mesa/src/intel/vulkan/anv_pipeline.c

3291 lines
117 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "util/mesa-sha1.h"
#include "util/os_time.h"
#include "common/intel_l3_config.h"
#include "common/intel_disasm.h"
#include "common/intel_sample_positions.h"
#include "anv_private.h"
#include "compiler/brw_nir.h"
#include "compiler/brw_nir_rt.h"
#include "anv_nir.h"
#include "nir/nir_xfb_info.h"
#include "spirv/nir_spirv.h"
#include "vk_pipeline.h"
#include "vk_render_pass.h"
#include "vk_util.h"
/* Needed for SWIZZLE macros */
#include "program/prog_instruction.h"
/* Eventually, this will become part of anv_CreateShader. Unfortunately,
* we can't do that yet because we don't have the ability to copy nir.
*/
static nir_shader *
anv_shader_stage_to_nir(struct anv_device *device,
const VkPipelineShaderStageCreateInfo *stage_info,
void *mem_ctx)
{
const struct anv_physical_device *pdevice = device->physical;
const struct anv_instance *instance = pdevice->instance;
const struct brw_compiler *compiler = pdevice->compiler;
gl_shader_stage stage = vk_to_mesa_shader_stage(stage_info->stage);
const nir_shader_compiler_options *nir_options =
compiler->nir_options[stage];
const struct spirv_to_nir_options spirv_options = {
.caps = {
.demote_to_helper_invocation = true,
.derivative_group = true,
.descriptor_array_dynamic_indexing = true,
.descriptor_array_non_uniform_indexing = true,
.descriptor_indexing = true,
.device_group = true,
.draw_parameters = true,
.float16 = pdevice->info.ver >= 8,
.float32_atomic_add = pdevice->info.has_lsc,
.float32_atomic_min_max = pdevice->info.ver >= 9,
.float64 = pdevice->info.ver >= 8,
.float64_atomic_min_max = pdevice->info.has_lsc,
.fragment_shader_sample_interlock = pdevice->info.ver >= 9,
.fragment_shader_pixel_interlock = pdevice->info.ver >= 9,
.geometry_streams = true,
/* When using Vulkan 1.3 or KHR_format_feature_flags2 is enabled, the
* read/write without format is per format, so just report true. It's
* up to the application to check.
*/
.image_read_without_format = instance->vk.app_info.api_version >= VK_API_VERSION_1_3 || device->vk.enabled_extensions.KHR_format_feature_flags2,
.image_write_without_format = true,
.int8 = pdevice->info.ver >= 8,
.int16 = pdevice->info.ver >= 8,
.int64 = pdevice->info.ver >= 8,
.int64_atomics = pdevice->info.ver >= 9 && pdevice->use_softpin,
.integer_functions2 = pdevice->info.ver >= 8,
.mesh_shading_nv = pdevice->vk.supported_extensions.NV_mesh_shader,
.min_lod = true,
.multiview = true,
.physical_storage_buffer_address = pdevice->has_a64_buffer_access,
.post_depth_coverage = pdevice->info.ver >= 9,
.runtime_descriptor_array = true,
.float_controls = pdevice->info.ver >= 8,
.ray_query = pdevice->info.has_ray_tracing,
.ray_tracing = pdevice->info.has_ray_tracing,
.shader_clock = true,
.shader_viewport_index_layer = true,
.stencil_export = pdevice->info.ver >= 9,
.storage_8bit = pdevice->info.ver >= 8,
.storage_16bit = pdevice->info.ver >= 8,
.subgroup_arithmetic = true,
.subgroup_basic = true,
.subgroup_ballot = true,
.subgroup_dispatch = true,
.subgroup_quad = true,
.subgroup_uniform_control_flow = true,
.subgroup_shuffle = true,
.subgroup_vote = true,
.tessellation = true,
.transform_feedback = pdevice->info.ver >= 8,
.variable_pointers = true,
.vk_memory_model = true,
.vk_memory_model_device_scope = true,
.workgroup_memory_explicit_layout = true,
.fragment_shading_rate = pdevice->info.ver >= 11,
},
.ubo_addr_format =
anv_nir_ubo_addr_format(pdevice, device->robust_buffer_access),
.ssbo_addr_format =
anv_nir_ssbo_addr_format(pdevice, device->robust_buffer_access),
.phys_ssbo_addr_format = nir_address_format_64bit_global,
.push_const_addr_format = nir_address_format_logical,
/* TODO: Consider changing this to an address format that has the NULL
* pointer equals to 0. That might be a better format to play nice
* with certain code / code generators.
*/
.shared_addr_format = nir_address_format_32bit_offset,
};
nir_shader *nir;
VkResult result =
vk_pipeline_shader_stage_to_nir(&device->vk, stage_info,
&spirv_options, nir_options,
mem_ctx, &nir);
if (result != VK_SUCCESS)
return NULL;
if (INTEL_DEBUG(intel_debug_flag_for_shader_stage(stage))) {
fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
gl_shader_stage_name(stage));
nir_print_shader(nir, stderr);
}
NIR_PASS_V(nir, nir_lower_io_to_temporaries,
nir_shader_get_entrypoint(nir), true, false);
const struct nir_lower_sysvals_to_varyings_options sysvals_to_varyings = {
.point_coord = true,
};
NIR_PASS(_, nir, nir_lower_sysvals_to_varyings, &sysvals_to_varyings);
const nir_opt_access_options opt_access_options = {
.is_vulkan = true,
.infer_non_readable = true,
};
NIR_PASS(_, nir, nir_opt_access, &opt_access_options);
NIR_PASS(_, nir, nir_lower_frexp);
/* Vulkan uses the separate-shader linking model */
nir->info.separate_shader = true;
brw_preprocess_nir(compiler, nir, NULL);
return nir;
}
VkResult
anv_pipeline_init(struct anv_pipeline *pipeline,
struct anv_device *device,
enum anv_pipeline_type type,
VkPipelineCreateFlags flags,
const VkAllocationCallbacks *pAllocator)
{
VkResult result;
memset(pipeline, 0, sizeof(*pipeline));
vk_object_base_init(&device->vk, &pipeline->base,
VK_OBJECT_TYPE_PIPELINE);
pipeline->device = device;
/* It's the job of the child class to provide actual backing storage for
* the batch by setting batch.start, batch.next, and batch.end.
*/
pipeline->batch.alloc = pAllocator ? pAllocator : &device->vk.alloc;
pipeline->batch.relocs = &pipeline->batch_relocs;
pipeline->batch.status = VK_SUCCESS;
result = anv_reloc_list_init(&pipeline->batch_relocs,
pipeline->batch.alloc);
if (result != VK_SUCCESS)
return result;
pipeline->mem_ctx = ralloc_context(NULL);
pipeline->type = type;
pipeline->flags = flags;
util_dynarray_init(&pipeline->executables, pipeline->mem_ctx);
return VK_SUCCESS;
}
void
anv_pipeline_finish(struct anv_pipeline *pipeline,
struct anv_device *device,
const VkAllocationCallbacks *pAllocator)
{
anv_reloc_list_finish(&pipeline->batch_relocs,
pAllocator ? pAllocator : &device->vk.alloc);
ralloc_free(pipeline->mem_ctx);
vk_object_base_finish(&pipeline->base);
}
void anv_DestroyPipeline(
VkDevice _device,
VkPipeline _pipeline,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
if (!pipeline)
return;
switch (pipeline->type) {
case ANV_PIPELINE_GRAPHICS: {
struct anv_graphics_pipeline *gfx_pipeline =
anv_pipeline_to_graphics(pipeline);
for (unsigned s = 0; s < ARRAY_SIZE(gfx_pipeline->shaders); s++) {
if (gfx_pipeline->shaders[s])
anv_shader_bin_unref(device, gfx_pipeline->shaders[s]);
}
break;
}
case ANV_PIPELINE_COMPUTE: {
struct anv_compute_pipeline *compute_pipeline =
anv_pipeline_to_compute(pipeline);
if (compute_pipeline->cs)
anv_shader_bin_unref(device, compute_pipeline->cs);
break;
}
case ANV_PIPELINE_RAY_TRACING: {
struct anv_ray_tracing_pipeline *rt_pipeline =
anv_pipeline_to_ray_tracing(pipeline);
util_dynarray_foreach(&rt_pipeline->shaders,
struct anv_shader_bin *, shader) {
anv_shader_bin_unref(device, *shader);
}
break;
}
default:
unreachable("invalid pipeline type");
}
anv_pipeline_finish(pipeline, device, pAllocator);
vk_free2(&device->vk.alloc, pAllocator, pipeline);
}
static void
populate_sampler_prog_key(const struct intel_device_info *devinfo,
struct brw_sampler_prog_key_data *key)
{
/* Almost all multisampled textures are compressed. The only time when we
* don't compress a multisampled texture is for 16x MSAA with a surface
* width greater than 8k which is a bit of an edge case. Since the sampler
* just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
* to tell the compiler to always assume compression.
*/
key->compressed_multisample_layout_mask = ~0;
/* SkyLake added support for 16x MSAA. With this came a new message for
* reading from a 16x MSAA surface with compression. The new message was
* needed because now the MCS data is 64 bits instead of 32 or lower as is
* the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which
* message we use. Fortunately, the 16x message works for 8x, 4x, and 2x
* so we can just use it unconditionally. This may not be quite as
* efficient but it saves us from recompiling.
*/
if (devinfo->ver >= 9)
key->msaa_16 = ~0;
/* XXX: Handle texture swizzle on HSW- */
for (int i = 0; i < BRW_MAX_SAMPLERS; i++) {
/* Assume color sampler, no swizzling. (Works for BDW+) */
key->swizzles[i] = SWIZZLE_XYZW;
}
}
static void
populate_base_prog_key(const struct anv_device *device,
bool robust_buffer_acccess,
struct brw_base_prog_key *key)
{
key->robust_buffer_access = robust_buffer_acccess;
key->limit_trig_input_range =
device->physical->instance->limit_trig_input_range;
populate_sampler_prog_key(&device->info, &key->tex);
}
static void
populate_vs_prog_key(const struct anv_device *device,
bool robust_buffer_acccess,
struct brw_vs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(device, robust_buffer_acccess, &key->base);
/* XXX: Handle vertex input work-arounds */
/* XXX: Handle sampler_prog_key */
}
static void
populate_tcs_prog_key(const struct anv_device *device,
bool robust_buffer_acccess,
unsigned input_vertices,
struct brw_tcs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(device, robust_buffer_acccess, &key->base);
key->input_vertices = input_vertices;
}
static void
populate_tes_prog_key(const struct anv_device *device,
bool robust_buffer_acccess,
struct brw_tes_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(device, robust_buffer_acccess, &key->base);
}
static void
populate_gs_prog_key(const struct anv_device *device,
bool robust_buffer_acccess,
struct brw_gs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(device, robust_buffer_acccess, &key->base);
}
static bool
pipeline_has_coarse_pixel(const struct anv_graphics_pipeline *pipeline,
const BITSET_WORD *dynamic,
const struct vk_multisample_state *ms,
const struct vk_fragment_shading_rate_state *fsr)
{
/* The Vulkan 1.2.199 spec says:
*
* "If any of the following conditions are met, Cxy' must be set to
* {1,1}:
*
* * If Sample Shading is enabled.
* * [...]"
*
* And "sample shading" is defined as follows:
*
* "Sample shading is enabled for a graphics pipeline:
*
* * If the interface of the fragment shader entry point of the
* graphics pipeline includes an input variable decorated with
* SampleId or SamplePosition. In this case minSampleShadingFactor
* takes the value 1.0.
*
* * Else if the sampleShadingEnable member of the
* VkPipelineMultisampleStateCreateInfo structure specified when
* creating the graphics pipeline is set to VK_TRUE. In this case
* minSampleShadingFactor takes the value of
* VkPipelineMultisampleStateCreateInfo::minSampleShading.
*
* Otherwise, sample shading is considered disabled."
*
* The first bullet above is handled by the back-end compiler because those
* inputs both force per-sample dispatch. The second bullet is handled
* here. Note that this sample shading being enabled has nothing to do
* with minSampleShading.
*/
if (ms != NULL && ms->sample_shading_enable)
return false;
/* Not dynamic & pipeline has a 1x1 fragment shading rate with no
* possibility for element of the pipeline to change the value.
