mesa/src/amd/vulkan/radv_private.h

3370 lines
108 KiB
C

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef RADV_PRIVATE_H
#define RADV_PRIVATE_H
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef HAVE_VALGRIND
#include <memcheck.h>
#include <valgrind.h>
#define VG(x) x
#else
#define VG(x) ((void)0)
#endif
#include "c11/threads.h"
#ifndef _WIN32
#include <amdgpu.h>
#include <xf86drm.h>
#endif
#include "compiler/shader_enums.h"
#include "util/bitscan.h"
#include "util/list.h"
#include "util/macros.h"
#include "util/rwlock.h"
#include "util/xmlconfig.h"
#include "vk_alloc.h"
#include "vk_buffer.h"
#include "vk_command_buffer.h"
#include "vk_command_pool.h"
#include "vk_debug_report.h"
#include "vk_device.h"
#include "vk_format.h"
#include "vk_instance.h"
#include "vk_log.h"
#include "vk_physical_device.h"
#include "vk_shader_module.h"
#include "vk_queue.h"
#include "vk_util.h"
#include "vk_image.h"
#include "vk_framebuffer.h"
#include "ac_binary.h"
#include "ac_gpu_info.h"
#include "ac_shader_util.h"
#include "ac_spm.h"
#include "ac_sqtt.h"
#include "ac_surface.h"
#include "radv_constants.h"
#include "radv_descriptor_set.h"
#include "radv_radeon_winsys.h"
#include "radv_shader.h"
#include "radv_shader_args.h"
#include "sid.h"
#include "radix_sort/radix_sort_vk_devaddr.h"
/* Pre-declarations needed for WSI entrypoints */
struct wl_surface;
struct wl_display;
typedef struct xcb_connection_t xcb_connection_t;
typedef uint32_t xcb_visualid_t;
typedef uint32_t xcb_window_t;
#include <vulkan/vk_android_native_buffer.h>
#include <vulkan/vk_icd.h>
#include <vulkan/vulkan.h>
#include <vulkan/vulkan_android.h>
#include "radv_entrypoints.h"
#include "wsi_common.h"
#ifdef __cplusplus
extern "C"
{
#endif
/* Helper to determine if we should compile
* any of the Android AHB support.
*
* To actually enable the ext we also need
* the necessary kernel support.
*/
#if defined(ANDROID) && ANDROID_API_LEVEL >= 26
#define RADV_SUPPORT_ANDROID_HARDWARE_BUFFER 1
#include <vndk/hardware_buffer.h>
#else
#define RADV_SUPPORT_ANDROID_HARDWARE_BUFFER 0
#endif
#ifdef _WIN32
#define RADV_SUPPORT_CALIBRATED_TIMESTAMPS 0
#else
#define RADV_SUPPORT_CALIBRATED_TIMESTAMPS 1
#endif
#ifdef _WIN32
#define radv_printflike(a, b)
#else
#define radv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
#endif
static inline uint32_t
align_u32(uint32_t v, uint32_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
static inline uint32_t
align_u32_npot(uint32_t v, uint32_t a)
{
return (v + a - 1) / a * a;
}
static inline uint64_t
align_u64(uint64_t v, uint64_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
static inline int32_t
align_i32(int32_t v, int32_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
/** Alignment must be a power of 2. */
static inline bool
radv_is_aligned(uintmax_t n, uintmax_t a)
{
assert(a == (a & -a));
return (n & (a - 1)) == 0;
}
static inline uint32_t
round_up_u32(uint32_t v, uint32_t a)
{
return (v + a - 1) / a;
}
static inline uint64_t
round_up_u64(uint64_t v, uint64_t a)
{
return (v + a - 1) / a;
}
static inline uint32_t
radv_minify(uint32_t n, uint32_t levels)
{
if (unlikely(n == 0))
return 0;
else
return MAX2(n >> levels, 1);
}
static inline float
radv_clamp_f(float f, float min, float max)
{
assert(min < max);
if (f > max)
return max;
else if (f < min)
return min;
else
return f;
}
static inline bool
radv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
{
if (*inout_mask & clear_mask) {
*inout_mask &= ~clear_mask;
return true;
} else {
return false;
}
}
static inline int
radv_float_to_sfixed(float value, unsigned frac_bits)
{
return value * (1 << frac_bits);
}
static inline unsigned int
radv_float_to_ufixed(float value, unsigned frac_bits)
{
return value * (1 << frac_bits);
}
/* Whenever we generate an error, pass it through this function. Useful for
* debugging, where we can break on it. Only call at error site, not when
* propagating errors. Might be useful to plug in a stack trace here.
*/
struct radv_image_view;
struct radv_instance;
/* A non-fatal assert. Useful for debugging. */
#ifdef NDEBUG
#define radv_assert(x) \
do { \
} while (0)
#else
#define radv_assert(x) \
do { \
if (unlikely(!(x))) \
fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
} while (0)
#endif
int radv_get_instance_entrypoint_index(const char *name);
int radv_get_device_entrypoint_index(const char *name);
int radv_get_physical_device_entrypoint_index(const char *name);
const char *radv_get_instance_entry_name(int index);
const char *radv_get_physical_device_entry_name(int index);
const char *radv_get_device_entry_name(int index);
/* queue types */
enum radv_queue_family {
RADV_QUEUE_GENERAL,
RADV_QUEUE_COMPUTE,
RADV_QUEUE_TRANSFER,
RADV_MAX_QUEUE_FAMILIES,
RADV_QUEUE_FOREIGN = RADV_MAX_QUEUE_FAMILIES,
RADV_QUEUE_IGNORED,
};
struct radv_perfcounter_desc;
struct radv_physical_device {
struct vk_physical_device vk;
/* Link in radv_instance::physical_devices */
struct list_head link;
struct radv_instance *instance;
struct radeon_winsys *ws;
struct radeon_info rad_info;
char name[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];
char marketing_name[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];
uint8_t driver_uuid[VK_UUID_SIZE];
uint8_t device_uuid[VK_UUID_SIZE];
uint8_t cache_uuid[VK_UUID_SIZE];
int local_fd;
int master_fd;
struct wsi_device wsi_device;
bool out_of_order_rast_allowed;
/* Whether DCC should be enabled for MSAA textures. */
bool dcc_msaa_allowed;
/* Whether to enable NGG. */
bool use_ngg;
/* Whether to enable NGG culling. */
bool use_ngg_culling;
/* Whether to enable NGG streamout. */
bool use_ngg_streamout;
/* Number of threads per wave. */
uint8_t ps_wave_size;
uint8_t cs_wave_size;
uint8_t ge_wave_size;
uint8_t rt_wave_size;
/* Whether to use the LLVM compiler backend */
bool use_llvm;
/* Whether to emulate ETC2 image support on HW without support. */
bool emulate_etc2;
/* This is the drivers on-disk cache used as a fallback as opposed to
* the pipeline cache defined by apps.
*/
struct disk_cache *disk_cache;
VkPhysicalDeviceMemoryProperties memory_properties;
enum radeon_bo_domain memory_domains[VK_MAX_MEMORY_TYPES];
enum radeon_bo_flag memory_flags[VK_MAX_MEMORY_TYPES];
unsigned heaps;
/* Bitmask of memory types that use the 32-bit address space. */
uint32_t memory_types_32bit;
#ifndef _WIN32
int available_nodes;
drmPciBusInfo bus_info;
dev_t primary_devid;
dev_t render_devid;
#endif
nir_shader_compiler_options nir_options[MESA_VULKAN_SHADER_STAGES];
enum radv_queue_family vk_queue_to_radv[RADV_MAX_QUEUE_FAMILIES];
uint32_t num_queues;
uint32_t gs_table_depth;
struct ac_hs_info hs;
struct ac_task_info task_info;
/* Performance counters. */
struct ac_perfcounters ac_perfcounters;
uint32_t num_perfcounters;
struct radv_perfcounter_desc *perfcounters;
};
struct radv_instance {
struct vk_instance vk;
VkAllocationCallbacks alloc;
uint64_t debug_flags;
uint64_t perftest_flags;
bool physical_devices_enumerated;
struct list_head physical_devices;
struct driOptionCache dri_options;
struct driOptionCache available_dri_options;
/**
* Workarounds for game bugs.
