mesa/src/gallium/drivers/radeonsi/si_state_draw.cpp

2812 lines
110 KiB
C++

/*
* Copyright 2012 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "ac_nir.h"
#include "ac_sqtt.h"
#include "si_build_pm4.h"
#include "util/u_cpu_detect.h"
#include "util/u_index_modify.h"
#include "util/u_prim.h"
#include "util/u_upload_mgr.h"
#if (GFX_VER == 6)
#define GFX(name) name##GFX6
#elif (GFX_VER == 7)
#define GFX(name) name##GFX7
#elif (GFX_VER == 8)
#define GFX(name) name##GFX8
#elif (GFX_VER == 9)
#define GFX(name) name##GFX9
#elif (GFX_VER == 10)
#define GFX(name) name##GFX10
#elif (GFX_VER == 103)
#define GFX(name) name##GFX10_3
#elif (GFX_VER == 11)
#define GFX(name) name##GFX11
#else
#error "Unknown gfx level"
#endif
/* special primitive types */
#define SI_PRIM_RECTANGLE_LIST PIPE_PRIM_MAX
template<int NUM_INTERP>
static void si_emit_spi_map(struct si_context *sctx)
{
struct si_shader *ps = sctx->shader.ps.current;
struct si_shader_info *psinfo = ps ? &ps->selector->info : NULL;
unsigned spi_ps_input_cntl[NUM_INTERP];
STATIC_ASSERT(NUM_INTERP >= 0 && NUM_INTERP <= 32);
if (!NUM_INTERP)
return;
struct si_shader *vs = si_get_vs(sctx)->current;
struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
for (unsigned i = 0; i < NUM_INTERP; i++) {
union si_input_info input = psinfo->input[i];
unsigned ps_input_cntl = vs->info.vs_output_ps_input_cntl[input.semantic];
bool non_default_val = G_028644_OFFSET(ps_input_cntl) != 0x20;
if (non_default_val) {
if (input.interpolate == INTERP_MODE_FLAT ||
(input.interpolate == INTERP_MODE_COLOR && rs->flatshade))
ps_input_cntl |= S_028644_FLAT_SHADE(1);
if (input.fp16_lo_hi_valid) {
ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) |
S_028644_ATTR0_VALID(1) | /* this must be set if FP16_INTERP_MODE is set */
S_028644_ATTR1_VALID(!!(input.fp16_lo_hi_valid & 0x2));
}
}
if (input.semantic == VARYING_SLOT_PNTC ||
(input.semantic >= VARYING_SLOT_TEX0 && input.semantic <= VARYING_SLOT_TEX7 &&
rs->sprite_coord_enable & (1 << (input.semantic - VARYING_SLOT_TEX0)))) {
/* Overwrite the whole value (except OFFSET) for sprite coordinates. */
ps_input_cntl &= ~C_028644_OFFSET;
ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
if (input.fp16_lo_hi_valid & 0x1) {
ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) |
S_028644_ATTR0_VALID(1);
}
}
spi_ps_input_cntl[i] = ps_input_cntl;
}
/* R_028644_SPI_PS_INPUT_CNTL_0 */
/* Dota 2: Only ~16% of SPI map updates set different values. */
/* Talos: Only ~9% of SPI map updates set different values. */
radeon_begin(&sctx->gfx_cs);
radeon_opt_set_context_regn(sctx, R_028644_SPI_PS_INPUT_CNTL_0, spi_ps_input_cntl,
sctx->tracked_regs.spi_ps_input_cntl, NUM_INTERP);
radeon_end_update_context_roll(sctx);
}
template <amd_gfx_level GFX_VERSION, si_has_tess HAS_TESS, si_has_gs HAS_GS, si_has_ngg NGG>
static bool si_update_shaders(struct si_context *sctx)
{
struct pipe_context *ctx = (struct pipe_context *)sctx;
struct si_shader *old_vs = si_get_vs_inline(sctx, HAS_TESS, HAS_GS)->current;
unsigned old_pa_cl_vs_out_cntl = old_vs ? old_vs->pa_cl_vs_out_cntl : 0;
struct si_shader *old_ps = sctx->shader.ps.current;
unsigned old_spi_shader_col_format =
old_ps ? old_ps->key.ps.part.epilog.spi_shader_col_format : 0;
int r;
/* Update TCS and TES. */
if (HAS_TESS) {
if (!sctx->tess_rings) {
si_init_tess_factor_ring(sctx);
if (!sctx->tess_rings)
return false;
}
if (!sctx->is_user_tcs) {
if (!si_set_tcs_to_fixed_func_shader(sctx))
return false;
}
r = si_shader_select(ctx, &sctx->shader.tcs);
if (r)
return false;
si_pm4_bind_state(sctx, hs, sctx->shader.tcs.current);
if (!HAS_GS || GFX_VERSION <= GFX8) {
r = si_shader_select(ctx, &sctx->shader.tes);
if (r)
return false;
if (HAS_GS) {
/* TES as ES */
assert(GFX_VERSION <= GFX8);
si_pm4_bind_state(sctx, es, sctx->shader.tes.current);
} else if (NGG) {
si_pm4_bind_state(sctx, gs, sctx->shader.tes.current);
} else {
si_pm4_bind_state(sctx, vs, sctx->shader.tes.current);
}
}
} else {
/* Reset TCS to clear fixed function shader. */
if (!sctx->is_user_tcs && sctx->shader.tcs.cso) {
sctx->shader.tcs.cso = NULL;
sctx->shader.tcs.current = NULL;
}
if (GFX_VERSION <= GFX8) {
si_pm4_bind_state(sctx, ls, NULL);
sctx->prefetch_L2_mask &= ~SI_PREFETCH_LS;
}
si_pm4_bind_state(sctx, hs, NULL);
sctx->prefetch_L2_mask &= ~SI_PREFETCH_HS;
}
/* Update GS. */
if (HAS_GS) {
r = si_shader_select(ctx, &sctx->shader.gs);
if (r)
return false;
si_pm4_bind_state(sctx, gs, sctx->shader.gs.current);
if (!NGG) {
si_pm4_bind_state(sctx, vs, sctx->shader.gs.current->gs_copy_shader);
if (!si_update_gs_ring_buffers(sctx))
return false;
} else {
si_pm4_bind_state(sctx, vs, NULL);
sctx->prefetch_L2_mask &= ~SI_PREFETCH_VS;
}
} else {
if (!NGG) {
si_pm4_bind_state(sctx, gs, NULL);
sctx->prefetch_L2_mask &= ~SI_PREFETCH_GS;
if (GFX_VERSION <= GFX8) {
si_pm4_bind_state(sctx, es, NULL);
sctx->prefetch_L2_mask &= ~SI_PREFETCH_ES;
}
}
}
/* Update VS. */
if ((!HAS_TESS && !HAS_GS) || GFX_VERSION <= GFX8) {
r = si_shader_select(ctx, &sctx->shader.vs);
if (r)
return false;
if (!HAS_TESS && !HAS_GS) {
if (NGG) {
si_pm4_bind_state(sctx, gs, sctx->shader.vs.current);
si_pm4_bind_state(sctx, vs, NULL);
sctx->prefetch_L2_mask &= ~SI_PREFETCH_VS;
} else {
si_pm4_bind_state(sctx, vs, sctx->shader.vs.current);
}
} else if (HAS_TESS) {
si_pm4_bind_state(sctx, ls, sctx->shader.vs.current);
} else {
assert(HAS_GS);
si_pm4_bind_state(sctx, es, sctx->shader.vs.current);
}
}
if (GFX_VERSION >= GFX9 && HAS_TESS)
sctx->vs_uses_base_instance = sctx->queued.named.hs->uses_base_instance;
else if (GFX_VERSION >= GFX9 && HAS_GS)
sctx->vs_uses_base_instance = sctx->shader.gs.current->uses_base_instance;
else
sctx->vs_uses_base_instance = sctx->shader.vs.current->uses_base_instance;
union si_vgt_stages_key key;
key.index = 0;
/* Update VGT_SHADER_STAGES_EN. */
if (HAS_TESS) {
key.u.tess = 1;
if (GFX_VERSION >= GFX10)
key.u.hs_wave32 = sctx->queued.named.hs->wave_size == 32;
}
if (HAS_GS)
key.u.gs = 1;
if (NGG) {
key.index |= si_get_vs_inline(sctx, HAS_TESS, HAS_GS)->current->ctx_reg.ngg.vgt_stages.index;
} else if (GFX_VERSION >= GFX10) {
if (HAS_GS) {
key.u.gs_wave32 = sctx->shader.gs.current->wave_size == 32;
key.u.vs_wave32 = sctx->shader.gs.current->gs_copy_shader->wave_size == 32;
} else {
key.u.vs_wave32 = si_get_vs_inline(sctx, HAS_TESS, HAS_GS)->current->wave_size == 32;
}
}
struct si_pm4_state **pm4 = &sctx->vgt_shader_config[key.index];
if (unlikely(!*pm4))
*pm4 = si_build_vgt_shader_config(sctx->screen, key);
si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
if (old_pa_cl_vs_out_cntl !=
si_get_vs_inline(sctx, HAS_TESS, HAS_GS)->current->pa_cl_vs_out_cntl)
si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
r = si_shader_select(ctx, &sctx->shader.ps);
if (r)
return false;
si_pm4_bind_state(sctx, ps, sctx->shader.ps.current);
unsigned db_shader_control = sctx->shader.ps.current->ctx_reg.ps.db_shader_control;
if (sctx->ps_db_shader_control != db_shader_control) {
sctx->ps_db_shader_control = db_shader_control;
si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
if (sctx->screen->dpbb_allowed)
si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
}
if (si_pm4_state_changed(sctx, ps) ||
(!NGG && si_pm4_state_changed(sctx, vs)) ||
(NGG && si_pm4_state_changed(sctx, gs))) {
sctx->atoms.s.spi_map.emit = sctx->emit_spi_map[sctx->shader.ps.current->ctx_reg.ps.num_interp];
si_mark_atom_dirty(sctx, &sctx->atoms.s.spi_map);
}
if ((GFX_VERSION >= GFX10_3 || (GFX_VERSION >= GFX9 && sctx->screen->info.rbplus_allowed)) &&
si_pm4_state_changed(sctx, ps) &&
(!old_ps || old_spi_shader_col_format !=
sctx->shader.ps.current->key.ps.part.epilog.spi_shader_col_format))
si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
if (sctx->smoothing_enabled !=
sctx->shader.ps.current->key.ps.mono.poly_line_smoothing) {
sctx->smoothing_enabled = sctx->shader.ps.current->key.ps.mono.poly_line_smoothing;
si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
/* NGG cull state uses smoothing_enabled. */
if (GFX_VERSION >= GFX10 && sctx->screen->use_ngg_culling)
si_mark_atom_dirty(sctx, &sctx->atoms.s.ngg_cull_state);
if (GFX_VERSION == GFX6)
si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
if (sctx->framebuffer.nr_samples <= 1)
si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_sample_locs);
}
if (unlikely(sctx->screen->debug_flags & DBG(SQTT) && sctx->thread_trace)) {
/* Pretend the bound shaders form a vk pipeline */
uint32_t pipeline_code_hash = 0;
uint64_t base_address = ~0;
for (int i = 0; i < SI_NUM_GRAPHICS_SHADERS; i++) {
struct si_shader *shader = sctx->shaders[i].current;
if (sctx->shaders[i].cso && shader) {
pipeline_code_hash = _mesa_hash_data_with_seed(
shader->binary.elf_buffer,
shader->binary.elf_size,
pipeline_code_hash);
base_address = MIN2(base_address,
shader->bo->gpu_address);
}
}
struct ac_thread_trace_data *thread_trace_data = sctx->thread_trace;
if (!si_sqtt_pipeline_is_registered(thread_trace_data, pipeline_code_hash)) {
si_sqtt_register_pipeline(sctx, pipeline_code_hash, base_address, false);
}
si_sqtt_describe_pipeline_bind(sctx, pipeline_code_hash, 0);
}
if ((GFX_VERSION <= GFX8 &&
(si_pm4_state_enabled_and_changed(sctx, ls) || si_pm4_state_enabled_and_changed(sctx, es))) ||
si_pm4_state_enabled_and_changed(sctx, hs) || si_pm4_state_enabled_and_changed(sctx, gs) ||
si_pm4_state_enabled_and_changed(sctx, vs) || si_pm4_state_enabled_and_changed(sctx, ps)) {
unsigned scratch_size = 0;
if (HAS_TESS) {
if (GFX_VERSION <= GFX8) /* LS */
scratch_size = MAX2(scratch_size, sctx->shader.vs.current->config.scratch_bytes_per_wave);
scratch_size = MAX2(scratch_size, sctx->queued.named.hs->config.scratch_bytes_per_wave);
if (HAS_GS) {
if (GFX_VERSION <= GFX8) /* ES */
scratch_size = MAX2(scratch_size, sctx->shader.tes.current->config.scratch_bytes_per_wave);
scratch_size = MAX2(scratch_size, sctx->shader.gs.current->config.scratch_bytes_per_wave);
} else {
scratch_size = MAX2(scratch_size, sctx->shader.tes.current->config.scratch_bytes_per_wave);
}
} else if (HAS_GS) {
if (GFX_VERSION <= GFX8) /* ES */
scratch_size = MAX2(scratch_size, sctx->shader.vs.current->config.scratch_bytes_per_wave);
scratch_size = MAX2(scratch_size, sctx->shader.gs.current->config.scratch_bytes_per_wave);
} else {
scratch_size = MAX2(scratch_size, sctx->shader.vs.current->config.scratch_bytes_per_wave);
}
scratch_size = MAX2(scratch_size, sctx->shader.ps.current->config.scratch_bytes_per_wave);
if (scratch_size && !si_update_spi_tmpring_size(sctx, scratch_size))
return false;
if (GFX_VERSION >= GFX7) {
if (GFX_VERSION <= GFX8 && HAS_TESS && si_pm4_state_enabled_and_changed(sctx, ls))
sctx->prefetch_L2_mask |= SI_PREFETCH_LS;
if (HAS_TESS && si_pm4_state_enabled_and_changed(sctx, hs))
sctx->prefetch_L2_mask |= SI_PREFETCH_HS;
if (GFX_VERSION <= GFX8 && HAS_GS && si_pm4_state_enabled_and_changed(sctx, es))
sctx->prefetch_L2_mask |= SI_PREFETCH_ES;
if ((HAS_GS || NGG) && si_pm4_state_enabled_and_changed(sctx, gs))
sctx->prefetch_L2_mask |= SI_PREFETCH_GS;
if (!NGG && si_pm4_state_enabled_and_changed(sctx, vs))
sctx->prefetch_L2_mask |= SI_PREFETCH_VS;
if (si_pm4_state_enabled_and_changed(sctx, ps))
sctx->prefetch_L2_mask |= SI_PREFETCH_PS;
}
}
sctx->do_update_shaders = false;
return true;
}
ALWAYS_INLINE
static unsigned si_conv_pipe_prim(unsigned mode)
{
static const unsigned prim_conv[] = {
[PIPE_PRIM_POINTS] = V_008958_DI_PT_POINTLIST,
[PIPE_PRIM_LINES] = V_008958_DI_PT_LINELIST,
[PIPE_PRIM_LINE_LOOP] = V_008958_DI_PT_LINELOOP,
[PIPE_PRIM_LINE_STRIP] = V_008958_DI_PT_LINESTRIP,
[PIPE_PRIM_TRIANGLES] = V_008958_DI_PT_TRILIST,
[PIPE_PRIM_TRIANGLE_STRIP] = V_008958_DI_PT_TRISTRIP,
[PIPE_PRIM_TRIANGLE_FAN] = V_008958_DI_PT_TRIFAN,
[PIPE_PRIM_QUADS] = V_008958_DI_PT_QUADLIST,
[PIPE_PRIM_QUAD_STRIP] = V_008958_DI_PT_QUADSTRIP,
[PIPE_PRIM_POLYGON] = V_008958_DI_PT_POLYGON,
[PIPE_PRIM_LINES_ADJACENCY] = V_008958_DI_PT_LINELIST_ADJ,
[PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_008958_DI_PT_LINESTRIP_ADJ,
[PIPE_PRIM_TRIANGLES_ADJACENCY] = V_008958_DI_PT_TRILIST_ADJ,
[PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_008958_DI_PT_TRISTRIP_ADJ,
[PIPE_PRIM_PATCHES] = V_008958_DI_PT_PATCH,
[SI_PRIM_RECTANGLE_LIST] = V_008958_DI_PT_RECTLIST};
assert(mode < ARRAY_SIZE(prim_conv));
return prim_conv[mode];
}
template<amd_gfx_level GFX_VERSION>
static void si_cp_dma_prefetch_inline(struct si_context *sctx, struct pipe_resource *buf,
unsigned offset, unsigned size)
{
uint64_t address = si_resource(buf)->gpu_address + offset;
assert(GFX_VERSION >= GFX7);
if (GFX_VERSION >= GFX11)
size = MIN2(size, 32768 - SI_CPDMA_ALIGNMENT);
/* The prefetch address and size must be aligned, so that we don't have to apply
* the complicated hw bug workaround.