*/
if (!BITSET_TEST(dynamic, MESA_VK_DYNAMIC_FSR) &&
fsr->fragment_size.width <= 1 &&
fsr->fragment_size.height <= 1 &&
fsr->combiner_ops[0] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR &&
fsr->combiner_ops[1] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR)
return false;
return true;
}
static void
populate_task_prog_key(const struct anv_device *device,
bool robust_buffer_access,
struct brw_task_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(device, robust_buffer_access, &key->base);
}
static void
populate_mesh_prog_key(const struct anv_device *device,
bool robust_buffer_access,
struct brw_mesh_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(device, robust_buffer_access, &key->base);
}
static void
populate_wm_prog_key(const struct anv_graphics_pipeline *pipeline,
bool robust_buffer_acccess,
const BITSET_WORD *dynamic,
const struct vk_multisample_state *ms,
const struct vk_fragment_shading_rate_state *fsr,
const struct vk_render_pass_state *rp,
struct brw_wm_prog_key *key)
{
const struct anv_device *device = pipeline->base.device;
memset(key, 0, sizeof(*key));
populate_base_prog_key(device, robust_buffer_acccess, &key->base);
/* We set this to 0 here and set to the actual value before we call
* brw_compile_fs.
*/
key->input_slots_valid = 0;
/* XXX Vulkan doesn't appear to specify */
key->clamp_fragment_color = false;
key->ignore_sample_mask_out = false;
assert(rp->color_attachment_count <= MAX_RTS);
/* Consider all inputs as valid until look at the NIR variables. */
key->color_outputs_valid = (1u << rp->color_attachment_count) - 1;
key->nr_color_regions = rp->color_attachment_count;
/* To reduce possible shader recompilations we would need to know if
* there is a SampleMask output variable to compute if we should emit
* code to workaround the issue that hardware disables alpha to coverage
* when there is SampleMask output.
*/
key->alpha_to_coverage = ms != NULL && ms->alpha_to_coverage_enable;
/* Vulkan doesn't support fixed-function alpha test */
key->alpha_test_replicate_alpha = false;
if (ms != NULL) {
/* We should probably pull this out of the shader, but it's fairly
* harmless to compute it and then let dead-code take care of it.
*/
if (ms->rasterization_samples > 1) {
key->persample_interp = ms->sample_shading_enable &&
(ms->min_sample_shading * ms->rasterization_samples) > 1;
key->multisample_fbo = true;
}
if (device->physical->instance->sample_mask_out_opengl_behaviour)
key->ignore_sample_mask_out = !key->multisample_fbo;
}
key->coarse_pixel =
!key->persample_interp &&
device->vk.enabled_extensions.KHR_fragment_shading_rate &&
pipeline_has_coarse_pixel(pipeline, dynamic, ms, fsr);
}
static void
populate_cs_prog_key(const struct anv_device *device,
bool robust_buffer_acccess,
struct brw_cs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(device, robust_buffer_acccess, &key->base);
}
static void
populate_bs_prog_key(const struct anv_device *device,
bool robust_buffer_access,
struct brw_bs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(device, robust_buffer_access, &key->base);
}
struct anv_pipeline_stage {
gl_shader_stage stage;
const VkPipelineShaderStageCreateInfo *info;
unsigned char shader_sha1[20];
union brw_any_prog_key key;
struct {
gl_shader_stage stage;
unsigned char sha1[20];
} cache_key;
nir_shader *nir;
struct anv_pipeline_binding surface_to_descriptor[256];
struct anv_pipeline_binding sampler_to_descriptor[256];
struct anv_pipeline_bind_map bind_map;
union brw_any_prog_data prog_data;
uint32_t num_stats;
struct brw_compile_stats stats[3];
char *disasm[3];
VkPipelineCreationFeedback feedback;
const unsigned *code;
struct anv_shader_bin *bin;
};
static void
anv_pipeline_hash_graphics(struct anv_graphics_pipeline *pipeline,
struct anv_pipeline_layout *layout,
struct anv_pipeline_stage *stages,
unsigned char *sha1_out)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
_mesa_sha1_update(&ctx, &pipeline->view_mask,
sizeof(pipeline->view_mask));
if (layout)
_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
const bool rba = pipeline->base.device->robust_buffer_access;
_mesa_sha1_update(&ctx, &rba, sizeof(rba));
for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
if (stages[s].info) {
_mesa_sha1_update(&ctx, stages[s].shader_sha1,
sizeof(stages[s].shader_sha1));
_mesa_sha1_update(&ctx, &stages[s].key, brw_prog_key_size(s));
}
}
_mesa_sha1_final(&ctx, sha1_out);
}
static void
anv_pipeline_hash_compute(struct anv_compute_pipeline *pipeline,
struct anv_pipeline_layout *layout,
struct anv_pipeline_stage *stage,
unsigned char *sha1_out)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
if (layout)
_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
const struct anv_device *device = pipeline->base.device;
const bool rba = device->robust_buffer_access;
_mesa_sha1_update(&ctx, &rba, sizeof(rba));
const bool afs = device->physical->instance->assume_full_subgroups;
_mesa_sha1_update(&ctx, &afs, sizeof(afs));
_mesa_sha1_update(&ctx, stage->shader_sha1,
sizeof(stage->shader_sha1));
_mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
_mesa_sha1_final(&ctx, sha1_out);
}
static void
anv_pipeline_hash_ray_tracing_shader(struct anv_ray_tracing_pipeline *pipeline,
struct anv_pipeline_layout *layout,
struct anv_pipeline_stage *stage,
unsigned char *sha1_out)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
if (layout != NULL)
_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
const bool rba = pipeline->base.device->robust_buffer_access;
_mesa_sha1_update(&ctx, &rba, sizeof(rba));
_mesa_sha1_update(&ctx, stage->shader_sha1, sizeof(stage->shader_sha1));
_mesa_sha1_update(&ctx, &stage->key, sizeof(stage->key.bs));
_mesa_sha1_final(&ctx, sha1_out);
}
static void
anv_pipeline_hash_ray_tracing_combined_shader(struct anv_ray_tracing_pipeline *pipeline,
struct anv_pipeline_layout *layout,
struct anv_pipeline_stage *intersection,
struct anv_pipeline_stage *any_hit,
unsigned char *sha1_out)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
if (layout != NULL)
_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
const bool rba = pipeline->base.device->robust_buffer_access;
_mesa_sha1_update(&ctx, &rba, sizeof(rba));
_mesa_sha1_update(&ctx, intersection->shader_sha1, sizeof(intersection->shader_sha1));
_mesa_sha1_update(&ctx, &intersection->key, sizeof(intersection->key.bs));
_mesa_sha1_update(&ctx, any_hit->shader_sha1, sizeof(any_hit->shader_sha1));
_mesa_sha1_update(&ctx, &any_hit->key, sizeof(any_hit->key.bs));
_mesa_sha1_final(&ctx, sha1_out);
}
static nir_shader *
anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
struct vk_pipeline_cache *cache,
void *mem_ctx,
struct anv_pipeline_stage *stage)
{
const struct brw_compiler *compiler =
pipeline->device->physical->compiler;
const nir_shader_compiler_options *nir_options =
compiler->nir_options[stage->stage];
nir_shader *nir;
nir = anv_device_search_for_nir(pipeline->device, cache,
nir_options,
stage->shader_sha1,
mem_ctx);
if (nir) {
assert(nir->info.stage == stage->stage);
return nir;
}
nir = anv_shader_stage_to_nir(pipeline->device, stage->info, mem_ctx);
if (nir) {
anv_device_upload_nir(pipeline->device, cache, nir, stage->shader_sha1);
return nir;
}
return NULL;
}
static void
shared_type_info(const struct glsl_type *type, unsigned *size, unsigned *align)
{
assert(glsl_type_is_vector_or_scalar(type));
uint32_t comp_size = glsl_type_is_boolean(type)
? 4 : glsl_get_bit_size(type) / 8;
unsigned length = glsl_get_vector_elements(type);
*size = comp_size * length,
*align = comp_size * (length == 3 ? 4 : length);
}
static void
anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
void *mem_ctx,
struct anv_pipeline_stage *stage,
struct anv_pipeline_layout *layout)
{
const struct anv_physical_device *pdevice = pipeline->device->physical;
const struct brw_compiler *compiler = pdevice->compiler;
struct brw_stage_prog_data *prog_data = &stage->prog_data.base;
nir_shader *nir = stage->nir;
if (nir->info.stage == MESA_SHADER_FRAGMENT) {
NIR_PASS(_, nir, nir_lower_wpos_center);
NIR_PASS(_, nir, nir_lower_input_attachments,
&(nir_input_attachment_options) {
.use_fragcoord_sysval = true,
.use_layer_id_sysval = true,
});
}
NIR_PASS(_, nir, anv_nir_lower_ycbcr_textures, layout);
if (pipeline->type == ANV_PIPELINE_GRAPHICS) {
NIR_PASS(_, nir, anv_nir_lower_multiview,
anv_pipeline_to_graphics(pipeline));
}
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
NIR_PASS(_, nir, brw_nir_lower_storage_image, compiler->devinfo);
NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_global,
nir_address_format_64bit_global);
NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_push_const,
nir_address_format_32bit_offset);
NIR_PASS(_, nir, brw_nir_lower_ray_queries, &pdevice->info);
/* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
NIR_PASS_V(nir, anv_nir_apply_pipeline_layout,
pdevice, pipeline->device->robust_buffer_access,
layout, &stage->bind_map);
NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ubo,
anv_nir_ubo_addr_format(pdevice,
pipeline->device->robust_buffer_access));
NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ssbo,
anv_nir_ssbo_addr_format(pdevice,
pipeline->device->robust_buffer_access));
/* First run copy-prop to get rid of all of the vec() that address
* calculations often create and then constant-fold so that, when we
* get to anv_nir_lower_ubo_loads, we can detect constant offsets.
*/
NIR_PASS(_, nir, nir_copy_prop);
NIR_PASS(_, nir, nir_opt_constant_folding);
NIR_PASS(_, nir, anv_nir_lower_ubo_loads);
/* We don't support non-uniform UBOs and non-uniform SSBO access is
* handled naturally by falling back to A64 messages.
*/
NIR_PASS(_, nir, nir_lower_non_uniform_access,
&(nir_lower_non_uniform_access_options) {
.types = nir_lower_non_uniform_texture_access |
nir_lower_non_uniform_image_access,
.callback = NULL,
});
NIR_PASS_V(nir, anv_nir_compute_push_layout,
pdevice, pipeline->device->robust_buffer_access,
prog_data, &stage->bind_map, mem_ctx);
if (gl_shader_stage_uses_workgroup(nir->info.stage)) {
if (!nir->info.shared_memory_explicit_layout) {
NIR_PASS(_, nir, nir_lower_vars_to_explicit_types,
nir_var_mem_shared, shared_type_info);
}
NIR_PASS(_, nir, nir_lower_explicit_io,
nir_var_mem_shared, nir_address_format_32bit_offset);
if (nir->info.zero_initialize_shared_memory &&
nir->info.shared_size > 0) {
/* The effective Shared Local Memory size is at least 1024 bytes and
* is always rounded to a power of two, so it is OK to align the size
* used by the shader to chunk_size -- which does simplify the logic.
*/
const unsigned chunk_size = 16;
const unsigned shared_size = ALIGN(nir->info.shared_size, chunk_size);
assert(shared_size <=
intel_calculate_slm_size(compiler->devinfo->ver, nir->info.shared_size));
NIR_PASS(_, nir, nir_zero_initialize_shared_memory,
shared_size, chunk_size);
}
}
if (gl_shader_stage_is_compute(nir->info.stage) ||
gl_shader_stage_is_mesh(nir->info.stage))
NIR_PASS(_, nir, brw_nir_lower_cs_intrinsics);
stage->nir = nir;
}
static void
anv_pipeline_link_vs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *vs_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage)
brw_nir_link_shaders(compiler, vs_stage->nir, next_stage->nir);
}
static void
anv_pipeline_compile_vs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_graphics_pipeline *pipeline,
struct anv_pipeline_stage *vs_stage)
{
/* When using Primitive Replication for multiview, each view gets its own
* position slot.
*/
uint32_t pos_slots = pipeline->use_primitive_replication ?