*/
bool enable_mrt_output_nan_fixup;
bool disable_tc_compat_htile_in_general;
bool disable_shrink_image_store;
bool absolute_depth_bias;
bool disable_aniso_single_level;
bool zero_vram;
bool disable_sinking_load_input_fs;
};
VkResult radv_init_wsi(struct radv_physical_device *physical_device);
void radv_finish_wsi(struct radv_physical_device *physical_device);
struct cache_entry;
struct radv_pipeline_cache {
struct vk_object_base base;
struct radv_device *device;
mtx_t mutex;
VkPipelineCacheCreateFlags flags;
uint32_t total_size;
uint32_t table_size;
uint32_t kernel_count;
struct cache_entry **hash_table;
bool modified;
VkAllocationCallbacks alloc;
};
struct radv_shader_binary;
struct radv_shader;
struct radv_pipeline_shader_stack_size;
void radv_pipeline_cache_init(struct radv_pipeline_cache *cache, struct radv_device *device);
void radv_pipeline_cache_finish(struct radv_pipeline_cache *cache);
bool radv_pipeline_cache_load(struct radv_pipeline_cache *cache, const void *data, size_t size);
bool radv_create_shaders_from_pipeline_cache(
struct radv_device *device, struct radv_pipeline_cache *cache, const unsigned char *sha1,
struct radv_pipeline *pipeline, struct radv_pipeline_shader_stack_size **stack_sizes,
uint32_t *num_stack_sizes, bool *found_in_application_cache);
void radv_pipeline_cache_insert_shaders(
struct radv_device *device, struct radv_pipeline_cache *cache, const unsigned char *sha1,
struct radv_pipeline *pipeline, struct radv_shader_binary *const *binaries,
const struct radv_pipeline_shader_stack_size *stack_sizes, uint32_t num_stack_sizes);
VkResult radv_upload_shaders(struct radv_device *device, struct radv_pipeline *pipeline,
struct radv_shader_binary **binaries,
struct radv_shader_binary *gs_copy_binary);
enum radv_blit_ds_layout {
RADV_BLIT_DS_LAYOUT_TILE_ENABLE,
RADV_BLIT_DS_LAYOUT_TILE_DISABLE,
RADV_BLIT_DS_LAYOUT_COUNT,
};
static inline enum radv_blit_ds_layout
radv_meta_blit_ds_to_type(VkImageLayout layout)
{
return (layout == VK_IMAGE_LAYOUT_GENERAL) ? RADV_BLIT_DS_LAYOUT_TILE_DISABLE
: RADV_BLIT_DS_LAYOUT_TILE_ENABLE;
}
static inline VkImageLayout
radv_meta_blit_ds_to_layout(enum radv_blit_ds_layout ds_layout)
{
return ds_layout == RADV_BLIT_DS_LAYOUT_TILE_ENABLE ? VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
: VK_IMAGE_LAYOUT_GENERAL;
}
enum radv_meta_dst_layout {
RADV_META_DST_LAYOUT_GENERAL,
RADV_META_DST_LAYOUT_OPTIMAL,
RADV_META_DST_LAYOUT_COUNT,
};
static inline enum radv_meta_dst_layout
radv_meta_dst_layout_from_layout(VkImageLayout layout)
{
return (layout == VK_IMAGE_LAYOUT_GENERAL) ? RADV_META_DST_LAYOUT_GENERAL
: RADV_META_DST_LAYOUT_OPTIMAL;
}
static inline VkImageLayout
radv_meta_dst_layout_to_layout(enum radv_meta_dst_layout layout)
{
return layout == RADV_META_DST_LAYOUT_OPTIMAL ? VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
: VK_IMAGE_LAYOUT_GENERAL;
}
struct radv_meta_state {
VkAllocationCallbacks alloc;
struct radv_pipeline_cache cache;
/*
* For on-demand pipeline creation, makes sure that
* only one thread tries to build a pipeline at the same time.
*/
mtx_t mtx;
/**
* Use array element `i` for images with `2^i` samples.
*/
struct {
VkPipeline color_pipelines[NUM_META_FS_KEYS];
} color_clear[MAX_SAMPLES_LOG2][MAX_RTS];
struct {
VkPipeline depth_only_pipeline[NUM_DEPTH_CLEAR_PIPELINES];
VkPipeline stencil_only_pipeline[NUM_DEPTH_CLEAR_PIPELINES];
VkPipeline depthstencil_pipeline[NUM_DEPTH_CLEAR_PIPELINES];
VkPipeline depth_only_unrestricted_pipeline[NUM_DEPTH_CLEAR_PIPELINES];
VkPipeline stencil_only_unrestricted_pipeline[NUM_DEPTH_CLEAR_PIPELINES];
VkPipeline depthstencil_unrestricted_pipeline[NUM_DEPTH_CLEAR_PIPELINES];
} ds_clear[MAX_SAMPLES_LOG2];
VkPipelineLayout clear_color_p_layout;
VkPipelineLayout clear_depth_p_layout;
VkPipelineLayout clear_depth_unrestricted_p_layout;
/* Optimized compute fast HTILE clear for stencil or depth only. */
VkPipeline clear_htile_mask_pipeline;
VkPipelineLayout clear_htile_mask_p_layout;
VkDescriptorSetLayout clear_htile_mask_ds_layout;
/* Copy VRS into HTILE. */
VkPipeline copy_vrs_htile_pipeline;
VkPipelineLayout copy_vrs_htile_p_layout;
VkDescriptorSetLayout copy_vrs_htile_ds_layout;
/* Clear DCC with comp-to-single. */
VkPipeline clear_dcc_comp_to_single_pipeline[2]; /* 0: 1x, 1: 2x/4x/8x */
VkPipelineLayout clear_dcc_comp_to_single_p_layout;
VkDescriptorSetLayout clear_dcc_comp_to_single_ds_layout;
struct {
/** Pipeline that blits from a 1D image. */
VkPipeline pipeline_1d_src[NUM_META_FS_KEYS];
/** Pipeline that blits from a 2D image. */
VkPipeline pipeline_2d_src[NUM_META_FS_KEYS];
/** Pipeline that blits from a 3D image. */
VkPipeline pipeline_3d_src[NUM_META_FS_KEYS];
VkPipeline depth_only_1d_pipeline;
VkPipeline depth_only_2d_pipeline;
VkPipeline depth_only_3d_pipeline;
VkPipeline stencil_only_1d_pipeline;
VkPipeline stencil_only_2d_pipeline;
VkPipeline stencil_only_3d_pipeline;
VkPipelineLayout pipeline_layout;
VkDescriptorSetLayout ds_layout;
} blit;
struct {
VkPipelineLayout p_layouts[5];
VkDescriptorSetLayout ds_layouts[5];
VkPipeline pipelines[5][NUM_META_FS_KEYS];
VkPipeline depth_only_pipeline[5];
VkPipeline stencil_only_pipeline[5];
} blit2d[MAX_SAMPLES_LOG2];
struct {
VkPipelineLayout img_p_layout;
VkDescriptorSetLayout img_ds_layout;
VkPipeline pipeline;
VkPipeline pipeline_3d;
} itob;
struct {
VkPipelineLayout img_p_layout;
VkDescriptorSetLayout img_ds_layout;
VkPipeline pipeline;
VkPipeline pipeline_3d;
} btoi;
struct {
VkPipelineLayout img_p_layout;
VkDescriptorSetLayout img_ds_layout;
VkPipeline pipeline;
} btoi_r32g32b32;
struct {
VkPipelineLayout img_p_layout;
VkDescriptorSetLayout img_ds_layout;
VkPipeline pipeline[MAX_SAMPLES_LOG2];
VkPipeline pipeline_3d;
} itoi;
struct {
VkPipelineLayout img_p_layout;
VkDescriptorSetLayout img_ds_layout;
VkPipeline pipeline;
} itoi_r32g32b32;
struct {
VkPipelineLayout img_p_layout;
VkDescriptorSetLayout img_ds_layout;
VkPipeline pipeline[MAX_SAMPLES_LOG2];
VkPipeline pipeline_3d;
} cleari;
struct {
VkPipelineLayout img_p_layout;
VkDescriptorSetLayout img_ds_layout;
VkPipeline pipeline;
} cleari_r32g32b32;
struct {
VkPipelineLayout p_layout;
VkDescriptorSetLayout ds_layout;
VkPipeline pipeline[MAX_SAMPLES_LOG2];
} fmask_copy;
struct {
VkPipelineLayout p_layout;
VkPipeline pipeline[NUM_META_FS_KEYS];
