mesa/src/amd/vulkan/radv_meta_resolve_fs.c

1190 lines
50 KiB
C

/*
* Copyright © 2016 Dave Airlie
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include "nir/nir_builder.h"
#include "radv_meta.h"
#include "radv_private.h"
#include "sid.h"
#include "vk_format.h"
static nir_shader *
build_nir_vertex_shader(void)
{
const struct glsl_type *vec4 = glsl_vec4_type();
nir_builder b = radv_meta_init_shader(MESA_SHADER_VERTEX, "meta_resolve_vs");
nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "gl_Position");
pos_out->data.location = VARYING_SLOT_POS;
nir_ssa_def *outvec = radv_meta_gen_rect_vertices(&b);
nir_store_var(&b, pos_out, outvec, 0xf);
return b.shader;
}
static nir_shader *
build_resolve_fragment_shader(struct radv_device *dev, bool is_integer, int samples)
{
const struct glsl_type *vec4 = glsl_vec4_type();
const struct glsl_type *sampler_type =
glsl_sampler_type(GLSL_SAMPLER_DIM_MS, false, false, GLSL_TYPE_FLOAT);
nir_builder b = radv_meta_init_shader(MESA_SHADER_FRAGMENT, "meta_resolve_fs-%d-%s", samples,
is_integer ? "int" : "float");
nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, sampler_type, "s_tex");
input_img->data.descriptor_set = 0;
input_img->data.binding = 0;
nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "f_color");
color_out->data.location = FRAG_RESULT_DATA0;
nir_ssa_def *pos_in = nir_channels(&b, nir_load_frag_coord(&b), 0x3);
nir_ssa_def *src_offset = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 0), 0, 8);
nir_ssa_def *pos_int = nir_f2i32(&b, pos_in);
nir_ssa_def *img_coord = nir_channels(&b, nir_iadd(&b, pos_int, src_offset), 0x3);
nir_variable *color = nir_local_variable_create(b.impl, glsl_vec4_type(), "color");
radv_meta_build_resolve_shader_core(&b, is_integer, samples, input_img, color, img_coord);
nir_ssa_def *outval = nir_load_var(&b, color);
nir_store_var(&b, color_out, outval, 0xf);
return b.shader;
}
static VkResult
create_layout(struct radv_device *device)
{
VkResult result;
/*
* one descriptors for the image being sampled
*/
VkDescriptorSetLayoutCreateInfo ds_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 1,
.pBindings = (VkDescriptorSetLayoutBinding[]){
{.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
.pImmutableSamplers = NULL},
}};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info,
&device->meta_state.alloc,
&device->meta_state.resolve_fragment.ds_layout);
if (result != VK_SUCCESS)
goto fail;
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.resolve_fragment.ds_layout,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 8},
};
result = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info,
&device->meta_state.alloc,
&device->meta_state.resolve_fragment.p_layout);
if (result != VK_SUCCESS)
goto fail;
return VK_SUCCESS;
fail:
return result;
}
static const VkPipelineVertexInputStateCreateInfo normal_vi_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.vertexBindingDescriptionCount = 0,
.vertexAttributeDescriptionCount = 0,
};
static VkResult
create_resolve_pipeline(struct radv_device *device, int samples_log2, VkFormat format)
{
mtx_lock(&device->meta_state.mtx);
unsigned fs_key = radv_format_meta_fs_key(device, format);
VkPipeline *pipeline = &device->meta_state.resolve_fragment.rc[samples_log2].pipeline[fs_key];
if (*pipeline) {
mtx_unlock(&device->meta_state.mtx);
return VK_SUCCESS;
}
VkResult result;
bool is_integer = false;
uint32_t samples = 1 << samples_log2;
const VkPipelineVertexInputStateCreateInfo *vi_create_info;
vi_create_info = &normal_vi_create_info;
if (vk_format_is_int(format))
is_integer = true;
nir_shader *fs = build_resolve_fragment_shader(device, is_integer, samples);
nir_shader *vs = build_nir_vertex_shader();
VkRenderPass *rp = &device->meta_state.resolve_fragment.rc[samples_log2].render_pass[fs_key][0];
assert(!*rp);
VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
{.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = vk_shader_module_handle_from_nir(vs),
.pName = "main",
.pSpecializationInfo = NULL},
{.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = vk_shader_module_handle_from_nir(fs),
.pName = "main",
.pSpecializationInfo = NULL},
};
for (unsigned dst_layout = 0; dst_layout < RADV_META_DST_LAYOUT_COUNT; ++dst_layout) {
VkImageLayout layout = radv_meta_dst_layout_to_layout(dst_layout);
result = radv_CreateRenderPass2(
