mesa/src/gallium/drivers/radeonsi/si_buffer.c

773 lines
28 KiB
C

/*
* Copyright 2013 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_pipe.h"
#include "util/u_memory.h"
#include "util/u_transfer.h"
#include "util/u_upload_mgr.h"
#include <inttypes.h>
#include <stdio.h>
bool si_cs_is_buffer_referenced(struct si_context *sctx, struct pb_buffer *buf,
unsigned usage)
{
return sctx->ws->cs_is_buffer_referenced(&sctx->gfx_cs, buf, usage);
}
void *si_buffer_map(struct si_context *sctx, struct si_resource *resource,
unsigned usage)
{
return sctx->ws->buffer_map(sctx->ws, resource->buf, &sctx->gfx_cs, usage);
}
void si_init_resource_fields(struct si_screen *sscreen, struct si_resource *res, uint64_t size,
unsigned alignment)
{
struct si_texture *tex = (struct si_texture *)res;
res->bo_size = size;
res->bo_alignment_log2 = util_logbase2(alignment);
res->flags = 0;
res->texture_handle_allocated = false;
res->image_handle_allocated = false;
switch (res->b.b.usage) {
case PIPE_USAGE_STREAM:
res->flags |= RADEON_FLAG_GTT_WC;
if (sscreen->info.smart_access_memory)
res->domains = RADEON_DOMAIN_VRAM;
else
res->domains = RADEON_DOMAIN_GTT;
break;
case PIPE_USAGE_STAGING:
/* Transfers are likely to occur more often with these
* resources. */
res->domains = RADEON_DOMAIN_GTT;
break;
case PIPE_USAGE_DYNAMIC:
case PIPE_USAGE_DEFAULT:
case PIPE_USAGE_IMMUTABLE:
default:
/* Not listing GTT here improves performance in some
* apps. */
res->domains = RADEON_DOMAIN_VRAM;
res->flags |= RADEON_FLAG_GTT_WC;
break;
}
if (res->b.b.target == PIPE_BUFFER && res->b.b.flags & PIPE_RESOURCE_FLAG_MAP_PERSISTENT) {
/* Use GTT for all persistent mappings with older
* kernels, because they didn't always flush the HDP
* cache before CS execution.
*
* Write-combined CPU mappings are fine, the kernel
* ensures all CPU writes finish before the GPU
* executes a command stream.
*
* radeon doesn't have good BO move throttling, so put all
* persistent buffers into GTT to prevent VRAM CPU page faults.
*/
if (!sscreen->info.is_amdgpu)
res->domains = RADEON_DOMAIN_GTT;
}
/* Tiled textures are unmappable. Always put them in VRAM. */
if ((res->b.b.target != PIPE_BUFFER && !tex->surface.is_linear) ||
res->b.b.flags & PIPE_RESOURCE_FLAG_UNMAPPABLE) {
res->domains = RADEON_DOMAIN_VRAM;
res->flags |= RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_GTT_WC;
}
/* Displayable and shareable surfaces are not suballocated. */
if (res->b.b.bind & (PIPE_BIND_SHARED | PIPE_BIND_SCANOUT))
res->flags |= RADEON_FLAG_NO_SUBALLOC; /* shareable */
else
res->flags |= RADEON_FLAG_NO_INTERPROCESS_SHARING;
if (res->b.b.bind & PIPE_BIND_PROTECTED ||
/* Force scanout/depth/stencil buffer allocation to be encrypted */
(sscreen->debug_flags & DBG(TMZ) &&
res->b.b.bind & (PIPE_BIND_SCANOUT | PIPE_BIND_DEPTH_STENCIL)))
res->flags |= RADEON_FLAG_ENCRYPTED;
if (res->b.b.flags & PIPE_RESOURCE_FLAG_ENCRYPTED)
res->flags |= RADEON_FLAG_ENCRYPTED;
if (sscreen->debug_flags & DBG(NO_WC))
res->flags &= ~RADEON_FLAG_GTT_WC;
if (res->b.b.flags & SI_RESOURCE_FLAG_READ_ONLY)
res->flags |= RADEON_FLAG_READ_ONLY;
if (res->b.b.flags & SI_RESOURCE_FLAG_32BIT)
res->flags |= RADEON_FLAG_32BIT;
if (res->b.b.flags & SI_RESOURCE_FLAG_DRIVER_INTERNAL)
res->flags |= RADEON_FLAG_DRIVER_INTERNAL;
if (res->b.b.flags & PIPE_RESOURCE_FLAG_SPARSE)
res->flags |= RADEON_FLAG_SPARSE;
/* For higher throughput and lower latency over PCIe assuming sequential access.