*
* The size should also be less than 2 MB, so that we don't have to use a loop.
* Callers shouldn't need to prefetch more than 2 MB.
*/
assert(size % SI_CPDMA_ALIGNMENT == 0);
assert(address % SI_CPDMA_ALIGNMENT == 0);
assert(size < S_415_BYTE_COUNT_GFX6(~0u));
uint32_t header = S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
uint32_t command = S_415_BYTE_COUNT_GFX6(size);
if (GFX_VERSION >= GFX9) {
command |= S_415_DISABLE_WR_CONFIRM_GFX9(1);
header |= S_411_DST_SEL(V_411_NOWHERE);
} else {
command |= S_415_DISABLE_WR_CONFIRM_GFX6(1);
header |= S_411_DST_SEL(V_411_DST_ADDR_TC_L2);
}
struct radeon_cmdbuf *cs = &sctx->gfx_cs;
radeon_begin(cs);
radeon_emit(PKT3(PKT3_DMA_DATA, 5, 0));
radeon_emit(header);
radeon_emit(address); /* SRC_ADDR_LO [31:0] */
radeon_emit(address >> 32); /* SRC_ADDR_HI [31:0] */
radeon_emit(address); /* DST_ADDR_LO [31:0] */
radeon_emit(address >> 32); /* DST_ADDR_HI [31:0] */
radeon_emit(command);
radeon_end();
}
#if GFX_VER == 6 /* declare this function only once because it handles all chips. */
void si_cp_dma_prefetch(struct si_context *sctx, struct pipe_resource *buf,
unsigned offset, unsigned size)
{
switch (sctx->gfx_level) {
case GFX7:
si_cp_dma_prefetch_inline<GFX7>(sctx, buf, offset, size);
break;
case GFX8:
si_cp_dma_prefetch_inline<GFX8>(sctx, buf, offset, size);
break;
case GFX9:
si_cp_dma_prefetch_inline<GFX9>(sctx, buf, offset, size);
break;
case GFX10:
si_cp_dma_prefetch_inline<GFX10>(sctx, buf, offset, size);
break;
case GFX10_3:
si_cp_dma_prefetch_inline<GFX10_3>(sctx, buf, offset, size);
break;
case GFX11:
si_cp_dma_prefetch_inline<GFX11>(sctx, buf, offset, size);
break;
default:
break;
}
}
#endif
template<amd_gfx_level GFX_VERSION>
static void si_prefetch_shader_async(struct si_context *sctx, struct si_shader *shader)
{
struct pipe_resource *bo = &shader->bo->b.b;
si_cp_dma_prefetch_inline<GFX_VERSION>(sctx, bo, 0, bo->width0);
}
enum si_L2_prefetch_mode {
PREFETCH_BEFORE_DRAW = 1,
PREFETCH_AFTER_DRAW,
PREFETCH_ALL,
};
/**
* Prefetch shaders.
*/
template<amd_gfx_level GFX_VERSION, si_has_tess HAS_TESS, si_has_gs HAS_GS, si_has_ngg NGG,
si_L2_prefetch_mode mode>
static void si_prefetch_shaders(struct si_context *sctx)
{
unsigned mask = sctx->prefetch_L2_mask;
/* GFX6 doesn't support the L2 prefetch. */
if (GFX_VERSION < GFX7 || !mask)
return;
/* Prefetch shaders and VBO descriptors to TC L2. */
if (GFX_VERSION >= GFX11) {
if (HAS_TESS) {
if (mode != PREFETCH_AFTER_DRAW) {
if (mask & SI_PREFETCH_HS)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.hs);
if (mode == PREFETCH_BEFORE_DRAW)
return;
}
if (mask & SI_PREFETCH_GS)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.gs);
} else if (mode != PREFETCH_AFTER_DRAW) {
if (mask & SI_PREFETCH_GS)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.gs);
if (mode == PREFETCH_BEFORE_DRAW)
return;
}
} else if (GFX_VERSION >= GFX9) {
if (HAS_TESS) {
if (mode != PREFETCH_AFTER_DRAW) {
if (mask & SI_PREFETCH_HS)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.hs);
if (mode == PREFETCH_BEFORE_DRAW)
return;
}
if ((HAS_GS || NGG) && mask & SI_PREFETCH_GS)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.gs);
if (!NGG && mask & SI_PREFETCH_VS)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.vs);
} else if (HAS_GS || NGG) {
if (mode != PREFETCH_AFTER_DRAW) {
if (mask & SI_PREFETCH_GS)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.gs);
if (mode == PREFETCH_BEFORE_DRAW)
return;
}
if (!NGG && mask & SI_PREFETCH_VS)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.vs);
} else {
if (mode != PREFETCH_AFTER_DRAW) {
if (mask & SI_PREFETCH_VS)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.vs);
if (mode == PREFETCH_BEFORE_DRAW)
return;
}
}
} else {
/* GFX6-GFX8 */
/* Choose the right spot for the VBO prefetch. */
if (HAS_TESS) {
if (mode != PREFETCH_AFTER_DRAW) {
if (mask & SI_PREFETCH_LS)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.ls);
if (mode == PREFETCH_BEFORE_DRAW)
return;
}
if (mask & SI_PREFETCH_HS)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.hs);
if (mask & SI_PREFETCH_ES)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.es);
if (mask & SI_PREFETCH_GS)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.gs);
if (mask & SI_PREFETCH_VS)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.vs);
} else if (HAS_GS) {
if (mode != PREFETCH_AFTER_DRAW) {
if (mask & SI_PREFETCH_ES)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.es);
if (mode == PREFETCH_BEFORE_DRAW)
return;
}
if (mask & SI_PREFETCH_GS)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.gs);
if (mask & SI_PREFETCH_VS)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.vs);
} else {
if (mode != PREFETCH_AFTER_DRAW) {
if (mask & SI_PREFETCH_VS)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.vs);
if (mode == PREFETCH_BEFORE_DRAW)
return;
}
}
}
if (mask & SI_PREFETCH_PS)
si_prefetch_shader_async<GFX_VERSION>(sctx, sctx->queued.named.ps);
/* This must be cleared only when AFTER_DRAW is true. */
sctx->prefetch_L2_mask = 0;
}
/**
* This calculates the LDS size for tessellation shaders (VS, TCS, TES).
* LS.LDS_SIZE is shared by all 3 shader stages.
*
* The information about LDS and other non-compile-time parameters is then
* written to userdata SGPRs.
*/
static void si_emit_derived_tess_state(struct si_context *sctx, unsigned *num_patches)
{
struct si_shader *ls_current;
struct si_shader_selector *ls;
struct si_shader_selector *tcs = sctx->shader.tcs.cso;
unsigned tess_uses_primid = sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id;
bool has_primid_instancing_bug = sctx->gfx_level == GFX6 && sctx->screen->info.max_se == 1;
unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL];
uint8_t num_tcs_input_cp = sctx->patch_vertices;
/* Since GFX9 has merged LS-HS in the TCS state, set LS = TCS. */
if (sctx->gfx_level >= GFX9) {
ls_current = sctx->shader.tcs.current;
ls = ls_current->key.ge.part.tcs.ls;
} else {
ls_current = sctx->shader.vs.current;
ls = sctx->shader.vs.cso;
}
if (sctx->last_ls == ls_current && sctx->last_tcs == tcs &&
sctx->last_tes_sh_base == tes_sh_base && sctx->last_num_tcs_input_cp == num_tcs_input_cp &&
(!has_primid_instancing_bug || (sctx->last_tess_uses_primid == tess_uses_primid))) {
*num_patches = sctx->last_num_patches;
return;
}
sctx->last_ls = ls_current;
sctx->last_tcs = tcs;
sctx->last_tes_sh_base = tes_sh_base;
sctx->last_num_tcs_input_cp = num_tcs_input_cp;
sctx->last_tess_uses_primid = tess_uses_primid;
/* This calculates how shader inputs and outputs among VS, TCS, and TES
* are laid out in LDS. */
unsigned num_tcs_outputs = util_last_bit64(tcs->info.outputs_written);
unsigned num_tcs_output_cp = tcs->info.base.tess.tcs_vertices_out;
unsigned num_tcs_patch_outputs = util_last_bit64(tcs->info.patch_outputs_written);
unsigned input_vertex_size = ls->info.lshs_vertex_stride;
unsigned output_vertex_size = num_tcs_outputs * 16;
unsigned input_patch_size;
/* Allocate LDS for TCS inputs only if it's used. */
if (!ls_current->key.ge.opt.same_patch_vertices ||
tcs->info.base.inputs_read & ~tcs->info.tcs_vgpr_only_inputs)
input_patch_size = num_tcs_input_cp * input_vertex_size;
else
input_patch_size = 0;
unsigned pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
unsigned output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
unsigned lds_per_patch;
/* Compute the LDS size per patch.
*
* LDS is used to store TCS outputs if they are read, and to store tess
* factors if they are not defined in all invocations.
*/
if (tcs->info.base.outputs_read ||
tcs->info.base.patch_outputs_read ||
!tcs->info.tessfactors_are_def_in_all_invocs) {
lds_per_patch = input_patch_size + output_patch_size;
} else {
/* LDS will only store TCS inputs. The offchip buffer will only store TCS outputs. */
lds_per_patch = MAX2(input_patch_size, output_patch_size);
}
/* Ensure that we only need 4 waves per CU, so that we don't need to check
* resource usage (such as whether we have enough VGPRs to fit the whole
* threadgroup into the CU). It also ensures that the number of tcs in and out
* vertices per threadgroup are at most 256, which is the hw limit.
*/
unsigned max_verts_per_patch = MAX2(num_tcs_input_cp, num_tcs_output_cp);
*num_patches = 256 / max_verts_per_patch;
/* Not necessary for correctness, but higher numbers are slower.
* The hardware can do more, but the radeonsi shader constant is
* limited to 6 bits.
*/
*num_patches = MIN2(*num_patches, 64); /* e.g. 64 triangles in exactly 3 waves */
/* When distributed tessellation is unsupported, switch between SEs
* at a higher frequency to manually balance the workload between SEs.
*/
if (!sctx->screen->info.has_distributed_tess && sctx->screen->info.max_se > 1)
*num_patches = MIN2(*num_patches, 16); /* recommended */
/* Make sure the output data fits in the offchip buffer */
*num_patches =
MIN2(*num_patches, (sctx->screen->hs.tess_offchip_block_dw_size * 4) / output_patch_size);
/* Make sure that the data fits in LDS. This assumes the shaders only
* use LDS for the inputs and outputs.
*
* The maximum allowed LDS size is 32K. Higher numbers can hang.
* Use 16K as the maximum, so that we can fit 2 workgroups on the same CU.
*/
ASSERTED unsigned max_lds_size = 32 * 1024; /* hw limit */
unsigned target_lds_size = 16 * 1024; /* target at least 2 workgroups per CU, 16K each */
*num_patches = MIN2(*num_patches, target_lds_size / lds_per_patch);
*num_patches = MAX2(*num_patches, 1);
assert(*num_patches * lds_per_patch <= max_lds_size);
/* Make sure that vector lanes are fully occupied by cutting off the last wave
* if it's only partially filled.
*/
unsigned temp_verts_per_tg = *num_patches * max_verts_per_patch;
unsigned wave_size = ls_current->wave_size;
if (temp_verts_per_tg > wave_size &&
(wave_size - temp_verts_per_tg % wave_size >= MAX2(max_verts_per_patch, 8)))
*num_patches = (temp_verts_per_tg & ~(wave_size - 1)) / max_verts_per_patch;
if (sctx->gfx_level == GFX6) {
/* GFX6 bug workaround, related to power management. Limit LS-HS
* threadgroups to only one wave.
*/
unsigned one_wave = wave_size / max_verts_per_patch;
*num_patches = MIN2(*num_patches, one_wave);
}
/* The VGT HS block increments the patch ID unconditionally
* within a single threadgroup. This results in incorrect
* patch IDs when instanced draws are used.
*
* The intended solution is to restrict threadgroups to
* a single instance by setting SWITCH_ON_EOI, which
* should cause IA to split instances up. However, this
* doesn't work correctly on GFX6 when there is no other
* SE to switch to.