MAX2(1, util_bitcount(pipeline->view_mask)) : 1;
brw_compute_vue_map(compiler->devinfo,
&vs_stage->prog_data.vs.base.vue_map,
vs_stage->nir->info.outputs_written,
vs_stage->nir->info.separate_shader,
pos_slots);
vs_stage->num_stats = 1;
struct brw_compile_vs_params params = {
.nir = vs_stage->nir,
.key = &vs_stage->key.vs,
.prog_data = &vs_stage->prog_data.vs,
.stats = vs_stage->stats,
.log_data = pipeline->base.device,
};
vs_stage->code = brw_compile_vs(compiler, mem_ctx, &params);
}
static void
merge_tess_info(struct shader_info *tes_info,
const struct shader_info *tcs_info)
{
/* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
*
* "PointMode. Controls generation of points rather than triangles
* or lines. This functionality defaults to disabled, and is
* enabled if either shader stage includes the execution mode.
*
* and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
* PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
* and OutputVertices, it says:
*
* "One mode must be set in at least one of the tessellation
* shader stages."
*
* So, the fields can be set in either the TCS or TES, but they must
* agree if set in both. Our backend looks at TES, so bitwise-or in
* the values from the TCS.
*/
assert(tcs_info->tess.tcs_vertices_out == 0 ||
tes_info->tess.tcs_vertices_out == 0 ||
tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tcs_info->tess.spacing == tes_info->tess.spacing);
tes_info->tess.spacing |= tcs_info->tess.spacing;
assert(tcs_info->tess._primitive_mode == 0 ||
tes_info->tess._primitive_mode == 0 ||
tcs_info->tess._primitive_mode == tes_info->tess._primitive_mode);
tes_info->tess._primitive_mode |= tcs_info->tess._primitive_mode;
tes_info->tess.ccw |= tcs_info->tess.ccw;
tes_info->tess.point_mode |= tcs_info->tess.point_mode;
}
static void
anv_pipeline_link_tcs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *tcs_stage,
struct anv_pipeline_stage *tes_stage)
{
assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
brw_nir_link_shaders(compiler, tcs_stage->nir, tes_stage->nir);
nir_lower_patch_vertices(tes_stage->nir,
tcs_stage->nir->info.tess.tcs_vertices_out,
NULL);
/* Copy TCS info into the TES info */
merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
/* Whacking the key after cache lookup is a bit sketchy, but all of
* this comes from the SPIR-V, which is part of the hash used for the
* pipeline cache. So it should be safe.
*/
tcs_stage->key.tcs._tes_primitive_mode =
tes_stage->nir->info.tess._primitive_mode;
tcs_stage->key.tcs.quads_workaround =
compiler->devinfo->ver < 9 &&
tes_stage->nir->info.tess._primitive_mode == TESS_PRIMITIVE_QUADS &&
tes_stage->nir->info.tess.spacing == TESS_SPACING_EQUAL;
}
static void
anv_pipeline_compile_tcs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *tcs_stage,
struct anv_pipeline_stage *prev_stage)
{
tcs_stage->key.tcs.outputs_written =
tcs_stage->nir->info.outputs_written;
tcs_stage->key.tcs.patch_outputs_written =
tcs_stage->nir->info.patch_outputs_written;
tcs_stage->num_stats = 1;
struct brw_compile_tcs_params params = {
.nir = tcs_stage->nir,
.key = &tcs_stage->key.tcs,
.prog_data = &tcs_stage->prog_data.tcs,
.stats = tcs_stage->stats,
.log_data = device,
};
tcs_stage->code = brw_compile_tcs(compiler, mem_ctx, &params);
}
static void
anv_pipeline_link_tes(const struct brw_compiler *compiler,
struct anv_pipeline_stage *tes_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage)
brw_nir_link_shaders(compiler, tes_stage->nir, next_stage->nir);
}
static void
anv_pipeline_compile_tes(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *tes_stage,
struct anv_pipeline_stage *tcs_stage)
{
tes_stage->key.tes.inputs_read =
tcs_stage->nir->info.outputs_written;
tes_stage->key.tes.patch_inputs_read =
tcs_stage->nir->info.patch_outputs_written;
tes_stage->num_stats = 1;
struct brw_compile_tes_params params = {
.nir = tes_stage->nir,
.key = &tes_stage->key.tes,
.prog_data = &tes_stage->prog_data.tes,
.input_vue_map = &tcs_stage->prog_data.tcs.base.vue_map,
.stats = tes_stage->stats,
.log_data = device,
};
tes_stage->code = brw_compile_tes(compiler, mem_ctx, &params);
}
static void
anv_pipeline_link_gs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *gs_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage)
brw_nir_link_shaders(compiler, gs_stage->nir, next_stage->nir);
}
static void
anv_pipeline_compile_gs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *gs_stage,
struct anv_pipeline_stage *prev_stage)
{
brw_compute_vue_map(compiler->devinfo,
&gs_stage->prog_data.gs.base.vue_map,
gs_stage->nir->info.outputs_written,
gs_stage->nir->info.separate_shader, 1);
gs_stage->num_stats = 1;
struct brw_compile_gs_params params = {
.nir = gs_stage->nir,
.key = &gs_stage->key.gs,
.prog_data = &gs_stage->prog_data.gs,
.stats = gs_stage->stats,
.log_data = device,
};
gs_stage->code = brw_compile_gs(compiler, mem_ctx, &params);
}
static void
anv_pipeline_link_task(const struct brw_compiler *compiler,
struct anv_pipeline_stage *task_stage,
struct anv_pipeline_stage *next_stage)
{
assert(next_stage);
assert(next_stage->stage == MESA_SHADER_MESH);
brw_nir_link_shaders(compiler, task_stage->nir, next_stage->nir);
}
static void
anv_pipeline_compile_task(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *task_stage)
{
task_stage->num_stats = 1;
struct brw_compile_task_params params = {
.nir = task_stage->nir,
.key = &task_stage->key.task,
.prog_data = &task_stage->prog_data.task,
.stats = task_stage->stats,
.log_data = device,
};
task_stage->code = brw_compile_task(compiler, mem_ctx, &params);
}
static void
anv_pipeline_link_mesh(const struct brw_compiler *compiler,
struct anv_pipeline_stage *mesh_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage) {
brw_nir_link_shaders(compiler, mesh_stage->nir, next_stage->nir);
}
}
static void
anv_pipeline_compile_mesh(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *mesh_stage,
struct anv_pipeline_stage *prev_stage)
{
mesh_stage->num_stats = 1;
struct brw_compile_mesh_params params = {
.nir = mesh_stage->nir,
.key = &mesh_stage->key.mesh,
.prog_data = &mesh_stage->prog_data.mesh,
.stats = mesh_stage->stats,
.log_data = device,
};
if (prev_stage) {
assert(prev_stage->stage == MESA_SHADER_TASK);
params.tue_map = &prev_stage->prog_data.task.map;
}
mesh_stage->code = brw_compile_mesh(compiler, mem_ctx, &params);
}
static void
anv_pipeline_link_fs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *stage,
const struct vk_render_pass_state *rp)
{
/* Initially the valid outputs value is set to all possible render targets
* valid (see populate_wm_prog_key()), before we look at the shader
* variables. Here we look at the output variables of the shader an compute
* a correct number of render target outputs.
*/
stage->key.wm.color_outputs_valid = 0;
nir_foreach_shader_out_variable_safe(var, stage->nir) {
if (var->data.location < FRAG_RESULT_DATA0)
continue;
const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
const unsigned array_len =
glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
assert(rt + array_len <= MAX_RTS);
stage->key.wm.color_outputs_valid |= BITFIELD_RANGE(rt, array_len);
}
stage->key.wm.color_outputs_valid &=
(1u << rp->color_attachment_count) - 1;
stage->key.wm.nr_color_regions =
util_last_bit(stage->key.wm.color_outputs_valid);
unsigned num_rt_bindings;
struct anv_pipeline_binding rt_bindings[MAX_RTS];
if (stage->key.wm.nr_color_regions > 0) {
assert(stage->key.wm.nr_color_regions <= MAX_RTS);
for (unsigned rt = 0; rt < stage->key.wm.nr_color_regions; rt++) {
if (stage->key.wm.color_outputs_valid & BITFIELD_BIT(rt)) {
rt_bindings[rt] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.index = rt,
};
} else {
/* Setup a null render target */
rt_bindings[rt] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.index = UINT32_MAX,
};
}
}
num_rt_bindings = stage->key.wm.nr_color_regions;
} else {
/* Setup a null render target */
rt_bindings[0] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.index = UINT32_MAX,
};
num_rt_bindings = 1;
}
assert(num_rt_bindings <= MAX_RTS);
assert(stage->bind_map.surface_count == 0);
typed_memcpy(stage->bind_map.surface_to_descriptor,
rt_bindings, num_rt_bindings);
stage->bind_map.surface_count += num_rt_bindings;
}
static void
anv_pipeline_compile_fs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *fs_stage,
struct anv_pipeline_stage *prev_stage)
{
/* TODO: we could set this to 0 based on the information in nir_shader, but
* we need this before we call spirv_to_nir.
*/
assert(prev_stage);
struct brw_compile_fs_params params = {
.nir = fs_stage->nir,
.key = &fs_stage->key.wm,
.prog_data = &fs_stage->prog_data.wm,
.allow_spilling = true,
.stats = fs_stage->stats,
.log_data = device,
};
if (prev_stage->stage == MESA_SHADER_MESH) {
params.mue_map = &prev_stage->prog_data.mesh.map;
/* TODO(mesh): Slots valid, do we even use/rely on it? */
} else {
fs_stage->key.wm.input_slots_valid =
prev_stage->prog_data.vue.vue_map.slots_valid;
}
fs_stage->code = brw_compile_fs(compiler, mem_ctx, &params);
fs_stage->num_stats = (uint32_t)fs_stage->prog_data.wm.dispatch_8 +
(uint32_t)fs_stage->prog_data.wm.dispatch_16 +
(uint32_t)fs_stage->prog_data.wm.dispatch_32;
}
static void
anv_pipeline_add_executable(struct anv_pipeline *pipeline,
struct anv_pipeline_stage *stage,
struct brw_compile_stats *stats,
uint32_t code_offset)
{
char *nir = NULL;
if (stage->nir &&
(pipeline->flags &
VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
nir = nir_shader_as_str(stage->nir, pipeline->mem_ctx);
}
char *disasm = NULL;
if (stage->code &&
(pipeline->flags &
VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
char *stream_data = NULL;
size_t stream_size = 0;
FILE *stream = open_memstream(&stream_data, &stream_size);
uint32_t push_size = 0;
for (unsigned i = 0; i < 4; i++)
push_size += stage->bind_map.push_ranges[i].length;
if (push_size > 0) {
fprintf(stream, "Push constant ranges:\n");
for (unsigned i = 0; i < 4; i++) {
if (stage->bind_map.push_ranges[i].length == 0)
continue;
fprintf(stream, " RANGE%d (%dB): ", i,
stage->bind_map.push_ranges[i].length * 32);
switch (stage->bind_map.push_ranges[i].set) {
case ANV_DESCRIPTOR_SET_NULL:
fprintf(stream, "NULL");
break;
case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS:
fprintf(stream, "Vulkan push constants and API params");
break;
case ANV_DESCRIPTOR_SET_DESCRIPTORS:
fprintf(stream, "Descriptor buffer for set %d (start=%dB)",
stage->bind_map.push_ranges[i].index,
stage->bind_map.push_ranges[i].start * 32);
break;
case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS:
unreachable("gl_NumWorkgroups is never pushed");
case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS:
fprintf(stream, "Inline shader constant data (start=%dB)",
stage->bind_map.push_ranges[i].start * 32);
break;
case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
unreachable("Color attachments can't be pushed");
default:
fprintf(stream, "UBO (set=%d binding=%d start=%dB)",
stage->bind_map.push_ranges[i].set,
stage->bind_map.push_ranges[i].index,
stage->bind_map.push_ranges[i].start * 32);
break;
}
fprintf(stream, "\n");
}
fprintf(stream, "\n");
}
/* Creating this is far cheaper than it looks. It's perfectly fine to
* do it for every binary.
