mesa/src/gallium/drivers/softpipe/sp_tex_sample.c

3863 lines
122 KiB
C

/**************************************************************************
*
* Copyright 2007 VMware, Inc.
* All Rights Reserved.
* Copyright 2008-2010 VMware, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* Texture sampling
*
* Authors:
* Brian Paul
* Keith Whitwell
*/
#include "pipe/p_context.h"
#include "pipe/p_defines.h"
#include "pipe/p_shader_tokens.h"
#include "util/u_math.h"
#include "util/format/u_format.h"
#include "util/u_memory.h"
#include "util/u_inlines.h"
#include "sp_quad.h" /* only for #define QUAD_* tokens */
#include "sp_tex_sample.h"
#include "sp_texture.h"
#include "sp_tex_tile_cache.h"
/** Set to one to help debug texture sampling */
#define DEBUG_TEX 0
/*
* Return fractional part of 'f'. Used for computing interpolation weights.
* Need to be careful with negative values.
* Note, if this function isn't perfect you'll sometimes see 1-pixel bands
* of improperly weighted linear-filtered textures.
* The tests/texwrap.c demo is a good test.
*/
static inline float
frac(float f)
{
return f - floorf(f);
}
/**
* Linear interpolation macro
*/
static inline float
lerp(float a, float v0, float v1)
{
return v0 + a * (v1 - v0);
}
/**
* Do 2D/bilinear interpolation of float values.
* v00, v10, v01 and v11 are typically four texture samples in a square/box.
* a and b are the horizontal and vertical interpolants.
* It's important that this function is inlined when compiled with
* optimization! If we find that's not true on some systems, convert
* to a macro.
*/
static inline float
lerp_2d(float a, float b,
float v00, float v10, float v01, float v11)
{
const float temp0 = lerp(a, v00, v10);
const float temp1 = lerp(a, v01, v11);
return lerp(b, temp0, temp1);
}
/**
* As above, but 3D interpolation of 8 values.
*/
static inline float
lerp_3d(float a, float b, float c,
float v000, float v100, float v010, float v110,
float v001, float v101, float v011, float v111)
{
const float temp0 = lerp_2d(a, b, v000, v100, v010, v110);
const float temp1 = lerp_2d(a, b, v001, v101, v011, v111);
return lerp(c, temp0, temp1);
}
/**
* Compute coord % size for repeat wrap modes.
* Note that if coord is negative, coord % size doesn't give the right
* value. To avoid that problem we add a large multiple of the size
* (rather than using a conditional).
*/
static inline int
repeat(int coord, unsigned size)
{
return (coord + size * 1024) % size;
}
/**
* Apply texture coord wrapping mode and return integer texture indexes
* for a vector of four texcoords (S or T or P).
* \param wrapMode PIPE_TEX_WRAP_x
* \param s the incoming texcoords
* \param size the texture image size
* \param icoord returns the integer texcoords
*/
static void
wrap_nearest_repeat(float s, unsigned size, int offset, int *icoord)
{
/* s limited to [0,1) */
/* i limited to [0,size-1] */
const int i = util_ifloor(s * size);
*icoord = repeat(i + offset, size);
}
static void
wrap_nearest_clamp(float s, unsigned size, int offset, int *icoord)
{
/* s limited to [0,1] */
/* i limited to [0,size-1] */
s *= size;
s += offset;
if (s <= 0.0F)
*icoord = 0;
else if (s >= size)
*icoord = size - 1;
else
*icoord = util_ifloor(s);
}
static void
wrap_nearest_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
{
/* s limited to [min,max] */
/* i limited to [0, size-1] */
const float min = 0.5F;
const float max = (float)size - 0.5F;
s *= size;
s += offset;
if (s < min)
*icoord = 0;
else if (s > max)
*icoord = size - 1;
else
*icoord = util_ifloor(s);
}
static void
wrap_nearest_clamp_to_border(float s, unsigned size, int offset, int *icoord)
{
/* s limited to [min,max] */
/* i limited to [-1, size] */
const float min = -0.5F;
const float max = size + 0.5F;
s *= size;
s += offset;
if (s <= min)
*icoord = -1;
else if (s >= max)
*icoord = size;
else
*icoord = util_ifloor(s);
}
static void
wrap_nearest_mirror_repeat(float s, unsigned size, int offset, int *icoord)
{
const float min = 1.0F / (2.0F * size);
const float max = 1.0F - min;
int flr;
float u;
s += (float)offset / size;
flr = util_ifloor(s);
u = frac(s);
if (flr & 1)
u = 1.0F - u;
if (u < min)
*icoord = 0;
else if (u > max)
*icoord = size - 1;
else
*icoord = util_ifloor(u * size);
}
static void
wrap_nearest_mirror_clamp(float s, unsigned size, int offset, int *icoord)
{
/* s limited to [0,1] */
/* i limited to [0,size-1] */
const float u = fabsf(s * size + offset);
if (u <= 0.0F)
*icoord = 0;
else if (u >= size)
*icoord = size - 1;
else
*icoord = util_ifloor(u);
}
static void
wrap_nearest_mirror_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
{
/* s limited to [min,max] */
/* i limited to [0, size-1] */
const float min = 0.5F;
const float max = (float)size - 0.5F;
const float u = fabsf(s * size + offset);
if (u < min)
*icoord = 0;
else if (u > max)
*icoord = size - 1;
else
*icoord = util_ifloor(u);
}
static void
wrap_nearest_mirror_clamp_to_border(float s, unsigned size, int offset, int *icoord)
{
/* u limited to [-0.5, size-0.5] */
const float min = -0.5F;
const float max = (float)size + 0.5F;
const float u = fabsf(s * size + offset);
if (u < min)
*icoord = -1;
else if (u > max)
*icoord = size;
else
*icoord = util_ifloor(u);
}
/**
* Used to compute texel locations for linear sampling
* \param wrapMode PIPE_TEX_WRAP_x
* \param s the texcoord
* \param size the texture image size
* \param icoord0 returns first texture index
* \param icoord1 returns second texture index (usually icoord0 + 1)
* \param w returns blend factor/weight between texture indices
* \param icoord returns the computed integer texture coord
*/
static void
wrap_linear_repeat(float s, unsigned size, int offset,
int *icoord0, int *icoord1, float *w)
{
const float u = s * size - 0.5F;
*icoord0 = repeat(util_ifloor(u) + offset, size);
*icoord1 = repeat(*icoord0 + 1, size);
*w = frac(u);
}
static void
wrap_linear_clamp(float s, unsigned size, int offset,
int *icoord0, int *icoord1, float *w)
{
const float u = CLAMP(s * size + offset, 0.0F, (float)size) - 0.5f;
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
*w = frac(u);
}
static void
wrap_linear_clamp_to_edge(float s, unsigned size, int offset,
int *icoord0, int *icoord1, float *w)
{
const float u = CLAMP(s * size + offset, 0.0F, (float)size) - 0.5f;
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
if (*icoord0 < 0)
*icoord0 = 0;
if (*icoord1 >= (int) size)
*icoord1 = size - 1;
*w = frac(u);
}
static void
wrap_linear_clamp_to_border(float s, unsigned size, int offset,
int *icoord0, int *icoord1, float *w)
{
const float min = -1.0F;
const float max = (float)size + 0.5F;
const float u = CLAMP(s * size + offset, min, max) - 0.5f;
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
*w = frac(u);
}
static void
wrap_linear_mirror_repeat(float s, unsigned size, int offset,
int *icoord0, int *icoord1, float *w)
{
int flr;
float u;
bool no_mirror;
s += (float)offset / size;
flr = util_ifloor(s);
no_mirror = !(flr & 1);
u = frac(s);
if (no_mirror) {
u = u * size - 0.5F;
} else {
u = 1.0F - u;
u = u * size + 0.5F;
}
*icoord0 = util_ifloor(u);
*icoord1 = (no_mirror) ? *icoord0 + 1 : *icoord0 - 1;
if (*icoord0 < 0)
*icoord0 = 1 + *icoord0;
if (*icoord0 >= (int) size)
*icoord0 = size - 1;
if (*icoord1 >= (int) size)
*icoord1 = size - 1;
if (*icoord1 < 0)
*icoord1 = 1 + *icoord1;
*w = (no_mirror) ? frac(u) : frac(1.0f - u);
}
static void
wrap_linear_mirror_clamp(float s, unsigned size, int offset,
int *icoord0, int *icoord1, float *w)
{
float u = fabsf(s * size + offset);
if (u >= size)
u = (float) size;
u -= 0.5F;
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
*w = frac(u);
}
static void
wrap_linear_mirror_clamp_to_edge(float s, unsigned size, int offset,
int *icoord0, int *icoord1, float *w)
{
float u = fabsf(s * size + offset);
if (u >= size)
u = (float) size;
u -= 0.5F;
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
if (*icoord0 < 0)
*icoord0 = 0;
if (*icoord1 >= (int) size)
*icoord1 = size - 1;
*w = frac(u);
}
static void
wrap_linear_mirror_clamp_to_border(float s, unsigned size, int offset,
int *icoord0, int *icoord1, float *w)
{
const float min = -0.5F;
const float max = size + 0.5F;
const float t = fabsf(s * size + offset);
const float u = CLAMP(t, min, max) - 0.5F;
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
*w = frac(u);
}
/**
* PIPE_TEX_WRAP_CLAMP for nearest sampling, unnormalized coords.
*/
static void
wrap_nearest_unorm_clamp(float s, unsigned size, int offset, int *icoord)
{
const int i = util_ifloor(s);
*icoord = CLAMP(i + offset, 0, (int) size-1);
}
/**
* PIPE_TEX_WRAP_CLAMP_TO_BORDER for nearest sampling, unnormalized coords.
*/
static void
wrap_nearest_unorm_clamp_to_border(float s, unsigned size, int offset, int *icoord)
{
*icoord = util_ifloor( CLAMP(s + offset, -0.5F, (float) size + 0.5F) );
}
/**
* PIPE_TEX_WRAP_CLAMP_TO_EDGE for nearest sampling, unnormalized coords.
*/
static void
wrap_nearest_unorm_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
{
*icoord = util_ifloor( CLAMP(s + offset, 0.5F, (float) size - 0.5F) );
}
/**
* PIPE_TEX_WRAP_CLAMP for linear sampling, unnormalized coords.
*/
static void
wrap_linear_unorm_clamp(float s, unsigned size, int offset,
int *icoord0, int *icoord1, float *w)
{
/* Not exactly what the spec says, but it matches NVIDIA output */
const float u = CLAMP(s + offset - 0.5F, 0.0f, (float) size - 1.0f);
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
*w = frac(u);
}
/**
* PIPE_TEX_WRAP_CLAMP_TO_BORDER for linear sampling, unnormalized coords.
*/
static void
wrap_linear_unorm_clamp_to_border(float s, unsigned size, int offset,
int *icoord0, int *icoord1, float *w)
{
const float u = CLAMP(s + offset, -0.5F, (float) size + 0.5F) - 0.5F;
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
if (*icoord1 > (int) size - 1)
*icoord1 = size - 1;
*w = frac(u);
}
/**
* PIPE_TEX_WRAP_CLAMP_TO_EDGE for linear sampling, unnormalized coords.
*/
static void
wrap_linear_unorm_clamp_to_edge(float s, unsigned size, int offset,
int *icoord0, int *icoord1, float *w)
{
const float u = CLAMP(s + offset, +0.5F, (float) size - 0.5F) - 0.5F;
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
if (*icoord1 > (int) size - 1)
*icoord1 = size - 1;
*w = frac(u);
}
/**
* Do coordinate to array index conversion. For array textures.
*/
static inline int
coord_to_layer(float coord, unsigned first_layer, unsigned last_layer)
{
const int c = util_ifloor(coord + 0.5F);
return CLAMP(c, (int)first_layer, (int)last_layer);
}
static void
compute_gradient_1d(const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
float derivs[3][2][TGSI_QUAD_SIZE])
{
memset(derivs, 0, 6 * TGSI_QUAD_SIZE * sizeof(float));
derivs[0][0][0] = s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT];
derivs[0][1][0] = s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT];
}
static float
compute_lambda_1d_explicit_gradients(const struct sp_sampler_view *sview,
const float derivs[3][2][TGSI_QUAD_SIZE],
uint quad)
{
const struct pipe_resource *texture = sview->base.texture;
const float dsdx = fabsf(derivs[0][0][quad]);
const float dsdy = fabsf(derivs[0][1][quad]);
const float rho = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
return util_fast_log2(rho);
}
/**
* Examine the quad's texture coordinates to compute the partial
* derivatives w.r.t X and Y, then compute lambda (level of detail).