* Only CP DMA and optimized compute benefit from this.
* GFX8 and older don't support RADEON_FLAG_GL2_BYPASS.
*/
if (sscreen->info.gfx_level >= GFX9 &&
res->b.b.flags & SI_RESOURCE_FLAG_GL2_BYPASS)
res->flags |= RADEON_FLAG_GL2_BYPASS;
if (res->b.b.flags & SI_RESOURCE_FLAG_DISCARDABLE &&
sscreen->info.drm_major == 3 && sscreen->info.drm_minor >= 47) {
/* Assume VRAM, so that we can use BIG_PAGE. */
assert(res->domains == RADEON_DOMAIN_VRAM);
res->flags |= RADEON_FLAG_DISCARDABLE;
}
if (res->domains == RADEON_DOMAIN_VRAM &&
sscreen->options.mall_noalloc)
res->flags |= RADEON_FLAG_MALL_NOALLOC;
/* Set expected VRAM and GART usage for the buffer. */
res->memory_usage_kb = MAX2(1, size / 1024);
if (res->domains & RADEON_DOMAIN_VRAM) {
/* We don't want to evict buffers from VRAM by mapping them for CPU access,
* because they might never be moved back again. If a buffer is large enough,
* upload data by copying from a temporary GTT buffer.
*/
if (!sscreen->info.smart_access_memory &&
sscreen->info.has_dedicated_vram &&
!res->b.cpu_storage && /* TODO: The CPU storage breaks this. */
size >= SI_MAX_VRAM_MAP_SIZE)
res->b.b.flags |= PIPE_RESOURCE_FLAG_DONT_MAP_DIRECTLY;
}
}
bool si_alloc_resource(struct si_screen *sscreen, struct si_resource *res)
{
struct pb_buffer *old_buf, *new_buf;
/* Allocate a new resource. */
new_buf = sscreen->ws->buffer_create(sscreen->ws, res->bo_size, 1 << res->bo_alignment_log2,
res->domains, res->flags);
if (!new_buf) {
return false;
}
/* Replace the pointer such that if res->buf wasn't NULL, it won't be
* NULL. This should prevent crashes with multiple contexts using
* the same buffer where one of the contexts invalidates it while
* the others are using it. */
old_buf = res->buf;
res->buf = new_buf; /* should be atomic */
res->gpu_address = sscreen->ws->buffer_get_virtual_address(res->buf);
if (res->flags & RADEON_FLAG_32BIT) {
uint64_t start = res->gpu_address;
uint64_t last = start + res->bo_size - 1;
(void)start;
(void)last;
assert((start >> 32) == sscreen->info.address32_hi);
assert((last >> 32) == sscreen->info.address32_hi);
}
radeon_bo_reference(sscreen->ws, &old_buf, NULL);
util_range_set_empty(&res->valid_buffer_range);
res->TC_L2_dirty = false;
/* Print debug information. */
if (sscreen->debug_flags & DBG(VM) && res->b.b.target == PIPE_BUFFER) {
fprintf(stderr, "VM start=0x%" PRIX64 " end=0x%" PRIX64 " | Buffer %" PRIu64 " bytes\n",
res->gpu_address, res->gpu_address + res->buf->size, res->buf->size);
}
if (res->b.b.flags & SI_RESOURCE_FLAG_CLEAR)
si_screen_clear_buffer(sscreen, &res->b.b, 0, res->bo_size, 0, SI_OP_SYNC_AFTER);
return true;
}
static void si_resource_destroy(struct pipe_screen *screen, struct pipe_resource *buf)
{
if (buf->target == PIPE_BUFFER) {
struct si_screen *sscreen = (struct si_screen *)screen;
struct si_resource *buffer = si_resource(buf);
threaded_resource_deinit(buf);
util_range_destroy(&buffer->valid_buffer_range);
radeon_bo_reference(((struct si_screen*)screen)->ws, &buffer->buf, NULL);
util_idalloc_mt_free(&sscreen->buffer_ids, buffer->b.buffer_id_unique);
FREE_CL(buffer);
} else if (buf->flags & SI_RESOURCE_AUX_PLANE) {
struct si_auxiliary_texture *tex = (struct si_auxiliary_texture *)buf;
radeon_bo_reference(((struct si_screen*)screen)->ws, &tex->buffer, NULL);
FREE_CL(tex);
} else {
struct si_texture *tex = (struct si_texture *)buf;
struct si_resource *resource = &tex->buffer;
si_texture_reference(&tex->flushed_depth_texture, NULL);
if (tex->cmask_buffer != &tex->buffer) {
si_resource_reference(&tex->cmask_buffer, NULL);
}
radeon_bo_reference(((struct si_screen*)screen)->ws, &resource->buf, NULL);
FREE_CL(tex);
}
}
/* Reallocate the buffer a update all resource bindings where the buffer is
* bound.