*/
intel_disassemble(&pipeline->device->physical->compiler->isa,
stage->code, code_offset, stream);
fclose(stream);
/* Copy it to a ralloc'd thing */
disasm = ralloc_size(pipeline->mem_ctx, stream_size + 1);
memcpy(disasm, stream_data, stream_size);
disasm[stream_size] = 0;
free(stream_data);
}
const struct anv_pipeline_executable exe = {
.stage = stage->stage,
.stats = *stats,
.nir = nir,
.disasm = disasm,
};
util_dynarray_append(&pipeline->executables,
struct anv_pipeline_executable, exe);
}
static void
anv_pipeline_add_executables(struct anv_pipeline *pipeline,
struct anv_pipeline_stage *stage,
struct anv_shader_bin *bin)
{
if (stage->stage == MESA_SHADER_FRAGMENT) {
/* We pull the prog data and stats out of the anv_shader_bin because
* the anv_pipeline_stage may not be fully populated if we successfully
* looked up the shader in a cache.
*/
const struct brw_wm_prog_data *wm_prog_data =
(const struct brw_wm_prog_data *)bin->prog_data;
struct brw_compile_stats *stats = bin->stats;
if (wm_prog_data->dispatch_8) {
anv_pipeline_add_executable(pipeline, stage, stats++, 0);
}
if (wm_prog_data->dispatch_16) {
anv_pipeline_add_executable(pipeline, stage, stats++,
wm_prog_data->prog_offset_16);
}
if (wm_prog_data->dispatch_32) {
anv_pipeline_add_executable(pipeline, stage, stats++,
wm_prog_data->prog_offset_32);
}
} else {
anv_pipeline_add_executable(pipeline, stage, bin->stats, 0);
}
pipeline->ray_queries = MAX2(pipeline->ray_queries, bin->prog_data->ray_queries);
}
static void
anv_pipeline_init_from_cached_graphics(struct anv_graphics_pipeline *pipeline)
{
/* TODO: Cache this pipeline-wide information. */
if (anv_pipeline_is_primitive(pipeline)) {
/* Primitive replication depends on information from all the shaders.
* Recover this bit from the fact that we have more than one position slot
* in the vertex shader when using it.
*/
assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
int pos_slots = 0;
const struct brw_vue_prog_data *vue_prog_data =
(const void *) pipeline->shaders[MESA_SHADER_VERTEX]->prog_data;
const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
for (int i = 0; i < vue_map->num_slots; i++) {
if (vue_map->slot_to_varying[i] == VARYING_SLOT_POS)
pos_slots++;
}
pipeline->use_primitive_replication = pos_slots > 1;
}
}
static void
anv_graphics_pipeline_init_keys(struct anv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state,
struct anv_pipeline_stage *stages)
{
for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
if (!stages[s].info)
continue;
int64_t stage_start = os_time_get_nano();
vk_pipeline_hash_shader_stage(stages[s].info, stages[s].shader_sha1);
const struct anv_device *device = pipeline->base.device;
switch (stages[s].stage) {
case MESA_SHADER_VERTEX:
populate_vs_prog_key(device,
pipeline->base.device->robust_buffer_access,
&stages[s].key.vs);
break;
case MESA_SHADER_TESS_CTRL:
populate_tcs_prog_key(device,
pipeline->base.device->robust_buffer_access,
state->ts->patch_control_points,
&stages[s].key.tcs);
break;
case MESA_SHADER_TESS_EVAL:
populate_tes_prog_key(device,
pipeline->base.device->robust_buffer_access,
&stages[s].key.tes);
break;
case MESA_SHADER_GEOMETRY:
populate_gs_prog_key(device,
pipeline->base.device->robust_buffer_access,
&stages[s].key.gs);
break;
case MESA_SHADER_FRAGMENT: {
populate_wm_prog_key(pipeline,
pipeline->base.device->robust_buffer_access,
state->dynamic, state->ms, state->fsr, state->rp,
&stages[s].key.wm);
break;
}
case MESA_SHADER_TASK:
populate_task_prog_key(device,
pipeline->base.device->robust_buffer_access,
&stages[s].key.task);
break;
case MESA_SHADER_MESH:
populate_mesh_prog_key(device,
pipeline->base.device->robust_buffer_access,
&stages[s].key.mesh);
break;
default:
unreachable("Invalid graphics shader stage");
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
stages[s].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT;
}
assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT ||
pipeline->active_stages & VK_SHADER_STAGE_MESH_BIT_NV);
}
static bool
anv_graphics_pipeline_load_cached_shaders(struct anv_graphics_pipeline *pipeline,
struct vk_pipeline_cache *cache,
struct anv_pipeline_stage *stages,
VkPipelineCreationFeedbackEXT *pipeline_feedback)
{
unsigned found = 0;
unsigned cache_hits = 0;
for (unsigned s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
if (!stages[s].info)
continue;
int64_t stage_start = os_time_get_nano();
bool cache_hit;
struct anv_shader_bin *bin =
anv_device_search_for_kernel(pipeline->base.device, cache,
&stages[s].cache_key,
sizeof(stages[s].cache_key), &cache_hit);
if (bin) {
found++;
pipeline->shaders[s] = bin;
}
if (cache_hit) {
cache_hits++;
stages[s].feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
if (found == __builtin_popcount(pipeline->active_stages)) {
if (cache_hits == found) {
pipeline_feedback->flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
}
/* We found all our shaders in the cache. We're done. */
for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
if (!stages[s].info)
continue;
anv_pipeline_add_executables(&pipeline->base, &stages[s],
pipeline->shaders[s]);
}
anv_pipeline_init_from_cached_graphics(pipeline);
return true;
} else if (found > 0) {
/* We found some but not all of our shaders. This shouldn't happen most
* of the time but it can if we have a partially populated pipeline
* cache.
*/
assert(found < __builtin_popcount(pipeline->active_stages));
vk_perf(VK_LOG_OBJS(cache ? &cache->base :
&pipeline->base.device->vk.base),
"Found a partial pipeline in the cache. This is "
"most likely caused by an incomplete pipeline cache "
"import or export");
/* We're going to have to recompile anyway, so just throw away our
* references to the shaders in the cache. We'll get them out of the
* cache again as part of the compilation process.
*/
for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
stages[s].feedback.flags = 0;
if (pipeline->shaders[s]) {
anv_shader_bin_unref(pipeline->base.device, pipeline->shaders[s]);
pipeline->shaders[s] = NULL;
}
}
}
return false;
}
static const gl_shader_stage graphics_shader_order[] = {
MESA_SHADER_VERTEX,
MESA_SHADER_TESS_CTRL,
MESA_SHADER_TESS_EVAL,
MESA_SHADER_GEOMETRY,
MESA_SHADER_TASK,
MESA_SHADER_MESH,
MESA_SHADER_FRAGMENT,
};
static VkResult
anv_graphics_pipeline_load_nir(struct anv_graphics_pipeline *pipeline,
struct vk_pipeline_cache *cache,
struct anv_pipeline_stage *stages,
void *pipeline_ctx)
{
for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
gl_shader_stage s = graphics_shader_order[i];
if (!stages[s].info)
continue;
int64_t stage_start = os_time_get_nano();
assert(stages[s].stage == s);
assert(pipeline->shaders[s] == NULL);
stages[s].bind_map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = stages[s].surface_to_descriptor,
.sampler_to_descriptor = stages[s].sampler_to_descriptor
};
stages[s].nir = anv_pipeline_stage_get_nir(&pipeline->base, cache,
pipeline_ctx,
&stages[s]);
if (stages[s].nir == NULL) {
return vk_error(pipeline, VK_ERROR_UNKNOWN);
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
return VK_SUCCESS;
}
static VkResult
anv_graphics_pipeline_compile(struct anv_graphics_pipeline *pipeline,
struct vk_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *info,
const struct vk_graphics_pipeline_state *state)
{
ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
VkResult result;
VkPipelineCreationFeedbackEXT pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
};
int64_t pipeline_start = os_time_get_nano();
const struct brw_compiler *compiler = pipeline->base.device->physical->compiler;
struct anv_pipeline_stage stages[ANV_GRAPHICS_SHADER_STAGE_COUNT] = {};
for (uint32_t i = 0; i < info->stageCount; i++) {
gl_shader_stage stage = vk_to_mesa_shader_stage(info->pStages[i].stage);
stages[stage].stage = stage;
stages[stage].info = &info->pStages[i];
}
anv_graphics_pipeline_init_keys(pipeline, state, stages);
unsigned char sha1[20];
anv_pipeline_hash_graphics(pipeline, layout, stages, sha1);
for (unsigned s = 0; s < ARRAY_SIZE(stages); s++) {
if (!stages[s].info)
continue;
stages[s].cache_key.stage = s;
memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
}
const bool skip_cache_lookup =
(pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
if (!skip_cache_lookup) {
bool found_all_shaders =
anv_graphics_pipeline_load_cached_shaders(pipeline, cache, stages,
&pipeline_feedback);
if (found_all_shaders)
goto done;
}
if (info->flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT)
return VK_PIPELINE_COMPILE_REQUIRED;
void *pipeline_ctx = ralloc_context(NULL);
result = anv_graphics_pipeline_load_nir(pipeline, cache, stages,
pipeline_ctx);
if (result != VK_SUCCESS)
goto fail;
/* Walk backwards to link */
struct anv_pipeline_stage *next_stage = NULL;
for (int i = ARRAY_SIZE(graphics_shader_order) - 1; i >= 0; i--) {
gl_shader_stage s = graphics_shader_order[i];
if (!stages[s].info)
continue;
switch (s) {
case MESA_SHADER_VERTEX:
anv_pipeline_link_vs(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_TESS_CTRL:
anv_pipeline_link_tcs(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_TESS_EVAL:
anv_pipeline_link_tes(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_GEOMETRY:
anv_pipeline_link_gs(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_TASK:
anv_pipeline_link_task(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_MESH:
anv_pipeline_link_mesh(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_FRAGMENT:
anv_pipeline_link_fs(compiler, &stages[s], state->rp);
break;
default:
unreachable("Invalid graphics shader stage");
}
next_stage = &stages[s];
}
if (pipeline->base.device->info.ver >= 12 &&
pipeline->view_mask != 0) {
/* For some pipelines HW Primitive Replication can be used instead of
* instancing to implement Multiview. This depend on how viewIndex is
* used in all the active shaders, so this check can't be done per
* individual shaders.
*/
nir_shader *shaders[ANV_GRAPHICS_SHADER_STAGE_COUNT] = {};
for (unsigned s = 0; s < ARRAY_SIZE(shaders); s++)
shaders[s] = stages[s].nir;
pipeline->use_primitive_replication =
anv_check_for_primitive_replication(shaders, pipeline);
} else {
pipeline->use_primitive_replication = false;
}
struct anv_pipeline_stage *prev_stage = NULL;
for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
gl_shader_stage s = graphics_shader_order[i];
if (!stages[s].info)
continue;
int64_t stage_start = os_time_get_nano();
void *stage_ctx = ralloc_context(NULL);
anv_pipeline_lower_nir(&pipeline->base, stage_ctx, &stages[s], layout);
if (prev_stage && compiler->nir_options[s]->unify_interfaces) {
prev_stage->nir->info.outputs_written |= stages[s].nir->info.inputs_read &
~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
stages[s].nir->info.inputs_read |= prev_stage->nir->info.outputs_written &
~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
prev_stage->nir->info.patch_outputs_written |= stages[s].nir->info.patch_inputs_read;
stages[s].nir->info.patch_inputs_read |= prev_stage->nir->info.patch_outputs_written;
}
ralloc_free(stage_ctx);
stages[s].feedback.duration += os_time_get_nano() - stage_start;
prev_stage = &stages[s];
}
/* In the case the platform can write the primitive variable shading rate,
* figure out the last geometry stage that should write the primitive
* shading rate, and ensure it is marked as used there. The backend will
* write a default value if the shader doesn't actually write it.
*
* We iterate backwards in the stage and stop on the first shader that can
* set the value.