radv_device_to_handle(device),
&(VkRenderPassCreateInfo2){
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2,
.attachmentCount = 1,
.pAttachments =
&(VkAttachmentDescription2){
.sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2,
.format = format,
.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.initialLayout = layout,
.finalLayout = layout,
},
.subpassCount = 1,
.pSubpasses =
&(VkSubpassDescription2){
.sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2,
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.inputAttachmentCount = 0,
.colorAttachmentCount = 1,
.pColorAttachments =
&(VkAttachmentReference2){
.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
.attachment = 0,
.layout = layout,
},
.pResolveAttachments = NULL,
.pDepthStencilAttachment =
&(VkAttachmentReference2){
.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
.attachment = VK_ATTACHMENT_UNUSED,
.layout = VK_IMAGE_LAYOUT_GENERAL,
},
.preserveAttachmentCount = 0,
.pPreserveAttachments = NULL,
},
.dependencyCount = 2,
.pDependencies =
(VkSubpassDependency2[]){{.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2,
.srcSubpass = VK_SUBPASS_EXTERNAL,
.dstSubpass = 0,
.srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
.dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
.srcAccessMask = 0,
.dstAccessMask = 0,
.dependencyFlags = 0},
{.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2,
.srcSubpass = 0,
.dstSubpass = VK_SUBPASS_EXTERNAL,
.srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
.dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
.srcAccessMask = 0,
.dstAccessMask = 0,
.dependencyFlags = 0}},
},
&device->meta_state.alloc, rp + dst_layout);
}
const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = ARRAY_SIZE(pipeline_shader_stages),
.pStages = pipeline_shader_stages,
.pVertexInputState = vi_create_info,
.pInputAssemblyState =
&(VkPipelineInputAssemblyStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
.primitiveRestartEnable = false,
},
.pViewportState =
&(VkPipelineViewportStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1,
},
.pRasterizationState =
&(VkPipelineRasterizationStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.rasterizerDiscardEnable = false,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_NONE,
.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE},
.pMultisampleState =
&(VkPipelineMultisampleStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = 1,
.sampleShadingEnable = false,
.pSampleMask = (VkSampleMask[]){UINT32_MAX},
},
.pColorBlendState =
&(VkPipelineColorBlendStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.attachmentCount = 1,
.pAttachments =
(VkPipelineColorBlendAttachmentState[]){
{.colorWriteMask = VK_COLOR_COMPONENT_A_BIT | VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT},
}},
.pDynamicState =
&(VkPipelineDynamicStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 9,
.pDynamicStates =
(VkDynamicState[]){
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
VK_DYNAMIC_STATE_LINE_WIDTH,
VK_DYNAMIC_STATE_DEPTH_BIAS,
VK_DYNAMIC_STATE_BLEND_CONSTANTS,
VK_DYNAMIC_STATE_DEPTH_BOUNDS,
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
VK_DYNAMIC_STATE_STENCIL_REFERENCE,
},
},
.flags = 0,
.layout = device->meta_state.resolve_fragment.p_layout,
.renderPass = *rp,
.subpass = 0,
};
const struct radv_graphics_pipeline_create_info radv_pipeline_info = {.use_rectlist = true};
result = radv_graphics_pipeline_create(
radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache),
&vk_pipeline_info, &radv_pipeline_info, &device->meta_state.alloc, pipeline);
ralloc_free(vs);
ralloc_free(fs);
mtx_unlock(&device->meta_state.mtx);
return result;
}
enum { DEPTH_RESOLVE, STENCIL_RESOLVE };
static const char *
get_resolve_mode_str(VkResolveModeFlagBits resolve_mode)
{
switch (resolve_mode) {
case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
return "zero";
case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
return "average";
case VK_RESOLVE_MODE_MIN_BIT_KHR:
return "min";
case VK_RESOLVE_MODE_MAX_BIT_KHR:
return "max";
default:
unreachable("invalid resolve mode");
}
}
static nir_shader *
build_depth_stencil_resolve_fragment_shader(struct radv_device *dev, int samples, int index,
VkResolveModeFlagBits resolve_mode)
{
const struct glsl_type *vec4 = glsl_vec4_type();
const struct glsl_type *sampler_type =