*
* This is used to avoid CPU-GPU synchronizations, because it makes the buffer
* idle by discarding its contents.
*/
static bool si_invalidate_buffer(struct si_context *sctx, struct si_resource *buf)
{
/* Shared buffers can't be reallocated. */
if (buf->b.is_shared)
return false;
/* Sparse buffers can't be reallocated. */
if (buf->flags & RADEON_FLAG_SPARSE)
return false;
/* In AMD_pinned_memory, the user pointer association only gets
* broken when the buffer is explicitly re-allocated.
*/
if (buf->b.is_user_ptr)
return false;
/* Check if mapping this buffer would cause waiting for the GPU. */
if (si_cs_is_buffer_referenced(sctx, buf->buf, RADEON_USAGE_READWRITE) ||
!sctx->ws->buffer_wait(sctx->ws, buf->buf, 0, RADEON_USAGE_READWRITE)) {
/* Reallocate the buffer in the same pipe_resource. */
si_alloc_resource(sctx->screen, buf);
si_rebind_buffer(sctx, &buf->b.b);
} else {
util_range_set_empty(&buf->valid_buffer_range);
}
return true;
}
/* Replace the storage of dst with src. */
void si_replace_buffer_storage(struct pipe_context *ctx, struct pipe_resource *dst,
struct pipe_resource *src, unsigned num_rebinds, uint32_t rebind_mask,
uint32_t delete_buffer_id)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_resource *sdst = si_resource(dst);
struct si_resource *ssrc = si_resource(src);
radeon_bo_reference(sctx->screen->ws, &sdst->buf, ssrc->buf);
sdst->gpu_address = ssrc->gpu_address;
sdst->b.b.bind = ssrc->b.b.bind;
sdst->flags = ssrc->flags;
assert(sdst->memory_usage_kb == ssrc->memory_usage_kb);
assert(sdst->bo_size == ssrc->bo_size);
assert(sdst->bo_alignment_log2 == ssrc->bo_alignment_log2);
assert(sdst->domains == ssrc->domains);
si_rebind_buffer(sctx, dst);
util_idalloc_mt_free(&sctx->screen->buffer_ids, delete_buffer_id);
}
static void si_invalidate_resource(struct pipe_context *ctx, struct pipe_resource *resource)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_resource *buf = si_resource(resource);
/* We currently only do anyting here for buffers */
if (resource->target == PIPE_BUFFER)
(void)si_invalidate_buffer(sctx, buf);
}
static void *si_buffer_get_transfer(struct pipe_context *ctx, struct pipe_resource *resource,
unsigned usage, const struct pipe_box *box,
struct pipe_transfer **ptransfer, void *data,
struct si_resource *staging, unsigned offset)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_transfer *transfer;
if (usage & PIPE_MAP_THREAD_SAFE)
transfer = calloc(1, sizeof(*transfer));
else if (usage & TC_TRANSFER_MAP_THREADED_UNSYNC)
transfer = slab_zalloc(&sctx->pool_transfers_unsync);
else
transfer = slab_zalloc(&sctx->pool_transfers);
pipe_resource_reference(&transfer->b.b.resource, resource);
transfer->b.b.usage = usage;
transfer->b.b.box = *box;
transfer->b.b.offset = offset;
transfer->staging = staging;
*ptransfer = &transfer->b.b;
return data;
}
static void *si_buffer_transfer_map(struct pipe_context *ctx, struct pipe_resource *resource,
unsigned level, unsigned usage, const struct pipe_box *box,
struct pipe_transfer **ptransfer)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_resource *buf = si_resource(resource);
uint8_t *data;
assert(resource->target == PIPE_BUFFER);
assert(box->x + box->width <= resource->width0);
/* From GL_AMD_pinned_memory issues:
*
* 4) Is glMapBuffer on a shared buffer guaranteed to return the
* same system address which was specified at creation time?