*/
const struct intel_device_info *devinfo = &pipeline->base.device->info;
if (devinfo->has_coarse_pixel_primitive_and_cb &&
stages[MESA_SHADER_FRAGMENT].info &&
stages[MESA_SHADER_FRAGMENT].key.wm.coarse_pixel &&
!stages[MESA_SHADER_FRAGMENT].nir->info.fs.uses_sample_shading &&
stages[MESA_SHADER_MESH].info == NULL) {
struct anv_pipeline_stage *last_psr = NULL;
for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
gl_shader_stage s =
graphics_shader_order[ARRAY_SIZE(graphics_shader_order) - i - 1];
if (!stages[s].info ||
!gl_shader_stage_can_set_fragment_shading_rate(s))
continue;
last_psr = &stages[s];
break;
}
assert(last_psr);
last_psr->nir->info.outputs_written |= VARYING_BIT_PRIMITIVE_SHADING_RATE;
}
prev_stage = NULL;
for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
gl_shader_stage s = graphics_shader_order[i];
if (!stages[s].info)
continue;
int64_t stage_start = os_time_get_nano();
void *stage_ctx = ralloc_context(NULL);
switch (s) {
case MESA_SHADER_VERTEX:
anv_pipeline_compile_vs(compiler, stage_ctx, pipeline,
&stages[s]);
break;
case MESA_SHADER_TESS_CTRL:
anv_pipeline_compile_tcs(compiler, stage_ctx, pipeline->base.device,
&stages[s], prev_stage);
break;
case MESA_SHADER_TESS_EVAL:
anv_pipeline_compile_tes(compiler, stage_ctx, pipeline->base.device,
&stages[s], prev_stage);
break;
case MESA_SHADER_GEOMETRY:
anv_pipeline_compile_gs(compiler, stage_ctx, pipeline->base.device,
&stages[s], prev_stage);
break;
case MESA_SHADER_TASK:
anv_pipeline_compile_task(compiler, stage_ctx, pipeline->base.device,
&stages[s]);
break;
case MESA_SHADER_MESH:
anv_pipeline_compile_mesh(compiler, stage_ctx, pipeline->base.device,
&stages[s], prev_stage);
break;
case MESA_SHADER_FRAGMENT:
anv_pipeline_compile_fs(compiler, stage_ctx, pipeline->base.device,
&stages[s], prev_stage);
break;
default:
unreachable("Invalid graphics shader stage");
}
if (stages[s].code == NULL) {
ralloc_free(stage_ctx);
result = vk_error(pipeline->base.device, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail;
}
anv_nir_validate_push_layout(&stages[s].prog_data.base,
&stages[s].bind_map);
struct anv_shader_bin *bin =
anv_device_upload_kernel(pipeline->base.device, cache, s,
&stages[s].cache_key,
sizeof(stages[s].cache_key),
stages[s].code,
stages[s].prog_data.base.program_size,
&stages[s].prog_data.base,
brw_prog_data_size(s),
stages[s].stats, stages[s].num_stats,
stages[s].nir->xfb_info,
&stages[s].bind_map);
if (!bin) {
ralloc_free(stage_ctx);
result = vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail;
}
anv_pipeline_add_executables(&pipeline->base, &stages[s], bin);
pipeline->shaders[s] = bin;
ralloc_free(stage_ctx);
stages[s].feedback.duration += os_time_get_nano() - stage_start;
prev_stage = &stages[s];
}
ralloc_free(pipeline_ctx);
done:
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
const VkPipelineCreationFeedbackCreateInfo *create_feedback =
vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
if (create_feedback) {
*create_feedback->pPipelineCreationFeedback = pipeline_feedback;
assert(info->stageCount == create_feedback->pipelineStageCreationFeedbackCount);
for (uint32_t i = 0; i < info->stageCount; i++) {
gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
}
}
return VK_SUCCESS;
fail:
ralloc_free(pipeline_ctx);
for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
if (pipeline->shaders[s])
anv_shader_bin_unref(pipeline->base.device, pipeline->shaders[s]);
}
return result;
}
static VkResult
anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
struct vk_pipeline_cache *cache,
const VkComputePipelineCreateInfo *info)
{
const VkPipelineShaderStageCreateInfo *sinfo = &info->stage;
assert(sinfo->stage == VK_SHADER_STAGE_COMPUTE_BIT);
VkPipelineCreationFeedback pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
};
int64_t pipeline_start = os_time_get_nano();
struct anv_device *device = pipeline->base.device;
const struct brw_compiler *compiler = device->physical->compiler;
struct anv_pipeline_stage stage = {
.stage = MESA_SHADER_COMPUTE,
.info = &info->stage,
.cache_key = {
.stage = MESA_SHADER_COMPUTE,
},
.feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
},
};
vk_pipeline_hash_shader_stage(&info->stage, stage.shader_sha1);
struct anv_shader_bin *bin = NULL;
populate_cs_prog_key(device, device->robust_buffer_access, &stage.key.cs);
ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
const bool skip_cache_lookup =
(pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
anv_pipeline_hash_compute(pipeline, layout, &stage, stage.cache_key.sha1);
bool cache_hit = false;
if (!skip_cache_lookup) {
bin = anv_device_search_for_kernel(device, cache,
&stage.cache_key,
sizeof(stage.cache_key),
&cache_hit);
}
if (bin == NULL &&
(info->flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT))
return VK_PIPELINE_COMPILE_REQUIRED;
void *mem_ctx = ralloc_context(NULL);
if (bin == NULL) {
int64_t stage_start = os_time_get_nano();
stage.bind_map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = stage.surface_to_descriptor,
.sampler_to_descriptor = stage.sampler_to_descriptor
};
/* Set up a binding for the gl_NumWorkGroups */
stage.bind_map.surface_count = 1;
stage.bind_map.surface_to_descriptor[0] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS,
};
stage.nir = anv_pipeline_stage_get_nir(&pipeline->base, cache, mem_ctx, &stage);
if (stage.nir == NULL) {
ralloc_free(mem_ctx);
return vk_error(pipeline, VK_ERROR_UNKNOWN);
}
NIR_PASS(_, stage.nir, anv_nir_add_base_work_group_id);
anv_pipeline_lower_nir(&pipeline->base, mem_ctx, &stage, layout);
unsigned local_size = stage.nir->info.workgroup_size[0] *
stage.nir->info.workgroup_size[1] *
stage.nir->info.workgroup_size[2];
/* Games don't always request full subgroups when they should,
* which can cause bugs, as they may expect bigger size of the
* subgroup than we choose for the execution.
*/
if (device->physical->instance->assume_full_subgroups &&
stage.nir->info.cs.uses_wide_subgroup_intrinsics &&
stage.nir->info.subgroup_size == SUBGROUP_SIZE_API_CONSTANT &&
local_size &&
local_size % BRW_SUBGROUP_SIZE == 0)
stage.nir->info.subgroup_size = SUBGROUP_SIZE_FULL_SUBGROUPS;
/* If the client requests that we dispatch full subgroups but doesn't
* allow us to pick a subgroup size, we have to smash it to the API
* value of 32. Performance will likely be terrible in this case but
* there's nothing we can do about that. The client should have chosen
* a size.
*/
if (stage.nir->info.subgroup_size == SUBGROUP_SIZE_FULL_SUBGROUPS)
stage.nir->info.subgroup_size = BRW_SUBGROUP_SIZE;
stage.num_stats = 1;
struct brw_compile_cs_params params = {
.nir = stage.nir,
.key = &stage.key.cs,
.prog_data = &stage.prog_data.cs,
.stats = stage.stats,
.log_data = device,
};
stage.code = brw_compile_cs(compiler, mem_ctx, &params);
if (stage.code == NULL) {
ralloc_free(mem_ctx);
return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
}
anv_nir_validate_push_layout(&stage.prog_data.base, &stage.bind_map);
if (!stage.prog_data.cs.uses_num_work_groups) {
assert(stage.bind_map.surface_to_descriptor[0].set ==
ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS);
stage.bind_map.surface_to_descriptor[0].set = ANV_DESCRIPTOR_SET_NULL;
}
const unsigned code_size = stage.prog_data.base.program_size;
bin = anv_device_upload_kernel(device, cache,
MESA_SHADER_COMPUTE,
&stage.cache_key, sizeof(stage.cache_key),
stage.code, code_size,
&stage.prog_data.base,
sizeof(stage.prog_data.cs),
stage.stats, stage.num_stats,
NULL, &stage.bind_map);
if (!bin) {
ralloc_free(mem_ctx);
return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
}
stage.feedback.duration = os_time_get_nano() - stage_start;
}
anv_pipeline_add_executables(&pipeline->base, &stage, bin);
ralloc_free(mem_ctx);
if (cache_hit) {
stage.feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
pipeline_feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
}
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
const VkPipelineCreationFeedbackCreateInfo *create_feedback =
vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
if (create_feedback) {
*create_feedback->pPipelineCreationFeedback = pipeline_feedback;
assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
}
pipeline->cs = bin;
return VK_SUCCESS;
}
static VkResult
anv_compute_pipeline_create(struct anv_device *device,
struct vk_pipeline_cache *cache,
const VkComputePipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
struct anv_compute_pipeline *pipeline;
VkResult result;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
result = anv_pipeline_init(&pipeline->base, device,
ANV_PIPELINE_COMPUTE, pCreateInfo->flags,
pAllocator);
if (result != VK_SUCCESS) {
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
anv_batch_set_storage(&pipeline->base.batch, ANV_NULL_ADDRESS,
pipeline->batch_data, sizeof(pipeline->batch_data));
result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo);
if (result != VK_SUCCESS) {
anv_pipeline_finish(&pipeline->base, device, pAllocator);
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
anv_genX(&device->info, compute_pipeline_emit)(pipeline);
*pPipeline = anv_pipeline_to_handle(&pipeline->base);
return pipeline->base.batch.status;
}
VkResult anv_CreateComputePipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkComputePipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
VkResult result = VK_SUCCESS;
unsigned i;
for (i = 0; i < count; i++) {
VkResult res = anv_compute_pipeline_create(device, pipeline_cache,
&pCreateInfos[i],
pAllocator, &pPipelines[i]);
if (res == VK_SUCCESS)
continue;
/* Bail out on the first error != VK_PIPELINE_COMPILE_REQUIRED as it
* is not obvious what error should be report upon 2 different failures.
* */
result = res;
if (res != VK_PIPELINE_COMPILE_REQUIRED)
break;
pPipelines[i] = VK_NULL_HANDLE;
if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT)
break;
}
for (; i < count; i++)
pPipelines[i] = VK_NULL_HANDLE;
return result;
}
/**
* Calculate the desired L3 partitioning based on the current state of the
* pipeline. For now this simply returns the conservative defaults calculated
* by get_default_l3_weights(), but we could probably do better by gathering
* more statistics from the pipeline state (e.g. guess of expected URB usage
* and bound surfaces), or by using feed-back from performance counters.
*/
void
anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
{
const struct intel_device_info *devinfo = &pipeline->device->info;
const struct intel_l3_weights w =
intel_get_default_l3_weights(devinfo, true, needs_slm);
pipeline->l3_config = intel_get_l3_config(devinfo, w);
}
static VkResult
anv_graphics_pipeline_init(struct anv_graphics_pipeline *pipeline,
struct anv_device *device,
struct vk_pipeline_cache *cache,
const struct VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct vk_graphics_pipeline_state *state,
const VkAllocationCallbacks *alloc)
{
VkResult result;
result = anv_pipeline_init(&pipeline->base, device,
ANV_PIPELINE_GRAPHICS, pCreateInfo->flags,
alloc);
if (result != VK_SUCCESS)
return result;
anv_batch_set_storage(&pipeline->base.batch, ANV_NULL_ADDRESS,
pipeline->batch_data, sizeof(pipeline->batch_data));
pipeline->active_stages = 0;
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++)
pipeline->active_stages |= pCreateInfo->pStages[i].stage;
if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
if (anv_pipeline_is_mesh(pipeline))
assert(device->physical->vk.supported_extensions.NV_mesh_shader);
pipeline->dynamic_state.ms.sample_locations = &pipeline->sample_locations;
vk_dynamic_graphics_state_fill(&pipeline->dynamic_state, state);
pipeline->depth_clamp_enable = state->rs->depth_clamp_enable;
pipeline->depth_clip_enable = state->rs->depth_clip_enable;
pipeline->view_mask = state->rp->view_mask;
result = anv_graphics_pipeline_compile(pipeline, cache, pCreateInfo, state);
if (result != VK_SUCCESS) {
anv_pipeline_finish(&pipeline->base, device, alloc);
return result;
}
anv_pipeline_setup_l3_config(&pipeline->base, false);
if (anv_pipeline_is_primitive(pipeline)) {
const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
u_foreach_bit(a, state->vi->attributes_valid) {
if (inputs_read & BITFIELD64_BIT(VERT_ATTRIB_GENERIC0 + a))
pipeline->vb_used |= BITFIELD64_BIT(state->vi->attributes[a].binding);
}
u_foreach_bit(b, state->vi->bindings_valid) {
pipeline->vb[b].stride = state->vi->bindings[b].stride;
pipeline->vb[b].instanced = state->vi->bindings[b].input_rate ==
VK_VERTEX_INPUT_RATE_INSTANCE;
pipeline->vb[b].instance_divisor = state->vi->bindings[b].divisor;
}
/* Our implementation of VK_KHR_multiview uses instancing to draw the
* different views. If the client asks for instancing, we need to multiply
* the instance divisor by the number of views ensure that we repeat the
* client's per-instance data once for each view.