glsl_sampler_type(GLSL_SAMPLER_DIM_2D, false, false, GLSL_TYPE_FLOAT);
nir_builder b = radv_meta_init_shader(MESA_SHADER_FRAGMENT, "meta_resolve_fs_%s-%s-%d",
index == DEPTH_RESOLVE ? "depth" : "stencil",
get_resolve_mode_str(resolve_mode), samples);
nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, sampler_type, "s_tex");
input_img->data.descriptor_set = 0;
input_img->data.binding = 0;
nir_variable *fs_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "f_out");
fs_out->data.location = index == DEPTH_RESOLVE ? FRAG_RESULT_DEPTH : FRAG_RESULT_STENCIL;
nir_ssa_def *pos_in = nir_channels(&b, nir_load_frag_coord(&b), 0x3);
nir_ssa_def *pos_int = nir_f2i32(&b, pos_in);
nir_ssa_def *img_coord = nir_channels(&b, pos_int, 0x3);
nir_ssa_def *input_img_deref = &nir_build_deref_var(&b, input_img)->dest.ssa;
nir_alu_type type = index == DEPTH_RESOLVE ? nir_type_float32 : nir_type_uint32;
nir_tex_instr *tex = nir_tex_instr_create(b.shader, 3);
tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
tex->op = nir_texop_txf_ms;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(img_coord);
tex->src[1].src_type = nir_tex_src_ms_index;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0));
tex->src[2].src_type = nir_tex_src_texture_deref;
tex->src[2].src = nir_src_for_ssa(input_img_deref);
tex->dest_type = type;
tex->is_array = false;
tex->coord_components = 2;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
nir_builder_instr_insert(&b, &tex->instr);
nir_ssa_def *outval = &tex->dest.ssa;
if (resolve_mode != VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR) {
for (int i = 1; i < samples; i++) {
nir_tex_instr *tex_add = nir_tex_instr_create(b.shader, 3);
tex_add->sampler_dim = GLSL_SAMPLER_DIM_MS;
tex_add->op = nir_texop_txf_ms;
tex_add->src[0].src_type = nir_tex_src_coord;
tex_add->src[0].src = nir_src_for_ssa(img_coord);
tex_add->src[1].src_type = nir_tex_src_ms_index;
tex_add->src[1].src = nir_src_for_ssa(nir_imm_int(&b, i));
tex_add->src[2].src_type = nir_tex_src_texture_deref;
tex_add->src[2].src = nir_src_for_ssa(input_img_deref);
tex_add->dest_type = type;
tex_add->is_array = false;
tex_add->coord_components = 2;
nir_ssa_dest_init(&tex_add->instr, &tex_add->dest, 4, 32, "tex");
nir_builder_instr_insert(&b, &tex_add->instr);
switch (resolve_mode) {
case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
assert(index == DEPTH_RESOLVE);
outval = nir_fadd(&b, outval, &tex_add->dest.ssa);
break;
case VK_RESOLVE_MODE_MIN_BIT_KHR:
if (index == DEPTH_RESOLVE)
outval = nir_fmin(&b, outval, &tex_add->dest.ssa);
else
outval = nir_umin(&b, outval, &tex_add->dest.ssa);
break;
case VK_RESOLVE_MODE_MAX_BIT_KHR:
if (index == DEPTH_RESOLVE)
outval = nir_fmax(&b, outval, &tex_add->dest.ssa);
else
outval = nir_umax(&b, outval, &tex_add->dest.ssa);
break;
default:
unreachable("invalid resolve mode");
}
}
if (resolve_mode == VK_RESOLVE_MODE_AVERAGE_BIT_KHR)
outval = nir_fdiv(&b, outval, nir_imm_float(&b, samples));
}
nir_store_var(&b, fs_out, outval, 0x1);
return b.shader;
}
static VkResult
create_depth_stencil_resolve_pipeline(struct radv_device *device, int samples_log2, int index,
VkResolveModeFlagBits resolve_mode)
{
VkRenderPass *render_pass;
VkPipeline *pipeline;
VkFormat src_format;
VkResult result;
mtx_lock(&device->meta_state.mtx);
switch (resolve_mode) {
case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
if (index == DEPTH_RESOLVE)
pipeline = &device->meta_state.resolve_fragment.depth_zero_pipeline;
else
pipeline = &device->meta_state.resolve_fragment.stencil_zero_pipeline;
break;
case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
assert(index == DEPTH_RESOLVE);
pipeline = &device->meta_state.resolve_fragment.depth[samples_log2].average_pipeline;
break;
case VK_RESOLVE_MODE_MIN_BIT_KHR:
if (index == DEPTH_RESOLVE)
pipeline = &device->meta_state.resolve_fragment.depth[samples_log2].min_pipeline;
else
pipeline = &device->meta_state.resolve_fragment.stencil[samples_log2].min_pipeline;
break;
case VK_RESOLVE_MODE_MAX_BIT_KHR:
if (index == DEPTH_RESOLVE)
pipeline = &device->meta_state.resolve_fragment.depth[samples_log2].max_pipeline;
else
pipeline = &device->meta_state.resolve_fragment.stencil[samples_log2].max_pipeline;
break;
default:
unreachable("invalid resolve mode");
}
if (*pipeline) {
mtx_unlock(&device->meta_state.mtx);
return VK_SUCCESS;
}
