GFX11_DCC_CLEAR_0001_UNORM;
return true;
} else if (value.ub[0] == 0xff && value.ub[1] == 0xff &&
value.ub[2] == 0xff && value.ub[3] == 0x00) {
*clear_value = GFX11_DCC_CLEAR_1110_UNORM;
return true;
}
} else if (desc->nr_channels == 4 && desc->channel[0].size == 16) {
if (value.us[0] == 0x0000 && value.us[1] == 0x0000 &&
value.us[2] == 0x0000 && value.us[3] == 0xffff) {
*clear_value = GFX11_DCC_CLEAR_0001_UNORM;
return true;
} else if (value.us[0] == 0xffff && value.us[1] == 0xffff &&
value.us[2] == 0xffff && value.us[3] == 0x0000) {
*clear_value = GFX11_DCC_CLEAR_1110_UNORM;
return true;
}
}
}
return false;
}
bool vi_dcc_get_clear_info(struct si_context *sctx, struct si_texture *tex, unsigned level,
unsigned clear_value, struct si_clear_info *out)
{
struct pipe_resource *dcc_buffer = &tex->buffer.b.b;
uint64_t dcc_offset = tex->surface.meta_offset;
uint32_t clear_size;
assert(vi_dcc_enabled(tex, level));
if (sctx->gfx_level >= GFX10) {
/* 4x and 8x MSAA needs a sophisticated compute shader for
* the clear. GFX11 doesn't need that.
*/
if (sctx->gfx_level < GFX11 && tex->buffer.b.b.nr_storage_samples >= 4)
return false;
unsigned num_layers = util_num_layers(&tex->buffer.b.b, level);
if (num_layers == 1) {
/* Clear a specific level. */
dcc_offset += tex->surface.u.gfx9.meta_levels[level].offset;
clear_size = tex->surface.u.gfx9.meta_levels[level].size;
} else if (tex->buffer.b.b.last_level == 0) {
/* Clear all layers having only 1 level. */
clear_size = tex->surface.meta_size;
} else {
/* Clearing DCC with both multiple levels and multiple layers is not
* implemented.
*/
return false;
}
} else if (sctx->gfx_level == GFX9) {
/* TODO: Implement DCC fast clear for level 0 of mipmapped textures. Mipmapped
* DCC has to clear a rectangular area of DCC for level 0 (because the whole miptree
* is organized in a 2D plane).
*/
if (tex->buffer.b.b.last_level > 0)
return false;
/* 4x and 8x MSAA need to clear only sample 0 and 1 in a compute shader and leave other
* samples untouched. (only the first 2 samples are compressed) */
if (tex->buffer.b.b.nr_storage_samples >= 4) {
si_init_buffer_clear(out, dcc_buffer, 0, 0, clear_value);
out->is_dcc_msaa = true;
return true;
}
clear_size = tex->surface.meta_size;
} else {
unsigned num_layers = util_num_layers(&tex->buffer.b.b, level);
/* If this is 0, fast clear isn't possible. (can occur with MSAA) */
if (!tex->surface.u.legacy.color.dcc_level[level].dcc_fast_clear_size)
return false;
/* Layered 4x and 8x MSAA DCC fast clears need to clear
* dcc_fast_clear_size bytes for each layer. A compute shader
* would be more efficient than separate per-layer clear operations.
*/
if (tex->buffer.b.b.nr_storage_samples >= 4 && num_layers > 1)
return false;
dcc_offset += tex->surface.u.legacy.color.dcc_level[level].dcc_offset;
clear_size = tex->surface.u.legacy.color.dcc_level[level].dcc_fast_clear_size;
}
si_init_buffer_clear(out, dcc_buffer, dcc_offset, clear_size, clear_value);
return true;
}
/* Set the same micro tile mode as the destination of the last MSAA resolve.
* This allows hitting the MSAA resolve fast path, which requires that both
* src and dst micro tile modes match.
*/
static void si_set_optimal_micro_tile_mode(struct si_screen *sscreen, struct si_texture *tex)
{
if (sscreen->info.gfx_level >= GFX10 || tex->buffer.b.is_shared ||
tex->buffer.b.b.nr_samples <= 1 ||
tex->surface.micro_tile_mode == tex->last_msaa_resolve_target_micro_mode)
return;
assert(sscreen->info.gfx_level >= GFX9 ||
tex->surface.u.legacy.level[0].mode == RADEON_SURF_MODE_2D);
assert(tex->buffer.b.b.last_level == 0);
if (sscreen->info.gfx_level >= GFX9) {
/* 4K or larger tiles only. 0 is linear. 1-3 are 256B tiles. */
assert(tex->surface.u.gfx9.swizzle_mode >= 4);
/* If you do swizzle_mode % 4, you'll get:
* 0 = Depth
* 1 = Standard,
* 2 = Displayable
* 3 = Rotated
*
* Depth-sample order isn't allowed:
*/
assert(tex->surface.u.gfx9.swizzle_mode % 4 != 0);
switch (tex->last_msaa_resolve_target_micro_mode) {
case RADEON_MICRO_MODE_DISPLAY:
tex->surface.u.gfx9.swizzle_mode &= ~0x3;
tex->surface.u.gfx9.swizzle_mode += 2; /* D */
break;
case RADEON_MICRO_MODE_STANDARD:
tex->surface.u.gfx9.swizzle_mode &= ~0x3;
tex->surface.u.gfx9.swizzle_mode += 1; /* S */
break;
case RADEON_MICRO_MODE_RENDER:
tex->surface.u.gfx9.swizzle_mode &= ~0x3;
tex->surface.u.gfx9.swizzle_mode += 3; /* R */
break;
default: /* depth */
assert(!"unexpected micro mode");
return;
}
} else if (sscreen->info.gfx_level >= GFX7) {
/* These magic numbers were copied from addrlib. It doesn't use
* any definitions for them either. They are all 2D_TILED_THIN1
* modes with different bpp and micro tile mode.