*/
static float
compute_lambda_1d(const struct sp_sampler_view *sview,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE])
{
float derivs[3][2][TGSI_QUAD_SIZE];
compute_gradient_1d(s, t, p, derivs);
return compute_lambda_1d_explicit_gradients(sview, derivs, 0);
}
static void
compute_gradient_2d(const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
float derivs[3][2][TGSI_QUAD_SIZE])
{
memset(derivs, 0, 6 * TGSI_QUAD_SIZE * sizeof(float));
derivs[0][0][0] = s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT];
derivs[0][1][0] = s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT];
derivs[1][0][0] = t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT];
derivs[1][1][0] = t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT];
}
static float
compute_lambda_2d_explicit_gradients(const struct sp_sampler_view *sview,
const float derivs[3][2][TGSI_QUAD_SIZE],
uint quad)
{
const struct pipe_resource *texture = sview->base.texture;
const float dsdx = fabsf(derivs[0][0][quad]);
const float dsdy = fabsf(derivs[0][1][quad]);
const float dtdx = fabsf(derivs[1][0][quad]);
const float dtdy = fabsf(derivs[1][1][quad]);
const float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
const float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level);
const float rho = MAX2(maxx, maxy);
return util_fast_log2(rho);
}
static float
compute_lambda_2d(const struct sp_sampler_view *sview,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE])
{
float derivs[3][2][TGSI_QUAD_SIZE];
compute_gradient_2d(s, t, p, derivs);
return compute_lambda_2d_explicit_gradients(sview, derivs, 0);
}
static void
compute_gradient_3d(const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
float derivs[3][2][TGSI_QUAD_SIZE])
{
memset(derivs, 0, 6 * TGSI_QUAD_SIZE * sizeof(float));
derivs[0][0][0] = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
derivs[0][1][0] = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]);
derivs[1][0][0] = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
derivs[1][1][0] = fabsf(t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]);
derivs[2][0][0] = fabsf(p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT]);
derivs[2][1][0] = fabsf(p[QUAD_TOP_LEFT] - p[QUAD_BOTTOM_LEFT]);
}
static float
compute_lambda_3d_explicit_gradients(const struct sp_sampler_view *sview,
const float derivs[3][2][TGSI_QUAD_SIZE],
uint quad)
{
const struct pipe_resource *texture = sview->base.texture;
const float dsdx = fabsf(derivs[0][0][quad]);
const float dsdy = fabsf(derivs[0][1][quad]);
const float dtdx = fabsf(derivs[1][0][quad]);
const float dtdy = fabsf(derivs[1][1][quad]);
const float dpdx = fabsf(derivs[2][0][quad]);
const float dpdy = fabsf(derivs[2][1][quad]);
const float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
const float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level);
const float maxz = MAX2(dpdx, dpdy) * u_minify(texture->depth0, sview->base.u.tex.first_level);
const float rho = MAX3(maxx, maxy, maxz);
return util_fast_log2(rho);
}
static float
compute_lambda_3d(const struct sp_sampler_view *sview,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE])
{
float derivs[3][2][TGSI_QUAD_SIZE];
compute_gradient_3d(s, t, p, derivs);
return compute_lambda_3d_explicit_gradients(sview, derivs, 0);
}
static float
compute_lambda_cube_explicit_gradients(const struct sp_sampler_view *sview,
const float derivs[3][2][TGSI_QUAD_SIZE],
uint quad)
{
const struct pipe_resource *texture = sview->base.texture;
const float dsdx = fabsf(derivs[0][0][quad]);
const float dsdy = fabsf(derivs[0][1][quad]);
const float dtdx = fabsf(derivs[1][0][quad]);
const float dtdy = fabsf(derivs[1][1][quad]);
const float dpdx = fabsf(derivs[2][0][quad]);
const float dpdy = fabsf(derivs[2][1][quad]);
const float maxx = MAX2(dsdx, dsdy);
const float maxy = MAX2(dtdx, dtdy);
const float maxz = MAX2(dpdx, dpdy);
const float rho = MAX3(maxx, maxy, maxz) * u_minify(texture->width0, sview->base.u.tex.first_level) / 2.0f;
return util_fast_log2(rho);
}
static float
compute_lambda_cube(const struct sp_sampler_view *sview,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE])
{
float derivs[3][2][TGSI_QUAD_SIZE];
compute_gradient_3d(s, t, p, derivs);
return compute_lambda_cube_explicit_gradients(sview, derivs, 0);
}
/**
* Compute lambda for a vertex texture sampler.
* Since there aren't derivatives to use, just return 0.
*/
static float
compute_lambda_vert(const struct sp_sampler_view *sview,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE])
{
return 0.0f;
}
compute_lambda_from_grad_func
softpipe_get_lambda_from_grad_func(const struct pipe_sampler_view *view,
enum pipe_shader_type shader)
{
switch (view->target) {
case PIPE_BUFFER:
case PIPE_TEXTURE_1D:
case PIPE_TEXTURE_1D_ARRAY:
return compute_lambda_1d_explicit_gradients;
case PIPE_TEXTURE_2D:
case PIPE_TEXTURE_2D_ARRAY:
case PIPE_TEXTURE_RECT:
return compute_lambda_2d_explicit_gradients;
case PIPE_TEXTURE_CUBE:
case PIPE_TEXTURE_CUBE_ARRAY:
return compute_lambda_cube_explicit_gradients;
case PIPE_TEXTURE_3D:
return compute_lambda_3d_explicit_gradients;
default:
assert(0);
return compute_lambda_1d_explicit_gradients;
}
}
/**
* Get a texel from a texture, using the texture tile cache.
*
* \param addr the template tex address containing cube, z, face info.
* \param x the x coord of texel within 2D image
* \param y the y coord of texel within 2D image
* \param rgba the quad to put the texel/color into
*
* XXX maybe move this into sp_tex_tile_cache.c and merge with the
* sp_get_cached_tile_tex() function.
*/
static inline const float *
get_texel_buffer_no_border(const struct sp_sampler_view *sp_sview,
union tex_tile_address addr, int x, unsigned elmsize)
{
const struct softpipe_tex_cached_tile *tile;
addr.bits.x = x * elmsize / TEX_TILE_SIZE;
assert(x * elmsize / TEX_TILE_SIZE == addr.bits.x);
x %= TEX_TILE_SIZE / elmsize;
tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
return &tile->data.color[0][x][0];
}
static inline const float *
get_texel_2d_no_border(const struct sp_sampler_view *sp_sview,
union tex_tile_address addr, int x, int y)
{
const struct softpipe_tex_cached_tile *tile;
addr.bits.x = x / TEX_TILE_SIZE;
addr.bits.y = y / TEX_TILE_SIZE;
y %= TEX_TILE_SIZE;
x %= TEX_TILE_SIZE;
tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
return &tile->data.color[y][x][0];
}
static inline const float *
get_texel_2d(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
union tex_tile_address addr, int x, int y)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const unsigned level = addr.bits.level;
if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
y < 0 || y >= (int) u_minify(texture->height0, level)) {
return sp_sview->border_color.f;
}
else {
return get_texel_2d_no_border( sp_sview, addr, x, y );
}
}
/*
* Here's the complete logic (HOLY CRAP) for finding next face and doing the
* corresponding coord wrapping, implemented by get_next_face,
* get_next_xcoord, get_next_ycoord.
* Read like that (first line):
* If face is +x and s coord is below zero, then
* new face is +z, new s is max , new t is old t
* (max is always cube size - 1).
*
* +x s- -> +z: s = max, t = t
* +x s+ -> -z: s = 0, t = t
* +x t- -> +y: s = max, t = max-s
* +x t+ -> -y: s = max, t = s
*
* -x s- -> -z: s = max, t = t
* -x s+ -> +z: s = 0, t = t
* -x t- -> +y: s = 0, t = s
* -x t+ -> -y: s = 0, t = max-s
*
* +y s- -> -x: s = t, t = 0
* +y s+ -> +x: s = max-t, t = 0
* +y t- -> -z: s = max-s, t = 0
* +y t+ -> +z: s = s, t = 0
*
* -y s- -> -x: s = max-t, t = max
* -y s+ -> +x: s = t, t = max
* -y t- -> +z: s = s, t = max
* -y t+ -> -z: s = max-s, t = max
* +z s- -> -x: s = max, t = t
* +z s+ -> +x: s = 0, t = t
* +z t- -> +y: s = s, t = max
* +z t+ -> -y: s = s, t = 0
* -z s- -> +x: s = max, t = t
* -z s+ -> -x: s = 0, t = t
* -z t- -> +y: s = max-s, t = 0
* -z t+ -> -y: s = max-s, t = max
*/
/*
* seamless cubemap neighbour array.
* this array is used to find the adjacent face in each of 4 directions,
* left, right, up, down. (or -x, +x, -y, +y).
*/
static const unsigned face_array[PIPE_TEX_FACE_MAX][4] = {
/* pos X first then neg X is Z different, Y the same */
/* PIPE_TEX_FACE_POS_X,*/
{ PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z,
PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
/* PIPE_TEX_FACE_NEG_X */
{ PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z,
PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
/* pos Y first then neg Y is X different, X the same */
/* PIPE_TEX_FACE_POS_Y */
{ PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z },
/* PIPE_TEX_FACE_NEG_Y */
{ PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z },
/* pos Z first then neg Y is X different, X the same */
/* PIPE_TEX_FACE_POS_Z */
{ PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
/* PIPE_TEX_FACE_NEG_Z */
{ PIPE_TEX_FACE_POS_X, PIPE_TEX_FACE_NEG_X,
PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y }
};
static inline unsigned
get_next_face(unsigned face, int idx)
{
return face_array[face][idx];
}
/*
* return a new xcoord based on old face, old coords, cube size
* and fall_off_index (0 for x-, 1 for x+, 2 for y-, 3 for y+)
*/
static inline int
get_next_xcoord(unsigned face, unsigned fall_off_index, int max, int xc, int yc)
{
if ((face == 0 && fall_off_index != 1) ||
(face == 1 && fall_off_index == 0) ||
(face == 4 && fall_off_index == 0) ||
(face == 5 && fall_off_index == 0)) {
return max;
}
if ((face == 1 && fall_off_index != 0) ||
(face == 0 && fall_off_index == 1) ||
(face == 4 && fall_off_index == 1) ||
(face == 5 && fall_off_index == 1)) {
return 0;
}
if ((face == 4 && fall_off_index >= 2) ||
(face == 2 && fall_off_index == 3) ||
(face == 3 && fall_off_index == 2)) {
return xc;
}
if ((face == 5 && fall_off_index >= 2) ||
(face == 2 && fall_off_index == 2) ||
(face == 3 && fall_off_index == 3)) {
return max - xc;
}
if ((face == 2 && fall_off_index == 0) ||
(face == 3 && fall_off_index == 1)) {
return yc;
}
/* (face == 2 && fall_off_index == 1) ||
(face == 3 && fall_off_index == 0)) */
return max - yc;
}
/*
* return a new ycoord based on old face, old coords, cube size
* and fall_off_index (0 for x-, 1 for x+, 2 for y-, 3 for y+)
*/
static inline int
get_next_ycoord(unsigned face, unsigned fall_off_index, int max, int xc, int yc)
{
if ((fall_off_index <= 1) && (face <= 1 || face >= 4)) {
return yc;
}
if (face == 2 ||
(face == 4 && fall_off_index == 3) ||
(face == 5 && fall_off_index == 2)) {
return 0;
}
if (face == 3 ||
(face == 4 && fall_off_index == 2) ||
(face == 5 && fall_off_index == 3)) {
return max;
}
if ((face == 0 && fall_off_index == 3) ||
(face == 1 && fall_off_index == 2)) {
return xc;
}
/* (face == 0 && fall_off_index == 2) ||
(face == 1 && fall_off_index == 3) */
return max - xc;
}
/* Gather a quad of adjacent texels within a tile:
*/
static inline void
get_texel_quad_2d_no_border_single_tile(const struct sp_sampler_view *sp_sview,
union tex_tile_address addr,
unsigned x, unsigned y,
const float *out[4])
{
const struct softpipe_tex_cached_tile *tile;
addr.bits.x = x / TEX_TILE_SIZE;
addr.bits.y = y / TEX_TILE_SIZE;
y %= TEX_TILE_SIZE;
x %= TEX_TILE_SIZE;
tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
out[0] = &tile->data.color[y ][x ][0];
out[1] = &tile->data.color[y ][x+1][0];
out[2] = &tile->data.color[y+1][x ][0];
out[3] = &tile->data.color[y+1][x+1][0];
}
/* Gather a quad of potentially non-adjacent texels:
*/
static inline void
get_texel_quad_2d_no_border(const struct sp_sampler_view *sp_sview,
union tex_tile_address addr,
int x0, int y0,
int x1, int y1,
const float *out[4])
{
out[0] = get_texel_2d_no_border( sp_sview, addr, x0, y0 );
out[1] = get_texel_2d_no_border( sp_sview, addr, x1, y0 );
out[2] = get_texel_2d_no_border( sp_sview, addr, x0, y1 );
out[3] = get_texel_2d_no_border( sp_sview, addr, x1, y1 );
}
/* 3d variants:
*/
static inline const float *
get_texel_3d_no_border(const struct sp_sampler_view *sp_sview,
union tex_tile_address addr, int x, int y, int z)
{
const struct softpipe_tex_cached_tile *tile;
addr.bits.x = x / TEX_TILE_SIZE;
addr.bits.y = y / TEX_TILE_SIZE;
addr.bits.z = z;
y %= TEX_TILE_SIZE;
x %= TEX_TILE_SIZE;
tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
return &tile->data.color[y][x][0];
}
static inline const float *
get_texel_3d(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
union tex_tile_address addr, int x, int y, int z)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const unsigned level = addr.bits.level;
if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
y < 0 || y >= (int) u_minify(texture->height0, level) ||
z < 0 || z >= (int) u_minify(texture->depth0, level)) {
return sp_sview->border_color.f;
}
else {
return get_texel_3d_no_border( sp_sview, addr, x, y, z );
}
}
/* Get texel pointer for 1D array texture */
static inline const float *
get_texel_1d_array(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
union tex_tile_address addr, int x, int y)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const unsigned level = addr.bits.level;
if (x < 0 || x >= (int) u_minify(texture->width0, level)) {
return sp_sview->border_color.f;
}
else {
return get_texel_2d_no_border(sp_sview, addr, x, y);
}
}
/* Get texel pointer for 2D array texture */
static inline const float *
get_texel_2d_array(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
union tex_tile_address addr, int x, int y, int layer)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const unsigned level = addr.bits.level;
assert(layer < (int) texture->array_size);
assert(layer >= 0);
if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
y < 0 || y >= (int) u_minify(texture->height0, level)) {
return sp_sview->border_color.f;
}
else {
return get_texel_3d_no_border(sp_sview, addr, x, y, layer);
}
}
static inline const float *
get_texel_cube_seamless(const struct sp_sampler_view *sp_sview,
union tex_tile_address addr, int x, int y,
float *corner, int layer, unsigned face)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const unsigned level = addr.bits.level;
int new_x, new_y, max_x;
max_x = (int) u_minify(texture->width0, level);
assert(texture->width0 == texture->height0);
new_x = x;
new_y = y;
/* change the face */
if (x < 0) {
/*
* Cheat with corners. They are difficult and I believe because we don't get
* per-pixel faces we can actually have multiple corner texels per pixel,
* which screws things up majorly in any case (as the per spec behavior is
* to average the 3 remaining texels, which we might not have).