uint32_t samples = 1 << samples_log2;
nir_shader *fs =
build_depth_stencil_resolve_fragment_shader(device, samples, index, resolve_mode);
nir_shader *vs = build_nir_vertex_shader();
VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
{.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = vk_shader_module_handle_from_nir(vs),
.pName = "main",
.pSpecializationInfo = NULL},
{.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = vk_shader_module_handle_from_nir(fs),
.pName = "main",
.pSpecializationInfo = NULL},
};
if (index == DEPTH_RESOLVE) {
src_format = VK_FORMAT_D32_SFLOAT;
render_pass = &device->meta_state.resolve_fragment.depth_render_pass;
} else {
render_pass = &device->meta_state.resolve_fragment.stencil_render_pass;
src_format = VK_FORMAT_S8_UINT;
}
if (!*render_pass) {
result = radv_CreateRenderPass2(
radv_device_to_handle(device),
&(VkRenderPassCreateInfo2){
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2,
.attachmentCount = 1,
.pAttachments =
&(VkAttachmentDescription2){
.sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2,
.format = src_format,
.loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE,
.initialLayout = VK_IMAGE_LAYOUT_GENERAL,
.finalLayout = VK_IMAGE_LAYOUT_GENERAL,
},
.subpassCount = 1,
.pSubpasses =
&(VkSubpassDescription2){
.sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2,
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.inputAttachmentCount = 0,
.colorAttachmentCount = 0,
.pColorAttachments = NULL,
.pResolveAttachments = NULL,
.pDepthStencilAttachment =
&(VkAttachmentReference2){
.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
.attachment = 0,
.layout = VK_IMAGE_LAYOUT_GENERAL,
},
.preserveAttachmentCount = 0,
.pPreserveAttachments = NULL,
},
.dependencyCount = 2,
.pDependencies =
(VkSubpassDependency2[]){{.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2,
.srcSubpass = VK_SUBPASS_EXTERNAL,
.dstSubpass = 0,
.srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
.dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
.srcAccessMask = 0,
.dstAccessMask = 0,
.dependencyFlags = 0},
{.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2,
.srcSubpass = 0,
.dstSubpass = VK_SUBPASS_EXTERNAL,
.srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
.dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
.srcAccessMask = 0,
.dstAccessMask = 0,
.dependencyFlags = 0}},
},
&device->meta_state.alloc, render_pass);
}
VkStencilOp stencil_op = index == DEPTH_RESOLVE ? VK_STENCIL_OP_KEEP : VK_STENCIL_OP_REPLACE;
VkPipelineDepthStencilStateCreateInfo depth_stencil_state = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
.depthTestEnable = true,
.depthWriteEnable = index == DEPTH_RESOLVE,
.stencilTestEnable = index == STENCIL_RESOLVE,
.depthCompareOp = VK_COMPARE_OP_ALWAYS,
.front =
{
.failOp = stencil_op,
.passOp = stencil_op,
.depthFailOp = stencil_op,
.compareOp = VK_COMPARE_OP_ALWAYS,
},
.back = {
.failOp = stencil_op,
.passOp = stencil_op,
.depthFailOp = stencil_op,
.compareOp = VK_COMPARE_OP_ALWAYS,
}};
const VkPipelineVertexInputStateCreateInfo *vi_create_info;
vi_create_info = &normal_vi_create_info;
const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = ARRAY_SIZE(pipeline_shader_stages),
.pStages = pipeline_shader_stages,
.pVertexInputState = vi_create_info,
.pInputAssemblyState =
&(VkPipelineInputAssemblyStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
.primitiveRestartEnable = false,
},
.pViewportState =
&(VkPipelineViewportStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1,
},
.pDepthStencilState = &depth_stencil_state,
.pRasterizationState =
&(VkPipelineRasterizationStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.rasterizerDiscardEnable = false,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_NONE,
.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE},
.pMultisampleState =
&(VkPipelineMultisampleStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = 1,
.sampleShadingEnable = false,
.pSampleMask = (VkSampleMask[]){UINT32_MAX},
},
.pColorBlendState =
&(VkPipelineColorBlendStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.attachmentCount = 0,
.pAttachments =
(VkPipelineColorBlendAttachmentState[]){
{.colorWriteMask = VK_COLOR_COMPONENT_A_BIT | VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT},
}},
.pDynamicState =
&(VkPipelineDynamicStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 9,