*/
if (has_primid_instancing_bug && tess_uses_primid)
*num_patches = 1;
sctx->last_num_patches = *num_patches;
unsigned output_patch0_offset = input_patch_size * *num_patches;
unsigned perpatch_output_offset = output_patch0_offset + pervertex_output_patch_size;
/* Compute userdata SGPRs. */
assert(((input_vertex_size / 4) & ~0xff) == 0);
assert(((output_vertex_size / 4) & ~0xff) == 0);
assert(((input_patch_size / 4) & ~0x1fff) == 0);
assert(((output_patch_size / 4) & ~0x1fff) == 0);
assert(((output_patch0_offset / 16) & ~0xffff) == 0);
assert(((perpatch_output_offset / 16) & ~0xffff) == 0);
assert(num_tcs_input_cp <= 32);
assert(num_tcs_output_cp <= 32);
assert(*num_patches <= 64);
assert(((pervertex_output_patch_size * *num_patches) & ~0x1fffff) == 0);
uint64_t ring_va = (unlikely(sctx->ws->cs_is_secure(&sctx->gfx_cs)) ?
si_resource(sctx->tess_rings_tmz) : si_resource(sctx->tess_rings))->gpu_address;
assert((ring_va & u_bit_consecutive(0, 19)) == 0);
unsigned tcs_out_layout = (output_patch_size / 4) | (num_tcs_input_cp << 13) | ring_va;
unsigned tcs_out_offsets = (output_patch0_offset / 16) | ((perpatch_output_offset / 16) << 16);
unsigned offchip_layout =
(*num_patches - 1) | ((num_tcs_output_cp - 1) << 6) |
((pervertex_output_patch_size * *num_patches) << 11);
/* Compute the LDS size. */
unsigned lds_size = lds_per_patch * *num_patches;
if (sctx->gfx_level >= GFX7) {
assert(lds_size <= 65536);
lds_size = align(lds_size, 512) / 512;
} else {
assert(lds_size <= 32768);
lds_size = align(lds_size, 256) / 256;
}
/* Set SI_SGPR_VS_STATE_BITS. */
SET_FIELD(sctx->current_vs_state, VS_STATE_LS_OUT_PATCH_SIZE, input_patch_size / 4);
SET_FIELD(sctx->current_vs_state, VS_STATE_LS_OUT_VERTEX_SIZE, input_vertex_size / 4);
/* We should be able to support in-shader LDS use with LLVM >= 9
* by just adding the lds_sizes together, but it has never
* been tested. */
assert(ls_current->config.lds_size == 0);
struct radeon_cmdbuf *cs = &sctx->gfx_cs;
radeon_begin(cs);
if (sctx->gfx_level >= GFX9) {
unsigned hs_rsrc2 = ls_current->config.rsrc2;
if (sctx->gfx_level >= GFX10)
hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX10(lds_size);
else
hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX9(lds_size);
radeon_set_sh_reg(R_00B42C_SPI_SHADER_PGM_RSRC2_HS, hs_rsrc2);
/* Set userdata SGPRs for merged LS-HS. */
radeon_set_sh_reg_seq(
R_00B430_SPI_SHADER_USER_DATA_LS_0 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4, 3);
radeon_emit(offchip_layout);
radeon_emit(tcs_out_offsets);
radeon_emit(tcs_out_layout);
} else {
unsigned ls_rsrc2 = ls_current->config.rsrc2;
si_multiwave_lds_size_workaround(sctx->screen, &lds_size);
ls_rsrc2 |= S_00B52C_LDS_SIZE(lds_size);
/* Due to a hw bug, RSRC2_LS must be written twice with another
* LS register written in between. */
if (sctx->gfx_level == GFX7 && sctx->family != CHIP_HAWAII)
radeon_set_sh_reg(R_00B52C_SPI_SHADER_PGM_RSRC2_LS, ls_rsrc2);
radeon_set_sh_reg_seq(R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2);
radeon_emit(ls_current->config.rsrc1);
radeon_emit(ls_rsrc2);
/* Set userdata SGPRs for TCS. */
radeon_set_sh_reg_seq(
R_00B430_SPI_SHADER_USER_DATA_HS_0 + GFX6_SGPR_TCS_OFFCHIP_LAYOUT * 4, 4);
radeon_emit(offchip_layout);
radeon_emit(tcs_out_offsets);
radeon_emit(tcs_out_layout);
radeon_emit(sctx->current_vs_state);
}
/* Set userdata SGPRs for TES. */
radeon_set_sh_reg_seq(tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4, 2);
radeon_emit(offchip_layout);
radeon_emit(ring_va);
radeon_end();
unsigned ls_hs_config =
S_028B58_NUM_PATCHES(*num_patches) |
S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) |
S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
if (sctx->last_ls_hs_config != ls_hs_config) {
radeon_begin(cs);
if (sctx->gfx_level >= GFX7) {
radeon_set_context_reg_idx(R_028B58_VGT_LS_HS_CONFIG, 2, ls_hs_config);
} else {
radeon_set_context_reg(R_028B58_VGT_LS_HS_CONFIG, ls_hs_config);
}
radeon_end_update_context_roll(sctx);
sctx->last_ls_hs_config = ls_hs_config;
}
}
static unsigned si_num_prims_for_vertices(enum pipe_prim_type prim,
unsigned count, unsigned vertices_per_patch)
{
switch (prim) {
case PIPE_PRIM_PATCHES:
return count / vertices_per_patch;
case PIPE_PRIM_POLYGON:
/* It's a triangle fan with different edge flags. */
return count >= 3 ? count - 2 : 0;
case SI_PRIM_RECTANGLE_LIST:
return count / 3;
default:
return u_decomposed_prims_for_vertices(prim, count);
}
}
static unsigned si_get_init_multi_vgt_param(struct si_screen *sscreen, union si_vgt_param_key *key)
{
STATIC_ASSERT(sizeof(union si_vgt_param_key) == 2);
unsigned max_primgroup_in_wave = 2;
/* SWITCH_ON_EOP(0) is always preferable. */
bool wd_switch_on_eop = false;
bool ia_switch_on_eop = false;
bool ia_switch_on_eoi = false;
bool partial_vs_wave = false;
bool partial_es_wave = false;
if (key->u.uses_tess) {
/* SWITCH_ON_EOI must be set if PrimID is used. */
if (key->u.tess_uses_prim_id)
ia_switch_on_eoi = true;
/* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
if ((sscreen->info.family == CHIP_TAHITI || sscreen->info.family == CHIP_PITCAIRN ||
sscreen->info.family == CHIP_BONAIRE) &&
key->u.uses_gs)
partial_vs_wave = true;
/* Needed for 028B6C_DISTRIBUTION_MODE != 0. (implies >= GFX8) */
if (sscreen->info.has_distributed_tess) {
if (key->u.uses_gs) {
if (sscreen->info.gfx_level == GFX8)
partial_es_wave = true;
} else {
partial_vs_wave = true;
}
}
}
/* This is a hardware requirement. */
if (key->u.line_stipple_enabled || (sscreen->debug_flags & DBG(SWITCH_ON_EOP))) {
ia_switch_on_eop = true;
wd_switch_on_eop = true;
}
if (sscreen->info.gfx_level >= GFX7) {
/* WD_SWITCH_ON_EOP has no effect on GPUs with less than
* 4 shader engines. Set 1 to pass the assertion below.
* The other cases are hardware requirements.
*
* Polaris supports primitive restart with WD_SWITCH_ON_EOP=0
* for points, line strips, and tri strips.
*/
if (sscreen->info.max_se <= 2 || key->u.prim == PIPE_PRIM_POLYGON ||
key->u.prim == PIPE_PRIM_LINE_LOOP || key->u.prim == PIPE_PRIM_TRIANGLE_FAN ||
key->u.prim == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY ||
(key->u.primitive_restart &&
(sscreen->info.family < CHIP_POLARIS10 ||
(key->u.prim != PIPE_PRIM_POINTS && key->u.prim != PIPE_PRIM_LINE_STRIP &&
key->u.prim != PIPE_PRIM_TRIANGLE_STRIP))) ||
key->u.count_from_stream_output)
wd_switch_on_eop = true;
/* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
* We don't know that for indirect drawing, so treat it as
* always problematic. */
if (sscreen->info.family == CHIP_HAWAII && key->u.uses_instancing)
wd_switch_on_eop = true;
/* Performance recommendation for 4 SE Gfx7-8 parts if
* instances are smaller than a primgroup.
* Assume indirect draws always use small instances.
* This is needed for good VS wave utilization.
*/
if (sscreen->info.gfx_level <= GFX8 && sscreen->info.max_se == 4 &&
key->u.multi_instances_smaller_than_primgroup)
wd_switch_on_eop = true;
/* Required on GFX7 and later. */
if (sscreen->info.max_se == 4 && !wd_switch_on_eop)
ia_switch_on_eoi = true;
/* HW engineers suggested that PARTIAL_VS_WAVE_ON should be set
* to work around a GS hang.
*/
if (key->u.uses_gs &&
(sscreen->info.family == CHIP_TONGA || sscreen->info.family == CHIP_FIJI ||
sscreen->info.family == CHIP_POLARIS10 || sscreen->info.family == CHIP_POLARIS11 ||
sscreen->info.family == CHIP_POLARIS12 || sscreen->info.family == CHIP_VEGAM))
partial_vs_wave = true;
/* Required by Hawaii and, for some special cases, by GFX8. */
if (ia_switch_on_eoi &&
(sscreen->info.family == CHIP_HAWAII ||
(sscreen->info.gfx_level == GFX8 && (key->u.uses_gs || max_primgroup_in_wave != 2))))
partial_vs_wave = true;
/* Instancing bug on Bonaire. */
if (sscreen->info.family == CHIP_BONAIRE && ia_switch_on_eoi && key->u.uses_instancing)
partial_vs_wave = true;
/* This only applies to Polaris10 and later 4 SE chips.
* wd_switch_on_eop is already true on all other chips.
*/
if (!wd_switch_on_eop && key->u.primitive_restart)
partial_vs_wave = true;
/* If the WD switch is false, the IA switch must be false too. */
assert(wd_switch_on_eop || !ia_switch_on_eop);
}
/* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
if (sscreen->info.gfx_level <= GFX8 && ia_switch_on_eoi)
partial_es_wave = true;
return S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) | S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) |
S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
S_028AA8_WD_SWITCH_ON_EOP(sscreen->info.gfx_level >= GFX7 ? wd_switch_on_eop : 0) |
/* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
S_028AA8_MAX_PRIMGRP_IN_WAVE(sscreen->info.gfx_level == GFX8 ? max_primgroup_in_wave
: 0) |
S_030960_EN_INST_OPT_BASIC(sscreen->info.gfx_level >= GFX9) |
S_030960_EN_INST_OPT_ADV(sscreen->info.gfx_level >= GFX9);
}
static void si_init_ia_multi_vgt_param_table(struct si_context *sctx)
{
for (int prim = 0; prim <= SI_PRIM_RECTANGLE_LIST; prim++)
for (int uses_instancing = 0; uses_instancing < 2; uses_instancing++)
for (int multi_instances = 0; multi_instances < 2; multi_instances++)
for (int primitive_restart = 0; primitive_restart < 2; primitive_restart++)
for (int count_from_so = 0; count_from_so < 2; count_from_so++)
for (int line_stipple = 0; line_stipple < 2; line_stipple++)
for (int uses_tess = 0; uses_tess < 2; uses_tess++)
for (int tess_uses_primid = 0; tess_uses_primid < 2; tess_uses_primid++)
for (int uses_gs = 0; uses_gs < 2; uses_gs++) {
union si_vgt_param_key key;
key.index = 0;
key.u.prim = prim;
key.u.uses_instancing = uses_instancing;
key.u.multi_instances_smaller_than_primgroup = multi_instances;
key.u.primitive_restart = primitive_restart;
key.u.count_from_stream_output = count_from_so;
key.u.line_stipple_enabled = line_stipple;
key.u.uses_tess = uses_tess;
key.u.tess_uses_prim_id = tess_uses_primid;
key.u.uses_gs = uses_gs;
sctx->ia_multi_vgt_param[key.index] =
si_get_init_multi_vgt_param(sctx->screen, &key);
}
}
static bool si_is_line_stipple_enabled(struct si_context *sctx)
{
struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
return rs->line_stipple_enable && sctx->current_rast_prim != PIPE_PRIM_POINTS &&
(rs->polygon_mode_is_lines || util_prim_is_lines(sctx->current_rast_prim));
}
enum si_is_draw_vertex_state {
DRAW_VERTEX_STATE_OFF,
DRAW_VERTEX_STATE_ON,
};
template <si_is_draw_vertex_state IS_DRAW_VERTEX_STATE> ALWAYS_INLINE
static bool num_instanced_prims_less_than(const struct pipe_draw_indirect_info *indirect,
enum pipe_prim_type prim,
unsigned min_vertex_count,
unsigned instance_count,
unsigned num_prims,
ubyte vertices_per_patch)
{
if (IS_DRAW_VERTEX_STATE)
return 0;
if (indirect) {
return indirect->buffer ||
(instance_count > 1 && indirect->count_from_stream_output);
} else {
return instance_count > 1 &&
si_num_prims_for_vertices(prim, min_vertex_count, vertices_per_patch) < num_prims;
}
}
template <amd_gfx_level GFX_VERSION, si_has_tess HAS_TESS, si_has_gs HAS_GS,
si_is_draw_vertex_state IS_DRAW_VERTEX_STATE> ALWAYS_INLINE
static unsigned si_get_ia_multi_vgt_param(struct si_context *sctx,
const struct pipe_draw_indirect_info *indirect,
enum pipe_prim_type prim, unsigned num_patches,
unsigned instance_count, bool primitive_restart,
unsigned min_vertex_count)
{
union si_vgt_param_key key = sctx->ia_multi_vgt_param_key;
unsigned primgroup_size;
unsigned ia_multi_vgt_param;
if (HAS_TESS) {
primgroup_size = num_patches; /* must be a multiple of NUM_PATCHES */
} else if (HAS_GS) {
primgroup_size = 64; /* recommended with a GS */
} else {
primgroup_size = 128; /* recommended without a GS and tess */
}
key.u.prim = prim;
key.u.uses_instancing = !IS_DRAW_VERTEX_STATE &&
((indirect && indirect->buffer) || instance_count > 1);
key.u.multi_instances_smaller_than_primgroup =
num_instanced_prims_less_than<IS_DRAW_VERTEX_STATE>(indirect, prim, min_vertex_count,
instance_count, primgroup_size,
sctx->patch_vertices);
key.u.primitive_restart = !IS_DRAW_VERTEX_STATE && primitive_restart;
key.u.count_from_stream_output = !IS_DRAW_VERTEX_STATE && indirect &&
indirect->count_from_stream_output;
key.u.line_stipple_enabled = si_is_line_stipple_enabled(sctx);
ia_multi_vgt_param =
sctx->ia_multi_vgt_param[key.index] | S_028AA8_PRIMGROUP_SIZE(primgroup_size - 1);
if (HAS_GS) {
/* GS requirement. */
if (GFX_VERSION <= GFX8 &&
SI_GS_PER_ES / primgroup_size >= sctx->screen->gs_table_depth - 3)
ia_multi_vgt_param |= S_028AA8_PARTIAL_ES_WAVE_ON(1);
/* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
* The hw doc says all multi-SE chips are affected, but Vulkan
* only applies it to Hawaii. Do what Vulkan does.