} resolve;
struct {
VkDescriptorSetLayout ds_layout;
VkPipelineLayout p_layout;
struct {
VkPipeline pipeline;
VkPipeline i_pipeline;
VkPipeline srgb_pipeline;
} rc[MAX_SAMPLES_LOG2];
VkPipeline depth_zero_pipeline;
struct {
VkPipeline average_pipeline;
VkPipeline max_pipeline;
VkPipeline min_pipeline;
} depth[MAX_SAMPLES_LOG2];
VkPipeline stencil_zero_pipeline;
struct {
VkPipeline max_pipeline;
VkPipeline min_pipeline;
} stencil[MAX_SAMPLES_LOG2];
} resolve_compute;
struct {
VkDescriptorSetLayout ds_layout;
VkPipelineLayout p_layout;
struct {
VkPipeline pipeline[NUM_META_FS_KEYS];
} rc[MAX_SAMPLES_LOG2];
VkPipeline depth_zero_pipeline;
struct {
VkPipeline average_pipeline;
VkPipeline max_pipeline;
VkPipeline min_pipeline;
} depth[MAX_SAMPLES_LOG2];
VkPipeline stencil_zero_pipeline;
struct {
VkPipeline max_pipeline;
VkPipeline min_pipeline;
} stencil[MAX_SAMPLES_LOG2];
} resolve_fragment;
struct {
VkPipelineLayout p_layout;
VkPipeline decompress_pipeline;
VkPipeline resummarize_pipeline;
} depth_decomp[MAX_SAMPLES_LOG2];
VkDescriptorSetLayout expand_depth_stencil_compute_ds_layout;
VkPipelineLayout expand_depth_stencil_compute_p_layout;
VkPipeline expand_depth_stencil_compute_pipeline;
struct {
VkPipelineLayout p_layout;
VkPipeline cmask_eliminate_pipeline;
VkPipeline fmask_decompress_pipeline;
VkPipeline dcc_decompress_pipeline;
VkDescriptorSetLayout dcc_decompress_compute_ds_layout;
VkPipelineLayout dcc_decompress_compute_p_layout;
VkPipeline dcc_decompress_compute_pipeline;
} fast_clear_flush;
struct {
VkPipelineLayout fill_p_layout;
VkPipelineLayout copy_p_layout;
VkPipeline fill_pipeline;
VkPipeline copy_pipeline;
} buffer;
struct {
VkDescriptorSetLayout ds_layout;
VkPipelineLayout p_layout;
VkPipeline occlusion_query_pipeline;
VkPipeline pipeline_statistics_query_pipeline;
VkPipeline tfb_query_pipeline;
VkPipeline timestamp_query_pipeline;
VkPipeline pg_query_pipeline;
} query;
struct {
VkDescriptorSetLayout ds_layout;
VkPipelineLayout p_layout;
VkPipeline pipeline[MAX_SAMPLES_LOG2];
} fmask_expand;
struct {
VkDescriptorSetLayout ds_layout;
VkPipelineLayout p_layout;
VkPipeline pipeline[32];
} dcc_retile;
struct {
VkPipelineLayout leaf_p_layout;
VkPipeline leaf_pipeline;
VkPipelineLayout morton_p_layout;
VkPipeline morton_pipeline;
VkPipelineLayout internal_p_layout;
VkPipeline internal_pipeline;
VkPipelineLayout copy_p_layout;
VkPipeline copy_pipeline;
struct radix_sort_vk *radix_sort;
struct radix_sort_vk_sort_devaddr_info radix_sort_info;
} accel_struct_build;
struct {
VkDescriptorSetLayout ds_layout;
VkPipelineLayout p_layout;
VkPipeline pipeline;
} etc_decode;
struct {
VkDescriptorSetLayout ds_layout;
VkPipelineLayout p_layout;
VkPipeline pipeline;
} dgc_prepare;
};
#define RADV_NUM_HW_CTX (RADEON_CTX_PRIORITY_REALTIME + 1)
struct radv_deferred_queue_submission;
static inline enum radv_queue_family
vk_queue_to_radv(const struct radv_physical_device *phys_dev, int queue_family_index)
{
if (queue_family_index == VK_QUEUE_FAMILY_EXTERNAL ||
queue_family_index == VK_QUEUE_FAMILY_FOREIGN_EXT)
return RADV_QUEUE_FOREIGN;
if (queue_family_index == VK_QUEUE_FAMILY_IGNORED)
return RADV_QUEUE_IGNORED;
assert(queue_family_index < RADV_MAX_QUEUE_FAMILIES);
return phys_dev->vk_queue_to_radv[queue_family_index];
}
enum amd_ip_type radv_queue_family_to_ring(struct radv_physical_device *physical_device,
enum radv_queue_family f);
struct radv_queue_ring_info {
uint32_t scratch_size_per_wave;
uint32_t scratch_waves;
uint32_t compute_scratch_size_per_wave;
uint32_t compute_scratch_waves;
uint32_t esgs_ring_size;
uint32_t gsvs_ring_size;
bool tess_rings;
bool task_rings;
bool mesh_scratch_ring;
bool gds;
bool gds_oa;
bool sample_positions;
};
struct radv_queue_state {
enum radv_queue_family qf;
struct radv_queue_ring_info ring_info;
struct radeon_winsys_bo *scratch_bo;
struct radeon_winsys_bo *descriptor_bo;
struct radeon_winsys_bo *compute_scratch_bo;
struct radeon_winsys_bo *esgs_ring_bo;
struct radeon_winsys_bo *gsvs_ring_bo;
struct radeon_winsys_bo *tess_rings_bo;
struct radeon_winsys_bo *task_rings_bo;
struct radeon_winsys_bo *mesh_scratch_ring_bo;
struct radeon_winsys_bo *gds_bo;
struct radeon_winsys_bo *gds_oa_bo;
struct radeon_cmdbuf *initial_preamble_cs;
struct radeon_cmdbuf *initial_full_flush_preamble_cs;
struct radeon_cmdbuf *continue_preamble_cs;
};
struct radv_queue {
struct vk_queue vk;
struct radv_device *device;
struct radeon_winsys_ctx *hw_ctx;
enum radeon_ctx_priority priority;
struct radv_queue_state state;
struct radv_queue_state *ace_internal_state;
};
#define RADV_BORDER_COLOR_COUNT 4096
#define RADV_BORDER_COLOR_BUFFER_SIZE (sizeof(VkClearColorValue) * RADV_BORDER_COLOR_COUNT)
struct radv_device_border_color_data {
bool used[RADV_BORDER_COLOR_COUNT];
struct radeon_winsys_bo *bo;
VkClearColorValue *colors_gpu_ptr;
/* Mutex is required to guarantee vkCreateSampler thread safety
* given that we are writing to a buffer and checking color occupation */
mtx_t mutex;
};
enum radv_force_vrs {
RADV_FORCE_VRS_1x1 = 0,
RADV_FORCE_VRS_2x2,
RADV_FORCE_VRS_2x1,
RADV_FORCE_VRS_1x2,
};
struct radv_notifier {
int fd;
int watch;
bool quit;
thrd_t thread;
};
struct radv_device {
struct vk_device vk;
struct radv_instance *instance;
struct radeon_winsys *ws;
struct radeon_winsys_ctx *hw_ctx[RADV_NUM_HW_CTX];
struct radv_meta_state meta_state;
struct radv_queue *queues[RADV_MAX_QUEUE_FAMILIES];
int queue_count[RADV_MAX_QUEUE_FAMILIES];
bool pbb_allowed;
uint32_t scratch_waves;
uint32_t dispatch_initiator;
uint32_t dispatch_initiator_task;
/* MSAA sample locations.
* The first index is the sample index.
* The second index is the coordinate: X, Y. */
float sample_locations_1x[1][2];
float sample_locations_2x[2][2];
float sample_locations_4x[4][2];
float sample_locations_8x[8][2];
/* GFX7 and later */
uint32_t gfx_init_size_dw;
struct radeon_winsys_bo *gfx_init;
struct radeon_winsys_bo *trace_bo;
uint32_t *trace_id_ptr;
/* Whether to keep shader debug info, for debugging. */
bool keep_shader_info;
struct radv_physical_device *physical_device;
/* Backup in-memory cache to be used if the app doesn't provide one */
struct radv_pipeline_cache *mem_cache;
/*
* use different counters so MSAA MRTs get consecutive surface indices,
* even if MASK is allocated in between.