.pDynamicStates =
(VkDynamicState[]){
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
VK_DYNAMIC_STATE_LINE_WIDTH,
VK_DYNAMIC_STATE_DEPTH_BIAS,
VK_DYNAMIC_STATE_BLEND_CONSTANTS,
VK_DYNAMIC_STATE_DEPTH_BOUNDS,
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
VK_DYNAMIC_STATE_STENCIL_REFERENCE,
},
},
.flags = 0,
.layout = device->meta_state.resolve_fragment.p_layout,
.renderPass = *render_pass,
.subpass = 0,
};
const struct radv_graphics_pipeline_create_info radv_pipeline_info = {.use_rectlist = true};
result = radv_graphics_pipeline_create(
radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache),
&vk_pipeline_info, &radv_pipeline_info, &device->meta_state.alloc, pipeline);
ralloc_free(vs);
ralloc_free(fs);
mtx_unlock(&device->meta_state.mtx);
return result;
}
VkResult
radv_device_init_meta_resolve_fragment_state(struct radv_device *device, bool on_demand)
{
VkResult res;
res = create_layout(device);
if (res != VK_SUCCESS)
goto fail;
if (on_demand)
return VK_SUCCESS;
for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
for (unsigned j = 0; j < NUM_META_FS_KEYS; ++j) {
res = create_resolve_pipeline(device, i, radv_fs_key_format_exemplars[j]);
if (res != VK_SUCCESS)
goto fail;
}
res = create_depth_stencil_resolve_pipeline(device, i, DEPTH_RESOLVE,
VK_RESOLVE_MODE_AVERAGE_BIT_KHR);
if (res != VK_SUCCESS)
goto fail;
res = create_depth_stencil_resolve_pipeline(device, i, DEPTH_RESOLVE,
VK_RESOLVE_MODE_MIN_BIT_KHR);
if (res != VK_SUCCESS)
goto fail;
res = create_depth_stencil_resolve_pipeline(device, i, DEPTH_RESOLVE,
VK_RESOLVE_MODE_MAX_BIT_KHR);
if (res != VK_SUCCESS)
goto fail;
res = create_depth_stencil_resolve_pipeline(device, i, STENCIL_RESOLVE,
VK_RESOLVE_MODE_MIN_BIT_KHR);
if (res != VK_SUCCESS)
goto fail;
res = create_depth_stencil_resolve_pipeline(device, i, STENCIL_RESOLVE,
VK_RESOLVE_MODE_MAX_BIT_KHR);
if (res != VK_SUCCESS)
goto fail;
}
res = create_depth_stencil_resolve_pipeline(device, 0, DEPTH_RESOLVE,
VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR);
if (res != VK_SUCCESS)
goto fail;
res = create_depth_stencil_resolve_pipeline(device, 0, STENCIL_RESOLVE,
VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR);
if (res != VK_SUCCESS)
goto fail;
return VK_SUCCESS;
fail:
radv_device_finish_meta_resolve_fragment_state(device);
return res;
}
void
radv_device_finish_meta_resolve_fragment_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
for (unsigned j = 0; j < NUM_META_FS_KEYS; ++j) {
for (unsigned k = 0; k < RADV_META_DST_LAYOUT_COUNT; ++k) {
radv_DestroyRenderPass(radv_device_to_handle(device),
state->resolve_fragment.rc[i].render_pass[j][k], &state->alloc);
}
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_fragment.rc[i].pipeline[j], &state->alloc);
}
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_fragment.depth[i].average_pipeline, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_fragment.depth[i].max_pipeline, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_fragment.depth[i].min_pipeline, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_fragment.stencil[i].max_pipeline, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_fragment.stencil[i].min_pipeline, &state->alloc);
}
radv_DestroyRenderPass(radv_device_to_handle(device), state->resolve_fragment.depth_render_pass,
&state->alloc);
radv_DestroyRenderPass(radv_device_to_handle(device),
state->resolve_fragment.stencil_render_pass, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_fragment.depth_zero_pipeline,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_fragment.stencil_zero_pipeline, &state->alloc);
radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->resolve_fragment.ds_layout,
&state->alloc);
radv_DestroyPipelineLayout(radv_device_to_handle(device), state->resolve_fragment.p_layout,
&state->alloc);
}
static VkPipeline *
radv_get_resolve_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *src_iview,
struct radv_image_view *dst_iview)
{
struct radv_device *device = cmd_buffer->device;
unsigned fs_key = radv_format_meta_fs_key(cmd_buffer->device, dst_iview->vk_format);
const uint32_t samples = src_iview->image->info.samples;
const uint32_t samples_log2 = ffs(samples) - 1;
VkPipeline *pipeline;
pipeline = &device->meta_state.resolve_fragment.rc[samples_log2].pipeline[fs_key];
if (!*pipeline) {