*/
switch (tex->last_msaa_resolve_target_micro_mode) {
case RADEON_MICRO_MODE_DISPLAY:
tex->surface.u.legacy.tiling_index[0] = 10;
break;
case RADEON_MICRO_MODE_STANDARD:
tex->surface.u.legacy.tiling_index[0] = 14;
break;
case RADEON_MICRO_MODE_RENDER:
tex->surface.u.legacy.tiling_index[0] = 28;
break;
default: /* depth, thick */
assert(!"unexpected micro mode");
return;
}
} else { /* GFX6 */
switch (tex->last_msaa_resolve_target_micro_mode) {
case RADEON_MICRO_MODE_DISPLAY:
switch (tex->surface.bpe) {
case 1:
tex->surface.u.legacy.tiling_index[0] = 10;
break;
case 2:
tex->surface.u.legacy.tiling_index[0] = 11;
break;
default: /* 4, 8 */
tex->surface.u.legacy.tiling_index[0] = 12;
break;
}
break;
case RADEON_MICRO_MODE_STANDARD:
switch (tex->surface.bpe) {
case 1:
tex->surface.u.legacy.tiling_index[0] = 14;
break;
case 2:
tex->surface.u.legacy.tiling_index[0] = 15;
break;
case 4:
tex->surface.u.legacy.tiling_index[0] = 16;
break;
default: /* 8, 16 */
tex->surface.u.legacy.tiling_index[0] = 17;
break;
}
break;
default: /* depth, thick */
assert(!"unexpected micro mode");
return;
}
}
tex->surface.micro_tile_mode = tex->last_msaa_resolve_target_micro_mode;
p_atomic_inc(&sscreen->dirty_tex_counter);
}
static uint32_t si_get_htile_clear_value(struct si_texture *tex, float depth)
{
/* Maximum 14-bit UINT value. */
const uint32_t max_z_value = 0x3FFF;
/* For clears, Zmask and Smem will always be set to zero. */
const uint32_t zmask = 0;
const uint32_t smem = 0;
/* Convert depthValue to 14-bit zmin/zmax uint values. */
const uint32_t zmin = lroundf(depth * max_z_value);
const uint32_t zmax = zmin;
if (tex->htile_stencil_disabled) {
/* Z-only HTILE is laid out as follows:
* |31 18|17 4|3 0|
* +---------+---------+-------+
* | Max Z | Min Z | ZMask |
*/
return ((zmax & 0x3FFF) << 18) |
((zmin & 0x3FFF) << 4) |
((zmask & 0xF) << 0);
} else {
/* Z+S HTILE is laid out as-follows:
* |31 12|11 10|9 8|7 6|5 4|3 0|
* +-----------+-----+------+-----+-----+-------+
* | Z Range | | SMem | SR1 | SR0 | ZMask |
*
* The base value for zRange is either zMax or zMin, depending on ZRANGE_PRECISION.
* For a fast clear, zMin == zMax == clearValue. This means that the base will
* always be the clear value (converted to 14-bit UINT).
*
* When abs(zMax-zMin) < 16, the delta is equal to the difference. In the case of
* fast clears, where zMax == zMin, the delta is always zero.
*/
const uint32_t delta = 0;
const uint32_t zrange = (zmax << 6) | delta;
/* SResults 0 & 1 are set based on the stencil compare state.
* For fast-clear, the default value of sr0 and sr1 are both 0x3.