* Hence just make sure that the 2nd coord is clamped, will simply pick the
* sample which would have fallen off the x coord, but not y coord.
* So the filter weight of the samples will be wrong, but at least this
* ensures that only valid texels near the corner are used.
*/
if (y < 0 || y >= max_x) {
y = CLAMP(y, 0, max_x - 1);
}
new_x = get_next_xcoord(face, 0, max_x -1, x, y);
new_y = get_next_ycoord(face, 0, max_x -1, x, y);
face = get_next_face(face, 0);
} else if (x >= max_x) {
if (y < 0 || y >= max_x) {
y = CLAMP(y, 0, max_x - 1);
}
new_x = get_next_xcoord(face, 1, max_x -1, x, y);
new_y = get_next_ycoord(face, 1, max_x -1, x, y);
face = get_next_face(face, 1);
} else if (y < 0) {
new_x = get_next_xcoord(face, 2, max_x -1, x, y);
new_y = get_next_ycoord(face, 2, max_x -1, x, y);
face = get_next_face(face, 2);
} else if (y >= max_x) {
new_x = get_next_xcoord(face, 3, max_x -1, x, y);
new_y = get_next_ycoord(face, 3, max_x -1, x, y);
face = get_next_face(face, 3);
}
return get_texel_3d_no_border(sp_sview, addr, new_x, new_y, layer + face);
}
/* Get texel pointer for cube array texture */
static inline const float *
get_texel_cube_array(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
union tex_tile_address addr, int x, int y, int layer)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const unsigned level = addr.bits.level;
assert(layer < (int) texture->array_size);
assert(layer >= 0);
if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
y < 0 || y >= (int) u_minify(texture->height0, level)) {
return sp_sview->border_color.f;
}
else {
return get_texel_3d_no_border(sp_sview, addr, x, y, layer);
}
}
/**
* Given the logbase2 of a mipmap's base level size and a mipmap level,
* return the size (in texels) of that mipmap level.
* For example, if level[0].width = 256 then base_pot will be 8.
* If level = 2, then we'll return 64 (the width at level=2).
* Return 1 if level > base_pot.
*/
static inline unsigned
pot_level_size(unsigned base_pot, unsigned level)
{
return (base_pot >= level) ? (1 << (base_pot - level)) : 1;
}
static void
print_sample(const char *function, const float *rgba)
{
debug_printf("%s %g %g %g %g\n",
function,
rgba[0], rgba[TGSI_NUM_CHANNELS], rgba[2*TGSI_NUM_CHANNELS], rgba[3*TGSI_NUM_CHANNELS]);
}
static void
print_sample_4(const char *function, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
debug_printf("%s %g %g %g %g, %g %g %g %g, %g %g %g %g, %g %g %g %g\n",
function,
rgba[0][0], rgba[1][0], rgba[2][0], rgba[3][0],
rgba[0][1], rgba[1][1], rgba[2][1], rgba[3][1],
rgba[0][2], rgba[1][2], rgba[2][2], rgba[3][2],
rgba[0][3], rgba[1][3], rgba[2][3], rgba[3][3]);
}
/* Some image-filter fastpaths:
*/
static inline void
img_filter_2d_linear_repeat_POT(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const struct img_filter_args *args,
float *rgba)
{
const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
const int xmax = (xpot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, xpot) - 1; */
const int ymax = (ypot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, ypot) - 1; */
union tex_tile_address addr;
int c;
const float u = (args->s * xpot - 0.5F) + args->offset[0];
const float v = (args->t * ypot - 0.5F) + args->offset[1];
const int uflr = util_ifloor(u);
const int vflr = util_ifloor(v);
const float xw = u - (float)uflr;
const float yw = v - (float)vflr;
const int x0 = uflr & (xpot - 1);
const int y0 = vflr & (ypot - 1);
const float *tx[4];
addr.value = 0;
addr.bits.level = args->level;
addr.bits.z = sp_sview->base.u.tex.first_layer;
/* Can we fetch all four at once:
*/
if (x0 < xmax && y0 < ymax) {
get_texel_quad_2d_no_border_single_tile(sp_sview, addr, x0, y0, tx);
}
else {
const unsigned x1 = (x0 + 1) & (xpot - 1);
const unsigned y1 = (y0 + 1) & (ypot - 1);
get_texel_quad_2d_no_border(sp_sview, addr, x0, y0, x1, y1, tx);
}
/* interpolate R, G, B, A */
for (c = 0; c < TGSI_NUM_CHANNELS; c++) {
rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
tx[0][c], tx[1][c],
tx[2][c], tx[3][c]);
}
if (DEBUG_TEX) {
print_sample(__FUNCTION__, rgba);
}
}
static inline void
img_filter_2d_nearest_repeat_POT(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const struct img_filter_args *args,
float *rgba)
{
const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
const float *out;
union tex_tile_address addr;
int c;
const float u = args->s * xpot + args->offset[0];
const float v = args->t * ypot + args->offset[1];
const int uflr = util_ifloor(u);
const int vflr = util_ifloor(v);
const int x0 = uflr & (xpot - 1);
const int y0 = vflr & (ypot - 1);
addr.value = 0;
addr.bits.level = args->level;
addr.bits.z = sp_sview->base.u.tex.first_layer;
out = get_texel_2d_no_border(sp_sview, addr, x0, y0);
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = out[c];
if (DEBUG_TEX) {
print_sample(__FUNCTION__, rgba);
}
}
static inline void
img_filter_2d_nearest_clamp_POT(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const struct img_filter_args *args,
float *rgba)
{
const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
union tex_tile_address addr;
int c;
const float u = args->s * xpot + args->offset[0];
const float v = args->t * ypot + args->offset[1];
int x0, y0;
const float *out;
addr.value = 0;
addr.bits.level = args->level;
addr.bits.z = sp_sview->base.u.tex.first_layer;
x0 = util_ifloor(u);
if (x0 < 0)
x0 = 0;
else if (x0 > (int) xpot - 1)
x0 = xpot - 1;
y0 = util_ifloor(v);
if (y0 < 0)
y0 = 0;
else if (y0 > (int) ypot - 1)
y0 = ypot - 1;
out = get_texel_2d_no_border(sp_sview, addr, x0, y0);
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = out[c];
if (DEBUG_TEX) {
print_sample(__FUNCTION__, rgba);
}
}
static void
img_filter_1d_nearest(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const struct img_filter_args *args,
float *rgba)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const int width = u_minify(texture->width0, args->level);
int x;
union tex_tile_address addr;
const float *out;
int c;
assert(width > 0);
addr.value = 0;
addr.bits.level = args->level;
sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
out = get_texel_1d_array(sp_sview, sp_samp, addr, x,
sp_sview->base.u.tex.first_layer);
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = out[c];
if (DEBUG_TEX) {
print_sample(__FUNCTION__, rgba);
}
}
static void
img_filter_1d_array_nearest(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const struct img_filter_args *args,
float *rgba)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const int width = u_minify(texture->width0, args->level);
const int layer = coord_to_layer(args->t, sp_sview->base.u.tex.first_layer,
sp_sview->base.u.tex.last_layer);
int x;
union tex_tile_address addr;
const float *out;
int c;
assert(width > 0);
addr.value = 0;
addr.bits.level = args->level;
sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
out = get_texel_1d_array(sp_sview, sp_samp, addr, x, layer);
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = out[c];
if (DEBUG_TEX) {
print_sample(__FUNCTION__, rgba);
}
}
static void
img_filter_2d_nearest(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const struct img_filter_args *args,
float *rgba)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const int width = u_minify(texture->width0, args->level);
const int height = u_minify(texture->height0, args->level);
int x, y;
union tex_tile_address addr;
const float *out;
int c;
assert(width > 0);
assert(height > 0);
addr.value = 0;
addr.bits.level = args->level;
addr.bits.z = sp_sview->base.u.tex.first_layer;
sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
out = get_texel_2d(sp_sview, sp_samp, addr, x, y);
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = out[c];
if (DEBUG_TEX) {
print_sample(__FUNCTION__, rgba);
}
}
static void
img_filter_2d_array_nearest(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const struct img_filter_args *args,
float *rgba)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const int width = u_minify(texture->width0, args->level);
const int height = u_minify(texture->height0, args->level);
const int layer = coord_to_layer(args->p, sp_sview->base.u.tex.first_layer,
sp_sview->base.u.tex.last_layer);
int x, y;
union tex_tile_address addr;
const float *out;
int c;
assert(width > 0);
assert(height > 0);
addr.value = 0;
addr.bits.level = args->level;
sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
out = get_texel_2d_array(sp_sview, sp_samp, addr, x, y, layer);
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = out[c];
if (DEBUG_TEX) {
print_sample(__FUNCTION__, rgba);
}
}
static void
img_filter_cube_nearest(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const struct img_filter_args *args,
float *rgba)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const int width = u_minify(texture->width0, args->level);
const int height = u_minify(texture->height0, args->level);
const int layerface = args->face_id + sp_sview->base.u.tex.first_layer;
int x, y;
union tex_tile_address addr;
const float *out;
int c;
assert(width > 0);
assert(height > 0);
addr.value = 0;
addr.bits.level = args->level;
/*
* If NEAREST filtering is done within a miplevel, always apply wrap
* mode CLAMP_TO_EDGE.
*/
if (sp_samp->base.seamless_cube_map) {
wrap_nearest_clamp_to_edge(args->s, width, args->offset[0], &x);
wrap_nearest_clamp_to_edge(args->t, height, args->offset[1], &y);
} else {
/* Would probably make sense to ignore mode and just do edge clamp */
sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
}
out = get_texel_cube_array(sp_sview, sp_samp, addr, x, y, layerface);
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = out[c];
if (DEBUG_TEX) {
print_sample(__FUNCTION__, rgba);
}
}
static void
img_filter_cube_array_nearest(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const struct img_filter_args *args,
float *rgba)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const int width = u_minify(texture->width0, args->level);
const int height = u_minify(texture->height0, args->level);
const int layerface = CLAMP(6 * util_ifloor(args->p + 0.5f) + sp_sview->base.u.tex.first_layer,
sp_sview->base.u.tex.first_layer,
sp_sview->base.u.tex.last_layer - 5) + args->face_id;
int x, y;
union tex_tile_address addr;
const float *out;
int c;
assert(width > 0);
assert(height > 0);
addr.value = 0;
addr.bits.level = args->level;
sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
out = get_texel_cube_array(sp_sview, sp_samp, addr, x, y, layerface);
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = out[c];
if (DEBUG_TEX) {
print_sample(__FUNCTION__, rgba);
}
}
static void
img_filter_3d_nearest(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const struct img_filter_args *args,
float *rgba)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const int width = u_minify(texture->width0, args->level);
const int height = u_minify(texture->height0, args->level);
const int depth = u_minify(texture->depth0, args->level);
int x, y, z;
union tex_tile_address addr;
const float *out;
int c;
assert(width > 0);
assert(height > 0);
assert(depth > 0);
sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
sp_samp->nearest_texcoord_p(args->p, depth, args->offset[2], &z);
addr.value = 0;
addr.bits.level = args->level;
out = get_texel_3d(sp_sview, sp_samp, addr, x, y, z);
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = out[c];
}
static void
img_filter_1d_linear(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const struct img_filter_args *args,
float *rgba)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const int width = u_minify(texture->width0, args->level);
int x0, x1;
float xw; /* weights */
union tex_tile_address addr;
const float *tx0, *tx1;
int c;
assert(width > 0);
addr.value = 0;
addr.bits.level = args->level;
sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
tx0 = get_texel_1d_array(sp_sview, sp_samp, addr, x0,
sp_sview->base.u.tex.first_layer);
tx1 = get_texel_1d_array(sp_sview, sp_samp, addr, x1,
sp_sview->base.u.tex.first_layer);
/* interpolate R, G, B, A */
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
}
static void
img_filter_1d_array_linear(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const struct img_filter_args *args,
float *rgba)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const int width = u_minify(texture->width0, args->level);
const int layer = coord_to_layer(args->t, sp_sview->base.u.tex.first_layer,
sp_sview->base.u.tex.last_layer);
int x0, x1;
float xw; /* weights */
union tex_tile_address addr;
const float *tx0, *tx1;
int c;
assert(width > 0);
addr.value = 0;
addr.bits.level = args->level;
sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
tx0 = get_texel_1d_array(sp_sview, sp_samp, addr, x0, layer);
tx1 = get_texel_1d_array(sp_sview, sp_samp, addr, x1, layer);
/* interpolate R, G, B, A */
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
}
/*
* Retrieve the gathered value, need to convert to the
* TGSI expected interface, and take component select
* and swizzling into account.