*/
if (GFX_VERSION == GFX7 &&
sctx->family == CHIP_HAWAII && G_028AA8_SWITCH_ON_EOI(ia_multi_vgt_param) &&
num_instanced_prims_less_than<IS_DRAW_VERTEX_STATE>(indirect, prim, min_vertex_count,
instance_count, 2, sctx->patch_vertices))
sctx->flags |= SI_CONTEXT_VGT_FLUSH;
}
return ia_multi_vgt_param;
}
ALWAYS_INLINE
static unsigned si_conv_prim_to_gs_out(unsigned mode)
{
static const int prim_conv[] = {
[PIPE_PRIM_POINTS] = V_028A6C_POINTLIST,
[PIPE_PRIM_LINES] = V_028A6C_LINESTRIP,
[PIPE_PRIM_LINE_LOOP] = V_028A6C_LINESTRIP,
[PIPE_PRIM_LINE_STRIP] = V_028A6C_LINESTRIP,
[PIPE_PRIM_TRIANGLES] = V_028A6C_TRISTRIP,
[PIPE_PRIM_TRIANGLE_STRIP] = V_028A6C_TRISTRIP,
[PIPE_PRIM_TRIANGLE_FAN] = V_028A6C_TRISTRIP,
[PIPE_PRIM_QUADS] = V_028A6C_TRISTRIP,
[PIPE_PRIM_QUAD_STRIP] = V_028A6C_TRISTRIP,
[PIPE_PRIM_POLYGON] = V_028A6C_TRISTRIP,
[PIPE_PRIM_LINES_ADJACENCY] = V_028A6C_LINESTRIP,
[PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_028A6C_LINESTRIP,
[PIPE_PRIM_TRIANGLES_ADJACENCY] = V_028A6C_TRISTRIP,
[PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_028A6C_TRISTRIP,
[PIPE_PRIM_PATCHES] = V_028A6C_POINTLIST,
[SI_PRIM_RECTANGLE_LIST] = V_028A6C_RECTLIST,
};
assert(mode < ARRAY_SIZE(prim_conv));
return prim_conv[mode];
}
/* rast_prim is the primitive type after GS. */
template<amd_gfx_level GFX_VERSION, si_has_tess HAS_TESS, si_has_gs HAS_GS, si_has_ngg NGG> ALWAYS_INLINE
static void si_emit_rasterizer_prim_state(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = &sctx->gfx_cs;
enum pipe_prim_type rast_prim = sctx->current_rast_prim;
struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
radeon_begin(cs);
if (unlikely(si_is_line_stipple_enabled(sctx))) {
/* For lines, reset the stipple pattern at each primitive. Otherwise,
* reset the stipple pattern at each packet (line strips, line loops).
*/
bool reset_per_prim = rast_prim == PIPE_PRIM_LINES ||
rast_prim == PIPE_PRIM_LINES_ADJACENCY;
/* 0 = no reset, 1 = reset per prim, 2 = reset per packet */
unsigned value =
rs->pa_sc_line_stipple | S_028A0C_AUTO_RESET_CNTL(reset_per_prim ? 1 : 2);
radeon_opt_set_context_reg(sctx, R_028A0C_PA_SC_LINE_STIPPLE, SI_TRACKED_PA_SC_LINE_STIPPLE,
value);
}
unsigned gs_out_prim = si_conv_prim_to_gs_out(rast_prim);
if (unlikely(gs_out_prim != sctx->last_gs_out_prim && (NGG || HAS_GS))) {
if (GFX_VERSION >= GFX11)
radeon_set_uconfig_reg(R_030998_VGT_GS_OUT_PRIM_TYPE, gs_out_prim);
else
radeon_set_context_reg(R_028A6C_VGT_GS_OUT_PRIM_TYPE, gs_out_prim);
sctx->last_gs_out_prim = gs_out_prim;
}
if (GFX_VERSION == GFX9)
radeon_end_update_context_roll(sctx);
else
radeon_end();
if (NGG) {
struct si_shader *hw_vs = si_get_vs_inline(sctx, HAS_TESS, HAS_GS)->current;
if (hw_vs->uses_vs_state_provoking_vertex) {
unsigned vtx_index = rs->flatshade_first ? 0 : gs_out_prim;
SET_FIELD(sctx->current_gs_state, GS_STATE_PROVOKING_VTX_INDEX, vtx_index);
}
if (hw_vs->uses_gs_state_outprim) {
SET_FIELD(sctx->current_gs_state, GS_STATE_OUTPRIM, gs_out_prim);
}
}
}
template <amd_gfx_level GFX_VERSION, si_has_tess HAS_TESS, si_has_gs HAS_GS, si_has_ngg NGG,
si_is_draw_vertex_state IS_DRAW_VERTEX_STATE> ALWAYS_INLINE
static void si_emit_vs_state(struct si_context *sctx, unsigned index_size)
{
if (!IS_DRAW_VERTEX_STATE && sctx->num_vs_blit_sgprs) {
/* Re-emit the state after we leave u_blitter. */
sctx->last_vs_state = ~0;
sctx->last_gs_state = ~0;
return;
}
unsigned vs_state = sctx->current_vs_state; /* all VS bits including LS bits */
unsigned gs_state = sctx->current_gs_state; /* only GS and NGG bits; VS bits will be copied here */
if (sctx->shader.vs.cso->info.uses_base_vertex && index_size)
vs_state |= ENCODE_FIELD(VS_STATE_INDEXED, 1);
/* Copy all state bits from vs_state to gs_state except the LS bits. */
gs_state |= vs_state &
CLEAR_FIELD(VS_STATE_LS_OUT_PATCH_SIZE) &
CLEAR_FIELD(VS_STATE_LS_OUT_VERTEX_SIZE);
if (vs_state != sctx->last_vs_state ||
((HAS_GS || NGG) && gs_state != sctx->last_gs_state)) {
struct radeon_cmdbuf *cs = &sctx->gfx_cs;
/* These are all constant expressions. */
unsigned vs_base = si_get_user_data_base(GFX_VERSION, HAS_TESS, HAS_GS, NGG,
PIPE_SHADER_VERTEX);
unsigned tes_base = si_get_user_data_base(GFX_VERSION, HAS_TESS, HAS_GS, NGG,
PIPE_SHADER_TESS_EVAL);
unsigned gs_base = si_get_user_data_base(GFX_VERSION, HAS_TESS, HAS_GS, NGG,
PIPE_SHADER_GEOMETRY);
unsigned gs_copy_base = R_00B130_SPI_SHADER_USER_DATA_VS_0;
radeon_begin(cs);
if (HAS_GS) {
radeon_set_sh_reg(vs_base + SI_SGPR_VS_STATE_BITS * 4, vs_state);
/* NGG always uses the state bits. Legacy GS uses the state bits only for the emulation
* of GS pipeline statistics on gfx10.x.
*/
if (NGG || (GFX_VERSION >= GFX10 && GFX_VERSION <= GFX10_3))
radeon_set_sh_reg(gs_base + SI_SGPR_VS_STATE_BITS * 4, gs_state);
/* The GS copy shader (for legacy GS) always uses the state bits. */
if (!NGG)
radeon_set_sh_reg(gs_copy_base + SI_SGPR_VS_STATE_BITS * 4, gs_state);
} else if (HAS_TESS) {
radeon_set_sh_reg(vs_base + SI_SGPR_VS_STATE_BITS * 4, vs_state);
radeon_set_sh_reg(tes_base + SI_SGPR_VS_STATE_BITS * 4, NGG ? gs_state : vs_state);
} else {
radeon_set_sh_reg(vs_base + SI_SGPR_VS_STATE_BITS * 4, NGG ? gs_state : vs_state);
}
radeon_end();
sctx->last_vs_state = vs_state;
if (HAS_GS || NGG)
sctx->last_gs_state = gs_state;
}
}
ALWAYS_INLINE
static bool si_prim_restart_index_changed(struct si_context *sctx, bool primitive_restart,
unsigned restart_index)
{
return primitive_restart && (restart_index != sctx->last_restart_index ||
sctx->last_restart_index == SI_RESTART_INDEX_UNKNOWN);
}
template <amd_gfx_level GFX_VERSION, si_has_tess HAS_TESS, si_has_gs HAS_GS,
si_is_draw_vertex_state IS_DRAW_VERTEX_STATE> ALWAYS_INLINE
static void si_emit_ia_multi_vgt_param(struct si_context *sctx,
const struct pipe_draw_indirect_info *indirect,
enum pipe_prim_type prim, unsigned num_patches,
unsigned instance_count, bool primitive_restart,
unsigned min_vertex_count)
{
struct radeon_cmdbuf *cs = &sctx->gfx_cs;
unsigned ia_multi_vgt_param;
ia_multi_vgt_param =
si_get_ia_multi_vgt_param<GFX_VERSION, HAS_TESS, HAS_GS, IS_DRAW_VERTEX_STATE>
(sctx, indirect, prim, num_patches, instance_count, primitive_restart,
min_vertex_count);
/* Draw state. */
if (ia_multi_vgt_param != sctx->last_multi_vgt_param ||
/* Workaround for SpecviewPerf13 Catia hang on GFX9. */
(GFX_VERSION == GFX9 && prim != sctx->last_prim)) {
radeon_begin(cs);
if (GFX_VERSION == GFX9)
radeon_set_uconfig_reg_idx(sctx->screen, GFX_VERSION,
R_030960_IA_MULTI_VGT_PARAM, 4, ia_multi_vgt_param);
else if (GFX_VERSION >= GFX7)
radeon_set_context_reg_idx(R_028AA8_IA_MULTI_VGT_PARAM, 1, ia_multi_vgt_param);
else
radeon_set_context_reg(R_028AA8_IA_MULTI_VGT_PARAM, ia_multi_vgt_param);
radeon_end();
sctx->last_multi_vgt_param = ia_multi_vgt_param;
}
}
/* GFX10 removed IA_MULTI_VGT_PARAM in exchange for GE_CNTL.
* We overload last_multi_vgt_param.
*/
template <amd_gfx_level GFX_VERSION, si_has_tess HAS_TESS, si_has_gs HAS_GS, si_has_ngg NGG> ALWAYS_INLINE
static void gfx10_emit_ge_cntl(struct si_context *sctx, unsigned num_patches)
{
union si_vgt_param_key key = sctx->ia_multi_vgt_param_key;
unsigned ge_cntl;
if (NGG) {
if (HAS_TESS) {
if (GFX_VERSION >= GFX11)
ge_cntl = S_03096C_PRIMS_PER_SUBGRP(num_patches) |
S_03096C_VERTS_PER_SUBGRP(0) |
S_03096C_BREAK_PRIMGRP_AT_EOI(key.u.tess_uses_prim_id) |
S_03096C_PRIM_GRP_SIZE_GFX11(256);
else
ge_cntl = S_03096C_PRIM_GRP_SIZE_GFX10(num_patches) |
S_03096C_VERT_GRP_SIZE(0) |
S_03096C_BREAK_WAVE_AT_EOI(key.u.tess_uses_prim_id);
} else {
ge_cntl = si_get_vs_inline(sctx, HAS_TESS, HAS_GS)->current->ge_cntl;
}
} else {
unsigned primgroup_size;
unsigned vertgroup_size;
assert(GFX_VERSION < GFX11);
if (HAS_TESS) {
primgroup_size = num_patches; /* must be a multiple of NUM_PATCHES */
vertgroup_size = 0;
} else if (HAS_GS) {
unsigned vgt_gs_onchip_cntl = sctx->shader.gs.current->ctx_reg.gs.vgt_gs_onchip_cntl;
primgroup_size = G_028A44_GS_PRIMS_PER_SUBGRP(vgt_gs_onchip_cntl);
vertgroup_size = G_028A44_ES_VERTS_PER_SUBGRP(vgt_gs_onchip_cntl);
} else {
primgroup_size = 128; /* recommended without a GS and tess */
vertgroup_size = 0;
}
ge_cntl = S_03096C_PRIM_GRP_SIZE_GFX10(primgroup_size) |
S_03096C_VERT_GRP_SIZE(vertgroup_size) |
S_03096C_BREAK_WAVE_AT_EOI(key.u.uses_tess && key.u.tess_uses_prim_id);
}
ge_cntl |= S_03096C_PACKET_TO_ONE_PA(si_is_line_stipple_enabled(sctx));
if (ge_cntl != sctx->last_multi_vgt_param) {
struct radeon_cmdbuf *cs = &sctx->gfx_cs;
radeon_begin(cs);
radeon_set_uconfig_reg(R_03096C_GE_CNTL, ge_cntl);
radeon_end();
sctx->last_multi_vgt_param = ge_cntl;
}
}
template <amd_gfx_level GFX_VERSION, si_has_tess HAS_TESS, si_has_gs HAS_GS, si_has_ngg NGG,
si_is_draw_vertex_state IS_DRAW_VERTEX_STATE> ALWAYS_INLINE
static void si_emit_draw_registers(struct si_context *sctx,
const struct pipe_draw_indirect_info *indirect,
enum pipe_prim_type prim, unsigned num_patches,
unsigned instance_count, bool primitive_restart,
unsigned restart_index, unsigned min_vertex_count)
{
struct radeon_cmdbuf *cs = &sctx->gfx_cs;
if (IS_DRAW_VERTEX_STATE)
primitive_restart = false;
if (GFX_VERSION >= GFX10)
gfx10_emit_ge_cntl<GFX_VERSION, HAS_TESS, HAS_GS, NGG>(sctx, num_patches);
else
si_emit_ia_multi_vgt_param<GFX_VERSION, HAS_TESS, HAS_GS, IS_DRAW_VERTEX_STATE>
(sctx, indirect, prim, num_patches, instance_count, primitive_restart,
min_vertex_count);
radeon_begin(cs);
if (prim != sctx->last_prim) {
unsigned vgt_prim = si_conv_pipe_prim(prim);
if (GFX_VERSION >= GFX10)
radeon_set_uconfig_reg(R_030908_VGT_PRIMITIVE_TYPE, vgt_prim);
else if (GFX_VERSION >= GFX7)
radeon_set_uconfig_reg_idx(sctx->screen, GFX_VERSION, R_030908_VGT_PRIMITIVE_TYPE, 1, vgt_prim);
else
radeon_set_config_reg(R_008958_VGT_PRIMITIVE_TYPE, vgt_prim);
sctx->last_prim = prim;
}
/* Primitive restart. */
if (primitive_restart != sctx->last_primitive_restart_en) {
if (GFX_VERSION >= GFX11)
radeon_set_uconfig_reg(R_03092C_GE_MULTI_PRIM_IB_RESET_EN, primitive_restart);
else if (GFX_VERSION >= GFX9)
radeon_set_uconfig_reg(R_03092C_VGT_MULTI_PRIM_IB_RESET_EN, primitive_restart);
else
radeon_set_context_reg(R_028A94_VGT_MULTI_PRIM_IB_RESET_EN, primitive_restart);
sctx->last_primitive_restart_en = primitive_restart;
}
if (si_prim_restart_index_changed(sctx, primitive_restart, restart_index)) {
radeon_set_context_reg(R_02840C_VGT_MULTI_PRIM_IB_RESET_INDX, restart_index);
sctx->last_restart_index = restart_index;
if (GFX_VERSION == GFX9)
sctx->context_roll = true;
}
radeon_end();
}
#define EMIT_SQTT_END_DRAW do { \
if (GFX_VERSION >= GFX9 && unlikely(sctx->thread_trace_enabled)) { \
radeon_begin(&sctx->gfx_cs); \
radeon_emit(PKT3(PKT3_EVENT_WRITE, 0, 0)); \
radeon_emit(EVENT_TYPE(V_028A90_THREAD_TRACE_MARKER) | \
EVENT_INDEX(0)); \
radeon_end(); \
} \
} while (0)
template <amd_gfx_level GFX_VERSION, si_has_ngg NGG, si_is_draw_vertex_state IS_DRAW_VERTEX_STATE>
ALWAYS_INLINE
static void si_emit_draw_packets(struct si_context *sctx, const struct pipe_draw_info *info,
unsigned drawid_base,
const struct pipe_draw_indirect_info *indirect,
const struct pipe_draw_start_count_bias *draws,
unsigned num_draws,
struct pipe_resource *indexbuf, unsigned index_size,
unsigned index_offset, unsigned instance_count)
{
struct radeon_cmdbuf *cs = &sctx->gfx_cs;
if (unlikely(sctx->thread_trace_enabled)) {
si_sqtt_write_event_marker(sctx, &sctx->gfx_cs, sctx->sqtt_next_event,
UINT_MAX, UINT_MAX, UINT_MAX);
}
uint32_t use_opaque = 0;
if (!IS_DRAW_VERTEX_STATE && indirect && indirect->count_from_stream_output) {
struct si_streamout_target *t = (struct si_streamout_target *)indirect->count_from_stream_output;
radeon_begin(cs);
radeon_set_context_reg(R_028B30_VGT_STRMOUT_DRAW_OPAQUE_VERTEX_STRIDE, t->stride_in_dw);
radeon_end();
si_cp_copy_data(sctx, &sctx->gfx_cs, COPY_DATA_REG, NULL,
R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE >> 2, COPY_DATA_SRC_MEM,
t->buf_filled_size, t->buf_filled_size_offset);
use_opaque = S_0287F0_USE_OPAQUE(1);
indirect = NULL;
}
uint32_t index_max_size = 0;
uint64_t index_va = 0;
bool disable_instance_packing = false;
radeon_begin(cs);
if (GFX_VERSION == GFX10_3) {
/* Workaround for incorrect stats with adjacent primitive types
* (see PAL's waDisableInstancePacking).