*/
const uint32_t sresults = 0xf;
return ((zrange & 0xFFFFF) << 12) |
((smem & 0x3) << 8) |
((sresults & 0xF) << 4) |
((zmask & 0xF) << 0);
}
}
static bool si_can_fast_clear_depth(struct si_texture *zstex, unsigned level, float depth,
unsigned buffers)
{
/* TC-compatible HTILE only supports depth clears to 0 or 1. */
return buffers & PIPE_CLEAR_DEPTH &&
si_htile_enabled(zstex, level, PIPE_MASK_Z) &&
(!zstex->tc_compatible_htile || depth == 0 || depth == 1);
}
static bool si_can_fast_clear_stencil(struct si_texture *zstex, unsigned level, uint8_t stencil,
unsigned buffers)
{
/* TC-compatible HTILE only supports stencil clears to 0. */
return buffers & PIPE_CLEAR_STENCIL &&
si_htile_enabled(zstex, level, PIPE_MASK_S) &&
(!zstex->tc_compatible_htile || stencil == 0);
}
static void si_fast_clear(struct si_context *sctx, unsigned *buffers,
const union pipe_color_union *color, float depth, uint8_t stencil)
{
struct pipe_framebuffer_state *fb = &sctx->framebuffer.state;
struct si_clear_info info[8 * 2 + 1]; /* MRTs * (CMASK + DCC) + ZS */
unsigned num_clears = 0;
unsigned clear_types = 0;
unsigned num_pixels = fb->width * fb->height;
/* This function is broken in BE, so just disable this path for now */
#if UTIL_ARCH_BIG_ENDIAN
return;
#endif
if (sctx->render_cond)
return;
/* Gather information about what to clear. */
unsigned color_buffer_mask = (*buffers & PIPE_CLEAR_COLOR) >> util_logbase2(PIPE_CLEAR_COLOR0);
while (color_buffer_mask) {
unsigned i = u_bit_scan(&color_buffer_mask);
struct si_texture *tex = (struct si_texture *)fb->cbufs[i]->texture;
unsigned level = fb->cbufs[i]->u.tex.level;
unsigned num_layers = util_num_layers(&tex->buffer.b.b, level);
/* the clear is allowed if all layers are bound */
if (fb->cbufs[i]->u.tex.first_layer != 0 ||
fb->cbufs[i]->u.tex.last_layer != num_layers - 1) {
continue;
}
/* We can change the micro tile mode before a full clear. */
/* This is only used for MSAA textures when clearing all layers. */
si_set_optimal_micro_tile_mode(sctx->screen, tex);
if (tex->swap_rgb_to_bgr_on_next_clear) {
assert(!tex->swap_rgb_to_bgr);
assert(tex->buffer.b.b.nr_samples >= 2);
tex->swap_rgb_to_bgr = true;
tex->swap_rgb_to_bgr_on_next_clear = false;
/* Update all sampler views and images. */
p_atomic_inc(&sctx->screen->dirty_tex_counter);
}
/* only supported on tiled surfaces */
if (tex->surface.is_linear) {
continue;
}
/* Use a slow clear for small surfaces where the cost of
* the eliminate pass can be higher than the benefit of fast
* clear. The closed driver does this, but the numbers may differ.
*
* This helps on both dGPUs and APUs, even small APUs like Mullins.
*/
bool fb_too_small = num_pixels * num_layers <= 512 * 512;
bool too_small = tex->buffer.b.b.nr_samples <= 1 && fb_too_small;
bool eliminate_needed = false;
bool fmask_decompress_needed = false;
/* Try to clear DCC first, otherwise try CMASK. */
if (vi_dcc_enabled(tex, level)) {
uint32_t reset_value;
if (sctx->screen->debug_flags & DBG(NO_DCC_CLEAR))
continue;
if (sctx->gfx_level >= GFX11) {
if (!gfx11_get_dcc_clear_parameters(sctx->screen, fb->cbufs[i]->format, color,
&reset_value))
continue;
} else {
if (!gfx8_get_dcc_clear_parameters(sctx->screen, tex->buffer.b.b.format,
fb->cbufs[i]->format, color, &reset_value,
&eliminate_needed))
continue;
}
/* Shared textures can't use fast clear without an explicit flush
* because the clear color is not exported.
*
* Chips without DCC constant encoding must set the clear color registers
* correctly even if the fast clear eliminate pass is not needed.
*/
if ((eliminate_needed || !sctx->screen->info.has_dcc_constant_encode) &&
tex->buffer.b.is_shared &&
!(tex->buffer.external_usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH))
continue;
if (eliminate_needed && too_small)
continue;
/* We can clear any level, but we only set up the clear value registers for the first
* level. Therefore, all other levels can be cleared only if the clear value registers
* are not used, which is only the case with DCC constant encoding and 0/1 clear values.
*/
if (level > 0 && (eliminate_needed || !sctx->screen->info.has_dcc_constant_encode))
continue;
if (tex->buffer.b.b.nr_samples >= 2 && eliminate_needed &&
!sctx->screen->allow_dcc_msaa_clear_to_reg_for_bpp[util_logbase2(tex->surface.bpe)])
continue;
assert(num_clears < ARRAY_SIZE(info));
if (!vi_dcc_get_clear_info(sctx, tex, level, reset_value, &info[num_clears]))
continue;
num_clears++;
clear_types |= SI_CLEAR_TYPE_DCC;
si_mark_display_dcc_dirty(sctx, tex);
/* DCC fast clear with MSAA should clear CMASK to 0xC. */
if (tex->buffer.b.b.nr_samples >= 2 && tex->cmask_buffer) {
assert(sctx->gfx_level < GFX11); /* no FMASK/CMASK on GFX11 */
assert(num_clears < ARRAY_SIZE(info));
si_init_buffer_clear(&info[num_clears++], &tex->cmask_buffer->b.b,
tex->surface.cmask_offset, tex->surface.cmask_size, 0xCCCCCCCC);
clear_types |= SI_CLEAR_TYPE_CMASK;
fmask_decompress_needed = true;
}
} else {
/* No CMASK on GFX11. */
if (sctx->gfx_level >= GFX11)
continue;
if (level > 0)
continue;
/* Shared textures can't use fast clear without an explicit flush
* because the clear color is not exported.