*/
static float
get_gather_value(const struct sp_sampler_view *sp_sview,
int chan_in, int comp_sel,
const float *tx[4])
{
int chan;
unsigned swizzle;
/*
* softpipe samples in a different order
* to TGSI expects, so we need to swizzle,
* the samples into the correct slots.
*/
switch (chan_in) {
case 0:
chan = 2;
break;
case 1:
chan = 3;
break;
case 2:
chan = 1;
break;
case 3:
chan = 0;
break;
default:
assert(0);
return 0.0;
}
/* pick which component to use for the swizzle */
switch (comp_sel) {
case 0:
swizzle = sp_sview->base.swizzle_r;
break;
case 1:
swizzle = sp_sview->base.swizzle_g;
break;
case 2:
swizzle = sp_sview->base.swizzle_b;
break;
case 3:
swizzle = sp_sview->base.swizzle_a;
break;
default:
assert(0);
return 0.0;
}
/* get correct result using the channel and swizzle */
switch (swizzle) {
case PIPE_SWIZZLE_0:
return 0.0;
case PIPE_SWIZZLE_1:
return 1.0;
default:
return tx[chan][swizzle];
}
}
static void
img_filter_2d_linear(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const struct img_filter_args *args,
float *rgba)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const int width = u_minify(texture->width0, args->level);
const int height = u_minify(texture->height0, args->level);
int x0, y0, x1, y1;
float xw, yw; /* weights */
union tex_tile_address addr;
const float *tx[4];
int c;
assert(width > 0);
assert(height > 0);
addr.value = 0;
addr.bits.level = args->level;
addr.bits.z = sp_sview->base.u.tex.first_layer;
sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
tx[0] = get_texel_2d(sp_sview, sp_samp, addr, x0, y0);
tx[1] = get_texel_2d(sp_sview, sp_samp, addr, x1, y0);
tx[2] = get_texel_2d(sp_sview, sp_samp, addr, x0, y1);
tx[3] = get_texel_2d(sp_sview, sp_samp, addr, x1, y1);
if (args->gather_only) {
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
args->gather_comp,
tx);
} else {
/* interpolate R, G, B, A */
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
tx[0][c], tx[1][c],
tx[2][c], tx[3][c]);
}
}
static void
img_filter_2d_array_linear(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const struct img_filter_args *args,
float *rgba)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const int width = u_minify(texture->width0, args->level);
const int height = u_minify(texture->height0, args->level);
const int layer = coord_to_layer(args->p, sp_sview->base.u.tex.first_layer,
sp_sview->base.u.tex.last_layer);
int x0, y0, x1, y1;
float xw, yw; /* weights */
union tex_tile_address addr;
const float *tx[4];
int c;
assert(width > 0);
assert(height > 0);
addr.value = 0;
addr.bits.level = args->level;
sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
tx[0] = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y0, layer);
tx[1] = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y0, layer);
tx[2] = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y1, layer);
tx[3] = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y1, layer);
if (args->gather_only) {
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
args->gather_comp,
tx);
} else {
/* interpolate R, G, B, A */
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
tx[0][c], tx[1][c],
tx[2][c], tx[3][c]);
}
}
static void
img_filter_cube_linear(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const struct img_filter_args *args,
float *rgba)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const int width = u_minify(texture->width0, args->level);
const int height = u_minify(texture->height0, args->level);
const int layer = sp_sview->base.u.tex.first_layer;
int x0, y0, x1, y1;
float xw, yw; /* weights */
union tex_tile_address addr;
const float *tx[4];
float corner0[TGSI_QUAD_SIZE], corner1[TGSI_QUAD_SIZE],
corner2[TGSI_QUAD_SIZE], corner3[TGSI_QUAD_SIZE];
int c;
assert(width > 0);
assert(height > 0);
addr.value = 0;
addr.bits.level = args->level;
/*
* For seamless if LINEAR filtering is done within a miplevel,
* always apply wrap mode CLAMP_TO_BORDER.
*/
if (sp_samp->base.seamless_cube_map) {
/* Note this is a bit overkill, actual clamping is not required */
wrap_linear_clamp_to_border(args->s, width, args->offset[0], &x0, &x1, &xw);
wrap_linear_clamp_to_border(args->t, height, args->offset[1], &y0, &y1, &yw);
} else {
/* Would probably make sense to ignore mode and just do edge clamp */
sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
}
if (sp_samp->base.seamless_cube_map) {
tx[0] = get_texel_cube_seamless(sp_sview, addr, x0, y0, corner0, layer, args->face_id);
tx[1] = get_texel_cube_seamless(sp_sview, addr, x1, y0, corner1, layer, args->face_id);
tx[2] = get_texel_cube_seamless(sp_sview, addr, x0, y1, corner2, layer, args->face_id);
tx[3] = get_texel_cube_seamless(sp_sview, addr, x1, y1, corner3, layer, args->face_id);
} else {
tx[0] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y0, layer + args->face_id);
tx[1] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y0, layer + args->face_id);
tx[2] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y1, layer + args->face_id);
tx[3] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y1, layer + args->face_id);
}
if (args->gather_only) {
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
args->gather_comp,
tx);
} else {
/* interpolate R, G, B, A */
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
tx[0][c], tx[1][c],
tx[2][c], tx[3][c]);
}
}
static void
img_filter_cube_array_linear(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const struct img_filter_args *args,
float *rgba)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const int width = u_minify(texture->width0, args->level);
const int height = u_minify(texture->height0, args->level);
const int layer = CLAMP(6 * util_ifloor(args->p + 0.5f) + sp_sview->base.u.tex.first_layer,
sp_sview->base.u.tex.first_layer,
sp_sview->base.u.tex.last_layer - 5);
int x0, y0, x1, y1;
float xw, yw; /* weights */
union tex_tile_address addr;
const float *tx[4];
float corner0[TGSI_QUAD_SIZE], corner1[TGSI_QUAD_SIZE],
corner2[TGSI_QUAD_SIZE], corner3[TGSI_QUAD_SIZE];
int c;
assert(width > 0);
assert(height > 0);
addr.value = 0;
addr.bits.level = args->level;
/*
* For seamless if LINEAR filtering is done within a miplevel,
* always apply wrap mode CLAMP_TO_BORDER.
*/
if (sp_samp->base.seamless_cube_map) {
/* Note this is a bit overkill, actual clamping is not required */
wrap_linear_clamp_to_border(args->s, width, args->offset[0], &x0, &x1, &xw);
wrap_linear_clamp_to_border(args->t, height, args->offset[1], &y0, &y1, &yw);
} else {
/* Would probably make sense to ignore mode and just do edge clamp */
sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
}
if (sp_samp->base.seamless_cube_map) {
tx[0] = get_texel_cube_seamless(sp_sview, addr, x0, y0, corner0, layer, args->face_id);
tx[1] = get_texel_cube_seamless(sp_sview, addr, x1, y0, corner1, layer, args->face_id);
tx[2] = get_texel_cube_seamless(sp_sview, addr, x0, y1, corner2, layer, args->face_id);
tx[3] = get_texel_cube_seamless(sp_sview, addr, x1, y1, corner3, layer, args->face_id);
} else {
tx[0] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y0, layer + args->face_id);
tx[1] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y0, layer + args->face_id);
tx[2] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y1, layer + args->face_id);
tx[3] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y1, layer + args->face_id);
}
if (args->gather_only) {
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
args->gather_comp,
tx);
} else {
/* interpolate R, G, B, A */
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
tx[0][c], tx[1][c],
tx[2][c], tx[3][c]);
}
}
static void
img_filter_3d_linear(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const struct img_filter_args *args,
float *rgba)
{
const struct pipe_resource *texture = sp_sview->base.texture;
const int width = u_minify(texture->width0, args->level);
const int height = u_minify(texture->height0, args->level);
const int depth = u_minify(texture->depth0, args->level);
int x0, x1, y0, y1, z0, z1;
float xw, yw, zw; /* interpolation weights */
union tex_tile_address addr;
const float *tx00, *tx01, *tx02, *tx03, *tx10, *tx11, *tx12, *tx13;
int c;
addr.value = 0;
addr.bits.level = args->level;
assert(width > 0);
assert(height > 0);
assert(depth > 0);
sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
sp_samp->linear_texcoord_p(args->p, depth, args->offset[2], &z0, &z1, &zw);
tx00 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z0);
tx01 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z0);
tx02 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z0);
tx03 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z0);
tx10 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z1);
tx11 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z1);
tx12 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z1);
tx13 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z1);
/* interpolate R, G, B, A */
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[TGSI_NUM_CHANNELS*c] = lerp_3d(xw, yw, zw,
tx00[c], tx01[c],
tx02[c], tx03[c],
tx10[c], tx11[c],
tx12[c], tx13[c]);
}
/* Calculate level of detail for every fragment,
* with lambda already computed.
* Note that lambda has already been biased by global LOD bias.
* \param biased_lambda per-quad lambda.
* \param lod_in per-fragment lod_bias or explicit_lod.
* \param lod returns the per-fragment lod.
*/
static inline void
compute_lod(const struct pipe_sampler_state *sampler,
enum tgsi_sampler_control control,
const float biased_lambda,
const float lod_in[TGSI_QUAD_SIZE],
float lod[TGSI_QUAD_SIZE])
{
const float min_lod = sampler->min_lod;
const float max_lod = sampler->max_lod;
uint i;
switch (control) {
case TGSI_SAMPLER_LOD_NONE:
case TGSI_SAMPLER_LOD_ZERO:
lod[0] = lod[1] = lod[2] = lod[3] = CLAMP(biased_lambda, min_lod, max_lod);
break;
case TGSI_SAMPLER_DERIVS_EXPLICIT:
for (i = 0; i < TGSI_QUAD_SIZE; i++)
lod[i] = lod_in[i];
break;
case TGSI_SAMPLER_LOD_BIAS:
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
lod[i] = biased_lambda + lod_in[i];
lod[i] = CLAMP(lod[i], min_lod, max_lod);
}
break;
case TGSI_SAMPLER_LOD_EXPLICIT:
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
lod[i] = CLAMP(lod_in[i], min_lod, max_lod);
}
break;
default:
assert(0);
lod[0] = lod[1] = lod[2] = lod[3] = 0.0f;
}
}
/* Calculate level of detail for every fragment. The computed value is not
* clamped to lod_min and lod_max.
* \param lod_in per-fragment lod_bias or explicit_lod.
* \param lod results per-fragment lod.
*/
static inline void
compute_lambda_lod_unclamped(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
const float derivs[3][2][TGSI_QUAD_SIZE],
const float lod_in[TGSI_QUAD_SIZE],
enum tgsi_sampler_control control,
float lod[TGSI_QUAD_SIZE])
{
const struct pipe_sampler_state *sampler = &sp_samp->base;
const float lod_bias = sampler->lod_bias;
float lambda;
uint i;
switch (control) {
case TGSI_SAMPLER_LOD_NONE:
lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias;
lod[0] = lod[1] = lod[2] = lod[3] = lambda;
break;
case TGSI_SAMPLER_DERIVS_EXPLICIT:
for (i = 0; i < TGSI_QUAD_SIZE; i++)
lod[i] = sp_sview->compute_lambda_from_grad(sp_sview, derivs, i);
break;
case TGSI_SAMPLER_LOD_BIAS:
lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias;
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
lod[i] = lambda + lod_in[i];
}
break;
case TGSI_SAMPLER_LOD_EXPLICIT:
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
lod[i] = lod_in[i] + lod_bias;
}
break;
case TGSI_SAMPLER_LOD_ZERO:
case TGSI_SAMPLER_GATHER:
lod[0] = lod[1] = lod[2] = lod[3] = lod_bias;
break;
default:
assert(0);
lod[0] = lod[1] = lod[2] = lod[3] = 0.0f;
}
}
/* Calculate level of detail for every fragment.
* \param lod_in per-fragment lod_bias or explicit_lod.
* \param lod results per-fragment lod.
*/
static inline void
compute_lambda_lod(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
float derivs[3][2][TGSI_QUAD_SIZE],
const float lod_in[TGSI_QUAD_SIZE],
enum tgsi_sampler_control control,
float lod[TGSI_QUAD_SIZE])
{
const struct pipe_sampler_state *sampler = &sp_samp->base;
const float min_lod = sampler->min_lod;
const float max_lod = sampler->max_lod;
int i;
compute_lambda_lod_unclamped(sp_sview, sp_samp,
s, t, p, derivs, lod_in, control, lod);
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
lod[i] = CLAMP(lod[i], min_lod, max_lod);
}
}
static inline unsigned
get_gather_component(const float lod_in[TGSI_QUAD_SIZE])
{
/* gather component is stored in lod_in slot as unsigned */
return (*(unsigned int *)lod_in) & 0x3;
}
/**
* Clamps given lod to both lod limits and mip level limits. Clamping to the
* latter limits is done so that lod is relative to the first (base) level.