*/
uint32_t image_mrt_offset_counter;
uint32_t fmask_mrt_offset_counter;
struct list_head shader_arenas;
unsigned shader_arena_shift;
uint8_t shader_free_list_mask;
struct list_head shader_free_lists[RADV_SHADER_ALLOC_NUM_FREE_LISTS];
struct list_head shader_block_obj_pool;
mtx_t shader_arena_mutex;
/* For detecting VM faults reported by dmesg. */
uint64_t dmesg_timestamp;
/* Whether the app has enabled the robustBufferAccess/robustBufferAccess2 features. */
bool robust_buffer_access;
bool robust_buffer_access2;
/* Whether to inline the compute dispatch size in user sgprs. */
bool load_grid_size_from_user_sgpr;
/* Whether the driver uses a global BO list. */
bool use_global_bo_list;
/* Whether attachment VRS is enabled. */
bool attachment_vrs_enabled;
/* Whether shader image 32-bit float atomics are enabled. */
bool image_float32_atomics;
/* Whether 2D views of 3D image is enabled. */
bool image_2d_view_of_3d;
/* Whether primitives generated query features are enabled. */
bool primitives_generated_query;
/* Whether anisotropy is forced with RADV_TEX_ANISO (-1 is disabled). */
int force_aniso;
struct radv_device_border_color_data border_color_data;
/* Thread trace. */
struct ac_thread_trace_data thread_trace;
/* SPM. */
struct ac_spm_trace_data spm_trace;
/* Trap handler. */
struct radv_trap_handler_shader *trap_handler_shader;
struct radeon_winsys_bo *tma_bo; /* Trap Memory Address */
uint32_t *tma_ptr;
/* Overallocation. */
bool overallocation_disallowed;
uint64_t allocated_memory_size[VK_MAX_MEMORY_HEAPS];
mtx_t overallocation_mutex;
/* RADV_FORCE_VRS. */
struct radv_notifier notifier;
enum radv_force_vrs force_vrs;
/* Depth image for VRS when not bound by the app. */
struct {
struct radv_image *image;
struct radv_buffer *buffer; /* HTILE */
struct radv_device_memory *mem;
} vrs;
struct u_rwlock vs_prologs_lock;
struct hash_table *vs_prologs;
/* Prime blit sdma queue */
struct radv_queue *private_sdma_queue;
struct radv_shader_part *simple_vs_prologs[MAX_VERTEX_ATTRIBS];
struct radv_shader_part *instance_rate_vs_prologs[816];
simple_mtx_t trace_mtx;
/* Whether per-vertex VRS is forced. */
bool force_vrs_enabled;
/* Whether shaders created through application entrypoints are considered internal. */
bool app_shaders_internal;
simple_mtx_t pstate_mtx;
unsigned pstate_cnt;
/* BO to contain some performance counter helpers:
* - A lock for profiling cmdbuffers.
* - a temporary fence for the end query synchronization.
* - the pass to use for profiling. (as an array of bools)
*/
struct radeon_winsys_bo *perf_counter_bo;
/* Interleaved lock/unlock commandbuffers for perfcounter passes. */
struct radeon_cmdbuf **perf_counter_lock_cs;
bool uses_device_generated_commands;
};
bool radv_device_acquire_performance_counters(struct radv_device *device);
void radv_device_release_performance_counters(struct radv_device *device);
struct radv_device_memory {
struct vk_object_base base;
struct radeon_winsys_bo *bo;
/* for dedicated allocations */
struct radv_image *image;
struct radv_buffer *buffer;
uint32_t heap_index;
uint64_t alloc_size;
void *map;
void *user_ptr;
#if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER
struct AHardwareBuffer *android_hardware_buffer;
#endif
};
void radv_device_memory_init(struct radv_device_memory *mem, struct radv_device *device,
struct radeon_winsys_bo *bo);
void radv_device_memory_finish(struct radv_device_memory *mem);
struct radv_descriptor_range {
uint64_t va;
uint32_t size;
};
struct radv_descriptor_set_header {
struct vk_object_base base;
struct radv_descriptor_set_layout *layout;
uint32_t size;
uint32_t buffer_count;
struct radeon_winsys_bo *bo;
uint64_t va;
uint32_t *mapped_ptr;
struct radv_descriptor_range *dynamic_descriptors;
};
struct radv_descriptor_set {
struct radv_descriptor_set_header header;
struct radeon_winsys_bo *descriptors[];
};
struct radv_push_descriptor_set {
struct radv_descriptor_set_header set;
uint32_t capacity;
};
struct radv_descriptor_pool_entry {
uint32_t offset;
uint32_t size;
struct radv_descriptor_set *set;
};
struct radv_descriptor_pool {
struct vk_object_base base;
struct radeon_winsys_bo *bo;
uint8_t *host_bo;
uint8_t *mapped_ptr;
uint64_t current_offset;
uint64_t size;
uint8_t *host_memory_base;
uint8_t *host_memory_ptr;
uint8_t *host_memory_end;
uint32_t entry_count;
uint32_t max_entry_count;
struct radv_descriptor_pool_entry entries[0];
};
struct radv_descriptor_update_template_entry {
VkDescriptorType descriptor_type;
/* The number of descriptors to update */
uint32_t descriptor_count;
/* Into mapped_ptr or dynamic_descriptors, in units of the respective array */
uint32_t dst_offset;
/* In dwords. Not valid/used for dynamic descriptors */
uint32_t dst_stride;
uint32_t buffer_offset;
/* Only valid for combined image samplers and samplers */
uint8_t has_sampler;
uint8_t sampler_offset;
/* In bytes */
size_t src_offset;
size_t src_stride;
/* For push descriptors */
const uint32_t *immutable_samplers;
};
struct radv_descriptor_update_template {
struct vk_object_base base;
uint32_t entry_count;
VkPipelineBindPoint bind_point;
struct radv_descriptor_update_template_entry entry[0];
};
void radv_descriptor_set_layout_destroy(struct radv_device *device,
struct radv_descriptor_set_layout *set_layout);
static inline void
radv_descriptor_set_layout_ref(struct radv_descriptor_set_layout *set_layout)
{
assert(set_layout && set_layout->ref_cnt >= 1);
p_atomic_inc(&set_layout->ref_cnt);
}
static inline void
radv_descriptor_set_layout_unref(struct radv_device *device,
struct radv_descriptor_set_layout *set_layout)
{
assert(set_layout && set_layout->ref_cnt >= 1);
if (p_atomic_dec_zero(&set_layout->ref_cnt))
radv_descriptor_set_layout_destroy(device, set_layout);
}
struct radv_buffer {
struct vk_buffer vk;
/* Set when bound */
struct radeon_winsys_bo *bo;
VkDeviceSize offset;
};
void radv_buffer_init(struct radv_buffer *buffer, struct radv_device *device,
struct radeon_winsys_bo *bo, uint64_t size, uint64_t offset);
void radv_buffer_finish(struct radv_buffer *buffer);
enum radv_dynamic_state_bits {
RADV_DYNAMIC_VIEWPORT = 1ull << 0,
RADV_DYNAMIC_SCISSOR = 1ull << 1,
RADV_DYNAMIC_LINE_WIDTH = 1ull << 2,
RADV_DYNAMIC_DEPTH_BIAS = 1ull << 3,
RADV_DYNAMIC_BLEND_CONSTANTS = 1ull << 4,
RADV_DYNAMIC_DEPTH_BOUNDS = 1ull << 5,
RADV_DYNAMIC_STENCIL_COMPARE_MASK = 1ull << 6,