*/
if (tex->buffer.b.is_shared &&
!(tex->buffer.external_usage & PIPE_HANDLE_USAGE_EXPLICIT_FLUSH))
continue;
if (too_small)
continue;
/* 128-bit formats are unsupported */
if (tex->surface.bpe > 8) {
continue;
}
/* RB+ doesn't work with CMASK fast clear on Stoney. */
if (sctx->family == CHIP_STONEY)
continue;
/* Disable fast clear if tex is encrypted */
if (tex->buffer.flags & RADEON_FLAG_ENCRYPTED)
continue;
uint64_t cmask_offset = 0;
unsigned clear_size = 0;
if (sctx->gfx_level >= GFX10) {
assert(level == 0);
/* Clearing CMASK with both multiple levels and multiple layers is not
* implemented.
*/
if (num_layers > 1 && tex->buffer.b.b.last_level > 0)
continue;
if (!si_alloc_separate_cmask(sctx->screen, tex))
continue;
if (num_layers == 1) {
/* Clear level 0. */
cmask_offset = tex->surface.cmask_offset + tex->surface.u.gfx9.color.cmask_level0.offset;
clear_size = tex->surface.u.gfx9.color.cmask_level0.size;
} else if (tex->buffer.b.b.last_level == 0) {
/* Clear all layers having only 1 level. */
cmask_offset = tex->surface.cmask_offset;
clear_size = tex->surface.cmask_size;
} else {
assert(0); /* this is prevented above */
}
} else if (sctx->gfx_level == GFX9) {
/* TODO: Implement CMASK fast clear for level 0 of mipmapped textures. Mipmapped
* CMASK has to clear a rectangular area of CMASK for level 0 (because the whole
* miptree is organized in a 2D plane).
*/
if (tex->buffer.b.b.last_level > 0)
continue;
if (!si_alloc_separate_cmask(sctx->screen, tex))
continue;
cmask_offset = tex->surface.cmask_offset;
clear_size = tex->surface.cmask_size;
} else {
if (!si_alloc_separate_cmask(sctx->screen, tex))
continue;
/* GFX6-8: This only covers mipmap level 0. */
cmask_offset = tex->surface.cmask_offset;
clear_size = tex->surface.cmask_size;
}
/* Do the fast clear. */
assert(num_clears < ARRAY_SIZE(info));
si_init_buffer_clear(&info[num_clears++], &tex->cmask_buffer->b.b,
cmask_offset, clear_size, 0);
clear_types |= SI_CLEAR_TYPE_CMASK;
eliminate_needed = true;
}
if ((eliminate_needed || fmask_decompress_needed) &&
!(tex->dirty_level_mask & (1 << level))) {
assert(sctx->gfx_level < GFX11); /* no decompression needed on GFX11 */
tex->dirty_level_mask |= 1 << level;
si_set_sampler_depth_decompress_mask(sctx, tex);
p_atomic_inc(&sctx->screen->compressed_colortex_counter);
}
*buffers &= ~(PIPE_CLEAR_COLOR0 << i);
/* Chips with DCC constant encoding don't need to set the clear
* color registers for DCC clear values 0 and 1.