*/
static void
clamp_lod(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const float lod[TGSI_QUAD_SIZE],
float clamped[TGSI_QUAD_SIZE])
{
const float min_lod = sp_samp->base.min_lod;
const float max_lod = sp_samp->base.max_lod;
const float min_level = sp_sview->base.u.tex.first_level;
const float max_level = sp_sview->base.u.tex.last_level;
int i;
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
float cl = lod[i];
cl = CLAMP(cl, min_lod, max_lod);
cl = CLAMP(cl, 0, max_level - min_level);
clamped[i] = cl;
}
}
/**
* Get mip level relative to base level for linear mip filter
*/
static void
mip_rel_level_linear(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const float lod[TGSI_QUAD_SIZE],
float level[TGSI_QUAD_SIZE])
{
clamp_lod(sp_sview, sp_samp, lod, level);
}
static void
mip_filter_linear(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
img_filter_func min_filter,
img_filter_func mag_filter,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
int gather_comp,
const float lod[TGSI_QUAD_SIZE],
const struct filter_args *filt_args,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
const struct pipe_sampler_view *psview = &sp_sview->base;
int j;
struct img_filter_args args;
args.offset = filt_args->offset;
args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
args.gather_comp = gather_comp;
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
const int level0 = psview->u.tex.first_level + (int)lod[j];
args.s = s[j];
args.t = t[j];
args.p = p[j];
args.face_id = filt_args->faces[j];
if (lod[j] <= 0.0 && !args.gather_only) {
args.level = psview->u.tex.first_level;
mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
}
else if (level0 >= (int) psview->u.tex.last_level) {
args.level = psview->u.tex.last_level;
min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
}
else {
float levelBlend = frac(lod[j]);
float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
int c;
args.level = level0;
min_filter(sp_sview, sp_samp, &args, &rgbax[0][0]);
args.level = level0+1;
min_filter(sp_sview, sp_samp, &args, &rgbax[0][1]);
for (c = 0; c < 4; c++) {
rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
}
}
}
if (DEBUG_TEX) {
print_sample_4(__FUNCTION__, rgba);
}
}
/**
* Get mip level relative to base level for nearest mip filter
*/
static void
mip_rel_level_nearest(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const float lod[TGSI_QUAD_SIZE],
float level[TGSI_QUAD_SIZE])
{
int j;
clamp_lod(sp_sview, sp_samp, lod, level);
for (j = 0; j < TGSI_QUAD_SIZE; j++)
/* TODO: It should rather be:
* level[j] = ceil(level[j] + 0.5F) - 1.0F;
*/
level[j] = (int)(level[j] + 0.5F);
}
/**
* Compute nearest mipmap level from texcoords.
* Then sample the texture level for four elements of a quad.
* \param c0 the LOD bias factors, or absolute LODs (depending on control)
*/
static void
mip_filter_nearest(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
img_filter_func min_filter,
img_filter_func mag_filter,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
int gather_component,
const float lod[TGSI_QUAD_SIZE],
const struct filter_args *filt_args,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
const struct pipe_sampler_view *psview = &sp_sview->base;
int j;
struct img_filter_args args;
args.offset = filt_args->offset;
args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
args.gather_comp = gather_component;
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
args.s = s[j];
args.t = t[j];
args.p = p[j];
args.face_id = filt_args->faces[j];
if (lod[j] <= 0.0f && !args.gather_only) {
args.level = psview->u.tex.first_level;
mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
} else {
const int level = psview->u.tex.first_level + (int)(lod[j] + 0.5F);
args.level = MIN2(level, (int)psview->u.tex.last_level);
min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
}
}
if (DEBUG_TEX) {
print_sample_4(__FUNCTION__, rgba);
}
}
/**
* Get mip level relative to base level for none mip filter
*/
static void
mip_rel_level_none(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const float lod[TGSI_QUAD_SIZE],
float level[TGSI_QUAD_SIZE])
{
int j;
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
level[j] = 0;
}
}
static void
mip_filter_none(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
img_filter_func min_filter,
img_filter_func mag_filter,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
int gather_component,
const float lod[TGSI_QUAD_SIZE],
const struct filter_args *filt_args,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
int j;
struct img_filter_args args;
args.level = sp_sview->base.u.tex.first_level;
args.offset = filt_args->offset;
args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
args.gather_comp = gather_component;
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
args.s = s[j];
args.t = t[j];
args.p = p[j];
args.face_id = filt_args->faces[j];
if (lod[j] <= 0.0f && !args.gather_only) {
mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
}
else {
min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
}
}
}
/**
* Get mip level relative to base level for none mip filter
*/
static void
mip_rel_level_none_no_filter_select(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const float lod[TGSI_QUAD_SIZE],
float level[TGSI_QUAD_SIZE])
{
mip_rel_level_none(sp_sview, sp_samp, lod, level);
}
static void
mip_filter_none_no_filter_select(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
img_filter_func min_filter,
img_filter_func mag_filter,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
int gather_comp,
const float lod_in[TGSI_QUAD_SIZE],
const struct filter_args *filt_args,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
int j;
struct img_filter_args args;
args.level = sp_sview->base.u.tex.first_level;
args.offset = filt_args->offset;
args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
args.gather_comp = gather_comp;
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
args.s = s[j];
args.t = t[j];
args.p = p[j];
args.face_id = filt_args->faces[j];
mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
}
}
/* For anisotropic filtering */
#define WEIGHT_LUT_SIZE 1024
static const float *weightLut = NULL;
/**
* Creates the look-up table used to speed-up EWA sampling
*/
static void
create_filter_table(void)
{
unsigned i;
if (!weightLut) {
float *lut = (float *) MALLOC(WEIGHT_LUT_SIZE * sizeof(float));
for (i = 0; i < WEIGHT_LUT_SIZE; ++i) {
const float alpha = 2;
const float r2 = (float) i / (float) (WEIGHT_LUT_SIZE - 1);
const float weight = (float) expf(-alpha * r2);
lut[i] = weight;
}
weightLut = lut;
}
}
/**
* Elliptical weighted average (EWA) filter for producing high quality
* anisotropic filtered results.
* Based on the Higher Quality Elliptical Weighted Average Filter
* published by Paul S. Heckbert in his Master's Thesis
* "Fundamentals of Texture Mapping and Image Warping" (1989)
*/
static void
img_filter_2d_ewa(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
img_filter_func min_filter,
img_filter_func mag_filter,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
const uint faces[TGSI_QUAD_SIZE],
const int8_t *offset,
unsigned level,
const float dudx, const float dvdx,
const float dudy, const float dvdy,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
const struct pipe_resource *texture = sp_sview->base.texture;
// ??? Won't the image filters blow up if level is negative?
const unsigned level0 = level > 0 ? level : 0;
const float scaling = 1.0f / (1 << level0);
const int width = u_minify(texture->width0, level0);
const int height = u_minify(texture->height0, level0);
struct img_filter_args args;
const float ux = dudx * scaling;
const float vx = dvdx * scaling;
const float uy = dudy * scaling;
const float vy = dvdy * scaling;
/* compute ellipse coefficients to bound the region:
* A*x*x + B*x*y + C*y*y = F.
*/
float A = vx*vx+vy*vy+1;
float B = -2*(ux*vx+uy*vy);
float C = ux*ux+uy*uy+1;
float F = A*C-B*B/4.0f;
/* check if it is an ellipse */
/* assert(F > 0.0); */
/* Compute the ellipse's (u,v) bounding box in texture space */
const float d = -B*B+4.0f*C*A;
const float box_u = 2.0f / d * sqrtf(d*C*F); /* box_u -> half of bbox with */
const float box_v = 2.0f / d * sqrtf(A*d*F); /* box_v -> half of bbox height */
float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
float s_buffer[TGSI_QUAD_SIZE];
float t_buffer[TGSI_QUAD_SIZE];
float weight_buffer[TGSI_QUAD_SIZE];
int j;
/* For each quad, the du and dx values are the same and so the ellipse is
* also the same. Note that texel/image access can only be performed using
* a quad, i.e. it is not possible to get the pixel value for a single
* tex coord. In order to have a better performance, the access is buffered
* using the s_buffer/t_buffer and weight_buffer. Only when the buffer is
* full, then the pixel values are read from the image.
*/
const float ddq = 2 * A;
/* Scale ellipse formula to directly index the Filter Lookup Table.
* i.e. scale so that F = WEIGHT_LUT_SIZE-1
*/
const double formScale = (double) (WEIGHT_LUT_SIZE - 1) / F;
A *= formScale;
B *= formScale;
C *= formScale;
/* F *= formScale; */ /* no need to scale F as we don't use it below here */
args.level = level;
args.offset = offset;
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
/* Heckbert MS thesis, p. 59; scan over the bounding box of the ellipse
* and incrementally update the value of Ax^2+Bxy*Cy^2; when this
* value, q, is less than F, we're inside the ellipse
*/
const float tex_u = -0.5F + s[j] * texture->width0 * scaling;
const float tex_v = -0.5F + t[j] * texture->height0 * scaling;
const int u0 = (int) floorf(tex_u - box_u);
const int u1 = (int) ceilf(tex_u + box_u);
const int v0 = (int) floorf(tex_v - box_v);
const int v1 = (int) ceilf(tex_v + box_v);
const float U = u0 - tex_u;
float num[4] = {0.0F, 0.0F, 0.0F, 0.0F};
unsigned buffer_next = 0;
float den = 0;
int v;
args.face_id = faces[j];
for (v = v0; v <= v1; ++v) {
const float V = v - tex_v;
float dq = A * (2 * U + 1) + B * V;
float q = (C * V + B * U) * V + A * U * U;
int u;
for (u = u0; u <= u1; ++u) {
/* Note that the ellipse has been pre-scaled so F =
* WEIGHT_LUT_SIZE - 1
*/
if (q < WEIGHT_LUT_SIZE) {
/* as a LUT is used, q must never be negative;
* should not happen, though
*/
const int qClamped = q >= 0.0F ? q : 0;
const float weight = weightLut[qClamped];
weight_buffer[buffer_next] = weight;
s_buffer[buffer_next] = u / ((float) width);
t_buffer[buffer_next] = v / ((float) height);
buffer_next++;
if (buffer_next == TGSI_QUAD_SIZE) {
/* 4 texel coords are in the buffer -> read it now */
unsigned jj;
/* it is assumed that samp->min_img_filter is set to
* img_filter_2d_nearest or one of the
* accelerated img_filter_2d_nearest_XXX functions.
*/
for (jj = 0; jj < buffer_next; jj++) {
args.s = s_buffer[jj];
args.t = t_buffer[jj];
args.p = p[jj];
min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][jj]);
num[0] += weight_buffer[jj] * rgba_temp[0][jj];
num[1] += weight_buffer[jj] * rgba_temp[1][jj];
num[2] += weight_buffer[jj] * rgba_temp[2][jj];
num[3] += weight_buffer[jj] * rgba_temp[3][jj];
}
buffer_next = 0;
}
den += weight;
}
q += dq;
dq += ddq;
}
}
/* if the tex coord buffer contains unread values, we will read
* them now.
*/
if (buffer_next > 0) {
unsigned jj;
/* it is assumed that samp->min_img_filter is set to
* img_filter_2d_nearest or one of the
* accelerated img_filter_2d_nearest_XXX functions.
*/
for (jj = 0; jj < buffer_next; jj++) {
args.s = s_buffer[jj];
args.t = t_buffer[jj];
args.p = p[jj];
min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][jj]);
num[0] += weight_buffer[jj] * rgba_temp[0][jj];
num[1] += weight_buffer[jj] * rgba_temp[1][jj];
num[2] += weight_buffer[jj] * rgba_temp[2][jj];
num[3] += weight_buffer[jj] * rgba_temp[3][jj];
}
}
if (den <= 0.0F) {
/* Reaching this place would mean that no pixels intersected
* the ellipse. This should never happen because the filter
* we use always intersects at least one pixel.
*/
/*rgba[0]=0;
rgba[1]=0;
rgba[2]=0;
rgba[3]=0;*/
/* not enough pixels in resampling, resort to direct interpolation */
args.s = s[j];
args.t = t[j];
args.p = p[j];
min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][j]);
den = 1;
num[0] = rgba_temp[0][j];
num[1] = rgba_temp[1][j];
num[2] = rgba_temp[2][j];
num[3] = rgba_temp[3][j];
}
rgba[0][j] = num[0] / den;
rgba[1][j] = num[1] / den;
rgba[2][j] = num[2] / den;
rgba[3][j] = num[3] / den;
}
}
/**
* Get mip level relative to base level for linear mip filter
*/
static void
mip_rel_level_linear_aniso(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const float lod[TGSI_QUAD_SIZE],
float level[TGSI_QUAD_SIZE])
{
mip_rel_level_linear(sp_sview, sp_samp, lod, level);
}
/**
* Sample 2D texture using an anisotropic filter.
*/
static void
mip_filter_linear_aniso(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
img_filter_func min_filter,
img_filter_func mag_filter,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
UNUSED int gather_comp,
const float lod_in[TGSI_QUAD_SIZE],
const struct filter_args *filt_args,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
const struct pipe_resource *texture = sp_sview->base.texture;
const struct pipe_sampler_view *psview = &sp_sview->base;
int level0;
float lambda;
float lod[TGSI_QUAD_SIZE];
const float s_to_u = u_minify(texture->width0, psview->u.tex.first_level);
const float t_to_v = u_minify(texture->height0, psview->u.tex.first_level);
const float dudx = (s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
const float dudy = (s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
const float dvdx = (t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
const float dvdy = (t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
struct img_filter_args args;
args.offset = filt_args->offset;
if (filt_args->control == TGSI_SAMPLER_LOD_BIAS ||
filt_args->control == TGSI_SAMPLER_LOD_NONE ||
/* XXX FIXME */
filt_args->control == TGSI_SAMPLER_DERIVS_EXPLICIT) {
/* note: instead of working with Px and Py, we will use the
* squared length instead, to avoid sqrt.