*/
if (sctx->num_pipeline_stat_queries &&
sctx->shader.gs.cso == NULL &&
(instance_count > 1 || indirect) &&
(1 << info->mode) & (1 << PIPE_PRIM_LINES_ADJACENCY |
1 << PIPE_PRIM_LINE_STRIP_ADJACENCY |
1 << PIPE_PRIM_TRIANGLES_ADJACENCY |
1 << PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY)) {
disable_instance_packing = true;
}
}
/* draw packet */
if (index_size) {
/* Register shadowing doesn't shadow INDEX_TYPE. */
if (index_size != sctx->last_index_size || sctx->shadowed_regs ||
(GFX_VERSION == GFX10_3 && disable_instance_packing != sctx->disable_instance_packing)) {
unsigned index_type;
/* Index type computation. When we look at how we need to translate index_size,
* we can see that we just need 2 shifts to get the hw value.
*
* 1 = 001b --> 10b = 2
* 2 = 010b --> 00b = 0
* 4 = 100b --> 01b = 1
*/
index_type = (((index_size >> 2) | (index_size << 1)) & 0x3) |
S_028A7C_DISABLE_INSTANCE_PACKING(disable_instance_packing);
if (GFX_VERSION <= GFX7 && SI_BIG_ENDIAN) {
/* GFX7 doesn't support ubyte indices. */
index_type |= index_size == 2 ? V_028A7C_VGT_DMA_SWAP_16_BIT
: V_028A7C_VGT_DMA_SWAP_32_BIT;
}
if (GFX_VERSION >= GFX9) {
radeon_set_uconfig_reg_idx(sctx->screen, GFX_VERSION,
R_03090C_VGT_INDEX_TYPE, 2, index_type);
} else {
radeon_emit(PKT3(PKT3_INDEX_TYPE, 0, 0));
radeon_emit(index_type);
}
sctx->last_index_size = index_size;
if (GFX_VERSION == GFX10_3)
sctx->disable_instance_packing = disable_instance_packing;
}
index_max_size = (indexbuf->width0 - index_offset) >> util_logbase2(index_size);
/* Skip draw calls with 0-sized index buffers.
* They cause a hang on some chips, like Navi10-14.
*/
if (!index_max_size) {
radeon_end();
return;
}
index_va = si_resource(indexbuf)->gpu_address + index_offset;
radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, si_resource(indexbuf),
RADEON_USAGE_READ | RADEON_PRIO_INDEX_BUFFER);
} else {
/* On GFX7 and later, non-indexed draws overwrite VGT_INDEX_TYPE,
* so the state must be re-emitted before the next indexed draw.
*/
if (GFX_VERSION >= GFX7)
sctx->last_index_size = -1;
if (GFX_VERSION == GFX10_3 && disable_instance_packing != sctx->disable_instance_packing) {
radeon_set_uconfig_reg_idx(sctx->screen, GFX_VERSION,
R_03090C_VGT_INDEX_TYPE, 2,
S_028A7C_DISABLE_INSTANCE_PACKING(disable_instance_packing));
sctx->disable_instance_packing = disable_instance_packing;
}
}
unsigned sh_base_reg = sctx->shader_pointers.sh_base[PIPE_SHADER_VERTEX];
bool render_cond_bit = sctx->render_cond_enabled;
if (!IS_DRAW_VERTEX_STATE && indirect) {
assert(num_draws == 1);
uint64_t indirect_va = si_resource(indirect->buffer)->gpu_address;
assert(indirect_va % 8 == 0);
si_invalidate_draw_constants(sctx);
radeon_emit(PKT3(PKT3_SET_BASE, 2, 0));
radeon_emit(1);
radeon_emit(indirect_va);
radeon_emit(indirect_va >> 32);
radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, si_resource(indirect->buffer),
RADEON_USAGE_READ | RADEON_PRIO_DRAW_INDIRECT);
unsigned di_src_sel = index_size ? V_0287F0_DI_SRC_SEL_DMA : V_0287F0_DI_SRC_SEL_AUTO_INDEX;
assert(indirect->offset % 4 == 0);
if (index_size) {
radeon_emit(PKT3(PKT3_INDEX_BASE, 1, 0));
radeon_emit(index_va);
radeon_emit(index_va >> 32);
radeon_emit(PKT3(PKT3_INDEX_BUFFER_SIZE, 0, 0));
radeon_emit(index_max_size);
}
if (!sctx->screen->has_draw_indirect_multi) {
radeon_emit(PKT3(index_size ? PKT3_DRAW_INDEX_INDIRECT : PKT3_DRAW_INDIRECT, 3,
render_cond_bit));
radeon_emit(indirect->offset);
radeon_emit((sh_base_reg + SI_SGPR_BASE_VERTEX * 4 - SI_SH_REG_OFFSET) >> 2);
radeon_emit((sh_base_reg + SI_SGPR_START_INSTANCE * 4 - SI_SH_REG_OFFSET) >> 2);
radeon_emit(di_src_sel);
} else {
uint64_t count_va = 0;
if (indirect->indirect_draw_count) {
struct si_resource *params_buf = si_resource(indirect->indirect_draw_count);
radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, params_buf,
RADEON_USAGE_READ | RADEON_PRIO_DRAW_INDIRECT);
count_va = params_buf->gpu_address + indirect->indirect_draw_count_offset;
}
radeon_emit(PKT3(index_size ? PKT3_DRAW_INDEX_INDIRECT_MULTI : PKT3_DRAW_INDIRECT_MULTI, 8,
render_cond_bit));
radeon_emit(indirect->offset);
radeon_emit((sh_base_reg + SI_SGPR_BASE_VERTEX * 4 - SI_SH_REG_OFFSET) >> 2);
radeon_emit((sh_base_reg + SI_SGPR_START_INSTANCE * 4 - SI_SH_REG_OFFSET) >> 2);
radeon_emit(((sh_base_reg + SI_SGPR_DRAWID * 4 - SI_SH_REG_OFFSET) >> 2) |
S_2C3_DRAW_INDEX_ENABLE(sctx->shader.vs.cso->info.uses_drawid) |
S_2C3_COUNT_INDIRECT_ENABLE(!!indirect->indirect_draw_count));
radeon_emit(indirect->draw_count);
radeon_emit(count_va);
radeon_emit(count_va >> 32);
radeon_emit(indirect->stride);
radeon_emit(di_src_sel);
}
} else {
/* Register shadowing requires that we always emit PKT3_NUM_INSTANCES. */
if (sctx->shadowed_regs ||
sctx->last_instance_count == SI_INSTANCE_COUNT_UNKNOWN ||
sctx->last_instance_count != instance_count) {
radeon_emit(PKT3(PKT3_NUM_INSTANCES, 0, 0));
radeon_emit(instance_count);
sctx->last_instance_count = instance_count;
}
/* Base vertex and start instance. */
int base_vertex = index_size ? draws[0].index_bias : draws[0].start;
bool set_draw_id = !IS_DRAW_VERTEX_STATE && sctx->vs_uses_draw_id;
bool set_base_instance = sctx->vs_uses_base_instance;
if (!IS_DRAW_VERTEX_STATE && sctx->num_vs_blit_sgprs) {
/* Re-emit draw constants after we leave u_blitter. */
si_invalidate_draw_sh_constants(sctx);
/* Blit VS doesn't use BASE_VERTEX, START_INSTANCE, and DRAWID. */
radeon_set_sh_reg_seq(sh_base_reg + SI_SGPR_VS_BLIT_DATA * 4, sctx->num_vs_blit_sgprs);
radeon_emit_array(sctx->vs_blit_sh_data, sctx->num_vs_blit_sgprs);
} else if (base_vertex != sctx->last_base_vertex ||
sctx->last_base_vertex == SI_BASE_VERTEX_UNKNOWN ||
(set_base_instance &&
(info->start_instance != sctx->last_start_instance ||
sctx->last_start_instance == SI_START_INSTANCE_UNKNOWN)) ||
(set_draw_id &&
(drawid_base != sctx->last_drawid ||
sctx->last_drawid == SI_DRAW_ID_UNKNOWN)) ||
sh_base_reg != sctx->last_sh_base_reg) {
if (set_base_instance) {
radeon_set_sh_reg_seq(sh_base_reg + SI_SGPR_BASE_VERTEX * 4, 3);
radeon_emit(base_vertex);
radeon_emit(drawid_base);
radeon_emit(info->start_instance);
sctx->last_start_instance = info->start_instance;
sctx->last_drawid = drawid_base;
} else if (set_draw_id) {
radeon_set_sh_reg_seq(sh_base_reg + SI_SGPR_BASE_VERTEX * 4, 2);
radeon_emit(base_vertex);
radeon_emit(drawid_base);
sctx->last_drawid = drawid_base;
} else {
radeon_set_sh_reg(sh_base_reg + SI_SGPR_BASE_VERTEX * 4, base_vertex);
}
sctx->last_base_vertex = base_vertex;
sctx->last_sh_base_reg = sh_base_reg;
}
/* Don't update draw_id in the following code if it doesn't increment. */
bool increment_draw_id = !IS_DRAW_VERTEX_STATE && num_draws > 1 &&
set_draw_id && info->increment_draw_id;
if (index_size) {
/* NOT_EOP allows merging multiple draws into 1 wave, but only user VGPRs
* can be changed between draws, and GS fast launch must be disabled.
* NOT_EOP doesn't work on gfx9 and older.
*
* Instead of doing this, which evaluates the case conditions repeatedly:
* for (all draws) {
* if (case1);
* else;
* }
*
* Use this structuring to evaluate the case conditions once:
* if (case1) for (all draws);
* else for (all draws);
*
*/
bool index_bias_varies = !IS_DRAW_VERTEX_STATE && num_draws > 1 &&
info->index_bias_varies;
if (increment_draw_id) {
if (index_bias_varies) {
for (unsigned i = 0; i < num_draws; i++) {
uint64_t va = index_va + draws[i].start * index_size;
if (i > 0) {
radeon_set_sh_reg_seq(sh_base_reg + SI_SGPR_BASE_VERTEX * 4, 2);
radeon_emit(draws[i].index_bias);
radeon_emit(drawid_base + i);
}
radeon_emit(PKT3(PKT3_DRAW_INDEX_2, 4, render_cond_bit));
radeon_emit(index_max_size);
radeon_emit(va);
radeon_emit(va >> 32);
radeon_emit(draws[i].count);
radeon_emit(V_0287F0_DI_SRC_SEL_DMA); /* NOT_EOP disabled */
}
if (num_draws > 1) {
sctx->last_base_vertex = draws[num_draws - 1].index_bias;
sctx->last_drawid = drawid_base + num_draws - 1;
}
} else {
/* Only DrawID varies. */
for (unsigned i = 0; i < num_draws; i++) {
uint64_t va = index_va + draws[i].start * index_size;
if (i > 0)
radeon_set_sh_reg(sh_base_reg + SI_SGPR_DRAWID * 4, drawid_base + i);
radeon_emit(PKT3(PKT3_DRAW_INDEX_2, 4, render_cond_bit));
radeon_emit(index_max_size);
radeon_emit(va);
radeon_emit(va >> 32);
radeon_emit(draws[i].count);
radeon_emit(V_0287F0_DI_SRC_SEL_DMA); /* NOT_EOP disabled */
}
if (num_draws > 1)
sctx->last_drawid = drawid_base + num_draws - 1;
}
} else {
if (index_bias_varies) {
/* Only BaseVertex varies. */
for (unsigned i = 0; i < num_draws; i++) {
uint64_t va = index_va + draws[i].start * index_size;
if (i > 0)
radeon_set_sh_reg(sh_base_reg + SI_SGPR_BASE_VERTEX * 4, draws[i].index_bias);
radeon_emit(PKT3(PKT3_DRAW_INDEX_2, 4, render_cond_bit));
radeon_emit(index_max_size);
radeon_emit(va);
radeon_emit(va >> 32);
radeon_emit(draws[i].count);
radeon_emit(V_0287F0_DI_SRC_SEL_DMA); /* NOT_EOP disabled */
}
if (num_draws > 1)
sctx->last_base_vertex = draws[num_draws - 1].index_bias;
} else {
/* DrawID and BaseVertex are constant. */
if (GFX_VERSION == GFX10) {
/* GFX10 has a bug that consecutive draw packets with NOT_EOP must not have
* count == 0 in the last draw (which doesn't set NOT_EOP).
*
* So remove all trailing draws with count == 0.