RADV_DYNAMIC_STENCIL_WRITE_MASK = 1ull << 7,
RADV_DYNAMIC_STENCIL_REFERENCE = 1ull << 8,
RADV_DYNAMIC_DISCARD_RECTANGLE = 1ull << 9,
RADV_DYNAMIC_SAMPLE_LOCATIONS = 1ull << 10,
RADV_DYNAMIC_LINE_STIPPLE = 1ull << 11,
RADV_DYNAMIC_CULL_MODE = 1ull << 12,
RADV_DYNAMIC_FRONT_FACE = 1ull << 13,
RADV_DYNAMIC_PRIMITIVE_TOPOLOGY = 1ull << 14,
RADV_DYNAMIC_DEPTH_TEST_ENABLE = 1ull << 15,
RADV_DYNAMIC_DEPTH_WRITE_ENABLE = 1ull << 16,
RADV_DYNAMIC_DEPTH_COMPARE_OP = 1ull << 17,
RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE = 1ull << 18,
RADV_DYNAMIC_STENCIL_TEST_ENABLE = 1ull << 19,
RADV_DYNAMIC_STENCIL_OP = 1ull << 20,
RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE = 1ull << 21,
RADV_DYNAMIC_FRAGMENT_SHADING_RATE = 1ull << 22,
RADV_DYNAMIC_PATCH_CONTROL_POINTS = 1ull << 23,
RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE = 1ull << 24,
RADV_DYNAMIC_DEPTH_BIAS_ENABLE = 1ull << 25,
RADV_DYNAMIC_LOGIC_OP = 1ull << 26,
RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE = 1ull << 27,
RADV_DYNAMIC_COLOR_WRITE_ENABLE = 1ull << 28,
RADV_DYNAMIC_VERTEX_INPUT = 1ull << 29,
RADV_DYNAMIC_ALL = (1ull << 30) - 1,
};
enum radv_cmd_dirty_bits {
/* Keep the dynamic state dirty bits in sync with
* enum radv_dynamic_state_bits */
RADV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1ull << 0,
RADV_CMD_DIRTY_DYNAMIC_SCISSOR = 1ull << 1,
RADV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1ull << 2,
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1ull << 3,
RADV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1ull << 4,
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1ull << 5,
RADV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1ull << 6,
RADV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1ull << 7,
RADV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1ull << 8,
RADV_CMD_DIRTY_DYNAMIC_DISCARD_RECTANGLE = 1ull << 9,
RADV_CMD_DIRTY_DYNAMIC_SAMPLE_LOCATIONS = 1ull << 10,
RADV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1ull << 11,
RADV_CMD_DIRTY_DYNAMIC_CULL_MODE = 1ull << 12,
RADV_CMD_DIRTY_DYNAMIC_FRONT_FACE = 1ull << 13,
RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY = 1ull << 14,
RADV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE = 1ull << 15,
RADV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE = 1ull << 16,
RADV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP = 1ull << 17,
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE = 1ull << 18,
RADV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE = 1ull << 19,
RADV_CMD_DIRTY_DYNAMIC_STENCIL_OP = 1ull << 20,
RADV_CMD_DIRTY_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE = 1ull << 21,
RADV_CMD_DIRTY_DYNAMIC_FRAGMENT_SHADING_RATE = 1ull << 22,
RADV_CMD_DIRTY_DYNAMIC_PATCH_CONTROL_POINTS = 1ull << 23,
RADV_CMD_DIRTY_DYNAMIC_RASTERIZER_DISCARD_ENABLE = 1ull << 24,
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS_ENABLE = 1ull << 25,
RADV_CMD_DIRTY_DYNAMIC_LOGIC_OP = 1ull << 26,
RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_RESTART_ENABLE = 1ull << 27,
RADV_CMD_DIRTY_DYNAMIC_COLOR_WRITE_ENABLE = 1ull << 28,
RADV_CMD_DIRTY_DYNAMIC_VERTEX_INPUT = 1ull << 29,
RADV_CMD_DIRTY_DYNAMIC_ALL = (1ull << 30) - 1,
RADV_CMD_DIRTY_PIPELINE = 1ull << 30,
RADV_CMD_DIRTY_INDEX_BUFFER = 1ull << 31,
RADV_CMD_DIRTY_FRAMEBUFFER = 1ull << 32,
RADV_CMD_DIRTY_VERTEX_BUFFER = 1ull << 33,
RADV_CMD_DIRTY_STREAMOUT_BUFFER = 1ull << 34,
};
enum radv_cmd_flush_bits {
/* Instruction cache. */
RADV_CMD_FLAG_INV_ICACHE = 1 << 0,
/* Scalar L1 cache. */
RADV_CMD_FLAG_INV_SCACHE = 1 << 1,
/* Vector L1 cache. */
RADV_CMD_FLAG_INV_VCACHE = 1 << 2,
/* L2 cache + L2 metadata cache writeback & invalidate.
* GFX6-8: Used by shaders only. GFX9-10: Used by everything. */
RADV_CMD_FLAG_INV_L2 = 1 << 3,
/* L2 writeback (write dirty L2 lines to memory for non-L2 clients).
* Only used for coherency with non-L2 clients like CB, DB, CP on GFX6-8.
* GFX6-7 will do complete invalidation, because the writeback is unsupported. */
RADV_CMD_FLAG_WB_L2 = 1 << 4,
/* Invalidate the metadata cache. To be used when the DCC/HTILE metadata
* changed and we want to read an image from shaders. */
RADV_CMD_FLAG_INV_L2_METADATA = 1 << 5,
/* Framebuffer caches */
RADV_CMD_FLAG_FLUSH_AND_INV_CB_META = 1 << 6,
RADV_CMD_FLAG_FLUSH_AND_INV_DB_META = 1 << 7,
RADV_CMD_FLAG_FLUSH_AND_INV_DB = 1 << 8,
RADV_CMD_FLAG_FLUSH_AND_INV_CB = 1 << 9,
/* Engine synchronization. */
RADV_CMD_FLAG_VS_PARTIAL_FLUSH = 1 << 10,
RADV_CMD_FLAG_PS_PARTIAL_FLUSH = 1 << 11,
RADV_CMD_FLAG_CS_PARTIAL_FLUSH = 1 << 12,
RADV_CMD_FLAG_VGT_FLUSH = 1 << 13,
/* Pipeline query controls. */
RADV_CMD_FLAG_START_PIPELINE_STATS = 1 << 14,
RADV_CMD_FLAG_STOP_PIPELINE_STATS = 1 << 15,
RADV_CMD_FLAG_VGT_STREAMOUT_SYNC = 1 << 16,
RADV_CMD_FLUSH_AND_INV_FRAMEBUFFER =
(RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META |
RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META),
RADV_CMD_FLUSH_ALL_COMPUTE =
(RADV_CMD_FLAG_INV_ICACHE | RADV_CMD_FLAG_INV_SCACHE | RADV_CMD_FLAG_INV_VCACHE |
RADV_CMD_FLAG_INV_L2 | RADV_CMD_FLAG_WB_L2 | RADV_CMD_FLAG_CS_PARTIAL_FLUSH),
};
enum radv_nggc_settings {
radv_nggc_none = 0,
radv_nggc_front_face = 1 << 0,
radv_nggc_back_face = 1 << 1,
radv_nggc_face_is_ccw = 1 << 2,
radv_nggc_small_primitives = 1 << 3,
};
struct radv_vertex_binding {
VkDeviceSize offset;
VkDeviceSize size;
VkDeviceSize stride;
};
struct radv_streamout_binding {
struct radv_buffer *buffer;
VkDeviceSize offset;
VkDeviceSize size;
};
struct radv_streamout_state {
/* Mask of bound streamout buffers. */
uint8_t enabled_mask;
/* State of VGT_STRMOUT_BUFFER_(CONFIG|END) */
uint32_t hw_enabled_mask;
/* State of VGT_STRMOUT_(CONFIG|EN) */
bool streamout_enabled;
};
struct radv_viewport_state {
uint32_t count;
VkViewport viewports[MAX_VIEWPORTS];
struct {
float scale[3];
float translate[3];
} xform[MAX_VIEWPORTS];
};
struct radv_scissor_state {
uint32_t count;
VkRect2D scissors[MAX_SCISSORS];
};
struct radv_discard_rectangle_state {
uint32_t count;
VkRect2D rectangles[MAX_DISCARD_RECTANGLES];
};
struct radv_sample_locations_state {
VkSampleCountFlagBits per_pixel;
VkExtent2D grid_size;
uint32_t count;
VkSampleLocationEXT locations[MAX_SAMPLE_LOCATIONS];
};
struct radv_dynamic_state {
/**
* Bitmask of (1ull << VK_DYNAMIC_STATE_*).
* Defines the set of saved dynamic state.