*/
const float Px2 = dudx * dudx + dvdx * dvdx;
const float Py2 = dudy * dudy + dvdy * dvdy;
float Pmax2;
float Pmin2;
float e;
const float maxEccentricity = sp_samp->base.max_anisotropy * sp_samp->base.max_anisotropy;
if (Px2 < Py2) {
Pmax2 = Py2;
Pmin2 = Px2;
}
else {
Pmax2 = Px2;
Pmin2 = Py2;
}
/* if the eccentricity of the ellipse is too big, scale up the shorter
* of the two vectors to limit the maximum amount of work per pixel
*/
e = Pmax2 / Pmin2;
if (e > maxEccentricity) {
/* float s=e / maxEccentricity;
minor[0] *= s;
minor[1] *= s;
Pmin2 *= s; */
Pmin2 = Pmax2 / maxEccentricity;
}
/* note: we need to have Pmin=sqrt(Pmin2) here, but we can avoid
* this since 0.5*log(x) = log(sqrt(x))
*/
lambda = 0.5F * util_fast_log2(Pmin2) + sp_samp->base.lod_bias;
compute_lod(&sp_samp->base, filt_args->control, lambda, lod_in, lod);
}
else {
assert(filt_args->control == TGSI_SAMPLER_LOD_EXPLICIT ||
filt_args->control == TGSI_SAMPLER_LOD_ZERO);
compute_lod(&sp_samp->base, filt_args->control, sp_samp->base.lod_bias, lod_in, lod);
}
/* XXX: Take into account all lod values.
*/
lambda = lod[0];
level0 = psview->u.tex.first_level + (int)lambda;
/* If the ellipse covers the whole image, we can
* simply return the average of the whole image.
*/
if (level0 >= (int) psview->u.tex.last_level) {
int j;
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
args.s = s[j];
args.t = t[j];
args.p = p[j];
args.level = psview->u.tex.last_level;
args.face_id = filt_args->faces[j];
/*
* XXX: we overwrote any linear filter with nearest, so this
* isn't right (albeit if last level is 1x1 and no border it
* will work just the same).
*/
min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
}
}
else {
/* don't bother interpolating between multiple LODs; it doesn't
* seem to be worth the extra running time.
*/
img_filter_2d_ewa(sp_sview, sp_samp, min_filter, mag_filter,
s, t, p, filt_args->faces, filt_args->offset,
level0, dudx, dvdx, dudy, dvdy, rgba);
}
if (DEBUG_TEX) {
print_sample_4(__FUNCTION__, rgba);
}
}
/**
* Get mip level relative to base level for linear mip filter
*/
static void
mip_rel_level_linear_2d_linear_repeat_POT(
const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const float lod[TGSI_QUAD_SIZE],
float level[TGSI_QUAD_SIZE])
{
mip_rel_level_linear(sp_sview, sp_samp, lod, level);
}
/**
* Specialized version of mip_filter_linear with hard-wired calls to
* 2d lambda calculation and 2d_linear_repeat_POT img filters.
*/
static void
mip_filter_linear_2d_linear_repeat_POT(
const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
img_filter_func min_filter,
img_filter_func mag_filter,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
int gather_comp,
const float lod[TGSI_QUAD_SIZE],
const struct filter_args *filt_args,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
const struct pipe_sampler_view *psview = &sp_sview->base;
int j;
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
const int level0 = psview->u.tex.first_level + (int)lod[j];
struct img_filter_args args;
/* Catches both negative and large values of level0:
*/
args.s = s[j];
args.t = t[j];
args.p = p[j];
args.face_id = filt_args->faces[j];
args.offset = filt_args->offset;
args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
args.gather_comp = gather_comp;
if ((unsigned)level0 >= psview->u.tex.last_level) {
if (level0 < 0)
args.level = psview->u.tex.first_level;
else
args.level = psview->u.tex.last_level;
img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args,
&rgba[0][j]);
}
else {
const float levelBlend = frac(lod[j]);
float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
int c;
args.level = level0;
img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args, &rgbax[0][0]);
args.level = level0+1;
img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args, &rgbax[0][1]);
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
}
}
if (DEBUG_TEX) {
print_sample_4(__FUNCTION__, rgba);
}
}
static const struct sp_filter_funcs funcs_linear = {
mip_rel_level_linear,
mip_filter_linear
};
static const struct sp_filter_funcs funcs_nearest = {
mip_rel_level_nearest,
mip_filter_nearest
};
static const struct sp_filter_funcs funcs_none = {
mip_rel_level_none,
mip_filter_none
};
static const struct sp_filter_funcs funcs_none_no_filter_select = {
mip_rel_level_none_no_filter_select,
mip_filter_none_no_filter_select
};
static const struct sp_filter_funcs funcs_linear_aniso = {
mip_rel_level_linear_aniso,
mip_filter_linear_aniso
};
static const struct sp_filter_funcs funcs_linear_2d_linear_repeat_POT = {
mip_rel_level_linear_2d_linear_repeat_POT,
mip_filter_linear_2d_linear_repeat_POT
};
/**
* Do shadow/depth comparisons.
*/
static void
sample_compare(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const float c0[TGSI_QUAD_SIZE],
enum tgsi_sampler_control control,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
const struct pipe_sampler_state *sampler = &sp_samp->base;
int j, v;
int k[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
float pc[4];
const struct util_format_description *format_desc =
util_format_description(sp_sview->base.format);
/* not entirely sure we couldn't end up with non-valid swizzle here */
const unsigned chan_type =
format_desc->swizzle[0] <= PIPE_SWIZZLE_W ?
format_desc->channel[format_desc->swizzle[0]].type :
UTIL_FORMAT_TYPE_FLOAT;
const bool is_gather = (control == TGSI_SAMPLER_GATHER);
/**
* Compare texcoord 'p' (aka R) against texture value 'rgba[0]'
* for 2D Array texture we need to use the 'c0' (aka Q).
* When we sampled the depth texture, the depth value was put into all
* RGBA channels. We look at the red channel here.
*/
if (chan_type != UTIL_FORMAT_TYPE_FLOAT) {
/*
* clamping is a result of conversion to texture format, hence
* doesn't happen with floats. Technically also should do comparison
* in texture format (quantization!).
*/
pc[0] = CLAMP(c0[0], 0.0F, 1.0F);
pc[1] = CLAMP(c0[1], 0.0F, 1.0F);
pc[2] = CLAMP(c0[2], 0.0F, 1.0F);
pc[3] = CLAMP(c0[3], 0.0F, 1.0F);
} else {
pc[0] = c0[0];
pc[1] = c0[1];
pc[2] = c0[2];
pc[3] = c0[3];
}
for (v = 0; v < (is_gather ? TGSI_NUM_CHANNELS : 1); v++) {
/* compare four texcoords vs. four texture samples */
switch (sampler->compare_func) {
case PIPE_FUNC_LESS:
k[v][0] = pc[0] < rgba[v][0];
k[v][1] = pc[1] < rgba[v][1];
k[v][2] = pc[2] < rgba[v][2];
k[v][3] = pc[3] < rgba[v][3];
break;
case PIPE_FUNC_LEQUAL:
k[v][0] = pc[0] <= rgba[v][0];
k[v][1] = pc[1] <= rgba[v][1];
k[v][2] = pc[2] <= rgba[v][2];
k[v][3] = pc[3] <= rgba[v][3];
break;
case PIPE_FUNC_GREATER:
k[v][0] = pc[0] > rgba[v][0];
k[v][1] = pc[1] > rgba[v][1];
k[v][2] = pc[2] > rgba[v][2];
k[v][3] = pc[3] > rgba[v][3];
break;
case PIPE_FUNC_GEQUAL:
k[v][0] = pc[0] >= rgba[v][0];
k[v][1] = pc[1] >= rgba[v][1];
k[v][2] = pc[2] >= rgba[v][2];
k[v][3] = pc[3] >= rgba[v][3];
break;
case PIPE_FUNC_EQUAL:
k[v][0] = pc[0] == rgba[v][0];
k[v][1] = pc[1] == rgba[v][1];
k[v][2] = pc[2] == rgba[v][2];
k[v][3] = pc[3] == rgba[v][3];
break;
case PIPE_FUNC_NOTEQUAL:
k[v][0] = pc[0] != rgba[v][0];
k[v][1] = pc[1] != rgba[v][1];
k[v][2] = pc[2] != rgba[v][2];
k[v][3] = pc[3] != rgba[v][3];
break;
case PIPE_FUNC_ALWAYS:
k[v][0] = k[v][1] = k[v][2] = k[v][3] = 1;
break;
case PIPE_FUNC_NEVER:
k[v][0] = k[v][1] = k[v][2] = k[v][3] = 0;
break;
default:
k[v][0] = k[v][1] = k[v][2] = k[v][3] = 0;
assert(0);
break;
}
}
if (is_gather) {
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
for (v = 0; v < TGSI_NUM_CHANNELS; v++) {
rgba[v][j] = k[v][j];
}
}
} else {
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
rgba[0][j] = k[0][j];
rgba[1][j] = k[0][j];
rgba[2][j] = k[0][j];
rgba[3][j] = 1.0F;
}
}
}
static void
do_swizzling(const struct pipe_sampler_view *sview,
float in[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE],
float out[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
int j;
const unsigned swizzle_r = sview->swizzle_r;
const unsigned swizzle_g = sview->swizzle_g;
const unsigned swizzle_b = sview->swizzle_b;
const unsigned swizzle_a = sview->swizzle_a;
float oneval = util_format_is_pure_integer(sview->format) ? uif(1) : 1.0f;
switch (swizzle_r) {
case PIPE_SWIZZLE_0:
for (j = 0; j < 4; j++)
out[0][j] = 0.0f;
break;
case PIPE_SWIZZLE_1:
for (j = 0; j < 4; j++)
out[0][j] = oneval;
break;
default:
assert(swizzle_r < 4);
for (j = 0; j < 4; j++)
out[0][j] = in[swizzle_r][j];
}
switch (swizzle_g) {
case PIPE_SWIZZLE_0:
for (j = 0; j < 4; j++)
out[1][j] = 0.0f;
break;
case PIPE_SWIZZLE_1:
for (j = 0; j < 4; j++)
out[1][j] = oneval;
break;
default:
assert(swizzle_g < 4);
for (j = 0; j < 4; j++)
out[1][j] = in[swizzle_g][j];
}
switch (swizzle_b) {
case PIPE_SWIZZLE_0:
for (j = 0; j < 4; j++)
out[2][j] = 0.0f;
break;
case PIPE_SWIZZLE_1:
for (j = 0; j < 4; j++)
out[2][j] = oneval;
break;
default:
assert(swizzle_b < 4);
for (j = 0; j < 4; j++)
out[2][j] = in[swizzle_b][j];
}
switch (swizzle_a) {
case PIPE_SWIZZLE_0:
for (j = 0; j < 4; j++)
out[3][j] = 0.0f;
break;
case PIPE_SWIZZLE_1:
for (j = 0; j < 4; j++)
out[3][j] = oneval;
break;
default:
assert(swizzle_a < 4);
for (j = 0; j < 4; j++)
out[3][j] = in[swizzle_a][j];
}
}
static wrap_nearest_func
get_nearest_unorm_wrap(unsigned mode)
{
switch (mode) {
case PIPE_TEX_WRAP_CLAMP:
return wrap_nearest_unorm_clamp;
case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
return wrap_nearest_unorm_clamp_to_edge;
case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
return wrap_nearest_unorm_clamp_to_border;
default:
debug_printf("illegal wrap mode %d with non-normalized coords\n", mode);
return wrap_nearest_unorm_clamp;
}
}
static wrap_nearest_func
get_nearest_wrap(unsigned mode)
{
switch (mode) {
case PIPE_TEX_WRAP_REPEAT:
return wrap_nearest_repeat;
case PIPE_TEX_WRAP_CLAMP:
return wrap_nearest_clamp;
case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
return wrap_nearest_clamp_to_edge;
case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
return wrap_nearest_clamp_to_border;
case PIPE_TEX_WRAP_MIRROR_REPEAT:
return wrap_nearest_mirror_repeat;
case PIPE_TEX_WRAP_MIRROR_CLAMP:
return wrap_nearest_mirror_clamp;
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
return wrap_nearest_mirror_clamp_to_edge;
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
return wrap_nearest_mirror_clamp_to_border;
default:
assert(0);
return wrap_nearest_repeat;
}
}
static wrap_linear_func
get_linear_unorm_wrap(unsigned mode)
{
switch (mode) {
case PIPE_TEX_WRAP_CLAMP:
return wrap_linear_unorm_clamp;
case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
return wrap_linear_unorm_clamp_to_edge;
case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
return wrap_linear_unorm_clamp_to_border;
default:
debug_printf("illegal wrap mode %d with non-normalized coords\n", mode);
return wrap_linear_unorm_clamp;
}
}
static wrap_linear_func
get_linear_wrap(unsigned mode)
{
switch (mode) {
case PIPE_TEX_WRAP_REPEAT:
return wrap_linear_repeat;
case PIPE_TEX_WRAP_CLAMP:
return wrap_linear_clamp;
case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
return wrap_linear_clamp_to_edge;
case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
return wrap_linear_clamp_to_border;
case PIPE_TEX_WRAP_MIRROR_REPEAT:
return wrap_linear_mirror_repeat;
case PIPE_TEX_WRAP_MIRROR_CLAMP:
return wrap_linear_mirror_clamp;
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
return wrap_linear_mirror_clamp_to_edge;
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
return wrap_linear_mirror_clamp_to_border;
default:
assert(0);
return wrap_linear_repeat;
}
}
/**
* Is swizzling needed for the given state key?