*/
while (num_draws > 1 && !draws[num_draws - 1].count)
num_draws--;
}
for (unsigned i = 0; i < num_draws; i++) {
uint64_t va = index_va + draws[i].start * index_size;
radeon_emit(PKT3(PKT3_DRAW_INDEX_2, 4, render_cond_bit));
radeon_emit(index_max_size);
radeon_emit(va);
radeon_emit(va >> 32);
radeon_emit(draws[i].count);
radeon_emit(V_0287F0_DI_SRC_SEL_DMA |
S_0287F0_NOT_EOP(GFX_VERSION >= GFX10 && i < num_draws - 1));
}
}
}
} else {
for (unsigned i = 0; i < num_draws; i++) {
if (i > 0) {
if (increment_draw_id) {
unsigned draw_id = drawid_base + i;
radeon_set_sh_reg_seq(sh_base_reg + SI_SGPR_BASE_VERTEX * 4, 2);
radeon_emit(draws[i].start);
radeon_emit(draw_id);
sctx->last_drawid = draw_id;
} else {
radeon_set_sh_reg(sh_base_reg + SI_SGPR_BASE_VERTEX * 4, draws[i].start);
}
}
radeon_emit(PKT3(PKT3_DRAW_INDEX_AUTO, 1, render_cond_bit));
radeon_emit(draws[i].count);
radeon_emit(V_0287F0_DI_SRC_SEL_AUTO_INDEX | use_opaque);
}
if (num_draws > 1 && (IS_DRAW_VERTEX_STATE || !sctx->num_vs_blit_sgprs))
sctx->last_base_vertex = draws[num_draws - 1].start;
}
}
radeon_end();
EMIT_SQTT_END_DRAW;
}
/* Return false if not bound. */
template<amd_gfx_level GFX_VERSION>
static bool ALWAYS_INLINE si_set_vb_descriptor(struct si_vertex_elements *velems,
struct pipe_vertex_buffer *vb,
unsigned index, /* vertex element index */
uint32_t *desc) /* where to upload descriptors */
{
struct si_resource *buf = si_resource(vb->buffer.resource);
if (!buf) {
memset(desc, 0, 16);
return false;
}
int64_t offset = (int64_t)((int)vb->buffer_offset) + velems->src_offset[index];
if (offset >= buf->b.b.width0) {
assert(offset < buf->b.b.width0);
memset(desc, 0, 16);
return false;
}
uint64_t va = buf->gpu_address + offset;
int64_t num_records = (int64_t)buf->b.b.width0 - offset;
if (GFX_VERSION != GFX8 && vb->stride) {
/* Round up by rounding down and adding 1 */
num_records = (num_records - velems->format_size[index]) / vb->stride + 1;
}
assert(num_records >= 0 && num_records <= UINT_MAX);
uint32_t rsrc_word3 = velems->rsrc_word3[index];
/* OOB_SELECT chooses the out-of-bounds check:
* - 1: index >= NUM_RECORDS (Structured)
* - 3: offset >= NUM_RECORDS (Raw)
*/
if (GFX_VERSION >= GFX10)
rsrc_word3 |= S_008F0C_OOB_SELECT(vb->stride ? V_008F0C_OOB_SELECT_STRUCTURED
: V_008F0C_OOB_SELECT_RAW);
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(vb->stride);
desc[2] = num_records;
desc[3] = rsrc_word3;
return true;
}
#if GFX_VER == 6 /* declare this function only once because it supports all chips. */
void si_set_vertex_buffer_descriptor(struct si_screen *sscreen, struct si_vertex_elements *velems,
struct pipe_vertex_buffer *vb, unsigned element_index,
uint32_t *out)
{
switch (sscreen->info.gfx_level) {
case GFX6:
si_set_vb_descriptor<GFX6>(velems, vb, element_index, out);
break;
case GFX7:
si_set_vb_descriptor<GFX7>(velems, vb, element_index, out);
break;
case GFX8:
si_set_vb_descriptor<GFX8>(velems, vb, element_index, out);
break;
case GFX9:
si_set_vb_descriptor<GFX9>(velems, vb, element_index, out);
break;
case GFX10:
si_set_vb_descriptor<GFX10>(velems, vb, element_index, out);
break;
case GFX10_3:
si_set_vb_descriptor<GFX10_3>(velems, vb, element_index, out);
break;
case GFX11:
si_set_vb_descriptor<GFX11>(velems, vb, element_index, out);
break;
default:
unreachable("unhandled gfx level");
}
}
#endif
template<util_popcnt POPCNT>
static ALWAYS_INLINE unsigned get_next_vertex_state_elem(struct pipe_vertex_state *state,
uint32_t *partial_velem_mask)
{
unsigned semantic_index = u_bit_scan(partial_velem_mask);
assert(state->input.full_velem_mask & BITFIELD_BIT(semantic_index));
/* A prefix mask of the full mask gives us the index in pipe_vertex_state. */
return util_bitcount_fast<POPCNT>(state->input.full_velem_mask & BITFIELD_MASK(semantic_index));
}
template <amd_gfx_level GFX_VERSION, si_has_tess HAS_TESS, si_has_gs HAS_GS, si_has_ngg NGG,
si_is_draw_vertex_state IS_DRAW_VERTEX_STATE, util_popcnt POPCNT> ALWAYS_INLINE
static bool si_upload_and_prefetch_VB_descriptors(struct si_context *sctx,
struct pipe_vertex_state *state,
uint32_t partial_velem_mask)
{
struct si_vertex_state *vstate = (struct si_vertex_state *)state;
unsigned count = IS_DRAW_VERTEX_STATE ? util_bitcount_fast<POPCNT>(partial_velem_mask) :
sctx->num_vertex_elements;
unsigned sh_base = si_get_user_data_base(GFX_VERSION, HAS_TESS, HAS_GS, NGG,
PIPE_SHADER_VERTEX);
unsigned num_vbos_in_user_sgprs = si_num_vbos_in_user_sgprs_inline(GFX_VERSION);
bool pointer_dirty, user_sgprs_dirty;
assert(count <= SI_MAX_ATTRIBS);
if (sctx->vertex_buffers_dirty || IS_DRAW_VERTEX_STATE) {
assert(count);
struct si_vertex_elements *velems = sctx->vertex_elements;
unsigned alloc_size = IS_DRAW_VERTEX_STATE ?
vstate->velems.vb_desc_list_alloc_size :
velems->vb_desc_list_alloc_size;
uint32_t *ptr;
if (alloc_size) {
/* Vertex buffer descriptors are the only ones which are uploaded directly
* and don't go through si_upload_graphics_shader_descriptors.
*/
u_upload_alloc(sctx->b.const_uploader, 0, alloc_size,
si_optimal_tcc_alignment(sctx, alloc_size), &sctx->vb_descriptors_offset,
(struct pipe_resource **)&sctx->vb_descriptors_buffer, (void **)&ptr);
if (!sctx->vb_descriptors_buffer) {
sctx->vb_descriptors_offset = 0;
sctx->vb_descriptors_gpu_list = NULL;
return false;
}
sctx->vb_descriptors_gpu_list = ptr;
radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, sctx->vb_descriptors_buffer,
RADEON_USAGE_READ | RADEON_PRIO_DESCRIPTORS);
/* GFX6 doesn't support the L2 prefetch. */
if (GFX_VERSION >= GFX7)
si_cp_dma_prefetch(sctx, &sctx->vb_descriptors_buffer->b.b, sctx->vb_descriptors_offset,
alloc_size);
} else {
si_resource_reference(&sctx->vb_descriptors_buffer, NULL);
}
if (IS_DRAW_VERTEX_STATE) {
unsigned i = 0;
if (num_vbos_in_user_sgprs) {
unsigned num_vb_sgprs = MIN2(count, num_vbos_in_user_sgprs) * 4;
radeon_begin(&sctx->gfx_cs);
radeon_set_sh_reg_seq(sh_base + SI_SGPR_VS_VB_DESCRIPTOR_FIRST * 4, num_vb_sgprs);
for (; partial_velem_mask && i < num_vbos_in_user_sgprs; i++) {
unsigned velem_index = get_next_vertex_state_elem<POPCNT>(state, &partial_velem_mask);
radeon_emit_array(&vstate->descriptors[velem_index * 4], 4);
}
radeon_end();
}
for (; partial_velem_mask; i++) {
unsigned velem_index = get_next_vertex_state_elem<POPCNT>(state, &partial_velem_mask);
uint32_t *desc = &ptr[(i - num_vbos_in_user_sgprs) * 4];
memcpy(desc, &vstate->descriptors[velem_index * 4], 16);
}
if (vstate->b.input.vbuffer.buffer.resource != vstate->b.input.indexbuf) {
radeon_add_to_buffer_list(sctx, &sctx->gfx_cs,
si_resource(vstate->b.input.vbuffer.buffer.resource),
RADEON_USAGE_READ | RADEON_PRIO_VERTEX_BUFFER);
}
/* The next draw_vbo should recompute and rebind vertex buffer descriptors. */
sctx->vertex_buffers_dirty = sctx->num_vertex_elements > 0;
user_sgprs_dirty = false; /* We just set them above. */
pointer_dirty = count > num_vbos_in_user_sgprs;
} else {
unsigned first_vb_use_mask = velems->first_vb_use_mask;
for (unsigned i = 0; i < count; i++) {
unsigned vbo_index = velems->vertex_buffer_index[i];
struct pipe_vertex_buffer *vb = &sctx->vertex_buffer[vbo_index];
uint32_t *desc = i < num_vbos_in_user_sgprs ? &sctx->vb_descriptor_user_sgprs[i * 4]
: &ptr[(i - num_vbos_in_user_sgprs) * 4];
if (!si_set_vb_descriptor<GFX_VERSION>(velems, vb, i, desc))
continue;
if (first_vb_use_mask & (1 << i)) {
radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, si_resource(vb->buffer.resource),
RADEON_USAGE_READ | RADEON_PRIO_VERTEX_BUFFER);
}
}
sctx->vertex_buffers_dirty = false;
user_sgprs_dirty = num_vbos_in_user_sgprs > 0;
pointer_dirty = alloc_size != 0;
}
} else {
pointer_dirty = sctx->vertex_buffer_pointer_dirty;
user_sgprs_dirty = sctx->vertex_buffer_user_sgprs_dirty;
}
if (pointer_dirty || user_sgprs_dirty) {
struct radeon_cmdbuf *cs = &sctx->gfx_cs;
assert(count);
radeon_begin(cs);
/* Set the pointer to vertex buffer descriptors. */
if (pointer_dirty && count > num_vbos_in_user_sgprs) {
/* Find the location of the VB descriptor pointer. */
unsigned sh_dw_offset = SI_VS_NUM_USER_SGPR;
if (GFX_VERSION >= GFX9) {
if (HAS_TESS)
sh_dw_offset = GFX9_TCS_NUM_USER_SGPR;
else if (HAS_GS || NGG)
sh_dw_offset = GFX9_GS_NUM_USER_SGPR;
}
radeon_set_sh_reg(sh_base + sh_dw_offset * 4,
sctx->vb_descriptors_buffer->gpu_address +
sctx->vb_descriptors_offset);
sctx->vertex_buffer_pointer_dirty = false;
}
/* Set VB descriptors in user SGPRs. */
if (user_sgprs_dirty) {
assert(num_vbos_in_user_sgprs);
unsigned num_sgprs = MIN2(count, num_vbos_in_user_sgprs) * 4;
radeon_set_sh_reg_seq(sh_base + SI_SGPR_VS_VB_DESCRIPTOR_FIRST * 4, num_sgprs);
radeon_emit_array(sctx->vb_descriptor_user_sgprs, num_sgprs);
sctx->vertex_buffer_user_sgprs_dirty = false;
}
radeon_end();
}
return true;
}
static void si_get_draw_start_count(struct si_context *sctx, const struct pipe_draw_info *info,
const struct pipe_draw_indirect_info *indirect,
const struct pipe_draw_start_count_bias *draws,
unsigned num_draws, unsigned *start, unsigned *count)
{
if (indirect && !indirect->count_from_stream_output) {
unsigned indirect_count;
struct pipe_transfer *transfer;
unsigned begin, end;
unsigned map_size;
unsigned *data;
if (indirect->indirect_draw_count) {
data = (unsigned*)
pipe_buffer_map_range(&sctx->b, indirect->indirect_draw_count,
indirect->indirect_draw_count_offset, sizeof(unsigned),
PIPE_MAP_READ, &transfer);
indirect_count = *data;
pipe_buffer_unmap(&sctx->b, transfer);
} else {
indirect_count = indirect->draw_count;
}
if (!indirect_count) {
*start = *count = 0;
return;
}
map_size = (indirect_count - 1) * indirect->stride + 3 * sizeof(unsigned);
data = (unsigned*)
pipe_buffer_map_range(&sctx->b, indirect->buffer, indirect->offset, map_size,
PIPE_MAP_READ, &transfer);
begin = UINT_MAX;
end = 0;
for (unsigned i = 0; i < indirect_count; ++i) {
unsigned count = data[0];
unsigned start = data[2];
if (count > 0) {
begin = MIN2(begin, start);
end = MAX2(end, start + count);
}
data += indirect->stride / sizeof(unsigned);
}
pipe_buffer_unmap(&sctx->b, transfer);
if (begin < end) {
*start = begin;
*count = end - begin;
} else {
*start = *count = 0;
}
} else {
unsigned min_element = UINT_MAX;
unsigned max_element = 0;
for (unsigned i = 0; i < num_draws; i++) {
min_element = MIN2(min_element, draws[i].start);
max_element = MAX2(max_element, draws[i].start + draws[i].count);
}
*start = min_element;
*count = max_element - min_element;
}
}
template <amd_gfx_level GFX_VERSION, si_has_tess HAS_TESS, si_has_gs HAS_GS, si_has_ngg NGG,
si_is_draw_vertex_state IS_DRAW_VERTEX_STATE> ALWAYS_INLINE
static void si_emit_all_states(struct si_context *sctx, const struct pipe_draw_info *info,
const struct pipe_draw_indirect_info *indirect,
enum pipe_prim_type prim, unsigned instance_count,
unsigned min_vertex_count, bool primitive_restart,
unsigned skip_atom_mask)
{
unsigned num_patches = 0;
si_emit_rasterizer_prim_state<GFX_VERSION, HAS_TESS, HAS_GS, NGG>(sctx);
if (HAS_TESS)
si_emit_derived_tess_state(sctx, &num_patches);
/* Emit state atoms. */
unsigned mask = sctx->dirty_atoms & ~skip_atom_mask;
if (mask) {
do {
sctx->atoms.array[u_bit_scan(&mask)].emit(sctx);
} while (mask);
sctx->dirty_atoms &= skip_atom_mask;
}
/* Emit states. */
mask = sctx->dirty_states;
if (mask) {
do {
unsigned i = u_bit_scan(&mask);
struct si_pm4_state *state = sctx->queued.array[i];
/* All places should unset dirty_states if this doesn't pass. */
assert(state && state != sctx->emitted.array[i]);
si_pm4_emit(sctx, state);
sctx->emitted.array[i] = state;
} while (mask);
sctx->dirty_states = 0;
}
/* Emit draw states. */
si_emit_vs_state<GFX_VERSION, HAS_TESS, HAS_GS, NGG, IS_DRAW_VERTEX_STATE>(sctx, info->index_size);
si_emit_draw_registers<GFX_VERSION, HAS_TESS, HAS_GS, NGG, IS_DRAW_VERTEX_STATE>
(sctx, indirect, prim, num_patches, instance_count, primitive_restart,
info->restart_index, min_vertex_count);
}
#define DRAW_CLEANUP do { \
if (index_size && indexbuf != info->index.resource) \
pipe_resource_reference(&indexbuf, NULL); \
} while (0)
template <amd_gfx_level GFX_VERSION, si_has_tess HAS_TESS, si_has_gs HAS_GS, si_has_ngg NGG,
si_is_draw_vertex_state IS_DRAW_VERTEX_STATE, util_popcnt POPCNT> ALWAYS_INLINE
static void si_draw(struct pipe_context *ctx,
const struct pipe_draw_info *info,
unsigned drawid_offset,
const struct pipe_draw_indirect_info *indirect,
const struct pipe_draw_start_count_bias *draws,
unsigned num_draws,
struct pipe_vertex_state *state,
uint32_t partial_velem_mask)
{
/* Keep code that uses the least number of local variables as close to the beginning
* of this function as possible to minimize register pressure.