VkResult ret;
ret = create_resolve_pipeline(device, samples_log2, radv_fs_key_format_exemplars[fs_key]);
if (ret != VK_SUCCESS) {
cmd_buffer->record_result = ret;
return NULL;
}
}
return pipeline;
}
static void
emit_resolve(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *src_iview,
struct radv_image_view *dest_iview, const VkOffset2D *src_offset,
const VkOffset2D *dest_offset, const VkExtent2D *resolve_extent)
{
struct radv_device *device = cmd_buffer->device;
VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer);
VkPipeline *pipeline;
radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
cmd_buffer->device->meta_state.resolve_fragment.p_layout,
0, /* set */
1, /* descriptorWriteCount */
(VkWriteDescriptorSet[]){
{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.pImageInfo =
(VkDescriptorImageInfo[]){
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(src_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}},
});
cmd_buffer->state.flush_bits |=
radv_dst_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_READ_BIT_KHR, src_iview->image) |
radv_dst_access_flush(cmd_buffer, VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT_KHR, dest_iview->image);
unsigned push_constants[2] = {
src_offset->x - dest_offset->x,
src_offset->y - dest_offset->y,
};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.resolve_fragment.p_layout, VK_SHADER_STAGE_FRAGMENT_BIT,
0, 8, push_constants);
pipeline = radv_get_resolve_pipeline(cmd_buffer, src_iview, dest_iview);
radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline);
radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
&(VkViewport){.x = dest_offset->x,
.y = dest_offset->y,
.width = resolve_extent->width,
.height = resolve_extent->height,
.minDepth = 0.0f,
.maxDepth = 1.0f});
radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
&(VkRect2D){
.offset = *dest_offset,
.extent = *resolve_extent,
});
radv_CmdDraw(cmd_buffer_h, 3, 1, 0, 0);
cmd_buffer->state.flush_bits |=
radv_src_access_flush(cmd_buffer, VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT_KHR, dest_iview->image);
}
static void
emit_depth_stencil_resolve(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *src_iview,
struct radv_image_view *dst_iview, const VkExtent2D *resolve_extent,
VkImageAspectFlags aspects, VkResolveModeFlagBits resolve_mode)
{
struct radv_device *device = cmd_buffer->device;
const uint32_t samples = src_iview->image->info.samples;
const uint32_t samples_log2 = ffs(samples) - 1;
VkPipeline *pipeline;
radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
cmd_buffer->device->meta_state.resolve_fragment.p_layout,
0, /* set */
1, /* descriptorWriteCount */
(VkWriteDescriptorSet[]){
{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.pImageInfo =
(VkDescriptorImageInfo[]){
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(src_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}},
});
switch (resolve_mode) {
case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT)
pipeline = &device->meta_state.resolve_fragment.depth_zero_pipeline;
else
pipeline = &device->meta_state.resolve_fragment.stencil_zero_pipeline;
break;
case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
assert(aspects == VK_IMAGE_ASPECT_DEPTH_BIT);
pipeline = &device->meta_state.resolve_fragment.depth[samples_log2].average_pipeline;
break;
case VK_RESOLVE_MODE_MIN_BIT_KHR:
if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT)
pipeline = &device->meta_state.resolve_fragment.depth[samples_log2].min_pipeline;
else
pipeline = &device->meta_state.resolve_fragment.stencil[samples_log2].min_pipeline;
break;
case VK_RESOLVE_MODE_MAX_BIT_KHR:
if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT)
pipeline = &device->meta_state.resolve_fragment.depth[samples_log2].max_pipeline;
else
pipeline = &device->meta_state.resolve_fragment.stencil[samples_log2].max_pipeline;
break;
default:
unreachable("invalid resolve mode");
}
if (!*pipeline) {
int index = aspects == VK_IMAGE_ASPECT_DEPTH_BIT ? DEPTH_RESOLVE : STENCIL_RESOLVE;
VkResult ret;
ret = create_depth_stencil_resolve_pipeline(device, samples_log2, index, resolve_mode);
if (ret != VK_SUCCESS) {
cmd_buffer->record_result = ret;
return;
}
}
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_GRAPHICS,
*pipeline);
radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
&(VkViewport){.x = 0,