*/
static inline bool
any_swizzle(const struct pipe_sampler_view *view)
{
return (view->swizzle_r != PIPE_SWIZZLE_X ||
view->swizzle_g != PIPE_SWIZZLE_Y ||
view->swizzle_b != PIPE_SWIZZLE_Z ||
view->swizzle_a != PIPE_SWIZZLE_W);
}
static img_filter_func
get_img_filter(const struct sp_sampler_view *sp_sview,
const struct pipe_sampler_state *sampler,
unsigned filter, bool gather)
{
switch (sp_sview->base.target) {
case PIPE_BUFFER:
case PIPE_TEXTURE_1D:
if (filter == PIPE_TEX_FILTER_NEAREST)
return img_filter_1d_nearest;
else
return img_filter_1d_linear;
break;
case PIPE_TEXTURE_1D_ARRAY:
if (filter == PIPE_TEX_FILTER_NEAREST)
return img_filter_1d_array_nearest;
else
return img_filter_1d_array_linear;
break;
case PIPE_TEXTURE_2D:
case PIPE_TEXTURE_RECT:
/* Try for fast path:
*/
if (!gather && sp_sview->pot2d &&
sampler->wrap_s == sampler->wrap_t &&
sampler->normalized_coords)
{
switch (sampler->wrap_s) {
case PIPE_TEX_WRAP_REPEAT:
switch (filter) {
case PIPE_TEX_FILTER_NEAREST:
return img_filter_2d_nearest_repeat_POT;
case PIPE_TEX_FILTER_LINEAR:
return img_filter_2d_linear_repeat_POT;
default:
break;
}
break;
case PIPE_TEX_WRAP_CLAMP:
switch (filter) {
case PIPE_TEX_FILTER_NEAREST:
return img_filter_2d_nearest_clamp_POT;
default:
break;
}
}
}
/* Otherwise use default versions:
*/
if (filter == PIPE_TEX_FILTER_NEAREST)
return img_filter_2d_nearest;
else
return img_filter_2d_linear;
break;
case PIPE_TEXTURE_2D_ARRAY:
if (filter == PIPE_TEX_FILTER_NEAREST)
return img_filter_2d_array_nearest;
else
return img_filter_2d_array_linear;
break;
case PIPE_TEXTURE_CUBE:
if (filter == PIPE_TEX_FILTER_NEAREST)
return img_filter_cube_nearest;
else
return img_filter_cube_linear;
break;
case PIPE_TEXTURE_CUBE_ARRAY:
if (filter == PIPE_TEX_FILTER_NEAREST)
return img_filter_cube_array_nearest;
else
return img_filter_cube_array_linear;
break;
case PIPE_TEXTURE_3D:
if (filter == PIPE_TEX_FILTER_NEAREST)
return img_filter_3d_nearest;
else
return img_filter_3d_linear;
break;
default:
assert(0);
return img_filter_1d_nearest;
}
}
/**
* Get mip filter funcs, and optionally both img min filter and img mag
* filter. Note that both img filter function pointers must be either non-NULL
* or NULL.
*/
static void
get_filters(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const enum tgsi_sampler_control control,
const struct sp_filter_funcs **funcs,
img_filter_func *min,
img_filter_func *mag)
{
assert(funcs);
if (control == TGSI_SAMPLER_GATHER) {
*funcs = &funcs_nearest;
if (min) {
*min = get_img_filter(sp_sview, &sp_samp->base,
PIPE_TEX_FILTER_LINEAR, true);
}
} else if (sp_sview->pot2d & sp_samp->min_mag_equal_repeat_linear) {
*funcs = &funcs_linear_2d_linear_repeat_POT;
} else {
*funcs = sp_samp->filter_funcs;
if (min) {
assert(mag);
*min = get_img_filter(sp_sview, &sp_samp->base,
sp_samp->min_img_filter, false);
if (sp_samp->min_mag_equal) {
*mag = *min;
} else {
*mag = get_img_filter(sp_sview, &sp_samp->base,
sp_samp->base.mag_img_filter, false);
}
}
}
}
static void
sample_mip(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
const float c0[TGSI_QUAD_SIZE],
int gather_comp,
const float lod[TGSI_QUAD_SIZE],
const struct filter_args *filt_args,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
const struct sp_filter_funcs *funcs = NULL;
img_filter_func min_img_filter = NULL;
img_filter_func mag_img_filter = NULL;
get_filters(sp_sview, sp_samp, filt_args->control,
&funcs, &min_img_filter, &mag_img_filter);
funcs->filter(sp_sview, sp_samp, min_img_filter, mag_img_filter,
s, t, p, gather_comp, lod, filt_args, rgba);
if (sp_samp->base.compare_mode != PIPE_TEX_COMPARE_NONE) {
sample_compare(sp_sview, sp_samp, c0, filt_args->control, rgba);
}
if (sp_sview->need_swizzle && filt_args->control != TGSI_SAMPLER_GATHER) {
float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
memcpy(rgba_temp, rgba, sizeof(rgba_temp));
do_swizzling(&sp_sview->base, rgba_temp, rgba);
}
}
/**
* This function uses cube texture coordinates to choose a face of a cube and
* computes the 2D cube face coordinates. Puts face info into the sampler
* faces[] array.
*/
static void
convert_cube(const struct sp_sampler_view *sp_sview,
const struct sp_sampler *sp_samp,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
const float c0[TGSI_QUAD_SIZE],
float ssss[TGSI_QUAD_SIZE],
float tttt[TGSI_QUAD_SIZE],
float pppp[TGSI_QUAD_SIZE],
uint faces[TGSI_QUAD_SIZE])
{
unsigned j;
pppp[0] = c0[0];
pppp[1] = c0[1];
pppp[2] = c0[2];
pppp[3] = c0[3];
/*
major axis
direction target sc tc ma
---------- ------------------------------- --- --- ---
+rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx
-rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx
+ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry
-ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry
+rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz
-rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz
*/
/* Choose the cube face and compute new s/t coords for the 2D face.
*
* Use the same cube face for all four pixels in the quad.
*
* This isn't ideal, but if we want to use a different cube face
* per pixel in the quad, we'd have to also compute the per-face
* LOD here too. That's because the four post-face-selection
* texcoords are no longer related to each other (they're
* per-face!) so we can't use subtraction to compute the partial
* deriviates to compute the LOD. Doing so (near cube edges
* anyway) gives us pretty much random values.
*/
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
const float rx = s[j], ry = t[j], rz = p[j];
const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz);
if (arx >= ary && arx >= arz) {
const float sign = (rx >= 0.0F) ? 1.0F : -1.0F;
const uint face = (rx >= 0.0F) ?
PIPE_TEX_FACE_POS_X : PIPE_TEX_FACE_NEG_X;
const float ima = -0.5F / fabsf(s[j]);
ssss[j] = sign * p[j] * ima + 0.5F;
tttt[j] = t[j] * ima + 0.5F;
faces[j] = face;
}
else if (ary >= arx && ary >= arz) {
const float sign = (ry >= 0.0F) ? 1.0F : -1.0F;
const uint face = (ry >= 0.0F) ?
PIPE_TEX_FACE_POS_Y : PIPE_TEX_FACE_NEG_Y;
const float ima = -0.5F / fabsf(t[j]);
ssss[j] = -s[j] * ima + 0.5F;
tttt[j] = sign * -p[j] * ima + 0.5F;
faces[j] = face;
}
else {
const float sign = (rz >= 0.0F) ? 1.0F : -1.0F;
const uint face = (rz >= 0.0F) ?
PIPE_TEX_FACE_POS_Z : PIPE_TEX_FACE_NEG_Z;
const float ima = -0.5F / fabsf(p[j]);
ssss[j] = sign * -s[j] * ima + 0.5F;
tttt[j] = t[j] * ima + 0.5F;
faces[j] = face;
}
}
}
static void
sp_get_dims(const struct sp_sampler_view *sp_sview,
int level,
int dims[4])
{
const struct pipe_sampler_view *view = &sp_sview->base;
const struct pipe_resource *texture = view->texture;
if (view->target == PIPE_BUFFER) {
dims[0] = view->u.buf.size / util_format_get_blocksize(view->format);
/* the other values are undefined, but let's avoid potential valgrind
* warnings.
*/
dims[1] = dims[2] = dims[3] = 0;
return;
}
/* undefined according to EXT_gpu_program */
level += view->u.tex.first_level;
if (level > view->u.tex.last_level)
return;
dims[3] = view->u.tex.last_level - view->u.tex.first_level + 1;
dims[0] = u_minify(texture->width0, level);
switch (view->target) {
case PIPE_TEXTURE_1D_ARRAY:
dims[1] = view->u.tex.last_layer - view->u.tex.first_layer + 1;
/* fallthrough */
case PIPE_TEXTURE_1D:
return;
case PIPE_TEXTURE_2D_ARRAY:
dims[2] = view->u.tex.last_layer - view->u.tex.first_layer + 1;
/* fallthrough */
case PIPE_TEXTURE_2D:
case PIPE_TEXTURE_CUBE:
case PIPE_TEXTURE_RECT:
dims[1] = u_minify(texture->height0, level);
return;
case PIPE_TEXTURE_3D:
dims[1] = u_minify(texture->height0, level);
dims[2] = u_minify(texture->depth0, level);
return;
case PIPE_TEXTURE_CUBE_ARRAY:
dims[1] = u_minify(texture->height0, level);
dims[2] = (view->u.tex.last_layer - view->u.tex.first_layer + 1) / 6;
break;
default:
assert(!"unexpected texture target in sp_get_dims()");
return;
}
}
/**
* This function is only used for getting unfiltered texels via the
* TXF opcode. The GL spec says that out-of-bounds texel fetches
* produce undefined results. Instead of crashing, lets just clamp
* coords to the texture image size.
*/
static void
sp_get_texels(const struct sp_sampler_view *sp_sview,
const int v_i[TGSI_QUAD_SIZE],
const int v_j[TGSI_QUAD_SIZE],
const int v_k[TGSI_QUAD_SIZE],
const int lod[TGSI_QUAD_SIZE],
const int8_t offset[3],
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
union tex_tile_address addr;
const struct pipe_resource *texture = sp_sview->base.texture;
int j, c;
const float *tx;
/* TODO write a better test for LOD */
const unsigned level =
sp_sview->base.target == PIPE_BUFFER ? 0 :
CLAMP(lod[0] + sp_sview->base.u.tex.first_level,
sp_sview->base.u.tex.first_level,
sp_sview->base.u.tex.last_level);
const int width = u_minify(texture->width0, level);
const int height = u_minify(texture->height0, level);
const int depth = u_minify(texture->depth0, level);
unsigned elem_size, first_element, last_element;
addr.value = 0;
addr.bits.level = level;
switch (sp_sview->base.target) {
case PIPE_BUFFER:
elem_size = util_format_get_blocksize(sp_sview->base.format);
first_element = sp_sview->base.u.buf.offset / elem_size;
last_element = (sp_sview->base.u.buf.offset +
sp_sview->base.u.buf.size) / elem_size - 1;
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
const int x = CLAMP(v_i[j] + offset[0] +
first_element,
first_element,
last_element);
tx = get_texel_buffer_no_border(sp_sview, addr, x, elem_size);
for (c = 0; c < 4; c++) {
rgba[c][j] = tx[c];
}
}
break;
case PIPE_TEXTURE_1D:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
tx = get_texel_2d_no_border(sp_sview, addr, x,
sp_sview->base.u.tex.first_layer);
for (c = 0; c < 4; c++) {
rgba[c][j] = tx[c];
}
}
break;
case PIPE_TEXTURE_1D_ARRAY:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
const int y = CLAMP(v_j[j], sp_sview->base.u.tex.first_layer,
sp_sview->base.u.tex.last_layer);
tx = get_texel_2d_no_border(sp_sview, addr, x, y);
for (c = 0; c < 4; c++) {
rgba[c][j] = tx[c];
}
}
break;
case PIPE_TEXTURE_2D:
case PIPE_TEXTURE_RECT:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
const int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
tx = get_texel_3d_no_border(sp_sview, addr, x, y,
sp_sview->base.u.tex.first_layer);
for (c = 0; c < 4; c++) {
rgba[c][j] = tx[c];
}
}
break;
case PIPE_TEXTURE_2D_ARRAY:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
const int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
const int layer = CLAMP(v_k[j], sp_sview->base.u.tex.first_layer,
sp_sview->base.u.tex.last_layer);
tx = get_texel_3d_no_border(sp_sview, addr, x, y, layer);
for (c = 0; c < 4; c++) {
rgba[c][j] = tx[c];
}
}
break;
case PIPE_TEXTURE_3D:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
int z = CLAMP(v_k[j] + offset[2], 0, depth - 1);
tx = get_texel_3d_no_border(sp_sview, addr, x, y, z);
for (c = 0; c < 4; c++) {
rgba[c][j] = tx[c];
}
}
break;
case PIPE_TEXTURE_CUBE: /* TXF can't work on CUBE according to spec */
case PIPE_TEXTURE_CUBE_ARRAY:
default:
assert(!"Unknown or CUBE texture type in TXF processing\n");
break;
}
if (sp_sview->need_swizzle) {
float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
memcpy(rgba_temp, rgba, sizeof(rgba_temp));
do_swizzling(&sp_sview->base, rgba_temp, rgba);
}
}
void *
softpipe_create_sampler_state(struct pipe_context *pipe,
const struct pipe_sampler_state *sampler)
{
struct sp_sampler *samp = CALLOC_STRUCT(sp_sampler);
samp->base = *sampler;
/* Note that (for instance) linear_texcoord_s and
* nearest_texcoord_s may be active at the same time, if the
* sampler min_img_filter differs from its mag_img_filter.