*/
pipeline->instance_multiplier = 1;
if (pipeline->view_mask && !pipeline->use_primitive_replication)
pipeline->instance_multiplier = util_bitcount(pipeline->view_mask);
} else {
assert(anv_pipeline_is_mesh(pipeline));
/* TODO(mesh): Mesh vs. Multiview with Instancing. */
}
pipeline->negative_one_to_one =
state->vp != NULL && state->vp->negative_one_to_one;
/* Store line mode, polygon mode and rasterization samples, these are used
* for dynamic primitive topology.
*/
pipeline->polygon_mode = state->rs->polygon_mode;
pipeline->rasterization_samples =
state->ms != NULL ? state->ms->rasterization_samples : 1;
pipeline->line_mode = state->rs->line.mode;
if (pipeline->line_mode == VK_LINE_RASTERIZATION_MODE_DEFAULT_EXT) {
if (pipeline->rasterization_samples > 1) {
pipeline->line_mode = VK_LINE_RASTERIZATION_MODE_RECTANGULAR_EXT;
} else {
pipeline->line_mode = VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT;
}
}
pipeline->patch_control_points =
state->ts != NULL ? state->ts->patch_control_points : 0;
/* Store the color write masks, to be merged with color write enable if
* dynamic.
*/
if (state->cb != NULL) {
for (unsigned i = 0; i < state->cb->attachment_count; i++)
pipeline->color_comp_writes[i] = state->cb->attachments[i].write_mask;
}
return VK_SUCCESS;
}
static VkResult
anv_graphics_pipeline_create(struct anv_device *device,
struct vk_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
struct anv_graphics_pipeline *pipeline;
VkResult result;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
struct vk_graphics_pipeline_all_state all;
struct vk_graphics_pipeline_state state = { };
result = vk_graphics_pipeline_state_fill(&device->vk, &state, pCreateInfo,
NULL /* sp_info */,
&all, NULL, 0, NULL);
if (result != VK_SUCCESS) {
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
result = anv_graphics_pipeline_init(pipeline, device, cache,
pCreateInfo, &state, pAllocator);
if (result != VK_SUCCESS) {
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
anv_genX(&device->info, graphics_pipeline_emit)(pipeline, &state);
*pPipeline = anv_pipeline_to_handle(&pipeline->base);
return pipeline->base.batch.status;
}
VkResult anv_CreateGraphicsPipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkGraphicsPipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
VkResult result = VK_SUCCESS;
unsigned i;
for (i = 0; i < count; i++) {
VkResult res = anv_graphics_pipeline_create(device,
pipeline_cache,
&pCreateInfos[i],
pAllocator, &pPipelines[i]);
if (res == VK_SUCCESS)
continue;
/* Bail out on the first error != VK_PIPELINE_COMPILE_REQUIRED as it
* is not obvious what error should be report upon 2 different failures.
* */
result = res;
if (res != VK_PIPELINE_COMPILE_REQUIRED)
break;
pPipelines[i] = VK_NULL_HANDLE;
if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT)
break;
}
for (; i < count; i++)
pPipelines[i] = VK_NULL_HANDLE;
return result;
}
static VkResult
compile_upload_rt_shader(struct anv_ray_tracing_pipeline *pipeline,
struct vk_pipeline_cache *cache,
nir_shader *nir,
struct anv_pipeline_stage *stage,
struct anv_shader_bin **shader_out,
void *mem_ctx)
{
const struct brw_compiler *compiler =
pipeline->base.device->physical->compiler;
const struct intel_device_info *devinfo = compiler->devinfo;
nir_shader **resume_shaders = NULL;
uint32_t num_resume_shaders = 0;
if (nir->info.stage != MESA_SHADER_COMPUTE) {
NIR_PASS(_, nir, nir_lower_shader_calls,
nir_address_format_64bit_global,
BRW_BTD_STACK_ALIGN,
&resume_shaders, &num_resume_shaders, mem_ctx);
NIR_PASS(_, nir, brw_nir_lower_shader_calls);
NIR_PASS_V(nir, brw_nir_lower_rt_intrinsics, devinfo);
}
for (unsigned i = 0; i < num_resume_shaders; i++) {
NIR_PASS(_,resume_shaders[i], brw_nir_lower_shader_calls);
NIR_PASS_V(resume_shaders[i], brw_nir_lower_rt_intrinsics, devinfo);
}
struct brw_compile_bs_params params = {
.nir = nir,
.key = &stage->key.bs,
.prog_data = &stage->prog_data.bs,
.num_resume_shaders = num_resume_shaders,
.resume_shaders = resume_shaders,
.stats = stage->stats,
.log_data = pipeline->base.device,
};
stage->code = brw_compile_bs(compiler, mem_ctx, &params);
if (stage->code == NULL)
return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
/* Ray-tracing shaders don't have a "real" bind map */
struct anv_pipeline_bind_map empty_bind_map = {};
const unsigned code_size = stage->prog_data.base.program_size;
struct anv_shader_bin *bin =
anv_device_upload_kernel(pipeline->base.device,
cache,
stage->stage,
&stage->cache_key, sizeof(stage->cache_key),
stage->code, code_size,
&stage->prog_data.base,
sizeof(stage->prog_data.bs),
stage->stats, 1,
NULL, &empty_bind_map);
if (bin == NULL)
return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
/* TODO: Figure out executables for resume shaders */
anv_pipeline_add_executables(&pipeline->base, stage, bin);
util_dynarray_append(&pipeline->shaders, struct anv_shader_bin *, bin);
*shader_out = bin;
return VK_SUCCESS;
}
static bool
is_rt_stack_size_dynamic(const VkRayTracingPipelineCreateInfoKHR *info)
{
if (info->pDynamicState == NULL)
return false;
for (unsigned i = 0; i < info->pDynamicState->dynamicStateCount; i++) {
if (info->pDynamicState->pDynamicStates[i] ==
VK_DYNAMIC_STATE_RAY_TRACING_PIPELINE_STACK_SIZE_KHR)
return true;
}
return false;
}
static void
anv_pipeline_compute_ray_tracing_stacks(struct anv_ray_tracing_pipeline *pipeline,
const VkRayTracingPipelineCreateInfoKHR *info,
uint32_t *stack_max)
{
if (is_rt_stack_size_dynamic(info)) {
pipeline->stack_size = 0; /* 0 means dynamic */
} else {
/* From the Vulkan spec:
*
* "If the stack size is not set explicitly, the stack size for a
* pipeline is:
*
* rayGenStackMax +
* min(1, maxPipelineRayRecursionDepth) ×
* max(closestHitStackMax, missStackMax,
* intersectionStackMax + anyHitStackMax) +
* max(0, maxPipelineRayRecursionDepth-1) ×
* max(closestHitStackMax, missStackMax) +
* 2 × callableStackMax"
*/
pipeline->stack_size =
stack_max[MESA_SHADER_RAYGEN] +
MIN2(1, info->maxPipelineRayRecursionDepth) *
MAX4(stack_max[MESA_SHADER_CLOSEST_HIT],
stack_max[MESA_SHADER_MISS],
stack_max[MESA_SHADER_INTERSECTION],
stack_max[MESA_SHADER_ANY_HIT]) +
MAX2(0, (int)info->maxPipelineRayRecursionDepth - 1) *
MAX2(stack_max[MESA_SHADER_CLOSEST_HIT],
stack_max[MESA_SHADER_MISS]) +
2 * stack_max[MESA_SHADER_CALLABLE];
/* This is an extremely unlikely case but we need to set it to some
* non-zero value so that we don't accidentally think it's dynamic.
* Our minimum stack size is 2KB anyway so we could set to any small
* value we like.
*/
if (pipeline->stack_size == 0)
pipeline->stack_size = 1;
}
}
static struct anv_pipeline_stage *
anv_pipeline_init_ray_tracing_stages(struct anv_ray_tracing_pipeline *pipeline,
const VkRayTracingPipelineCreateInfoKHR *info,
void *pipeline_ctx)
{
ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
/* Create enough stage entries for all shader modules plus potential
* combinaisons in the groups.