.y = 0,
.width = resolve_extent->width,
.height = resolve_extent->height,
.minDepth = 0.0f,
.maxDepth = 1.0f});
radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
&(VkRect2D){
.offset = (VkOffset2D){0, 0},
.extent = *resolve_extent,
});
radv_CmdDraw(radv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
}
void
radv_meta_resolve_fragment_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *src_image,
VkImageLayout src_image_layout, struct radv_image *dest_image,
VkImageLayout dest_image_layout, const VkImageResolve2KHR *region)
{
struct radv_device *device = cmd_buffer->device;
struct radv_meta_saved_state saved_state;
const uint32_t samples = src_image->info.samples;
const uint32_t samples_log2 = ffs(samples) - 1;
unsigned fs_key = radv_format_meta_fs_key(cmd_buffer->device, dest_image->vk_format);
unsigned dst_layout = radv_meta_dst_layout_from_layout(dest_image_layout);
VkRenderPass rp;
radv_decompress_resolve_src(cmd_buffer, src_image, src_image_layout, region);
if (!device->meta_state.resolve_fragment.rc[samples_log2].render_pass[fs_key][dst_layout]) {
VkResult ret =
create_resolve_pipeline(device, samples_log2, radv_fs_key_format_exemplars[fs_key]);
if (ret != VK_SUCCESS) {
cmd_buffer->record_result = ret;
return;
}
}
rp = device->meta_state.resolve_fragment.rc[samples_log2].render_pass[fs_key][dst_layout];
radv_meta_save(
&saved_state, cmd_buffer,
RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS);
assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
assert(region->srcSubresource.layerCount == region->dstSubresource.layerCount);
const uint32_t src_base_layer =
radv_meta_get_iview_layer(src_image, &region->srcSubresource, &region->srcOffset);
const uint32_t dest_base_layer =
radv_meta_get_iview_layer(dest_image, &region->dstSubresource, &region->dstOffset);
const struct VkExtent3D extent = radv_sanitize_image_extent(src_image->type, region->extent);
const struct VkOffset3D srcOffset =
radv_sanitize_image_offset(src_image->type, region->srcOffset);
const struct VkOffset3D dstOffset =
radv_sanitize_image_offset(dest_image->type, region->dstOffset);
for (uint32_t layer = 0; layer < region->srcSubresource.layerCount; ++layer) {
struct radv_image_view src_iview;
radv_image_view_init(&src_iview, cmd_buffer->device,
&(VkImageViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(src_image),
.viewType = radv_meta_get_view_type(src_image),
.format = src_image->vk_format,
.subresourceRange =
{
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = region->srcSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = src_base_layer + layer,
.layerCount = 1,
},
},
NULL);
struct radv_image_view dest_iview;
radv_image_view_init(&dest_iview, cmd_buffer->device,
&(VkImageViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(dest_image),
.viewType = radv_meta_get_view_type(dest_image),
.format = dest_image->vk_format,
.subresourceRange =
{
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = region->dstSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = dest_base_layer + layer,
.layerCount = 1,
},
},
NULL);
VkFramebuffer fb;
radv_CreateFramebuffer(
radv_device_to_handle(cmd_buffer->device),
&(VkFramebufferCreateInfo){.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.attachmentCount = 1,
.pAttachments =
(VkImageView[]){
radv_image_view_to_handle(&dest_iview),
},
.width = extent.width + dstOffset.x,
.height = extent.height + dstOffset.y,
.layers = 1},
&cmd_buffer->pool->alloc, &fb);
radv_cmd_buffer_begin_render_pass(cmd_buffer,
&(VkRenderPassBeginInfo){
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderPass = rp,
.framebuffer = fb,
.renderArea =
{
.offset =
{
dstOffset.x,
dstOffset.y,
},
.extent = {extent.width, extent.height},
},
.clearValueCount = 0,
.pClearValues = NULL,
},
NULL);
radv_cmd_buffer_set_subpass(cmd_buffer, &cmd_buffer->state.pass->subpasses[0]);
emit_resolve(cmd_buffer, &src_iview, &dest_iview, &(VkOffset2D){srcOffset.x, srcOffset.y},
&(VkOffset2D){dstOffset.x, dstOffset.y},
&(VkExtent2D){extent.width, extent.height});
radv_cmd_buffer_end_render_pass(cmd_buffer);
radv_image_view_finish(&src_iview);
radv_image_view_finish(&dest_iview);
radv_DestroyFramebuffer(radv_device_to_handle(cmd_buffer->device), fb,
&cmd_buffer->pool->alloc);
}
radv_meta_restore(&saved_state, cmd_buffer);
}
/**
* Emit any needed resolves for the current subpass.