*
* It doesn't matter where we return due to invalid parameters because such cases
* shouldn't occur in practice.
*/
struct si_context *sctx = (struct si_context *)ctx;
si_check_dirty_buffers_textures(sctx);
si_decompress_textures(sctx, u_bit_consecutive(0, SI_NUM_GRAPHICS_SHADERS));
si_need_gfx_cs_space(sctx, num_draws);
if (HAS_TESS) {
if (sctx->is_user_tcs) {
struct si_shader_selector *tcs = sctx->shader.tcs.cso;
bool same_patch_vertices =
GFX_VERSION >= GFX9 &&
sctx->patch_vertices == tcs->info.base.tess.tcs_vertices_out;
if (sctx->shader.tcs.key.ge.opt.same_patch_vertices != same_patch_vertices) {
sctx->shader.tcs.key.ge.opt.same_patch_vertices = same_patch_vertices;
sctx->do_update_shaders = true;
}
if (GFX_VERSION == GFX9 && sctx->screen->info.has_ls_vgpr_init_bug) {
/* Determine whether the LS VGPR fix should be applied.
*
* It is only required when num input CPs > num output CPs,
* which cannot happen with the fixed function TCS.
*/
bool ls_vgpr_fix =
sctx->patch_vertices > tcs->info.base.tess.tcs_vertices_out;
if (ls_vgpr_fix != sctx->shader.tcs.key.ge.part.tcs.ls_prolog.ls_vgpr_fix) {
sctx->shader.tcs.key.ge.part.tcs.ls_prolog.ls_vgpr_fix = ls_vgpr_fix;
sctx->do_update_shaders = true;
}
}
} else {
/* These fields are static for fixed function TCS. So no need to set
* do_update_shaders between fixed-TCS draws. As fixed-TCS to user-TCS
* or opposite, do_update_shaders should already be set by bind state.
*/
sctx->shader.tcs.key.ge.opt.same_patch_vertices = GFX_VERSION >= GFX9;
sctx->shader.tcs.key.ge.part.tcs.ls_prolog.ls_vgpr_fix = false;
/* User may only change patch vertices, needs to update fixed func TCS. */
if (sctx->shader.tcs.cso &&
sctx->shader.tcs.cso->info.base.tess.tcs_vertices_out != sctx->patch_vertices)
sctx->do_update_shaders = true;
}
}
enum pipe_prim_type prim = (enum pipe_prim_type)info->mode;
unsigned instance_count = info->instance_count;
/* GFX6-GFX7 treat instance_count==0 as instance_count==1. There is
* no workaround for indirect draws, but we can at least skip
* direct draws.
* 'instance_count == 0' seems to be problematic on Renoir chips (#4866),
* so simplify the condition and drop these draws for all <= GFX9 chips.
*/
if (GFX_VERSION <= GFX9 && unlikely(!IS_DRAW_VERTEX_STATE && !indirect && !instance_count))
return;
struct si_shader_selector *vs = sctx->shader.vs.cso;
struct si_vertex_state *vstate = (struct si_vertex_state *)state;
if (unlikely(!vs ||
(!IS_DRAW_VERTEX_STATE && sctx->num_vertex_elements < vs->info.num_vs_inputs) ||
(IS_DRAW_VERTEX_STATE && vstate->velems.count < vs->info.num_vs_inputs) ||
!sctx->shader.ps.cso || (HAS_TESS != (prim == PIPE_PRIM_PATCHES)))) {
assert(0);
return;
}
if (GFX_VERSION <= GFX9 && HAS_GS) {
/* Determine whether the GS triangle strip adjacency fix should
* be applied. Rotate every other triangle if triangle strips with
* adjacency are fed to the GS. This doesn't work if primitive
* restart occurs after an odd number of triangles.
*/
bool gs_tri_strip_adj_fix =
!HAS_TESS && prim == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
if (gs_tri_strip_adj_fix != sctx->shader.gs.key.ge.mono.u.gs_tri_strip_adj_fix) {
sctx->shader.gs.key.ge.mono.u.gs_tri_strip_adj_fix = gs_tri_strip_adj_fix;
sctx->do_update_shaders = true;
}
}
struct pipe_resource *indexbuf = info->index.resource;
unsigned index_size = info->index_size;
unsigned index_offset = indirect && indirect->buffer ? draws[0].start * index_size : 0;
if (index_size) {
/* Translate or upload, if needed. */
/* 8-bit indices are supported on GFX8. */
if (!IS_DRAW_VERTEX_STATE && GFX_VERSION <= GFX7 && index_size == 1) {
unsigned start, count, start_offset, size, offset;
void *ptr;
si_get_draw_start_count(sctx, info, indirect, draws, num_draws, &start, &count);
start_offset = start * 2;
size = count * 2;
indexbuf = NULL;
u_upload_alloc(ctx->stream_uploader, start_offset, size,
si_optimal_tcc_alignment(sctx, size), &offset, &indexbuf, &ptr);
if (unlikely(!indexbuf))
return;
util_shorten_ubyte_elts_to_userptr(&sctx->b, info, 0, 0, index_offset + start, count, ptr);
/* info->start will be added by the drawing code */
index_offset = offset - start_offset;
index_size = 2;
} else if (!IS_DRAW_VERTEX_STATE && info->has_user_indices) {
unsigned start_offset;
assert(!indirect);
assert(num_draws == 1);
start_offset = draws[0].start * index_size;
indexbuf = NULL;
u_upload_data(ctx->stream_uploader, start_offset, draws[0].count * index_size,
sctx->screen->info.tcc_cache_line_size,
(char *)info->index.user + start_offset, &index_offset, &indexbuf);
if (unlikely(!indexbuf))
return;
/* info->start will be added by the drawing code */
index_offset -= start_offset;
} else if (GFX_VERSION <= GFX7 && si_resource(indexbuf)->TC_L2_dirty) {
/* GFX8 reads index buffers through TC L2, so it doesn't
* need this. */
sctx->flags |= SI_CONTEXT_WB_L2;
si_resource(indexbuf)->TC_L2_dirty = false;
}
}
unsigned min_direct_count = 0;
unsigned total_direct_count = 0;
if (!IS_DRAW_VERTEX_STATE && indirect) {
/* Add the buffer size for memory checking in need_cs_space. */
if (indirect->buffer)
si_context_add_resource_size(sctx, indirect->buffer);
/* Indirect buffers use TC L2 on GFX9, but not older hw. */
if (GFX_VERSION <= GFX8) {
if (indirect->buffer && si_resource(indirect->buffer)->TC_L2_dirty) {
sctx->flags |= SI_CONTEXT_WB_L2;
si_resource(indirect->buffer)->TC_L2_dirty = false;
}
if (indirect->indirect_draw_count &&
si_resource(indirect->indirect_draw_count)->TC_L2_dirty) {
sctx->flags |= SI_CONTEXT_WB_L2;
si_resource(indirect->indirect_draw_count)->TC_L2_dirty = false;
}
}
total_direct_count = INT_MAX; /* just set something other than 0 to enable shader culling */
} else {
total_direct_count = min_direct_count = draws[0].count;
for (unsigned i = 1; i < num_draws; i++) {
unsigned count = draws[i].count;
total_direct_count += count;
min_direct_count = MIN2(min_direct_count, count);
}
}
struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
bool primitive_restart =
info->primitive_restart &&
(!sctx->screen->options.prim_restart_tri_strips_only ||
(prim != PIPE_PRIM_TRIANGLE_STRIP && prim != PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY));
/* Set the rasterization primitive type.
*
* This must be done after si_decompress_textures, which can call
* draw_vbo recursively, and before si_update_shaders, which uses
* current_rast_prim for this draw_vbo call.
*/
if (!HAS_GS && !HAS_TESS) {
enum pipe_prim_type rast_prim;
if (util_rast_prim_is_triangles(prim)) {
rast_prim = PIPE_PRIM_TRIANGLES;
} else {
/* Only possibilities, POINTS, LINE*, RECTANGLES */
rast_prim = prim;
}
if (rast_prim != sctx->current_rast_prim) {
if (util_prim_is_points_or_lines(sctx->current_rast_prim) !=
util_prim_is_points_or_lines(rast_prim))
si_mark_atom_dirty(sctx, &sctx->atoms.s.guardband);
sctx->current_rast_prim = rast_prim;
sctx->do_update_shaders = true;
}
}
if (IS_DRAW_VERTEX_STATE) {
/* draw_vertex_state doesn't use the current vertex buffers and vertex elements,
* so disable any non-trivial VS prolog that is based on them, such as vertex
* format lowering.
*/
if (!sctx->force_trivial_vs_prolog) {
sctx->force_trivial_vs_prolog = true;
/* Update shaders to disable the non-trivial VS prolog. */
if (sctx->uses_nontrivial_vs_prolog) {
si_vs_key_update_inputs(sctx);
sctx->do_update_shaders = true;
}
}
} else {
if (sctx->force_trivial_vs_prolog) {
sctx->force_trivial_vs_prolog = false;
/* Update shaders to enable the non-trivial VS prolog. */
if (sctx->uses_nontrivial_vs_prolog) {
si_vs_key_update_inputs(sctx);
sctx->do_update_shaders = true;
}
}
}
/* Update NGG culling settings. */
uint16_t old_ngg_culling = sctx->ngg_culling;
if (GFX_VERSION >= GFX10) {
struct si_shader_selector *hw_vs = si_get_vs_inline(sctx, HAS_TESS, HAS_GS)->cso;
if (NGG &&
/* Tessellation and GS set ngg_cull_vert_threshold to UINT_MAX if the prim type
* is not points, so this check is only needed for VS. */
(HAS_TESS || HAS_GS || util_rast_prim_is_lines_or_triangles(sctx->current_rast_prim)) &&
/* Only the first draw for a shader starts with culling disabled and it's disabled
* until we pass the total_direct_count check and then it stays enabled until
* the shader is changed. This eliminates most culling on/off state changes. */
(old_ngg_culling || total_direct_count > hw_vs->ngg_cull_vert_threshold)) {
/* Check that the current shader allows culling. */
assert(hw_vs->ngg_cull_vert_threshold != UINT_MAX);
uint16_t ngg_culling;
if (util_prim_is_lines(sctx->current_rast_prim)) {
/* Overwrite it to mask out face cull flags. */
ngg_culling = rs->ngg_cull_flags_lines;
} else {
ngg_culling = sctx->viewport0_y_inverted ? rs->ngg_cull_flags_tris_y_inverted :
rs->ngg_cull_flags_tris;
assert(ngg_culling); /* rasterizer state should always set this to non-zero */
}
if (ngg_culling != old_ngg_culling) {
/* If shader compilation is not ready, this setting will be rejected. */
sctx->ngg_culling = ngg_culling;
sctx->do_update_shaders = true;
}
} else if (old_ngg_culling) {
sctx->ngg_culling = 0;
sctx->do_update_shaders = true;
}
}
if (unlikely(sctx->do_update_shaders)) {
if (unlikely(!(si_update_shaders<GFX_VERSION, HAS_TESS, HAS_GS, NGG>(sctx)))) {
DRAW_CLEANUP;
return;
}
/* si_update_shaders can clear the ngg_culling in the shader key if the shader compilation
* hasn't finished. Set it to the correct value in si_context.
*/
if (GFX_VERSION >= GFX10 && NGG)
sctx->ngg_culling = si_get_vs_inline(sctx, HAS_TESS, HAS_GS)->current->key.ge.opt.ngg_culling;
}
/* Since we've called si_context_add_resource_size for vertex buffers,
* this must be called after si_need_cs_space, because we must let
* need_cs_space flush before we add buffers to the buffer list.
*
* This must be done after si_update_shaders because si_update_shaders can
* flush the CS when enabling tess and GS rings.
*/
if (sctx->bo_list_add_all_gfx_resources)
si_gfx_resources_add_all_to_bo_list(sctx);
/* Graphics shader descriptors must be uploaded after si_update_shaders because
* it binds tess and GS ring buffers.
*/
if (unlikely(!si_upload_graphics_shader_descriptors(sctx))) {
DRAW_CLEANUP;
return;
}
/* Vega10/Raven scissor bug workaround. When any context register is
* written (i.e. the GPU rolls the context), PA_SC_VPORT_SCISSOR
* registers must be written too.
*/
unsigned masked_atoms = 0;
bool gfx9_scissor_bug = false;
if (GFX_VERSION == GFX9 && sctx->screen->info.has_gfx9_scissor_bug) {
masked_atoms |= si_get_atom_bit(sctx, &sctx->atoms.s.scissors);
gfx9_scissor_bug = true;
if ((!IS_DRAW_VERTEX_STATE && indirect && indirect->count_from_stream_output) ||
sctx->dirty_atoms & si_atoms_that_always_roll_context() ||
sctx->dirty_states & si_states_that_always_roll_context())
sctx->context_roll = true;
}
/* Use optimal packet order based on whether we need to sync the pipeline. */
if (unlikely(sctx->flags & (SI_CONTEXT_FLUSH_AND_INV_CB | SI_CONTEXT_FLUSH_AND_INV_DB |
SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH |
SI_CONTEXT_VS_PARTIAL_FLUSH | SI_CONTEXT_VGT_FLUSH))) {
/* If we have to wait for idle, set all states first, so that all
* SET packets are processed in parallel with previous draw calls.
* Then draw and prefetch at the end. This ensures that the time
* the CUs are idle is very short.