*/
struct anv_pipeline_stage *stages =
rzalloc_array(pipeline_ctx, struct anv_pipeline_stage, info->stageCount);
for (uint32_t i = 0; i < info->stageCount; i++) {
const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i];
if (vk_pipeline_shader_stage_is_null(sinfo))
continue;
int64_t stage_start = os_time_get_nano();
stages[i] = (struct anv_pipeline_stage) {
.stage = vk_to_mesa_shader_stage(sinfo->stage),
.info = sinfo,
.cache_key = {
.stage = vk_to_mesa_shader_stage(sinfo->stage),
},
.feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
},
};
populate_bs_prog_key(pipeline->base.device,
pipeline->base.device->robust_buffer_access,
&stages[i].key.bs);
vk_pipeline_hash_shader_stage(sinfo, stages[i].shader_sha1);
if (stages[i].stage != MESA_SHADER_INTERSECTION) {
anv_pipeline_hash_ray_tracing_shader(pipeline, layout, &stages[i],
stages[i].cache_key.sha1);
}
stages[i].feedback.duration += os_time_get_nano() - stage_start;
}
for (uint32_t i = 0; i < info->groupCount; i++) {
const VkRayTracingShaderGroupCreateInfoKHR *ginfo = &info->pGroups[i];
if (ginfo->type != VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR)
continue;
int64_t stage_start = os_time_get_nano();
uint32_t intersection_idx = ginfo->intersectionShader;
assert(intersection_idx < info->stageCount);
uint32_t any_hit_idx = ginfo->anyHitShader;
if (any_hit_idx != VK_SHADER_UNUSED_KHR) {
assert(any_hit_idx < info->stageCount);
anv_pipeline_hash_ray_tracing_combined_shader(pipeline,
layout,
&stages[intersection_idx],
&stages[any_hit_idx],
stages[intersection_idx].cache_key.sha1);
} else {
anv_pipeline_hash_ray_tracing_shader(pipeline, layout,
&stages[intersection_idx],
stages[intersection_idx].cache_key.sha1);
}
stages[intersection_idx].feedback.duration += os_time_get_nano() - stage_start;
}
return stages;
}
static bool
anv_pipeline_load_cached_shaders(struct anv_ray_tracing_pipeline *pipeline,
struct vk_pipeline_cache *cache,
const VkRayTracingPipelineCreateInfoKHR *info,
struct anv_pipeline_stage *stages,
uint32_t *stack_max)
{
uint32_t shaders = 0, cache_hits = 0;
for (uint32_t i = 0; i < info->stageCount; i++) {
if (stages[i].info == NULL)
continue;
shaders++;
int64_t stage_start = os_time_get_nano();
bool cache_hit;
stages[i].bin = anv_device_search_for_kernel(pipeline->base.device, cache,
&stages[i].cache_key,
sizeof(stages[i].cache_key),
&cache_hit);
if (cache_hit) {
cache_hits++;
stages[i].feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
}
if (stages[i].bin != NULL) {
anv_pipeline_add_executables(&pipeline->base, &stages[i], stages[i].bin);
util_dynarray_append(&pipeline->shaders, struct anv_shader_bin *, stages[i].bin);
uint32_t stack_size =
brw_bs_prog_data_const(stages[i].bin->prog_data)->max_stack_size;
stack_max[stages[i].stage] =
MAX2(stack_max[stages[i].stage], stack_size);
}
stages[i].feedback.duration += os_time_get_nano() - stage_start;
}
return cache_hits == shaders;
}
static VkResult
anv_pipeline_compile_ray_tracing(struct anv_ray_tracing_pipeline *pipeline,
struct vk_pipeline_cache *cache,
const VkRayTracingPipelineCreateInfoKHR *info)
{
const struct intel_device_info *devinfo = &pipeline->base.device->info;
VkResult result;
VkPipelineCreationFeedback pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
};
int64_t pipeline_start = os_time_get_nano();
void *pipeline_ctx = ralloc_context(NULL);
struct anv_pipeline_stage *stages =
anv_pipeline_init_ray_tracing_stages(pipeline, info, pipeline_ctx);
ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
const bool skip_cache_lookup =
(pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
uint32_t stack_max[MESA_VULKAN_SHADER_STAGES] = {};
if (!skip_cache_lookup &&
anv_pipeline_load_cached_shaders(pipeline, cache, info, stages, stack_max)) {
pipeline_feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
goto done;
}
if (info->flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT) {
ralloc_free(pipeline_ctx);
return VK_PIPELINE_COMPILE_REQUIRED;
}
for (uint32_t i = 0; i < info->stageCount; i++) {
if (stages[i].info == NULL)
continue;
int64_t stage_start = os_time_get_nano();
stages[i].nir = anv_pipeline_stage_get_nir(&pipeline->base, cache,
pipeline_ctx, &stages[i]);
if (stages[i].nir == NULL) {
ralloc_free(pipeline_ctx);
return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
}
anv_pipeline_lower_nir(&pipeline->base, pipeline_ctx, &stages[i], layout);
stages[i].feedback.duration += os_time_get_nano() - stage_start;
}
for (uint32_t i = 0; i < info->stageCount; i++) {
if (stages[i].info == NULL)
continue;
/* Shader found in cache already. */
if (stages[i].bin != NULL)
continue;
/* We handle intersection shaders as part of the group */
if (stages[i].stage == MESA_SHADER_INTERSECTION)
continue;
int64_t stage_start = os_time_get_nano();
void *stage_ctx = ralloc_context(pipeline_ctx);
nir_shader *nir = nir_shader_clone(stage_ctx, stages[i].nir);
switch (stages[i].stage) {
case MESA_SHADER_RAYGEN:
brw_nir_lower_raygen(nir);
break;
case MESA_SHADER_ANY_HIT:
brw_nir_lower_any_hit(nir, devinfo);
break;
case MESA_SHADER_CLOSEST_HIT:
brw_nir_lower_closest_hit(nir);
break;
case MESA_SHADER_MISS:
brw_nir_lower_miss(nir);
break;
case MESA_SHADER_INTERSECTION:
unreachable("These are handled later");
case MESA_SHADER_CALLABLE:
brw_nir_lower_callable(nir);
break;
default:
unreachable("Invalid ray-tracing shader stage");
}
result = compile_upload_rt_shader(pipeline, cache, nir, &stages[i],
&stages[i].bin, stage_ctx);
if (result != VK_SUCCESS) {
ralloc_free(pipeline_ctx);
return result;
}
uint32_t stack_size =
brw_bs_prog_data_const(stages[i].bin->prog_data)->max_stack_size;
stack_max[stages[i].stage] = MAX2(stack_max[stages[i].stage], stack_size);
ralloc_free(stage_ctx);
stages[i].feedback.duration += os_time_get_nano() - stage_start;
}
for (uint32_t i = 0; i < info->groupCount; i++) {
const VkRayTracingShaderGroupCreateInfoKHR *ginfo = &info->pGroups[i];
struct anv_rt_shader_group *group = &pipeline->groups[i];
group->type = ginfo->type;
switch (ginfo->type) {
case VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR:
assert(ginfo->generalShader < info->stageCount);
group->general = stages[ginfo->generalShader].bin;
break;
case VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR:
if (ginfo->anyHitShader < info->stageCount)
group->any_hit = stages[ginfo->anyHitShader].bin;
if (ginfo->closestHitShader < info->stageCount)
group->closest_hit = stages[ginfo->closestHitShader].bin;
break;
case VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR: {
if (ginfo->closestHitShader < info->stageCount)
group->closest_hit = stages[ginfo->closestHitShader].bin;
uint32_t intersection_idx = info->pGroups[i].intersectionShader;
assert(intersection_idx < info->stageCount);
/* Only compile this stage if not already found in the cache. */
if (stages[intersection_idx].bin == NULL) {
/* The any-hit and intersection shader have to be combined */
uint32_t any_hit_idx = info->pGroups[i].anyHitShader;
const nir_shader *any_hit = NULL;
if (any_hit_idx < info->stageCount)
any_hit = stages[any_hit_idx].nir;
void *group_ctx = ralloc_context(pipeline_ctx);
nir_shader *intersection =
nir_shader_clone(group_ctx, stages[intersection_idx].nir);
brw_nir_lower_combined_intersection_any_hit(intersection, any_hit,
devinfo);
result = compile_upload_rt_shader(pipeline, cache,
intersection,
&stages[intersection_idx],
&group->intersection,
group_ctx);
ralloc_free(group_ctx);
if (result != VK_SUCCESS)
return result;
} else {
group->intersection = stages[intersection_idx].bin;
}
uint32_t stack_size =
brw_bs_prog_data_const(group->intersection->prog_data)->max_stack_size;
stack_max[MESA_SHADER_INTERSECTION] =
MAX2(stack_max[MESA_SHADER_INTERSECTION], stack_size);
break;
}
default:
unreachable("Invalid ray tracing shader group type");
}
}
done:
ralloc_free(pipeline_ctx);
anv_pipeline_compute_ray_tracing_stacks(pipeline, info, stack_max);
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
const VkPipelineCreationFeedbackCreateInfo *create_feedback =
vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
if (create_feedback) {
*create_feedback->pPipelineCreationFeedback = pipeline_feedback;
assert(info->stageCount == create_feedback->pipelineStageCreationFeedbackCount);
for (uint32_t i = 0; i < info->stageCount; i++) {
gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
}
}
return VK_SUCCESS;
}
VkResult
anv_device_init_rt_shaders(struct anv_device *device)
{
if (!device->vk.enabled_extensions.KHR_ray_tracing_pipeline)
return VK_SUCCESS;
bool cache_hit;
struct brw_rt_trampoline {
char name[16];
struct brw_cs_prog_key key;
} trampoline_key = {
.name = "rt-trampoline",
};
device->rt_trampoline =
anv_device_search_for_kernel(device, device->internal_cache,
&trampoline_key, sizeof(trampoline_key),
&cache_hit);
if (device->rt_trampoline == NULL) {
void *tmp_ctx = ralloc_context(NULL);
nir_shader *trampoline_nir =
brw_nir_create_raygen_trampoline(device->physical->compiler, tmp_ctx);
trampoline_nir->info.subgroup_size = SUBGROUP_SIZE_REQUIRE_8;
struct anv_pipeline_bind_map bind_map = {
.surface_count = 0,
.sampler_count = 0,
};
uint32_t dummy_params[4] = { 0, };
struct brw_cs_prog_data trampoline_prog_data = {
.base.nr_params = 4,
.base.param = dummy_params,
.uses_inline_data = true,
.uses_btd_stack_ids = true,
};
struct brw_compile_cs_params params = {
.nir = trampoline_nir,
.key = &trampoline_key.key,
.prog_data = &trampoline_prog_data,
.log_data = device,
};
const unsigned *tramp_data =
brw_compile_cs(device->physical->compiler, tmp_ctx, &params);
device->rt_trampoline =
anv_device_upload_kernel(device, device->internal_cache,
MESA_SHADER_COMPUTE,
&trampoline_key, sizeof(trampoline_key),
tramp_data,
trampoline_prog_data.base.program_size,
&trampoline_prog_data.base,
sizeof(trampoline_prog_data),
NULL, 0, NULL, &bind_map);
ralloc_free(tmp_ctx);
if (device->rt_trampoline == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
}
/* The cache already has a reference and it's not going anywhere so there
* is no need to hold a second reference.
*/
anv_shader_bin_unref(device, device->rt_trampoline);
struct brw_rt_trivial_return {
char name[16];
struct brw_bs_prog_key key;
} return_key = {
.name = "rt-trivial-ret",
};
device->rt_trivial_return =
anv_device_search_for_kernel(device, device->internal_cache,
&return_key, sizeof(return_key),
&cache_hit);
if (device->rt_trivial_return == NULL) {
void *tmp_ctx = ralloc_context(NULL);
nir_shader *trivial_return_nir =
brw_nir_create_trivial_return_shader(device->physical->compiler, tmp_ctx);
NIR_PASS_V(trivial_return_nir, brw_nir_lower_rt_intrinsics, &device->info);
struct anv_pipeline_bind_map bind_map = {
.surface_count = 0,
.sampler_count = 0,
};
struct brw_bs_prog_data return_prog_data = { 0, };
struct brw_compile_bs_params params = {
.nir = trivial_return_nir,
.key = &return_key.key,
.prog_data = &return_prog_data,
.log_data = device,
};
const unsigned *return_data =
brw_compile_bs(device->physical->compiler, tmp_ctx, &params);
device->rt_trivial_return =
anv_device_upload_kernel(device, device->internal_cache,
MESA_SHADER_CALLABLE,
&return_key, sizeof(return_key),
return_data, return_prog_data.base.program_size,
&return_prog_data.base, sizeof(return_prog_data),
NULL, 0, NULL, &bind_map);
ralloc_free(tmp_ctx);
if (device->rt_trivial_return == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
}
/* The cache already has a reference and it's not going anywhere so there
* is no need to hold a second reference.