*
* RESOLVED: NO. The GL implementation might return a different
* virtual mapping of that memory, although the same physical
* page will be used.
*
* So don't ever use staging buffers.
*/
if (buf->b.is_user_ptr)
usage |= PIPE_MAP_PERSISTENT;
if (usage & PIPE_MAP_ONCE)
usage |= RADEON_MAP_TEMPORARY;
/* See if the buffer range being mapped has never been initialized,
* in which case it can be mapped unsynchronized. */
if (!(usage & (PIPE_MAP_UNSYNCHRONIZED | TC_TRANSFER_MAP_NO_INFER_UNSYNCHRONIZED)) &&
usage & PIPE_MAP_WRITE && !buf->b.is_shared &&
!util_ranges_intersect(&buf->valid_buffer_range, box->x, box->x + box->width)) {
usage |= PIPE_MAP_UNSYNCHRONIZED;
}
/* If discarding the entire range, discard the whole resource instead. */
if (usage & PIPE_MAP_DISCARD_RANGE && box->x == 0 && box->width == resource->width0) {
usage |= PIPE_MAP_DISCARD_WHOLE_RESOURCE;
}
/* If a buffer in VRAM is too large and the range is discarded, don't
* map it directly. This makes sure that the buffer stays in VRAM.
*/
bool force_discard_range = false;
if (usage & (PIPE_MAP_DISCARD_WHOLE_RESOURCE | PIPE_MAP_DISCARD_RANGE) &&
!(usage & PIPE_MAP_PERSISTENT) &&
buf->b.b.flags & PIPE_RESOURCE_FLAG_DONT_MAP_DIRECTLY) {
usage &= ~(PIPE_MAP_DISCARD_WHOLE_RESOURCE | PIPE_MAP_UNSYNCHRONIZED);
usage |= PIPE_MAP_DISCARD_RANGE;
force_discard_range = true;
}
if (usage & PIPE_MAP_DISCARD_WHOLE_RESOURCE &&
!(usage & (PIPE_MAP_UNSYNCHRONIZED | TC_TRANSFER_MAP_NO_INVALIDATE))) {
assert(usage & PIPE_MAP_WRITE);
if (si_invalidate_buffer(sctx, buf)) {
/* At this point, the buffer is always idle. */
usage |= PIPE_MAP_UNSYNCHRONIZED;
} else {
/* Fall back to a temporary buffer. */
usage |= PIPE_MAP_DISCARD_RANGE;
}
}
if (usage & PIPE_MAP_DISCARD_RANGE &&
((!(usage & (PIPE_MAP_UNSYNCHRONIZED | PIPE_MAP_PERSISTENT))) ||
(buf->flags & RADEON_FLAG_SPARSE))) {
assert(usage & PIPE_MAP_WRITE);
/* Check if mapping this buffer would cause waiting for the GPU.
*/
if (buf->flags & (RADEON_FLAG_SPARSE | RADEON_FLAG_NO_CPU_ACCESS) ||
force_discard_range ||
si_cs_is_buffer_referenced(sctx, buf->buf, RADEON_USAGE_READWRITE) ||
!sctx->ws->buffer_wait(sctx->ws, buf->buf, 0, RADEON_USAGE_READWRITE)) {
/* Do a wait-free write-only transfer using a temporary buffer. */
struct u_upload_mgr *uploader;
struct si_resource *staging = NULL;
unsigned offset;
/* If we are not called from the driver thread, we have
* to use the uploader from u_threaded_context, which is
* local to the calling thread.