*/
uint64_t mask;
struct radv_viewport_state viewport;
struct radv_scissor_state scissor;
float line_width;
struct {
float bias;
float clamp;
float slope;
} depth_bias;
float blend_constants[4];
struct {
float min;
float max;
} depth_bounds;
struct {
uint32_t front;
uint32_t back;
} stencil_compare_mask;
struct {
uint32_t front;
uint32_t back;
} stencil_write_mask;
struct {
struct {
VkStencilOp fail_op;
VkStencilOp pass_op;
VkStencilOp depth_fail_op;
VkCompareOp compare_op;
} front;
struct {
VkStencilOp fail_op;
VkStencilOp pass_op;
VkStencilOp depth_fail_op;
VkCompareOp compare_op;
} back;
} stencil_op;
struct {
uint32_t front;
uint32_t back;
} stencil_reference;
struct radv_discard_rectangle_state discard_rectangle;
struct radv_sample_locations_state sample_location;
struct {
uint32_t factor;
uint16_t pattern;
} line_stipple;
VkCullModeFlags cull_mode;
VkFrontFace front_face;
unsigned primitive_topology;
bool depth_test_enable;
bool depth_write_enable;
VkCompareOp depth_compare_op;
bool depth_bounds_test_enable;
bool stencil_test_enable;
struct {
VkExtent2D size;
VkFragmentShadingRateCombinerOpKHR combiner_ops[2];
} fragment_shading_rate;
bool depth_bias_enable;
bool primitive_restart_enable;
bool rasterizer_discard_enable;
unsigned logic_op;
uint32_t color_write_enable;
};
extern const struct radv_dynamic_state default_dynamic_state;
const char *radv_get_debug_option_name(int id);
const char *radv_get_perftest_option_name(int id);
int radv_get_int_debug_option(const char *name, int default_value);
struct radv_color_buffer_info {
uint64_t cb_color_base;
uint64_t cb_color_cmask;
uint64_t cb_color_fmask;
uint64_t cb_dcc_base;
uint32_t cb_color_slice;
uint32_t cb_color_view;
uint32_t cb_color_info;
uint32_t cb_color_attrib;
uint32_t cb_color_attrib2; /* GFX9 and later */
uint32_t cb_color_attrib3; /* GFX10 and later */
uint32_t cb_dcc_control;
uint32_t cb_color_cmask_slice;
uint32_t cb_color_fmask_slice;
union {
uint32_t cb_color_pitch; // GFX6-GFX8
uint32_t cb_mrt_epitch; // GFX9+
};
};
struct radv_ds_buffer_info {
uint64_t db_z_read_base;
uint64_t db_stencil_read_base;
uint64_t db_z_write_base;
uint64_t db_stencil_write_base;
uint64_t db_htile_data_base;
uint32_t db_depth_info;
uint32_t db_z_info;
uint32_t db_stencil_info;
uint32_t db_depth_view;
uint32_t db_depth_size;
uint32_t db_depth_slice;
uint32_t db_htile_surface;
uint32_t pa_su_poly_offset_db_fmt_cntl;
uint32_t db_z_info2; /* GFX9 only */
uint32_t db_stencil_info2; /* GFX9 only */
};
void radv_initialise_color_surface(struct radv_device *device, struct radv_color_buffer_info *cb,
struct radv_image_view *iview);
void radv_initialise_ds_surface(struct radv_device *device, struct radv_ds_buffer_info *ds,
struct radv_image_view *iview);
void radv_initialise_vrs_surface(struct radv_image *image, struct radv_buffer *htile_buffer,
struct radv_ds_buffer_info *ds);
/**
* Attachment state when recording a renderpass instance.
*
* The clear value is valid only if there exists a pending clear.
*/
struct radv_attachment_state {
VkImageAspectFlags pending_clear_aspects;
uint32_t cleared_views;
VkClearValue clear_value;
VkImageLayout current_layout;
VkImageLayout current_stencil_layout;
bool current_in_render_loop;
struct radv_sample_locations_state sample_location;
union {
struct radv_color_buffer_info cb;
struct radv_ds_buffer_info ds;
};
struct radv_image_view *iview;
};
struct radv_descriptor_state {
struct radv_descriptor_set *sets[MAX_SETS];
uint32_t dirty;
uint32_t valid;
struct radv_push_descriptor_set push_set;
bool push_dirty;
uint32_t dynamic_buffers[4 * MAX_DYNAMIC_BUFFERS];
};
struct radv_subpass_sample_locs_state {
uint32_t subpass_idx;
struct radv_sample_locations_state sample_location;
};
enum rgp_flush_bits {
RGP_FLUSH_WAIT_ON_EOP_TS = 0x1,
RGP_FLUSH_VS_PARTIAL_FLUSH = 0x2,
RGP_FLUSH_PS_PARTIAL_FLUSH = 0x4,
RGP_FLUSH_CS_PARTIAL_FLUSH = 0x8,
RGP_FLUSH_PFP_SYNC_ME = 0x10,
RGP_FLUSH_SYNC_CP_DMA = 0x20,
RGP_FLUSH_INVAL_VMEM_L0 = 0x40,
RGP_FLUSH_INVAL_ICACHE = 0x80,
RGP_FLUSH_INVAL_SMEM_L0 = 0x100,
RGP_FLUSH_FLUSH_L2 = 0x200,
RGP_FLUSH_INVAL_L2 = 0x400,
RGP_FLUSH_FLUSH_CB = 0x800,
RGP_FLUSH_INVAL_CB = 0x1000,
RGP_FLUSH_FLUSH_DB = 0x2000,
RGP_FLUSH_INVAL_DB = 0x4000,
RGP_FLUSH_INVAL_L1 = 0x8000,
};
struct radv_cmd_state {
/* Vertex descriptors */
uint64_t vb_va;
bool predicating;
uint64_t dirty;
uint32_t prefetch_L2_mask;
struct radv_graphics_pipeline *graphics_pipeline;
struct radv_graphics_pipeline *emitted_graphics_pipeline;
struct radv_compute_pipeline *compute_pipeline;
struct radv_compute_pipeline *emitted_compute_pipeline;
struct radv_compute_pipeline *rt_pipeline; /* emitted = emitted_compute_pipeline */
struct vk_framebuffer *framebuffer;
struct radv_render_pass *pass;
const struct radv_subpass *subpass;
struct radv_dynamic_state dynamic;
struct radv_vs_input_state dynamic_vs_input;
struct radv_attachment_state *attachments;
struct radv_streamout_state streamout;
VkRect2D render_area;
uint32_t num_subpass_sample_locs;
struct radv_subpass_sample_locs_state *subpass_sample_locs;
/* Index buffer */
struct radv_buffer *index_buffer;
uint64_t index_offset;
uint32_t index_type;
uint32_t max_index_count;
uint64_t index_va;
int32_t last_index_type;
int32_t last_primitive_reset_en;
uint32_t last_primitive_reset_index;
enum radv_cmd_flush_bits flush_bits;
unsigned active_occlusion_queries;
bool perfect_occlusion_queries_enabled;
unsigned active_pipeline_queries;
unsigned active_pipeline_gds_queries;
bool prims_gen_query_enabled;
uint32_t trace_id;
uint32_t last_ia_multi_vgt_param;
uint32_t last_num_instances;
uint32_t last_first_instance;
uint32_t last_vertex_offset;
uint32_t last_drawid;
uint32_t last_subpass_color_count;
uint32_t last_sx_ps_downconvert;
uint32_t last_sx_blend_opt_epsilon;
uint32_t last_sx_blend_opt_control;
/* Whether CP DMA is busy/idle. */
bool dma_is_busy;
/* Whether any images that are not L2 coherent are dirty from the CB. */
bool rb_noncoherent_dirty;
/* Conditional rendering info. */
uint8_t predication_op; /* 32-bit or 64-bit predicate value */
int predication_type; /* -1: disabled, 0: normal, 1: inverted */
uint64_t predication_va;
/* Inheritance info. */
VkQueryPipelineStatisticFlags inherited_pipeline_statistics;
bool context_roll_without_scissor_emitted;
/* SQTT related state. */
uint32_t current_event_type;
uint32_t num_events;
uint32_t num_layout_transitions;
bool pending_sqtt_barrier_end;
enum rgp_flush_bits sqtt_flush_bits;
/* NGG culling state. */
uint32_t last_nggc_settings;
int8_t last_nggc_settings_sgpr_idx;
bool last_nggc_skip;
/* Mesh shading state. */
bool mesh_shading;
uint8_t cb_mip[MAX_RTS];
/* Whether DRAW_{INDEX}_INDIRECT_MULTI is emitted. */
bool uses_draw_indirect_multi;
uint32_t rt_stack_size;
struct radv_shader_part *emitted_vs_prolog;
uint32_t *emitted_vs_prolog_key;
uint32_t emitted_vs_prolog_key_hash;
uint32_t vbo_misaligned_mask;
uint32_t vbo_misaligned_mask_invalid;
uint32_t vbo_bound_mask;
/* Whether the cmdbuffer owns the current render pass rather than the app. */
bool own_render_pass;
/* Per-vertex VRS state. */
uint32_t last_vrs_rates;
int8_t last_vrs_rates_sgpr_idx;
/* Whether to suspend streamout for internal driver operations. */
bool suspend_streamout;
/* Whether this commandbuffer uses performance counters. */
bool uses_perf_counters;
};
struct radv_cmd_pool {
struct vk_command_pool vk;
struct list_head cmd_buffers;
struct list_head free_cmd_buffers;
};
struct radv_cmd_buffer_upload {
uint8_t *map;
unsigned offset;
uint64_t size;
struct radeon_winsys_bo *upload_bo;
struct list_head list;
};
enum radv_cmd_buffer_status {
RADV_CMD_BUFFER_STATUS_INVALID,
RADV_CMD_BUFFER_STATUS_INITIAL,
RADV_CMD_BUFFER_STATUS_RECORDING,
RADV_CMD_BUFFER_STATUS_EXECUTABLE,
RADV_CMD_BUFFER_STATUS_PENDING,
};
struct dynamic_vertex_format_cache {
VkFormat format;
uint8_t hw_fmt;
uint8_t fmt_align_req_minus_1;
uint8_t fmt_size;
bool post_shuffle;
bool alpha_adjust_lo;
bool alpha_adjust_hi;
};
struct radv_cmd_buffer {
struct vk_command_buffer vk;
struct radv_device *device;
struct radv_cmd_pool *pool;
struct list_head pool_link;
struct util_dynarray cached_vertex_formats;
VkCommandBufferUsageFlags usage_flags;
enum radv_cmd_buffer_status status;
struct radeon_cmdbuf *cs;
struct radv_cmd_state state;
struct radv_buffer *vertex_binding_buffers[MAX_VBS];
struct radv_vertex_binding vertex_bindings[MAX_VBS];
uint32_t used_vertex_bindings;
struct radv_streamout_binding streamout_bindings[MAX_SO_BUFFERS];
enum radv_queue_family qf;
uint8_t push_constants[MAX_PUSH_CONSTANTS_SIZE];
VkShaderStageFlags push_constant_stages;
struct radv_descriptor_set_header meta_push_descriptors;
struct radv_descriptor_state descriptors[MAX_BIND_POINTS];
struct radv_cmd_buffer_upload upload;
uint32_t scratch_size_per_wave_needed;
uint32_t scratch_waves_wanted;
uint32_t compute_scratch_size_per_wave_needed;
uint32_t compute_scratch_waves_wanted;
uint32_t esgs_ring_size_needed;
uint32_t gsvs_ring_size_needed;
bool tess_rings_needed;
bool task_rings_needed;
bool mesh_scratch_ring_needed;
bool gds_needed; /* for GFX10 streamout and NGG GS queries */
bool gds_oa_needed; /* for GFX10 streamout */
bool sample_positions_needed;
VkResult record_result;
uint64_t gfx9_fence_va;
uint32_t gfx9_fence_idx;
uint64_t gfx9_eop_bug_va;
uint64_t mec_inv_pred_va; /* For inverted predication when using MEC. */
bool mec_inv_pred_emitted; /* To ensure we don't have to repeat inverting the VA. */
struct {
/**
* Internal command stream that is used when some graphics work
* also requires a submission to the compute queue.