*/
anv_shader_bin_unref(device, device->rt_trivial_return);
return VK_SUCCESS;
}
void
anv_device_finish_rt_shaders(struct anv_device *device)
{
if (!device->vk.enabled_extensions.KHR_ray_tracing_pipeline)
return;
}
static VkResult
anv_ray_tracing_pipeline_init(struct anv_ray_tracing_pipeline *pipeline,
struct anv_device *device,
struct vk_pipeline_cache *cache,
const VkRayTracingPipelineCreateInfoKHR *pCreateInfo,
const VkAllocationCallbacks *alloc)
{
VkResult result;
util_dynarray_init(&pipeline->shaders, pipeline->base.mem_ctx);
result = anv_pipeline_compile_ray_tracing(pipeline, cache, pCreateInfo);
if (result != VK_SUCCESS)
goto fail;
anv_pipeline_setup_l3_config(&pipeline->base, /* needs_slm */ false);
return VK_SUCCESS;
fail:
util_dynarray_foreach(&pipeline->shaders,
struct anv_shader_bin *, shader) {
anv_shader_bin_unref(device, *shader);
}
return result;
}
static void
assert_rt_stage_index_valid(const VkRayTracingPipelineCreateInfoKHR* pCreateInfo,
uint32_t stage_idx,
VkShaderStageFlags valid_stages)
{
if (stage_idx == VK_SHADER_UNUSED_KHR)
return;
assert(stage_idx <= pCreateInfo->stageCount);
assert(util_bitcount(pCreateInfo->pStages[stage_idx].stage) == 1);
assert(pCreateInfo->pStages[stage_idx].stage & valid_stages);
}
static VkResult
anv_ray_tracing_pipeline_create(
VkDevice _device,
struct vk_pipeline_cache * cache,
const VkRayTracingPipelineCreateInfoKHR* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipeline)
{
ANV_FROM_HANDLE(anv_device, device, _device);
VkResult result;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR);
VK_MULTIALLOC(ma);
VK_MULTIALLOC_DECL(&ma, struct anv_ray_tracing_pipeline, pipeline, 1);
VK_MULTIALLOC_DECL(&ma, struct anv_rt_shader_group, groups, pCreateInfo->groupCount);
if (!vk_multialloc_zalloc2(&ma, &device->vk.alloc, pAllocator,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE))
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
result = anv_pipeline_init(&pipeline->base, device,
ANV_PIPELINE_RAY_TRACING, pCreateInfo->flags,
pAllocator);
if (result != VK_SUCCESS) {
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
pipeline->group_count = pCreateInfo->groupCount;
pipeline->groups = groups;
ASSERTED const VkShaderStageFlags ray_tracing_stages =
VK_SHADER_STAGE_RAYGEN_BIT_KHR |
VK_SHADER_STAGE_ANY_HIT_BIT_KHR |
VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR |
VK_SHADER_STAGE_MISS_BIT_KHR |
VK_SHADER_STAGE_INTERSECTION_BIT_KHR |
VK_SHADER_STAGE_CALLABLE_BIT_KHR;
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++)
assert((pCreateInfo->pStages[i].stage & ~ray_tracing_stages) == 0);
for (uint32_t i = 0; i < pCreateInfo->groupCount; i++) {
const VkRayTracingShaderGroupCreateInfoKHR *ginfo =
&pCreateInfo->pGroups[i];
assert_rt_stage_index_valid(pCreateInfo, ginfo->generalShader,
VK_SHADER_STAGE_RAYGEN_BIT_KHR |
VK_SHADER_STAGE_MISS_BIT_KHR |
VK_SHADER_STAGE_CALLABLE_BIT_KHR);
assert_rt_stage_index_valid(pCreateInfo, ginfo->closestHitShader,
VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
assert_rt_stage_index_valid(pCreateInfo, ginfo->anyHitShader,
VK_SHADER_STAGE_ANY_HIT_BIT_KHR);
assert_rt_stage_index_valid(pCreateInfo, ginfo->intersectionShader,
VK_SHADER_STAGE_INTERSECTION_BIT_KHR);
switch (ginfo->type) {
case VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR:
assert(ginfo->generalShader < pCreateInfo->stageCount);
assert(ginfo->anyHitShader == VK_SHADER_UNUSED_KHR);
assert(ginfo->closestHitShader == VK_SHADER_UNUSED_KHR);
assert(ginfo->intersectionShader == VK_SHADER_UNUSED_KHR);
break;
case VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR:
assert(ginfo->generalShader == VK_SHADER_UNUSED_KHR);
assert(ginfo->intersectionShader == VK_SHADER_UNUSED_KHR);
break;
case VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR:
assert(ginfo->generalShader == VK_SHADER_UNUSED_KHR);
break;
default:
unreachable("Invalid ray-tracing shader group type");
}
}
result = anv_ray_tracing_pipeline_init(pipeline, device, cache,
pCreateInfo, pAllocator);
if (result != VK_SUCCESS) {
anv_pipeline_finish(&pipeline->base, device, pAllocator);
vk_free2(&device->vk.alloc, pAllocator, pipeline);
return result;
}
anv_genX(&device->info, ray_tracing_pipeline_emit)(pipeline);
*pPipeline = anv_pipeline_to_handle(&pipeline->base);
return pipeline->base.batch.status;
}
VkResult
anv_CreateRayTracingPipelinesKHR(
VkDevice _device,
VkDeferredOperationKHR deferredOperation,
VkPipelineCache pipelineCache,
uint32_t createInfoCount,
const VkRayTracingPipelineCreateInfoKHR* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines)
{
ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
VkResult result = VK_SUCCESS;
unsigned i;
for (i = 0; i < createInfoCount; i++) {
VkResult res = anv_ray_tracing_pipeline_create(_device, pipeline_cache,
&pCreateInfos[i],
pAllocator, &pPipelines[i]);
if (res == VK_SUCCESS)
continue;
/* Bail out on the first error as it is not obvious what error should be
* report upon 2 different failures. */
result = res;
if (result != VK_PIPELINE_COMPILE_REQUIRED)
break;
pPipelines[i] = VK_NULL_HANDLE;
if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT)
break;
}
for (; i < createInfoCount; i++)
pPipelines[i] = VK_NULL_HANDLE;
return result;
}
#define WRITE_STR(field, ...) ({ \
memset(field, 0, sizeof(field)); \
UNUSED int i = snprintf(field, sizeof(field), __VA_ARGS__); \
assert(i > 0 && i < sizeof(field)); \
})
VkResult anv_GetPipelineExecutablePropertiesKHR(
VkDevice device,
const VkPipelineInfoKHR* pPipelineInfo,
uint32_t* pExecutableCount,
VkPipelineExecutablePropertiesKHR* pProperties)
{
ANV_FROM_HANDLE(anv_pipeline, pipeline, pPipelineInfo->pipeline);
VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutablePropertiesKHR, out,
pProperties, pExecutableCount);
util_dynarray_foreach (&pipeline->executables, struct anv_pipeline_executable, exe) {
vk_outarray_append_typed(VkPipelineExecutablePropertiesKHR, &out, props) {
gl_shader_stage stage = exe->stage;
props->stages = mesa_to_vk_shader_stage(stage);
unsigned simd_width = exe->stats.dispatch_width;
if (stage == MESA_SHADER_FRAGMENT) {
WRITE_STR(props->name, "%s%d %s",
simd_width ? "SIMD" : "vec",
simd_width ? simd_width : 4,
_mesa_shader_stage_to_string(stage));
} else {
WRITE_STR(props->name, "%s", _mesa_shader_stage_to_string(stage));
}
WRITE_STR(props->description, "%s%d %s shader",
simd_width ? "SIMD" : "vec",
simd_width ? simd_width : 4,
_mesa_shader_stage_to_string(stage));
/* The compiler gives us a dispatch width of 0 for vec4 but Vulkan
* wants a subgroup size of 1.
*/
props->subgroupSize = MAX2(simd_width, 1);
}
}
return vk_outarray_status(&out);
}
static const struct anv_pipeline_executable *
anv_pipeline_get_executable(struct anv_pipeline *pipeline, uint32_t index)
{
assert(index < util_dynarray_num_elements(&pipeline->executables,
struct anv_pipeline_executable));
return util_dynarray_element(
&pipeline->executables, struct anv_pipeline_executable, index);
}
VkResult anv_GetPipelineExecutableStatisticsKHR(
VkDevice device,
const VkPipelineExecutableInfoKHR* pExecutableInfo,
uint32_t* pStatisticCount,
VkPipelineExecutableStatisticKHR* pStatistics)
{
ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutableStatisticKHR, out,
pStatistics, pStatisticCount);
const struct anv_pipeline_executable *exe =
anv_pipeline_get_executable(pipeline, pExecutableInfo->executableIndex);
const struct brw_stage_prog_data *prog_data;
switch (pipeline->type) {
case ANV_PIPELINE_GRAPHICS: {
prog_data = anv_pipeline_to_graphics(pipeline)->shaders[exe->stage]->prog_data;
break;
}
case ANV_PIPELINE_COMPUTE: {
prog_data = anv_pipeline_to_compute(pipeline)->cs->prog_data;
break;
}
default:
unreachable("invalid pipeline type");
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
WRITE_STR(stat->name, "Instruction Count");
WRITE_STR(stat->description,
"Number of GEN instructions in the final generated "
"shader executable.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.instructions;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
WRITE_STR(stat->name, "SEND Count");
WRITE_STR(stat->description,
"Number of instructions in the final generated shader "
"executable which access external units such as the "
"constant cache or the sampler.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.sends;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
WRITE_STR(stat->name, "Loop Count");
WRITE_STR(stat->description,
"Number of loops (not unrolled) in the final generated "
"shader executable.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.loops;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
WRITE_STR(stat->name, "Cycle Count");
WRITE_STR(stat->description,
"Estimate of the number of EU cycles required to execute "
"the final generated executable. This is an estimate only "
"and may vary greatly from actual run-time performance.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.cycles;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
WRITE_STR(stat->name, "Spill Count");
WRITE_STR(stat->description,
"Number of scratch spill operations. This gives a rough "
"estimate of the cost incurred due to spilling temporary "
"values to memory. If this is non-zero, you may want to "
"adjust your shader to reduce register pressure.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.spills;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
WRITE_STR(stat->name, "Fill Count");
WRITE_STR(stat->description,
"Number of scratch fill operations. This gives a rough "
"estimate of the cost incurred due to spilling temporary "
"values to memory. If this is non-zero, you may want to "
"adjust your shader to reduce register pressure.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.fills;
}
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
WRITE_STR(stat->name, "Scratch Memory Size");
WRITE_STR(stat->description,
"Number of bytes of scratch memory required by the "
"generated shader executable. If this is non-zero, you "
"may want to adjust your shader to reduce register "
"pressure.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = prog_data->total_scratch;
}
if (gl_shader_stage_uses_workgroup(exe->stage)) {
vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
WRITE_STR(stat->name, "Workgroup Memory Size");
WRITE_STR(stat->description,
"Number of bytes of workgroup shared memory used by this "
"shader including any padding.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = prog_data->total_shared;
}
}
return vk_outarray_status(&out);
}
static bool
write_ir_text(VkPipelineExecutableInternalRepresentationKHR* ir,
const char *data)
{
ir->isText = VK_TRUE;
size_t data_len = strlen(data) + 1;
if (ir->pData == NULL) {
ir->dataSize = data_len;
return true;
}
strncpy(ir->pData, data, ir->dataSize);
if (ir->dataSize < data_len)
return false;
ir->dataSize = data_len;
return true;
}
VkResult anv_GetPipelineExecutableInternalRepresentationsKHR(
VkDevice device,
const VkPipelineExecutableInfoKHR* pExecutableInfo,
uint32_t* pInternalRepresentationCount,
VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations)
{
ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutableInternalRepresentationKHR, out,
pInternalRepresentations, pInternalRepresentationCount);
bool incomplete_text = false;
const struct anv_pipeline_executable *exe =
anv_pipeline_get_executable(pipeline, pExecutableInfo->executableIndex);
if (exe->nir) {
vk_outarray_append_typed(VkPipelineExecutableInternalRepresentationKHR, &out, ir) {
WRITE_STR(ir->name, "Final NIR");
WRITE_STR(ir->description,
"Final NIR before going into the back-end compiler");
if (!write_ir_text(ir, exe->nir))
incomplete_text = true;
}
}
if (exe->disasm) {
vk_outarray_append_typed(VkPipelineExecutableInternalRepresentationKHR, &out, ir) {
WRITE_STR(ir->name, "GEN Assembly");
WRITE_STR(ir->description,
"Final GEN assembly for the generated shader binary");
if (!write_ir_text(ir, exe->disasm))
incomplete_text = true;
}
}
return incomplete_text ? VK_INCOMPLETE : vk_outarray_status(&out);
}
VkResult
anv_GetRayTracingShaderGroupHandlesKHR(
VkDevice _device,
VkPipeline _pipeline,
uint32_t firstGroup,
uint32_t groupCount,
size_t dataSize,
void* pData)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
if (pipeline->type != ANV_PIPELINE_RAY_TRACING)
return vk_error(device, VK_ERROR_FEATURE_NOT_PRESENT);
struct anv_ray_tracing_pipeline *rt_pipeline =
anv_pipeline_to_ray_tracing(pipeline);
for (uint32_t i = 0; i < groupCount; i++) {
struct anv_rt_shader_group *group = &rt_pipeline->groups[firstGroup + i];
memcpy(pData, group->handle, sizeof(group->handle));
pData += sizeof(group->handle);
}
return VK_SUCCESS;
}
VkResult
anv_GetRayTracingCaptureReplayShaderGroupHandlesKHR(
VkDevice _device,
VkPipeline pipeline,
uint32_t firstGroup,
uint32_t groupCount,
size_t dataSize,
void* pData)
{
ANV_FROM_HANDLE(anv_device, device, _device);
unreachable("Unimplemented");
return vk_error(device, VK_ERROR_FEATURE_NOT_PRESENT);
}
VkDeviceSize
anv_GetRayTracingShaderGroupStackSizeKHR(
VkDevice device,
VkPipeline _pipeline,
uint32_t group,
VkShaderGroupShaderKHR groupShader)
{
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
assert(pipeline->type == ANV_PIPELINE_RAY_TRACING);
struct anv_ray_tracing_pipeline *rt_pipeline =
anv_pipeline_to_ray_tracing(pipeline);
assert(group < rt_pipeline->group_count);
struct anv_shader_bin *bin;
switch (groupShader) {
case VK_SHADER_GROUP_SHADER_GENERAL_KHR:
bin = rt_pipeline->groups[group].general;
break;
case VK_SHADER_GROUP_SHADER_CLOSEST_HIT_KHR:
bin = rt_pipeline->groups[group].closest_hit;
break;
case VK_SHADER_GROUP_SHADER_ANY_HIT_KHR:
bin = rt_pipeline->groups[group].any_hit;
break;
case VK_SHADER_GROUP_SHADER_INTERSECTION_KHR:
bin = rt_pipeline->groups[group].intersection;
break;
default:
unreachable("Invalid VkShaderGroupShader enum");
}
if (bin == NULL)
return 0;
return brw_bs_prog_data_const(bin->prog_data)->max_stack_size;
}