*/
if (usage & TC_TRANSFER_MAP_THREADED_UNSYNC)
uploader = sctx->tc->base.stream_uploader;
else
uploader = sctx->b.stream_uploader;
u_upload_alloc(uploader, 0, box->width + (box->x % SI_MAP_BUFFER_ALIGNMENT),
sctx->screen->info.tcc_cache_line_size, &offset,
(struct pipe_resource **)&staging, (void **)&data);
if (staging) {
data += box->x % SI_MAP_BUFFER_ALIGNMENT;
return si_buffer_get_transfer(ctx, resource, usage, box, ptransfer, data, staging,
offset);
} else if (buf->flags & RADEON_FLAG_SPARSE) {
return NULL;
}
} else {
/* At this point, the buffer is always idle (we checked it above). */
usage |= PIPE_MAP_UNSYNCHRONIZED;
}
}
/* Use a staging buffer in cached GTT for reads. */
else if (((usage & PIPE_MAP_READ) && !(usage & PIPE_MAP_PERSISTENT) &&
(buf->domains & RADEON_DOMAIN_VRAM || buf->flags & RADEON_FLAG_GTT_WC)) ||
(buf->flags & (RADEON_FLAG_SPARSE | RADEON_FLAG_NO_CPU_ACCESS))) {
struct si_resource *staging;
assert(!(usage & (TC_TRANSFER_MAP_THREADED_UNSYNC | PIPE_MAP_THREAD_SAFE)));
staging = si_aligned_buffer_create(ctx->screen,
SI_RESOURCE_FLAG_GL2_BYPASS | SI_RESOURCE_FLAG_DRIVER_INTERNAL,
PIPE_USAGE_STAGING,
box->width + (box->x % SI_MAP_BUFFER_ALIGNMENT), 256);
if (staging) {
/* Copy the VRAM buffer to the staging buffer. */
si_copy_buffer(sctx, &staging->b.b, resource, box->x % SI_MAP_BUFFER_ALIGNMENT,
box->x, box->width, SI_OP_SYNC_BEFORE_AFTER);
data = si_buffer_map(sctx, staging, usage & ~PIPE_MAP_UNSYNCHRONIZED);
if (!data) {
si_resource_reference(&staging, NULL);
return NULL;
}
data += box->x % SI_MAP_BUFFER_ALIGNMENT;
return si_buffer_get_transfer(ctx, resource, usage, box, ptransfer, data, staging, 0);
} else if (buf->flags & RADEON_FLAG_SPARSE) {
return NULL;
}
}
data = si_buffer_map(sctx, buf, usage);
if (!data) {
return NULL;
}
data += box->x;
return si_buffer_get_transfer(ctx, resource, usage, box, ptransfer, data, NULL, 0);
}
static void si_buffer_do_flush_region(struct pipe_context *ctx, struct pipe_transfer *transfer,
const struct pipe_box *box)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_transfer *stransfer = (struct si_transfer *)transfer;
struct si_resource *buf = si_resource(transfer->resource);
if (stransfer->staging) {
unsigned src_offset =
stransfer->b.b.offset + transfer->box.x % SI_MAP_BUFFER_ALIGNMENT + (box->x - transfer->box.x);
/* Copy the staging buffer into the original one. */
si_copy_buffer(sctx, transfer->resource, &stransfer->staging->b.b, box->x, src_offset,
box->width, SI_OP_SYNC_BEFORE_AFTER);
}
util_range_add(&buf->b.b, &buf->valid_buffer_range, box->x, box->x + box->width);
}
static void si_buffer_flush_region(struct pipe_context *ctx, struct pipe_transfer *transfer,
const struct pipe_box *rel_box)
{
unsigned required_usage = PIPE_MAP_WRITE | PIPE_MAP_FLUSH_EXPLICIT;
if ((transfer->usage & required_usage) == required_usage) {
struct pipe_box box;
u_box_1d(transfer->box.x + rel_box->x, rel_box->width, &box);
si_buffer_do_flush_region(ctx, transfer, &box);
}
}
static void si_buffer_transfer_unmap(struct pipe_context *ctx, struct pipe_transfer *transfer)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_transfer *stransfer = (struct si_transfer *)transfer;
if (transfer->usage & PIPE_MAP_WRITE && !(transfer->usage & PIPE_MAP_FLUSH_EXPLICIT))
si_buffer_do_flush_region(ctx, transfer, &transfer->box);
if (transfer->usage & (PIPE_MAP_ONCE | RADEON_MAP_TEMPORARY) &&
!stransfer->staging)
sctx->ws->buffer_unmap(sctx->ws, si_resource(stransfer->b.b.resource)->buf);
si_resource_reference(&stransfer->staging, NULL);
assert(stransfer->b.staging == NULL); /* for threaded context only */
pipe_resource_reference(&transfer->resource, NULL);
if (transfer->usage & PIPE_MAP_THREAD_SAFE) {
free(transfer);
} else {
/* Don't use pool_transfers_unsync. We are always in the driver
* thread. Freeing an object into a different pool is allowed.