*/
if (sctx->screen->info.has_dcc_constant_encode && !eliminate_needed)
continue;
/* There are no clear color registers on GFX11. */
assert(sctx->gfx_level < GFX11);
if (si_set_clear_color(tex, fb->cbufs[i]->format, color)) {
sctx->framebuffer.dirty_cbufs |= 1 << i;
si_mark_atom_dirty(sctx, &sctx->atoms.s.framebuffer);
}
}
/* Depth/stencil clears. */
struct pipe_surface *zsbuf = fb->zsbuf;
struct si_texture *zstex = zsbuf ? (struct si_texture *)zsbuf->texture : NULL;
unsigned zs_num_layers = zstex ? util_num_layers(&zstex->buffer.b.b, zsbuf->u.tex.level) : 0;
if (zstex && zsbuf->u.tex.first_layer == 0 &&
zsbuf->u.tex.last_layer == zs_num_layers - 1 &&
si_htile_enabled(zstex, zsbuf->u.tex.level, PIPE_MASK_ZS)) {
unsigned level = zsbuf->u.tex.level;
bool update_db_depth_clear = false;
bool update_db_stencil_clear = false;
bool fb_too_small = num_pixels * zs_num_layers <= 512 * 512;
/* Transition from TC-incompatible to TC-compatible HTILE if requested. */
if (zstex->enable_tc_compatible_htile_next_clear) {
/* If both depth and stencil are present, they must be cleared together. */
if ((*buffers & PIPE_CLEAR_DEPTHSTENCIL) == PIPE_CLEAR_DEPTHSTENCIL ||
(*buffers & PIPE_CLEAR_DEPTH && (!zstex->surface.has_stencil ||
zstex->htile_stencil_disabled))) {
/* The conversion from TC-incompatible to TC-compatible can only be done in one clear. */
assert(zstex->buffer.b.b.last_level == 0);
assert(!zstex->tc_compatible_htile);
/* Enable TC-compatible HTILE. */
zstex->enable_tc_compatible_htile_next_clear = false;
zstex->tc_compatible_htile = true;
/* Update the framebuffer state to reflect the change. */
sctx->framebuffer.DB_has_shader_readable_metadata = true;
sctx->framebuffer.dirty_zsbuf = true;
si_mark_atom_dirty(sctx, &sctx->atoms.s.framebuffer);
/* Update all sampler views and shader images in all contexts. */
p_atomic_inc(&sctx->screen->dirty_tex_counter);
/* Perform the clear here if possible, else clear to uncompressed. */
uint32_t clear_value;
if (zstex->htile_stencil_disabled || !zstex->surface.has_stencil) {
if (si_can_fast_clear_depth(zstex, level, depth, *buffers)) {
/* Z-only clear. */
clear_value = si_get_htile_clear_value(zstex, depth);
*buffers &= ~PIPE_CLEAR_DEPTH;
zstex->depth_cleared_level_mask_once |= BITFIELD_BIT(level);
zstex->depth_cleared_level_mask |= BITFIELD_BIT(level);
update_db_depth_clear = true;
}
} else if ((*buffers & PIPE_CLEAR_DEPTHSTENCIL) == PIPE_CLEAR_DEPTHSTENCIL) {
if (si_can_fast_clear_depth(zstex, level, depth, *buffers) &&
si_can_fast_clear_stencil(zstex, level, stencil, *buffers)) {
/* Combined Z+S clear. */
clear_value = si_get_htile_clear_value(zstex, depth);
*buffers &= ~PIPE_CLEAR_DEPTHSTENCIL;
zstex->depth_cleared_level_mask_once |= BITFIELD_BIT(level);
zstex->depth_cleared_level_mask |= BITFIELD_BIT(level);
zstex->stencil_cleared_level_mask_once |= BITFIELD_BIT(level);
update_db_depth_clear = true;
update_db_stencil_clear = true;
}
}
if (!update_db_depth_clear) {
/* Clear to uncompressed, so that it doesn't contain values incompatible
* with the new TC-compatible HTILE setting.
*
* 0xfffff30f = uncompressed Z + S
* 0xfffc000f = uncompressed Z only
*/
clear_value = !zstex->htile_stencil_disabled ? 0xfffff30f : 0xfffc000f;
}
zstex->need_flush_after_depth_decompression = sctx->gfx_level == GFX10_3;
assert(num_clears < ARRAY_SIZE(info));
si_init_buffer_clear(&info[num_clears++], &zstex->buffer.b.b,
zstex->surface.meta_offset, zstex->surface.meta_size, clear_value);
clear_types |= SI_CLEAR_TYPE_HTILE;
}
} else if (num_clears || !fb_too_small) {
/* This is where the HTILE buffer clear is done.
*
* If there is no clear scheduled and the framebuffer size is too small, we should use
* the draw-based clear that is without waits. If there is some other clear scheduled,
* we will have to wait anyway, so add the HTILE buffer clear to the batch here.
* If the framebuffer size is large enough, use this codepath too.
*/
uint64_t htile_offset = zstex->surface.meta_offset;
unsigned htile_size = 0;
/* Determine the HTILE subset to clear. */
if (sctx->gfx_level >= GFX10) {
/* This can only clear a layered texture with 1 level or a mipmap texture
* with 1 layer. Other cases are unimplemented.
*/
if (zs_num_layers == 1) {
/* Clear a specific level. */
htile_offset += zstex->surface.u.gfx9.meta_levels[level].offset;
htile_size = zstex->surface.u.gfx9.meta_levels[level].size;
} else if (zstex->buffer.b.b.last_level == 0) {
/* Clear all layers having only 1 level. */
htile_size = zstex->surface.meta_size;
}
} else {
/* This can only clear a layered texture with 1 level. Other cases are
* unimplemented.