*/
if (unlikely(sctx->flags & SI_CONTEXT_FLUSH_FOR_RENDER_COND))
masked_atoms |= si_get_atom_bit(sctx, &sctx->atoms.s.render_cond);
/* Emit all states except possibly render condition. */
si_emit_all_states<GFX_VERSION, HAS_TESS, HAS_GS, NGG, IS_DRAW_VERTEX_STATE>
(sctx, info, indirect, prim, instance_count, min_direct_count,
primitive_restart, masked_atoms);
sctx->emit_cache_flush(sctx, &sctx->gfx_cs);
/* <-- CUs are idle here. */
/* This uploads VBO descriptors, sets user SGPRs, and executes the L2 prefetch.
* It should done after cache flushing.
*/
if (unlikely((!si_upload_and_prefetch_VB_descriptors
<GFX_VERSION, HAS_TESS, HAS_GS, NGG, IS_DRAW_VERTEX_STATE, POPCNT>
(sctx, state, partial_velem_mask)))) {
DRAW_CLEANUP;
return;
}
if (si_is_atom_dirty(sctx, &sctx->atoms.s.render_cond)) {
sctx->atoms.s.render_cond.emit(sctx);
sctx->dirty_atoms &= ~si_get_atom_bit(sctx, &sctx->atoms.s.render_cond);
}
if (GFX_VERSION == GFX9 && gfx9_scissor_bug &&
(sctx->context_roll || si_is_atom_dirty(sctx, &sctx->atoms.s.scissors))) {
sctx->atoms.s.scissors.emit(sctx);
sctx->dirty_atoms &= ~si_get_atom_bit(sctx, &sctx->atoms.s.scissors);
}
assert(sctx->dirty_atoms == 0);
si_emit_draw_packets<GFX_VERSION, NGG, IS_DRAW_VERTEX_STATE>
(sctx, info, drawid_offset, indirect, draws, num_draws, indexbuf,
index_size, index_offset, instance_count);
/* <-- CUs are busy here. */
/* Start prefetches after the draw has been started. Both will run
* in parallel, but starting the draw first is more important.
*/
si_prefetch_shaders<GFX_VERSION, HAS_TESS, HAS_GS, NGG, PREFETCH_ALL>(sctx);
} else {
/* If we don't wait for idle, start prefetches first, then set
* states, and draw at the end.
*/
if (sctx->flags)
sctx->emit_cache_flush(sctx, &sctx->gfx_cs);
/* Only prefetch the API VS and VBO descriptors. */
si_prefetch_shaders<GFX_VERSION, HAS_TESS, HAS_GS, NGG, PREFETCH_BEFORE_DRAW>(sctx);
/* This uploads VBO descriptors, sets user SGPRs, and executes the L2 prefetch.
* It should done after cache flushing and after the VS prefetch.
*/
if (unlikely((!si_upload_and_prefetch_VB_descriptors
<GFX_VERSION, HAS_TESS, HAS_GS, NGG, IS_DRAW_VERTEX_STATE, POPCNT>
(sctx, state, partial_velem_mask)))) {
DRAW_CLEANUP;
return;
}
si_emit_all_states<GFX_VERSION, HAS_TESS, HAS_GS, NGG, IS_DRAW_VERTEX_STATE>
(sctx, info, indirect, prim, instance_count, min_direct_count,
primitive_restart, masked_atoms);
if (GFX_VERSION == GFX9 && gfx9_scissor_bug &&
(sctx->context_roll || si_is_atom_dirty(sctx, &sctx->atoms.s.scissors))) {
sctx->atoms.s.scissors.emit(sctx);
sctx->dirty_atoms &= ~si_get_atom_bit(sctx, &sctx->atoms.s.scissors);
}
assert(sctx->dirty_atoms == 0);
si_emit_draw_packets<GFX_VERSION, NGG, IS_DRAW_VERTEX_STATE>
(sctx, info, drawid_offset, indirect, draws, num_draws, indexbuf,
index_size, index_offset, instance_count);
/* Prefetch the remaining shaders after the draw has been
* started. */
si_prefetch_shaders<GFX_VERSION, HAS_TESS, HAS_GS, NGG, PREFETCH_AFTER_DRAW>(sctx);
}
/* Clear the context roll flag after the draw call.
* Only used by the gfx9 scissor bug.
*/
if (GFX_VERSION == GFX9)
sctx->context_roll = false;
if (unlikely(sctx->current_saved_cs)) {
si_trace_emit(sctx);
si_log_draw_state(sctx, sctx->log);
}
/* Workaround for a VGT hang when streamout is enabled.
* It must be done after drawing. */
if (((GFX_VERSION == GFX7 && sctx->family == CHIP_HAWAII) ||
(GFX_VERSION == GFX8 && (sctx->family == CHIP_TONGA || sctx->family == CHIP_FIJI))) &&
si_get_strmout_en(sctx)) {
sctx->flags |= SI_CONTEXT_VGT_STREAMOUT_SYNC;
}
if (unlikely(sctx->decompression_enabled)) {
sctx->num_decompress_calls++;
} else {
sctx->num_draw_calls += num_draws;
if (primitive_restart)
sctx->num_prim_restart_calls += num_draws;
}
if (sctx->framebuffer.state.zsbuf) {
struct si_texture *zstex = (struct si_texture *)sctx->framebuffer.state.zsbuf->texture;
zstex->depth_cleared_level_mask &= ~BITFIELD_BIT(sctx->framebuffer.state.zsbuf->u.tex.level);
}
DRAW_CLEANUP;
}
template <amd_gfx_level GFX_VERSION, si_has_tess HAS_TESS, si_has_gs HAS_GS, si_has_ngg NGG>
static void si_draw_vbo(struct pipe_context *ctx,
const struct pipe_draw_info *info,
unsigned drawid_offset,
const struct pipe_draw_indirect_info *indirect,
const struct pipe_draw_start_count_bias *draws,
unsigned num_draws)
{
si_draw<GFX_VERSION, HAS_TESS, HAS_GS, NGG, DRAW_VERTEX_STATE_OFF, POPCNT_NO>
(ctx, info, drawid_offset, indirect, draws, num_draws, NULL, 0);
}
template <amd_gfx_level GFX_VERSION, si_has_tess HAS_TESS, si_has_gs HAS_GS, si_has_ngg NGG,
util_popcnt POPCNT>
static void si_draw_vertex_state(struct pipe_context *ctx,
struct pipe_vertex_state *vstate,
uint32_t partial_velem_mask,
struct pipe_draw_vertex_state_info info,
const struct pipe_draw_start_count_bias *draws,
unsigned num_draws)
{
struct si_vertex_state *state = (struct si_vertex_state *)vstate;
struct pipe_draw_info dinfo = {};
dinfo.mode = info.mode;
dinfo.index_size = 4;
dinfo.instance_count = 1;
dinfo.index.resource = state->b.input.indexbuf;
si_draw<GFX_VERSION, HAS_TESS, HAS_GS, NGG, DRAW_VERTEX_STATE_ON, POPCNT>
(ctx, &dinfo, 0, NULL, draws, num_draws, vstate, partial_velem_mask);
if (info.take_vertex_state_ownership)
pipe_vertex_state_reference(&vstate, NULL);
}
static void si_draw_rectangle(struct blitter_context *blitter, void *vertex_elements_cso,
blitter_get_vs_func get_vs, int x1, int y1, int x2, int y2,
float depth, unsigned num_instances, enum blitter_attrib_type type,
const union blitter_attrib *attrib)
{
struct pipe_context *pipe = util_blitter_get_pipe(blitter);
struct si_context *sctx = (struct si_context *)pipe;
/* Pack position coordinates as signed int16. */
sctx->vs_blit_sh_data[0] = (uint32_t)(x1 & 0xffff) | ((uint32_t)(y1 & 0xffff) << 16);
sctx->vs_blit_sh_data[1] = (uint32_t)(x2 & 0xffff) | ((uint32_t)(y2 & 0xffff) << 16);
sctx->vs_blit_sh_data[2] = fui(depth);
switch (type) {
case UTIL_BLITTER_ATTRIB_COLOR:
memcpy(&sctx->vs_blit_sh_data[3], attrib->color, sizeof(float) * 4);
break;
case UTIL_BLITTER_ATTRIB_TEXCOORD_XY:
case UTIL_BLITTER_ATTRIB_TEXCOORD_XYZW:
memcpy(&sctx->vs_blit_sh_data[3], &attrib->texcoord, sizeof(attrib->texcoord));
break;
case UTIL_BLITTER_ATTRIB_NONE:;
}
pipe->bind_vs_state(pipe, si_get_blitter_vs(sctx, type, num_instances));
struct pipe_draw_info info = {};
struct pipe_draw_start_count_bias draw;
info.mode = SI_PRIM_RECTANGLE_LIST;
info.instance_count = num_instances;
draw.start = 0;
draw.count = 3;
/* Don't set per-stage shader pointers for VS. */
sctx->shader_pointers_dirty &= ~SI_DESCS_SHADER_MASK(VERTEX);
sctx->vertex_buffer_pointer_dirty = false;
sctx->vertex_buffer_user_sgprs_dirty = false;
pipe->draw_vbo(pipe, &info, 0, NULL, &draw, 1);
}
template <amd_gfx_level GFX_VERSION, si_has_tess HAS_TESS, si_has_gs HAS_GS, si_has_ngg NGG>
static void si_init_draw_vbo(struct si_context *sctx)
{
if (NGG && GFX_VERSION < GFX10)
return;
if (!NGG && GFX_VERSION >= GFX11)
return;
sctx->draw_vbo[HAS_TESS][HAS_GS][NGG] =
si_draw_vbo<GFX_VERSION, HAS_TESS, HAS_GS, NGG>;
if (util_get_cpu_caps()->has_popcnt) {
sctx->draw_vertex_state[HAS_TESS][HAS_GS][NGG] =
si_draw_vertex_state<GFX_VERSION, HAS_TESS, HAS_GS, NGG, POPCNT_YES>;
} else {
sctx->draw_vertex_state[HAS_TESS][HAS_GS][NGG] =
si_draw_vertex_state<GFX_VERSION, HAS_TESS, HAS_GS, NGG, POPCNT_NO>;
}
}
template <amd_gfx_level GFX_VERSION>
static void si_init_draw_vbo_all_pipeline_options(struct si_context *sctx)
{
si_init_draw_vbo<GFX_VERSION, TESS_OFF, GS_OFF, NGG_OFF>(sctx);
si_init_draw_vbo<GFX_VERSION, TESS_OFF, GS_ON, NGG_OFF>(sctx);
si_init_draw_vbo<GFX_VERSION, TESS_ON, GS_OFF, NGG_OFF>(sctx);
si_init_draw_vbo<GFX_VERSION, TESS_ON, GS_ON, NGG_OFF>(sctx);
si_init_draw_vbo<GFX_VERSION, TESS_OFF, GS_OFF, NGG_ON>(sctx);
si_init_draw_vbo<GFX_VERSION, TESS_OFF, GS_ON, NGG_ON>(sctx);
si_init_draw_vbo<GFX_VERSION, TESS_ON, GS_OFF, NGG_ON>(sctx);
si_init_draw_vbo<GFX_VERSION, TESS_ON, GS_ON, NGG_ON>(sctx);
}
static void si_invalid_draw_vbo(struct pipe_context *pipe,
const struct pipe_draw_info *info,
unsigned drawid_offset,
const struct pipe_draw_indirect_info *indirect,
const struct pipe_draw_start_count_bias *draws,
unsigned num_draws)
{
unreachable("vertex shader not bound");
}
static void si_invalid_draw_vertex_state(struct pipe_context *ctx,
struct pipe_vertex_state *vstate,
uint32_t partial_velem_mask,
struct pipe_draw_vertex_state_info info,
const struct pipe_draw_start_count_bias *draws,
unsigned num_draws)
{
unreachable("vertex shader not bound");
}
extern "C"
void GFX(si_init_draw_functions_)(struct si_context *sctx)
{
assert(sctx->gfx_level == GFX());
si_init_draw_vbo_all_pipeline_options<GFX()>(sctx);
/* Bind a fake draw_vbo, so that draw_vbo isn't NULL, which would skip
* initialization of callbacks in upper layers (such as u_threaded_context).
*/
sctx->b.draw_vbo = si_invalid_draw_vbo;
sctx->b.draw_vertex_state = si_invalid_draw_vertex_state;
sctx->blitter->draw_rectangle = si_draw_rectangle;
si_init_ia_multi_vgt_param_table(sctx);
}
#if GFX_VER == 6 /* declare this function only once because it supports all chips. */
extern "C"
void si_init_spi_map_functions(struct si_context *sctx)
{
/* This unrolls the loops in si_emit_spi_map and inlines memcmp and memcpys.
* It improves performance for viewperf/snx.
*/
sctx->emit_spi_map[0] = si_emit_spi_map<0>;
sctx->emit_spi_map[1] = si_emit_spi_map<1>;
sctx->emit_spi_map[2] = si_emit_spi_map<2>;
sctx->emit_spi_map[3] = si_emit_spi_map<3>;
sctx->emit_spi_map[4] = si_emit_spi_map<4>;
sctx->emit_spi_map[5] = si_emit_spi_map<5>;
sctx->emit_spi_map[6] = si_emit_spi_map<6>;
sctx->emit_spi_map[7] = si_emit_spi_map<7>;
sctx->emit_spi_map[8] = si_emit_spi_map<8>;
sctx->emit_spi_map[9] = si_emit_spi_map<9>;
sctx->emit_spi_map[10] = si_emit_spi_map<10>;
sctx->emit_spi_map[11] = si_emit_spi_map<11>;
sctx->emit_spi_map[12] = si_emit_spi_map<12>;
sctx->emit_spi_map[13] = si_emit_spi_map<13>;
sctx->emit_spi_map[14] = si_emit_spi_map<14>;
sctx->emit_spi_map[15] = si_emit_spi_map<15>;
sctx->emit_spi_map[16] = si_emit_spi_map<16>;
sctx->emit_spi_map[17] = si_emit_spi_map<17>;
sctx->emit_spi_map[18] = si_emit_spi_map<18>;
sctx->emit_spi_map[19] = si_emit_spi_map<19>;
sctx->emit_spi_map[20] = si_emit_spi_map<20>;
sctx->emit_spi_map[21] = si_emit_spi_map<21>;
sctx->emit_spi_map[22] = si_emit_spi_map<22>;
sctx->emit_spi_map[23] = si_emit_spi_map<23>;
sctx->emit_spi_map[24] = si_emit_spi_map<24>;
sctx->emit_spi_map[25] = si_emit_spi_map<25>;
sctx->emit_spi_map[26] = si_emit_spi_map<26>;
sctx->emit_spi_map[27] = si_emit_spi_map<27>;
sctx->emit_spi_map[28] = si_emit_spi_map<28>;
sctx->emit_spi_map[29] = si_emit_spi_map<29>;
sctx->emit_spi_map[30] = si_emit_spi_map<30>;
sctx->emit_spi_map[31] = si_emit_spi_map<31>;
sctx->emit_spi_map[32] = si_emit_spi_map<32>;
}
#endif