*/
struct radeon_cmdbuf *cs;
/** Flush bits for the internal cmdbuf. */
enum radv_cmd_flush_bits flush_bits;
/**
* For synchronization between the ACE and GFX cmdbuf.
* The value of this semaphore is incremented whenever we
* encounter a barrier that affects ACE. At sync points,
* GFX writes the value to its address, and ACE waits until
* it detects that the value has been written.
*/
struct {
uint64_t va; /* Virtual address of the semaphore. */
uint32_t gfx2ace_value; /* Current value on GFX. */
uint32_t emitted_gfx2ace_value; /* Emitted value on GFX. */
} sem;
} ace_internal;
/**
* Whether a query pool has been resetted and we have to flush caches.
*/
bool pending_reset_query;
/**
* Bitmask of pending active query flushes.
*/
enum radv_cmd_flush_bits active_query_flush_bits;
};
struct radv_image;
struct radv_image_view;
bool radv_cmd_buffer_uses_mec(struct radv_cmd_buffer *cmd_buffer);
bool radv_is_streamout_enabled(struct radv_cmd_buffer *cmd_buffer);
void radv_emit_streamout_enable(struct radv_cmd_buffer *cmd_buffer);
void si_emit_graphics(struct radv_device *device, struct radeon_cmdbuf *cs);
void si_emit_compute(struct radv_device *device, struct radeon_cmdbuf *cs);
void cik_create_gfx_config(struct radv_device *device);
void si_write_scissors(struct radeon_cmdbuf *cs, int first, int count, const VkRect2D *scissors,
const VkViewport *viewports, unsigned rast_prim, float line_width);
uint32_t si_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer, bool instanced_draw,
bool indirect_draw, bool count_from_stream_output,
uint32_t draw_vertex_count, unsigned topology,
bool prim_restart_enable);
void si_cs_emit_write_event_eop(struct radeon_cmdbuf *cs, enum amd_gfx_level gfx_level, bool is_mec,
unsigned event, unsigned event_flags, unsigned dst_sel,
unsigned data_sel, uint64_t va, uint32_t new_fence,
uint64_t gfx9_eop_bug_va);
void radv_cp_wait_mem(struct radeon_cmdbuf *cs, uint32_t op, uint64_t va, uint32_t ref,
uint32_t mask);
void si_cs_emit_cache_flush(struct radeon_cmdbuf *cs, enum amd_gfx_level gfx_level,
uint32_t *fence_ptr, uint64_t va, bool is_mec,
enum radv_cmd_flush_bits flush_bits,
enum rgp_flush_bits *sqtt_flush_bits, uint64_t gfx9_eop_bug_va);
void si_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer);
void si_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer, bool draw_visible,
unsigned pred_op, uint64_t va);
void si_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer, uint64_t src_va, uint64_t dest_va,
uint64_t size);
void si_cs_cp_dma_prefetch(const struct radv_device *device, struct radeon_cmdbuf *cs, uint64_t va,
unsigned size, bool predicating);
void si_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va, unsigned size);
void si_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va, uint64_t size,
unsigned value);
void si_cp_dma_wait_for_idle(struct radv_cmd_buffer *cmd_buffer);
void radv_set_db_count_control(struct radv_cmd_buffer *cmd_buffer, bool enable_occlusion_queries);
uint32_t radv_get_pa_su_sc_mode_cntl(const struct radv_cmd_buffer *cmd_buffer);
uint32_t radv_get_vgt_index_size(uint32_t type);
unsigned radv_instance_rate_prolog_index(unsigned num_attributes, uint32_t instance_rate_inputs);
uint32_t radv_hash_vs_prolog(const void *key_);
bool radv_cmp_vs_prolog(const void *a_, const void *b_);
bool radv_cmd_buffer_upload_alloc(struct radv_cmd_buffer *cmd_buffer, unsigned size,
unsigned *out_offset, void **ptr);
void radv_cmd_buffer_set_subpass(struct radv_cmd_buffer *cmd_buffer,
const struct radv_subpass *subpass);
void radv_cmd_buffer_restore_subpass(struct radv_cmd_buffer *cmd_buffer,
const struct radv_subpass *subpass);
bool radv_cmd_buffer_upload_data(struct radv_cmd_buffer *cmd_buffer, unsigned size,
const void *data, unsigned *out_offset);
void radv_write_vertex_descriptors(const struct radv_cmd_buffer *cmd_buffer,
const struct radv_graphics_pipeline *pipeline,
bool full_null_descriptors, void *vb_ptr);
void radv_write_scissors(struct radv_cmd_buffer *cmd_buffer, struct radeon_cmdbuf *cs);
void radv_cmd_buffer_clear_subpass(struct radv_cmd_buffer *cmd_buffer);
void radv_cmd_buffer_resolve_subpass(struct radv_cmd_buffer *cmd_buffer);
void radv_cmd_buffer_resolve_subpass_cs(struct radv_cmd_buffer *cmd_buffer);
void radv_depth_stencil_resolve_subpass_cs(struct radv_cmd_buffer *cmd_buffer,
VkImageAspectFlags aspects,
VkResolveModeFlagBits resolve_mode);
void radv_cmd_buffer_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer);
void radv_depth_stencil_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer,
VkImageAspectFlags aspects,
VkResolveModeFlagBits resolve_mode);
void radv_emit_default_sample_locations(struct radeon_cmdbuf *cs, int nr_samples);
unsigned radv_get_default_max_sample_dist(int log_samples);
void radv_device_init_msaa(struct radv_device *device);
VkResult radv_device_init_vrs_state(struct radv_device *device);
void radv_update_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer,
const struct radv_image_view *iview,
VkClearDepthStencilValue ds_clear_value,
VkImageAspectFlags aspects);
void radv_update_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer,
const struct radv_image_view *iview, int cb_idx,
uint32_t color_values[2]);
bool radv_image_use_dcc_image_stores(const struct radv_device *device,
const struct radv_image *image);
bool radv_image_use_dcc_predication(const struct radv_device *device,
const struct radv_image *image);
void radv_update_fce_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, bool value);
void radv_update_dcc_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, bool value);
enum radv_cmd_flush_bits radv_src_access_flush(struct radv_cmd_buffer *cmd_buffer,
VkAccessFlags2 src_flags,
const struct radv_image *image);
enum radv_cmd_flush_bits radv_dst_access_flush(struct radv_cmd_buffer *cmd_buffer,
VkAccessFlags2 dst_flags,
const struct radv_image *image);
uint32_t radv_fill_buffer(struct radv_cmd_buffer *cmd_buffer, const struct radv_image *image,
struct radeon_winsys_bo *bo, uint64_t va, uint64_t size, uint32_t value);
void radv_copy_buffer(struct radv_cmd_buffer *cmd_buffer, struct radeon_winsys_bo *src_bo,
struct radeon_winsys_bo *dst_bo, uint64_t src_offset, uint64_t dst_offset,
uint64_t size);
void radv_cmd_buffer_trace_emit(struct radv_cmd_buffer *cmd_buffer);
bool radv_get_memory_fd(struct radv_device *device, struct radv_device_memory *memory, int *pFD);
void radv_free_memory(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
struct radv_device_memory *mem);
static inline void
radv_emit_shader_pointer_head(struct radeon_cmdbuf *cs, unsigned sh_offset, unsigned pointer_count,
bool use_32bit_pointers)
{
radeon_emit(cs, PKT3(PKT3_SET_SH_REG, pointer_count * (use_32bit_pointers ? 1 : 2), 0));
radeon_emit(cs, (sh_offset - SI_SH_REG_OFFSET) >> 2);
}
static inline void
radv_emit_shader_pointer_body(struct radv_device *device, struct radeon_cmdbuf *cs, uint64_t va,
bool use_32bit_pointers)
{
radeon_emit(cs, va);
if (use_32bit_pointers) {
assert(va == 0 || (va >> 32) == device->physical_device->rad_info.address32_hi);
} else {
radeon_emit(cs, va >> 32);
}
}
static inline void
radv_emit_shader_pointer(struct radv_device *device, struct radeon_cmdbuf *cs, uint32_t sh_offset,
uint64_t va, bool global)
{
bool use_32bit_pointers = !global;
radv_emit_shader_pointer_head(cs, sh_offset, 1, use_32bit_pointers);
radv_emit_shader_pointer_body(device, cs, va, use_32bit_pointers);
}
static inline struct radv_descriptor_state *
radv_get_descriptors_state(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
{
switch (bind_point) {
case VK_PIPELINE_BIND_POINT_GRAPHICS:
case VK_PIPELINE_BIND_POINT_COMPUTE:
return &cmd_buffer->descriptors[bind_point];
case VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR:
return &cmd_buffer->descriptors[2];
default:
unreachable("Unhandled bind point");
}
}
void
radv_get_viewport_xform(const VkViewport *viewport, float scale[3], float translate[3]);
/*
* Takes x,y,z as exact numbers of invocations, instead of blocks.