*/
if (zstex->buffer.b.b.last_level == 0)
htile_size = zstex->surface.meta_size;
}
/* Perform the clear if it's possible. */
if (zstex->htile_stencil_disabled || !zstex->surface.has_stencil) {
if (htile_size &&
si_can_fast_clear_depth(zstex, level, depth, *buffers)) {
/* Z-only clear. */
assert(num_clears < ARRAY_SIZE(info));
si_init_buffer_clear(&info[num_clears++], &zstex->buffer.b.b, htile_offset,
htile_size, si_get_htile_clear_value(zstex, depth));
clear_types |= SI_CLEAR_TYPE_HTILE;
*buffers &= ~PIPE_CLEAR_DEPTH;
zstex->depth_cleared_level_mask_once |= BITFIELD_BIT(level);
zstex->depth_cleared_level_mask |= BITFIELD_BIT(level);
update_db_depth_clear = true;
}
} else if ((*buffers & PIPE_CLEAR_DEPTHSTENCIL) == PIPE_CLEAR_DEPTHSTENCIL) {
if (htile_size &&
si_can_fast_clear_depth(zstex, level, depth, *buffers) &&
si_can_fast_clear_stencil(zstex, level, stencil, *buffers)) {
/* Combined Z+S clear. */
assert(num_clears < ARRAY_SIZE(info));
si_init_buffer_clear(&info[num_clears++], &zstex->buffer.b.b, htile_offset,
htile_size, si_get_htile_clear_value(zstex, depth));
clear_types |= SI_CLEAR_TYPE_HTILE;
*buffers &= ~PIPE_CLEAR_DEPTHSTENCIL;
zstex->depth_cleared_level_mask_once |= BITFIELD_BIT(level);
zstex->depth_cleared_level_mask |= BITFIELD_BIT(level);
zstex->stencil_cleared_level_mask_once |= BITFIELD_BIT(level);
update_db_depth_clear = true;
update_db_stencil_clear = true;
}
} else {
/* Z-only or S-only clear when both Z/S are present using a read-modify-write
* compute shader.
*
* If we get both clears but only one of them can be fast-cleared, we use
* the draw-based fast clear to do both at the same time.
*/
const uint32_t htile_depth_writemask = 0xfffffc0f;
const uint32_t htile_stencil_writemask = 0x000003f0;
if (htile_size &&
!(*buffers & PIPE_CLEAR_STENCIL) &&
si_can_fast_clear_depth(zstex, level, depth, *buffers)) {
/* Z-only clear with stencil left intact. */
assert(num_clears < ARRAY_SIZE(info));
si_init_buffer_clear_rmw(&info[num_clears++], &zstex->buffer.b.b, htile_offset,
htile_size, si_get_htile_clear_value(zstex, depth),
htile_depth_writemask);
clear_types |= SI_CLEAR_TYPE_HTILE;
*buffers &= ~PIPE_CLEAR_DEPTH;
zstex->depth_cleared_level_mask_once |= BITFIELD_BIT(level);
zstex->depth_cleared_level_mask |= BITFIELD_BIT(level);
update_db_depth_clear = true;
} else if (htile_size &&
!(*buffers & PIPE_CLEAR_DEPTH) &&
si_can_fast_clear_stencil(zstex, level, stencil, *buffers)) {
/* Stencil-only clear with depth left intact. */
assert(num_clears < ARRAY_SIZE(info));
si_init_buffer_clear_rmw(&info[num_clears++], &zstex->buffer.b.b, htile_offset,
htile_size, si_get_htile_clear_value(zstex, depth),
htile_stencil_writemask);
clear_types |= SI_CLEAR_TYPE_HTILE;
*buffers &= ~PIPE_CLEAR_STENCIL;
zstex->stencil_cleared_level_mask_once |= BITFIELD_BIT(level);
update_db_stencil_clear = true;
}
}
zstex->need_flush_after_depth_decompression = update_db_depth_clear && sctx->gfx_level == GFX10_3;
/* Update DB_DEPTH_CLEAR. */
if (update_db_depth_clear &&
zstex->depth_clear_value[level] != (float)depth) {
zstex->depth_clear_value[level] = depth;
sctx->framebuffer.dirty_zsbuf = true;
si_mark_atom_dirty(sctx, &sctx->atoms.s.framebuffer);
}
/* Update DB_STENCIL_CLEAR. */
if (update_db_stencil_clear &&
zstex->stencil_clear_value[level] != stencil) {
zstex->stencil_clear_value[level] = stencil;
sctx->framebuffer.dirty_zsbuf = true;
si_mark_atom_dirty(sctx, &sctx->atoms.s.framebuffer);
}
}
}
si_execute_clears(sctx, info, num_clears, clear_types);
}
static void si_clear(struct pipe_context *ctx, unsigned buffers,
const struct pipe_scissor_state *scissor_state,
const union pipe_color_union *color, double depth, unsigned stencil)
{
struct si_context *sctx = (struct si_context *)ctx;
struct pipe_framebuffer_state *fb = &sctx->framebuffer.state;
struct pipe_surface *zsbuf = fb->zsbuf;
struct si_texture *zstex = zsbuf ? (struct si_texture *)zsbuf->texture : NULL;
bool needs_db_flush = false;
/* Unset clear flags for non-existent buffers. */