*/
slab_free(&sctx->pool_transfers, transfer);
}
}
static void si_buffer_subdata(struct pipe_context *ctx, struct pipe_resource *buffer,
unsigned usage, unsigned offset, unsigned size, const void *data)
{
struct pipe_transfer *transfer = NULL;
struct pipe_box box;
uint8_t *map = NULL;
usage |= PIPE_MAP_WRITE;
if (!(usage & PIPE_MAP_DIRECTLY))
usage |= PIPE_MAP_DISCARD_RANGE;
u_box_1d(offset, size, &box);
map = si_buffer_transfer_map(ctx, buffer, 0, usage, &box, &transfer);
if (!map)
return;
memcpy(map, data, size);
si_buffer_transfer_unmap(ctx, transfer);
}
static struct si_resource *si_alloc_buffer_struct(struct pipe_screen *screen,
const struct pipe_resource *templ,
bool allow_cpu_storage)
{
struct si_resource *buf = MALLOC_STRUCT_CL(si_resource);
buf->b.b = *templ;
buf->b.b.next = NULL;
pipe_reference_init(&buf->b.b.reference, 1);
buf->b.b.screen = screen;
threaded_resource_init(&buf->b.b, allow_cpu_storage);
buf->buf = NULL;
buf->bind_history = 0;
buf->TC_L2_dirty = false;
util_range_init(&buf->valid_buffer_range);
return buf;
}
static struct pipe_resource *si_buffer_create(struct pipe_screen *screen,
const struct pipe_resource *templ, unsigned alignment)
{
struct si_screen *sscreen = (struct si_screen *)screen;
struct si_resource *buf =
si_alloc_buffer_struct(screen, templ,
templ->width0 <= sscreen->options.tc_max_cpu_storage_size);
if (templ->flags & PIPE_RESOURCE_FLAG_SPARSE)
buf->b.b.flags |= PIPE_RESOURCE_FLAG_UNMAPPABLE;
si_init_resource_fields(sscreen, buf, templ->width0, alignment);
buf->b.buffer_id_unique = util_idalloc_mt_alloc(&sscreen->buffer_ids);
if (!si_alloc_resource(sscreen, buf)) {
si_resource_destroy(screen, &buf->b.b);
return NULL;
}
return &buf->b.b;
}
struct pipe_resource *pipe_aligned_buffer_create(struct pipe_screen *screen, unsigned flags,
unsigned usage, unsigned size, unsigned alignment)
{
struct pipe_resource buffer;
memset(&buffer, 0, sizeof buffer);
buffer.target = PIPE_BUFFER;
buffer.format = PIPE_FORMAT_R8_UNORM;
buffer.bind = 0;
buffer.usage = usage;
buffer.flags = flags;
buffer.width0 = size;
buffer.height0 = 1;
buffer.depth0 = 1;
buffer.array_size = 1;
return si_buffer_create(screen, &buffer, alignment);
}
struct si_resource *si_aligned_buffer_create(struct pipe_screen *screen, unsigned flags,
unsigned usage, unsigned size, unsigned alignment)
{
return si_resource(pipe_aligned_buffer_create(screen, flags, usage, size, alignment));
}
static struct pipe_resource *si_buffer_from_user_memory(struct pipe_screen *screen,
const struct pipe_resource *templ,
void *user_memory)
{
struct si_screen *sscreen = (struct si_screen *)screen;
struct radeon_winsys *ws = sscreen->ws;
struct si_resource *buf = si_alloc_buffer_struct(screen, templ, false);
buf->domains = RADEON_DOMAIN_GTT;
buf->flags = 0;
buf->b.is_user_ptr = true;
util_range_add(&buf->b.b, &buf->valid_buffer_range, 0, templ->width0);
util_range_add(&buf->b.b, &buf->b.valid_buffer_range, 0, templ->width0);
buf->b.buffer_id_unique = util_idalloc_mt_alloc(&sscreen->buffer_ids);
/* Convert a user pointer to a buffer. */
buf->buf = ws->buffer_from_ptr(ws, user_memory, templ->width0, 0);
if (!buf->buf) {
si_resource_destroy(screen, &buf->b.b);
return NULL;
}
buf->gpu_address = ws->buffer_get_virtual_address(buf->buf);
buf->memory_usage_kb = templ->width0 / 1024;
return &buf->b.b;
}
struct pipe_resource *si_buffer_from_winsys_buffer(struct pipe_screen *screen,
const struct pipe_resource *templ,
struct pb_buffer *imported_buf,
uint64_t offset)