*/
if (sampler->normalized_coords) {
samp->linear_texcoord_s = get_linear_wrap( sampler->wrap_s );
samp->linear_texcoord_t = get_linear_wrap( sampler->wrap_t );
samp->linear_texcoord_p = get_linear_wrap( sampler->wrap_r );
samp->nearest_texcoord_s = get_nearest_wrap( sampler->wrap_s );
samp->nearest_texcoord_t = get_nearest_wrap( sampler->wrap_t );
samp->nearest_texcoord_p = get_nearest_wrap( sampler->wrap_r );
}
else {
samp->linear_texcoord_s = get_linear_unorm_wrap( sampler->wrap_s );
samp->linear_texcoord_t = get_linear_unorm_wrap( sampler->wrap_t );
samp->linear_texcoord_p = get_linear_unorm_wrap( sampler->wrap_r );
samp->nearest_texcoord_s = get_nearest_unorm_wrap( sampler->wrap_s );
samp->nearest_texcoord_t = get_nearest_unorm_wrap( sampler->wrap_t );
samp->nearest_texcoord_p = get_nearest_unorm_wrap( sampler->wrap_r );
}
samp->min_img_filter = sampler->min_img_filter;
switch (sampler->min_mip_filter) {
case PIPE_TEX_MIPFILTER_NONE:
if (sampler->min_img_filter == sampler->mag_img_filter)
samp->filter_funcs = &funcs_none_no_filter_select;
else
samp->filter_funcs = &funcs_none;
break;
case PIPE_TEX_MIPFILTER_NEAREST:
samp->filter_funcs = &funcs_nearest;
break;
case PIPE_TEX_MIPFILTER_LINEAR:
if (sampler->min_img_filter == sampler->mag_img_filter &&
sampler->normalized_coords &&
sampler->wrap_s == PIPE_TEX_WRAP_REPEAT &&
sampler->wrap_t == PIPE_TEX_WRAP_REPEAT &&
sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR &&
sampler->max_anisotropy <= 1) {
samp->min_mag_equal_repeat_linear = TRUE;
}
samp->filter_funcs = &funcs_linear;
/* Anisotropic filtering extension. */
if (sampler->max_anisotropy > 1) {
samp->filter_funcs = &funcs_linear_aniso;
/* Override min_img_filter:
* min_img_filter needs to be set to NEAREST since we need to access
* each texture pixel as it is and weight it later; using linear
* filters will have incorrect results.
* By setting the filter to NEAREST here, we can avoid calling the
* generic img_filter_2d_nearest in the anisotropic filter function,
* making it possible to use one of the accelerated implementations
*/
samp->min_img_filter = PIPE_TEX_FILTER_NEAREST;
/* on first access create the lookup table containing the filter weights. */
if (!weightLut) {
create_filter_table();
}
}
break;
}
if (samp->min_img_filter == sampler->mag_img_filter) {
samp->min_mag_equal = TRUE;
}
return (void *)samp;
}
compute_lambda_func
softpipe_get_lambda_func(const struct pipe_sampler_view *view,
enum pipe_shader_type shader)
{
if (shader != PIPE_SHADER_FRAGMENT)
return compute_lambda_vert;
switch (view->target) {
case PIPE_BUFFER:
case PIPE_TEXTURE_1D:
case PIPE_TEXTURE_1D_ARRAY:
return compute_lambda_1d;
case PIPE_TEXTURE_2D:
case PIPE_TEXTURE_2D_ARRAY:
case PIPE_TEXTURE_RECT:
return compute_lambda_2d;
case PIPE_TEXTURE_CUBE:
case PIPE_TEXTURE_CUBE_ARRAY:
return compute_lambda_cube;
case PIPE_TEXTURE_3D:
return compute_lambda_3d;
default:
assert(0);
return compute_lambda_1d;
}
}
struct pipe_sampler_view *
softpipe_create_sampler_view(struct pipe_context *pipe,
struct pipe_resource *resource,
const struct pipe_sampler_view *templ)
{
struct sp_sampler_view *sview = CALLOC_STRUCT(sp_sampler_view);
const struct softpipe_resource *spr = (struct softpipe_resource *)resource;
if (sview) {
struct pipe_sampler_view *view = &sview->base;
*view = *templ;
view->reference.count = 1;
view->texture = NULL;
pipe_resource_reference(&view->texture, resource);
view->context = pipe;
#ifdef DEBUG
/*
* This is possibly too lenient, but the primary reason is just
* to catch gallium frontends which forget to initialize this, so
* it only catches clearly impossible view targets.
*/
if (view->target != resource->target) {
if (view->target == PIPE_TEXTURE_1D)
assert(resource->target == PIPE_TEXTURE_1D_ARRAY);
else if (view->target == PIPE_TEXTURE_1D_ARRAY)
assert(resource->target == PIPE_TEXTURE_1D);
else if (view->target == PIPE_TEXTURE_2D)
assert(resource->target == PIPE_TEXTURE_2D_ARRAY ||
resource->target == PIPE_TEXTURE_CUBE ||
resource->target == PIPE_TEXTURE_CUBE_ARRAY);
else if (view->target == PIPE_TEXTURE_2D_ARRAY)
assert(resource->target == PIPE_TEXTURE_2D ||
resource->target == PIPE_TEXTURE_CUBE ||
resource->target == PIPE_TEXTURE_CUBE_ARRAY);
else if (view->target == PIPE_TEXTURE_CUBE)
assert(resource->target == PIPE_TEXTURE_CUBE_ARRAY ||
resource->target == PIPE_TEXTURE_2D_ARRAY);
else if (view->target == PIPE_TEXTURE_CUBE_ARRAY)
assert(resource->target == PIPE_TEXTURE_CUBE ||
resource->target == PIPE_TEXTURE_2D_ARRAY);
else
assert(0);
}
#endif
if (any_swizzle(view)) {
sview->need_swizzle = TRUE;
}
sview->need_cube_convert = (view->target == PIPE_TEXTURE_CUBE ||
view->target == PIPE_TEXTURE_CUBE_ARRAY);
sview->pot2d = spr->pot &&
(view->target == PIPE_TEXTURE_2D ||
view->target == PIPE_TEXTURE_RECT);
sview->xpot = util_logbase2( resource->width0 );
sview->ypot = util_logbase2( resource->height0 );
}
return (struct pipe_sampler_view *) sview;
}
static inline const struct sp_tgsi_sampler *
sp_tgsi_sampler_cast_c(const struct tgsi_sampler *sampler)
{
return (const struct sp_tgsi_sampler *)sampler;
}
static void
sp_tgsi_get_dims(struct tgsi_sampler *tgsi_sampler,
const unsigned sview_index,
int level, int dims[4])
{
const struct sp_tgsi_sampler *sp_samp =
sp_tgsi_sampler_cast_c(tgsi_sampler);
assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
/* always have a view here but texture is NULL if no sampler view was set. */
if (!sp_samp->sp_sview[sview_index].base.texture) {
dims[0] = dims[1] = dims[2] = dims[3] = 0;
return;
}
sp_get_dims(&sp_samp->sp_sview[sview_index], level, dims);
}
static void prepare_compare_values(enum pipe_texture_target target,
const float p[TGSI_QUAD_SIZE],
const float c0[TGSI_QUAD_SIZE],
const float c1[TGSI_QUAD_SIZE],
float pc[TGSI_QUAD_SIZE])
{
if (target == PIPE_TEXTURE_2D_ARRAY ||
target == PIPE_TEXTURE_CUBE) {
pc[0] = c0[0];
pc[1] = c0[1];
pc[2] = c0[2];
pc[3] = c0[3];
} else if (target == PIPE_TEXTURE_CUBE_ARRAY) {
pc[0] = c1[0];
pc[1] = c1[1];
pc[2] = c1[2];
pc[3] = c1[3];
} else {
pc[0] = p[0];
pc[1] = p[1];
pc[2] = p[2];
pc[3] = p[3];
}
}
static void
sp_tgsi_get_samples(struct tgsi_sampler *tgsi_sampler,
const unsigned sview_index,
const unsigned sampler_index,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
const float c0[TGSI_QUAD_SIZE],
const float lod_in[TGSI_QUAD_SIZE],
float derivs[3][2][TGSI_QUAD_SIZE],
const int8_t offset[3],
enum tgsi_sampler_control control,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
const struct sp_tgsi_sampler *sp_tgsi_samp =
sp_tgsi_sampler_cast_c(tgsi_sampler);
struct sp_sampler_view sp_sview;
const struct sp_sampler *sp_samp;
struct filter_args filt_args;
float compare_values[TGSI_QUAD_SIZE];
float lod[TGSI_QUAD_SIZE];
int c;
assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
assert(sampler_index < PIPE_MAX_SAMPLERS);
assert(sp_tgsi_samp->sp_sampler[sampler_index]);
memcpy(&sp_sview, &sp_tgsi_samp->sp_sview[sview_index],
sizeof(struct sp_sampler_view));
sp_samp = sp_tgsi_samp->sp_sampler[sampler_index];
if (util_format_is_unorm(sp_sview.base.format)) {
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
sp_sview.border_color.f[c] = CLAMP(sp_samp->base.border_color.f[c],
0.0f, 1.0f);
} else if (util_format_is_snorm(sp_sview.base.format)) {
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
sp_sview.border_color.f[c] = CLAMP(sp_samp->base.border_color.f[c],
-1.0f, 1.0f);
} else {
memcpy(sp_sview.border_color.f, sp_samp->base.border_color.f,
TGSI_NUM_CHANNELS * sizeof(float));
}
/* always have a view here but texture is NULL if no sampler view was set. */
if (!sp_sview.base.texture) {
int i, j;
for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
rgba[j][i] = 0.0f;
}
}
return;
}
if (sp_samp->base.compare_mode != PIPE_TEX_COMPARE_NONE)
prepare_compare_values(sp_sview.base.target, p, c0, lod_in, compare_values);
filt_args.control = control;
filt_args.offset = offset;
int gather_comp = get_gather_component(lod_in);
compute_lambda_lod(&sp_sview, sp_samp, s, t, p, derivs, lod_in, control, lod);
if (sp_sview.need_cube_convert) {
float cs[TGSI_QUAD_SIZE];
float ct[TGSI_QUAD_SIZE];
float cp[TGSI_QUAD_SIZE];
uint faces[TGSI_QUAD_SIZE];
convert_cube(&sp_sview, sp_samp, s, t, p, c0, cs, ct, cp, faces);
filt_args.faces = faces;
sample_mip(&sp_sview, sp_samp, cs, ct, cp, compare_values, gather_comp, lod, &filt_args, rgba);
} else {
static const uint zero_faces[TGSI_QUAD_SIZE] = {0, 0, 0, 0};
filt_args.faces = zero_faces;
sample_mip(&sp_sview, sp_samp, s, t, p, compare_values, gather_comp, lod, &filt_args, rgba);
}
}
static void
sp_tgsi_query_lod(const struct tgsi_sampler *tgsi_sampler,
const unsigned sview_index,
const unsigned sampler_index,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
const float c0[TGSI_QUAD_SIZE],
const enum tgsi_sampler_control control,
float mipmap[TGSI_QUAD_SIZE],
float lod[TGSI_QUAD_SIZE])
{
static const float lod_in[TGSI_QUAD_SIZE] = { 0.0, 0.0, 0.0, 0.0 };
static const float dummy_grad[3][2][TGSI_QUAD_SIZE];
const struct sp_tgsi_sampler *sp_tgsi_samp =
sp_tgsi_sampler_cast_c(tgsi_sampler);
const struct sp_sampler_view *sp_sview;
const struct sp_sampler *sp_samp;
const struct sp_filter_funcs *funcs;
int i;
assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
assert(sampler_index < PIPE_MAX_SAMPLERS);
assert(sp_tgsi_samp->sp_sampler[sampler_index]);
sp_sview = &sp_tgsi_samp->sp_sview[sview_index];
sp_samp = sp_tgsi_samp->sp_sampler[sampler_index];
/* always have a view here but texture is NULL if no sampler view was
* set. */
if (!sp_sview->base.texture) {
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
mipmap[i] = 0.0f;
lod[i] = 0.0f;
}
return;
}
compute_lambda_lod_unclamped(sp_sview, sp_samp,
s, t, p, dummy_grad, lod_in, control, lod);
get_filters(sp_sview, sp_samp, control, &funcs, NULL, NULL);
funcs->relative_level(sp_sview, sp_samp, lod, mipmap);
}
static void
sp_tgsi_get_texel(struct tgsi_sampler *tgsi_sampler,
const unsigned sview_index,
const int i[TGSI_QUAD_SIZE],
const int j[TGSI_QUAD_SIZE], const int k[TGSI_QUAD_SIZE],
const int lod[TGSI_QUAD_SIZE], const int8_t offset[3],
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
const struct sp_tgsi_sampler *sp_samp =
sp_tgsi_sampler_cast_c(tgsi_sampler);
assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
/* always have a view here but texture is NULL if no sampler view was set. */
if (!sp_samp->sp_sview[sview_index].base.texture) {
int i, j;
for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
rgba[j][i] = 0.0f;
}
}
return;
}
sp_get_texels(&sp_samp->sp_sview[sview_index], i, j, k, lod, offset, rgba);
}
struct sp_tgsi_sampler *
sp_create_tgsi_sampler(void)
{
struct sp_tgsi_sampler *samp = CALLOC_STRUCT(sp_tgsi_sampler);
if (!samp)
return NULL;
samp->base.get_dims = sp_tgsi_get_dims;
samp->base.get_samples = sp_tgsi_get_samples;
samp->base.get_texel = sp_tgsi_get_texel;
samp->base.query_lod = sp_tgsi_query_lod;
return samp;
}