for (unsigned i = 0; i < 8; i++) {
if (i >= fb->nr_cbufs || !fb->cbufs[i])
buffers &= ~(PIPE_CLEAR_COLOR0 << i);
}
if (!zsbuf)
buffers &= ~PIPE_CLEAR_DEPTHSTENCIL;
else if (!util_format_has_stencil(util_format_description(zsbuf->format)))
buffers &= ~PIPE_CLEAR_STENCIL;
si_fast_clear(sctx, &buffers, color, depth, stencil);
if (!buffers)
return; /* all buffers have been cleared */
if (buffers & PIPE_CLEAR_COLOR) {
/* These buffers cannot use fast clear, make sure to disable expansion. */
unsigned color_buffer_mask = (buffers & PIPE_CLEAR_COLOR) >> util_logbase2(PIPE_CLEAR_COLOR0);
while (color_buffer_mask) {
unsigned i = u_bit_scan(&color_buffer_mask);
struct si_texture *tex = (struct si_texture *)fb->cbufs[i]->texture;
if (tex->surface.fmask_size == 0)
tex->dirty_level_mask &= ~(1 << fb->cbufs[i]->u.tex.level);
}
}
if (zstex && zsbuf->u.tex.first_layer == 0 &&
zsbuf->u.tex.last_layer == util_max_layer(&zstex->buffer.b.b, 0)) {
unsigned level = zsbuf->u.tex.level;
if (si_can_fast_clear_depth(zstex, level, depth, buffers)) {
/* Need to disable EXPCLEAR temporarily if clearing
* to a new value. */
if (!(zstex->depth_cleared_level_mask_once & BITFIELD_BIT(level)) ||
zstex->depth_clear_value[level] != depth) {
sctx->db_depth_disable_expclear = true;
}
if (zstex->depth_clear_value[level] != (float)depth) {
if ((zstex->depth_clear_value[level] != 0) != (depth != 0)) {
/* ZRANGE_PRECISION register of a bound surface will change so we
* must flush the DB caches. */
needs_db_flush = true;
}
/* Update DB_DEPTH_CLEAR. */
zstex->depth_clear_value[level] = depth;
sctx->framebuffer.dirty_zsbuf = true;
si_mark_atom_dirty(sctx, &sctx->atoms.s.framebuffer);
}
sctx->db_depth_clear = true;
si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
}
if (si_can_fast_clear_stencil(zstex, level, stencil, buffers)) {
stencil &= 0xff;
/* Need to disable EXPCLEAR temporarily if clearing
* to a new value. */
if (!(zstex->stencil_cleared_level_mask_once & BITFIELD_BIT(level)) ||
zstex->stencil_clear_value[level] != stencil) {
sctx->db_stencil_disable_expclear = true;
}
if (zstex->stencil_clear_value[level] != (uint8_t)stencil) {
/* Update DB_STENCIL_CLEAR. */
zstex->stencil_clear_value[level] = stencil;
sctx->framebuffer.dirty_zsbuf = true;
si_mark_atom_dirty(sctx, &sctx->atoms.s.framebuffer);
}
sctx->db_stencil_clear = true;
si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
}
if (needs_db_flush)
sctx->flags |= SI_CONTEXT_FLUSH_AND_INV_DB;
}
if (unlikely(sctx->thread_trace_enabled)) {
if (buffers & PIPE_CLEAR_COLOR)
sctx->sqtt_next_event = EventCmdClearColorImage;
else if (buffers & PIPE_CLEAR_DEPTHSTENCIL)
sctx->sqtt_next_event = EventCmdClearDepthStencilImage;
}
si_blitter_begin(sctx, SI_CLEAR);
util_blitter_clear(sctx->blitter, fb->width, fb->height, util_framebuffer_get_num_layers(fb),
buffers, color, depth, stencil, sctx->framebuffer.nr_samples > 1);
si_blitter_end(sctx);
if (sctx->db_depth_clear) {
sctx->db_depth_clear = false;
sctx->db_depth_disable_expclear = false;
zstex->depth_cleared_level_mask_once |= BITFIELD_BIT(zsbuf->u.tex.level);
zstex->depth_cleared_level_mask |= BITFIELD_BIT(zsbuf->u.tex.level);
si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
}
if (sctx->db_stencil_clear) {
sctx->db_stencil_clear = false;
sctx->db_stencil_disable_expclear = false;
zstex->stencil_cleared_level_mask_once |= BITFIELD_BIT(zsbuf->u.tex.level);
si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
}
}
static bool si_try_normal_clear(struct si_context *sctx, struct pipe_surface *dst,
unsigned dstx, unsigned dsty, unsigned width, unsigned height,
bool render_condition_enabled, unsigned buffers,
const union pipe_color_union *color,
float depth, unsigned stencil)
{
/* This is worth it only if it's a whole image clear, so that we just clear DCC/HTILE. */
if (dstx == 0 && dsty == 0 &&
width == dst->width &&
height == dst->height &&
dst->u.tex.first_layer == 0 &&
dst->u.tex.last_layer == util_max_layer(dst->texture, dst->u.tex.level) &&