{
if (offset + templ->width0 > imported_buf->size)
return NULL;
struct si_screen *sscreen = (struct si_screen *)screen;
struct si_resource *res = si_alloc_buffer_struct(screen, templ, false);
if (!res)
return NULL;
enum radeon_bo_domain domains = sscreen->ws->buffer_get_initial_domain(imported_buf);
/* Get or guess the BO flags. */
unsigned flags = RADEON_FLAG_NO_SUBALLOC;
if (sscreen->ws->buffer_get_flags)
res->flags |= sscreen->ws->buffer_get_flags(imported_buf);
else
flags |= RADEON_FLAG_GTT_WC; /* unknown flags, guess them */
/* Deduce the usage. */
switch (domains) {
case RADEON_DOMAIN_VRAM:
case RADEON_DOMAIN_VRAM_GTT:
res->b.b.usage = PIPE_USAGE_DEFAULT;
break;
default:
/* Other values are interpreted as GTT. */
domains = RADEON_DOMAIN_GTT;
if (flags & RADEON_FLAG_GTT_WC)
res->b.b.usage = PIPE_USAGE_STREAM;
else
res->b.b.usage = PIPE_USAGE_STAGING;
}
si_init_resource_fields(sscreen, res, imported_buf->size,
1 << imported_buf->alignment_log2);
res->b.is_shared = true;
res->b.buffer_id_unique = util_idalloc_mt_alloc(&sscreen->buffer_ids);
res->buf = imported_buf;
res->gpu_address = sscreen->ws->buffer_get_virtual_address(res->buf) + offset;
res->domains = domains;
res->flags = flags;
if (res->flags & RADEON_FLAG_NO_CPU_ACCESS)
res->b.b.flags |= PIPE_RESOURCE_FLAG_UNMAPPABLE;
util_range_add(&res->b.b, &res->valid_buffer_range, 0, templ->width0);
util_range_add(&res->b.b, &res->b.valid_buffer_range, 0, templ->width0);
return &res->b.b;
}
static struct pipe_resource *si_resource_create(struct pipe_screen *screen,
const struct pipe_resource *templ)
{
if (templ->target == PIPE_BUFFER) {
return si_buffer_create(screen, templ, 256);
} else {
return si_texture_create(screen, templ);
}
}
static bool si_buffer_commit(struct si_context *ctx, struct si_resource *res,
struct pipe_box *box, bool commit)
{
return ctx->ws->buffer_commit(ctx->ws, res->buf, box->x, box->width, commit);
}
static bool si_resource_commit(struct pipe_context *pctx, struct pipe_resource *resource,
unsigned level, struct pipe_box *box, bool commit)
{
struct si_context *ctx = (struct si_context *)pctx;
struct si_resource *res = si_resource(resource);
/*
* Since buffer commitment changes cannot be pipelined, we need to
* (a) flush any pending commands that refer to the buffer we're about
* to change, and
* (b) wait for threaded submit to finish, including those that were
* triggered by some other, earlier operation.
*/
if (radeon_emitted(&ctx->gfx_cs, ctx->initial_gfx_cs_size) &&
ctx->ws->cs_is_buffer_referenced(&ctx->gfx_cs, res->buf, RADEON_USAGE_READWRITE)) {
si_flush_gfx_cs(ctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
}
ctx->ws->cs_sync_flush(&ctx->gfx_cs);
if (resource->target == PIPE_BUFFER)
return si_buffer_commit(ctx, res, box, commit);
else
return si_texture_commit(ctx, res, level, box, commit);
}
void si_init_screen_buffer_functions(struct si_screen *sscreen)
{
sscreen->b.resource_create = si_resource_create;
sscreen->b.resource_destroy = si_resource_destroy;
sscreen->b.resource_from_user_memory = si_buffer_from_user_memory;
}
void si_init_buffer_functions(struct si_context *sctx)
{
sctx->b.invalidate_resource = si_invalidate_resource;
sctx->b.buffer_map = si_buffer_transfer_map;
sctx->b.transfer_flush_region = si_buffer_flush_region;
sctx->b.buffer_unmap = si_buffer_transfer_unmap;
sctx->b.texture_subdata = u_default_texture_subdata;
sctx->b.buffer_subdata = si_buffer_subdata;
sctx->b.resource_commit = si_resource_commit;
}