*/
void
radv_cmd_buffer_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_framebuffer *fb = cmd_buffer->state.framebuffer;
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
struct radv_meta_saved_state saved_state;
struct radv_subpass_barrier barrier;
/* Resolves happen before the end-of-subpass barriers get executed,
* so we have to make the attachment shader-readable */
barrier.src_stage_mask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT_KHR;
barrier.src_access_mask = VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT_KHR;
barrier.dst_access_mask = VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT_KHR;
radv_emit_subpass_barrier(cmd_buffer, &barrier);
radv_decompress_resolve_subpass_src(cmd_buffer);
radv_meta_save(
&saved_state, cmd_buffer,
RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS);
for (uint32_t i = 0; i < subpass->color_count; ++i) {
struct radv_subpass_attachment src_att = subpass->color_attachments[i];
struct radv_subpass_attachment dest_att = subpass->resolve_attachments[i];
if (dest_att.attachment == VK_ATTACHMENT_UNUSED)
continue;
struct radv_image_view *dest_iview = cmd_buffer->state.attachments[dest_att.attachment].iview;
struct radv_image_view *src_iview = cmd_buffer->state.attachments[src_att.attachment].iview;
struct radv_subpass resolve_subpass = {
.color_count = 1,
.color_attachments = (struct radv_subpass_attachment[]){dest_att},
.depth_stencil_attachment = NULL,
};
radv_cmd_buffer_set_subpass(cmd_buffer, &resolve_subpass);
emit_resolve(cmd_buffer, src_iview, dest_iview, &(VkOffset2D){0, 0}, &(VkOffset2D){0, 0},
&(VkExtent2D){fb->width, fb->height});
radv_cmd_buffer_restore_subpass(cmd_buffer, subpass);
}
radv_meta_restore(&saved_state, cmd_buffer);
}
/**
* Depth/stencil resolves for the current subpass.
*/
void
radv_depth_stencil_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer,
VkImageAspectFlags aspects,
VkResolveModeFlagBits resolve_mode)
{
struct radv_framebuffer *fb = cmd_buffer->state.framebuffer;
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
struct radv_meta_saved_state saved_state;
struct radv_subpass_barrier barrier;
/* Resolves happen before the end-of-subpass barriers get executed,
* so we have to make the attachment shader-readable */
barrier.src_stage_mask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT_KHR;
barrier.src_access_mask = VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT_KHR;
barrier.dst_access_mask = VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT_KHR;
radv_emit_subpass_barrier(cmd_buffer, &barrier);
struct radv_subpass_attachment src_att = *subpass->depth_stencil_attachment;
struct radv_image_view *src_iview = cmd_buffer->state.attachments[src_att.attachment].iview;
struct radv_image *src_image = src_iview->image;
VkImageResolve2KHR region = {0};
region.sType = VK_STRUCTURE_TYPE_IMAGE_RESOLVE_2_KHR;
region.srcSubresource.aspectMask = aspects;
region.srcSubresource.mipLevel = 0;
region.srcSubresource.baseArrayLayer = 0;
region.srcSubresource.layerCount = 1;
radv_decompress_resolve_src(cmd_buffer, src_image, src_att.layout, &region);
radv_meta_save(&saved_state, cmd_buffer,
RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_DESCRIPTORS);
struct radv_subpass_attachment dst_att = *subpass->ds_resolve_attachment;
struct radv_image_view *dst_iview = cmd_buffer->state.attachments[dst_att.attachment].iview;
struct radv_subpass resolve_subpass = {
.color_count = 0,
.color_attachments = NULL,
.depth_stencil_attachment = (struct radv_subpass_attachment *){&dst_att},
};
radv_cmd_buffer_set_subpass(cmd_buffer, &resolve_subpass);
struct radv_image_view tsrc_iview;
radv_image_view_init(&tsrc_iview, cmd_buffer->device,
&(VkImageViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(src_image),
.viewType = radv_meta_get_view_type(src_image),
.format = src_iview->vk_format,
.subresourceRange =
{
.aspectMask = aspects,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
},
NULL);
emit_depth_stencil_resolve(cmd_buffer, &tsrc_iview, dst_iview,
&(VkExtent2D){fb->width, fb->height}, aspects, resolve_mode);
radv_cmd_buffer_restore_subpass(cmd_buffer, subpass);
radv_image_view_finish(&tsrc_iview);
radv_meta_restore(&saved_state, cmd_buffer);
}