/* pipe->clear honors render_condition, so only use it if it's unset or if it's set and enabled. */
(!sctx->render_cond || render_condition_enabled) &&
sctx->has_graphics) {
struct pipe_context *ctx = &sctx->b;
struct pipe_framebuffer_state saved_fb = {}, fb = {};
util_copy_framebuffer_state(&saved_fb, &sctx->framebuffer.state);
if (buffers & PIPE_CLEAR_COLOR) {
fb.cbufs[0] = dst;
fb.nr_cbufs = 1;
} else {
fb.zsbuf = dst;
}
fb.width = dst->width;
fb.height = dst->height;
ctx->set_framebuffer_state(ctx, &fb);
ctx->clear(ctx, buffers, NULL, color, depth, stencil);
ctx->set_framebuffer_state(ctx, &saved_fb);
util_copy_framebuffer_state(&saved_fb, NULL);
return true;
}
return false;
}
static void si_clear_render_target(struct pipe_context *ctx, struct pipe_surface *dst,
const union pipe_color_union *color, unsigned dstx,
unsigned dsty, unsigned width, unsigned height,
bool render_condition_enabled)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_texture *sdst = (struct si_texture *)dst->texture;
/* Fast path that just clears DCC. */
if (si_try_normal_clear(sctx, dst, dstx, dsty, width, height, render_condition_enabled,
PIPE_CLEAR_COLOR0, color, 0, 0))
return;
if (dst->texture->nr_samples <= 1 &&
(sctx->gfx_level >= GFX10 || !vi_dcc_enabled(sdst, dst->u.tex.level))) {
si_compute_clear_render_target(ctx, dst, color, dstx, dsty, width, height,
render_condition_enabled);
return;
}
si_blitter_begin(sctx,
SI_CLEAR_SURFACE | (render_condition_enabled ? 0 : SI_DISABLE_RENDER_COND));
util_blitter_clear_render_target(sctx->blitter, dst, color, dstx, dsty, width, height);
si_blitter_end(sctx);
}
static void si_clear_depth_stencil(struct pipe_context *ctx, struct pipe_surface *dst,
unsigned clear_flags, double depth, unsigned stencil,
unsigned dstx, unsigned dsty, unsigned width, unsigned height,
bool render_condition_enabled)
{
struct si_context *sctx = (struct si_context *)ctx;
union pipe_color_union unused = {};
/* Fast path that just clears HTILE. */
if (si_try_normal_clear(sctx, dst, dstx, dsty, width, height, render_condition_enabled,
clear_flags, &unused, depth, stencil))
return;
si_blitter_begin(sctx,
SI_CLEAR_SURFACE | (render_condition_enabled ? 0 : SI_DISABLE_RENDER_COND));
util_blitter_clear_depth_stencil(sctx->blitter, dst, clear_flags, depth, stencil, dstx, dsty,
width, height);
si_blitter_end(sctx);
}
static void si_clear_texture(struct pipe_context *pipe, struct pipe_resource *tex, unsigned level,
const struct pipe_box *box, const void *data)
{
struct pipe_screen *screen = pipe->screen;
struct si_texture *stex = (struct si_texture *)tex;
struct pipe_surface tmpl = {{0}};
struct pipe_surface *sf;
tmpl.format = tex->format;
tmpl.u.tex.first_layer = box->z;
tmpl.u.tex.last_layer = box->z + box->depth - 1;
tmpl.u.tex.level = level;
sf = pipe->create_surface(pipe, tex, &tmpl);
if (!sf)
return;
if (stex->is_depth) {
unsigned clear;
float depth;
uint8_t stencil = 0;
/* Depth is always present. */
clear = PIPE_CLEAR_DEPTH;
util_format_unpack_z_float(tex->format, &depth, data, 1);
if (stex->surface.has_stencil) {
clear |= PIPE_CLEAR_STENCIL;
util_format_unpack_s_8uint(tex->format, &stencil, data, 1);
}
si_clear_depth_stencil(pipe, sf, clear, depth, stencil, box->x, box->y, box->width,
box->height, false);
} else {
union pipe_color_union color;
util_format_unpack_rgba(tex->format, color.ui, data, 1);
if (screen->is_format_supported(screen, tex->format, tex->target, 0, 0,
PIPE_BIND_RENDER_TARGET)) {
si_clear_render_target(pipe, sf, &color, box->x, box->y, box->width, box->height, false);
} else {
/* Software fallback - just for R9G9B9E5_FLOAT */
util_clear_render_target(pipe, sf, &color, box->x, box->y, box->width, box->height);
}
}
pipe_surface_reference(&sf, NULL);
}
void si_init_clear_functions(struct si_context *sctx)
{
sctx->b.clear_render_target = si_clear_render_target;
sctx->b.clear_texture = si_clear_texture;
if (sctx->has_graphics) {
sctx->b.clear = si_clear;
sctx->b.clear_depth_stencil = si_clear_depth_stencil;
}
}