*
* Limitations: Can't call normal dispatch functions without binding or rebinding
* the compute pipeline.
*/
void radv_unaligned_dispatch(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y,
uint32_t z);
void radv_indirect_dispatch(struct radv_cmd_buffer *cmd_buffer, struct radeon_winsys_bo *bo,
uint64_t va);
struct radv_event {
struct vk_object_base base;
struct radeon_winsys_bo *bo;
uint64_t *map;
};
#define RADV_HASH_SHADER_CS_WAVE32 (1 << 1)
#define RADV_HASH_SHADER_PS_WAVE32 (1 << 2)
#define RADV_HASH_SHADER_GE_WAVE32 (1 << 3)
#define RADV_HASH_SHADER_LLVM (1 << 4)
#define RADV_HASH_SHADER_KEEP_STATISTICS (1 << 8)
#define RADV_HASH_SHADER_USE_NGG_CULLING (1 << 13)
#define RADV_HASH_SHADER_ROBUST_BUFFER_ACCESS (1 << 14)
#define RADV_HASH_SHADER_ROBUST_BUFFER_ACCESS2 (1 << 15)
#define RADV_HASH_SHADER_EMULATE_RT (1 << 16)
#define RADV_HASH_SHADER_SPLIT_FMA (1 << 17)
#define RADV_HASH_SHADER_RT_WAVE64 (1 << 18)
struct radv_pipeline_key;
void radv_pipeline_stage_init(const VkPipelineShaderStageCreateInfo *sinfo,
struct radv_pipeline_stage *out_stage, gl_shader_stage stage);
void radv_hash_shaders(unsigned char *hash, const struct radv_pipeline_stage *stages,
const struct radv_pipeline_layout *layout,
const struct radv_pipeline_key *key, uint32_t flags);
void radv_hash_rt_shaders(unsigned char *hash, const VkRayTracingPipelineCreateInfoKHR *pCreateInfo,
uint32_t flags);
uint32_t radv_get_hash_flags(const struct radv_device *device, bool stats);
bool radv_rt_pipeline_has_dynamic_stack_size(const VkRayTracingPipelineCreateInfoKHR *pCreateInfo);
bool radv_enable_rt(const struct radv_physical_device *pdevice, bool rt_pipelines);
bool radv_emulate_rt(const struct radv_physical_device *pdevice);
enum {
RADV_RT_STAGE_BITS = (VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR |
VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR |
VK_SHADER_STAGE_INTERSECTION_BIT_KHR | VK_SHADER_STAGE_CALLABLE_BIT_KHR)
};
#define RADV_STAGE_MASK ((1 << MESA_VULKAN_SHADER_STAGES) - 1)
#define radv_foreach_stage(stage, stage_bits) \
for (gl_shader_stage stage, __tmp = (gl_shader_stage)((stage_bits)&RADV_STAGE_MASK); \
stage = ffs(__tmp) - 1, __tmp; __tmp &= ~(1 << (stage)))
extern const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS];
unsigned radv_format_meta_fs_key(struct radv_device *device, VkFormat format);
struct radv_multisample_state {
uint32_t db_eqaa;
uint32_t pa_sc_mode_cntl_0;
uint32_t pa_sc_mode_cntl_1;
uint32_t pa_sc_aa_config;
uint32_t pa_sc_aa_mask[2];
unsigned num_samples;
};
struct radv_vrs_state {
uint32_t pa_cl_vrs_cntl;
};
struct radv_prim_vertex_count {
uint8_t min;
uint8_t incr;
};
struct radv_ia_multi_vgt_param_helpers {
uint32_t base;
bool partial_es_wave;
uint8_t primgroup_size;
bool ia_switch_on_eoi;
bool partial_vs_wave;
};
struct radv_binning_state {
uint32_t pa_sc_binner_cntl_0;
};
#define SI_GS_PER_ES 128
enum radv_pipeline_type {
RADV_PIPELINE_GRAPHICS,
/* Compute pipeline (incl raytracing pipeline) */
RADV_PIPELINE_COMPUTE,
/* Pipeline library. This can't actually run and merely is a partial pipeline. */
RADV_PIPELINE_LIBRARY
};
struct radv_pipeline_group_handle {
uint32_t handles[2];
};
struct radv_pipeline_shader_stack_size {
uint32_t recursive_size;
/* anyhit + intersection */
uint32_t non_recursive_size;
};
struct radv_pipeline_slab {
uint32_t ref_count;
union radv_shader_arena_block *alloc;
};
void radv_pipeline_slab_destroy(struct radv_device *device, struct radv_pipeline_slab *slab);
struct radv_vertex_input_info {
uint32_t instance_rate_inputs;
uint32_t instance_rate_divisors[MAX_VERTEX_ATTRIBS];
uint8_t vertex_attribute_formats[MAX_VERTEX_ATTRIBS];
uint32_t vertex_attribute_bindings[MAX_VERTEX_ATTRIBS];
uint32_t vertex_attribute_offsets[MAX_VERTEX_ATTRIBS];
uint32_t vertex_attribute_strides[MAX_VERTEX_ATTRIBS];
uint8_t vertex_binding_align[MAX_VBS];
enum radv_vs_input_alpha_adjust vertex_alpha_adjust[MAX_VERTEX_ATTRIBS];
uint32_t vertex_post_shuffle;
uint32_t binding_stride[MAX_VBS];
uint8_t attrib_bindings[MAX_VERTEX_ATTRIBS];
uint32_t attrib_ends[MAX_VERTEX_ATTRIBS];
uint32_t attrib_index_offset[MAX_VERTEX_ATTRIBS];
};
struct radv_input_assembly_info {
uint8_t primitive_topology; /* VkPrimitiveTopology */
bool primitive_restart_enable;
};
struct radv_tessellation_info {
uint8_t patch_control_points;
VkTessellationDomainOrigin domain_origin;
};
struct radv_viewport_info {
bool negative_one_to_one;
uint8_t viewport_count;
uint8_t scissor_count;
VkRect2D scissors[MAX_SCISSORS];
VkViewport viewports[MAX_VIEWPORTS];
};
struct radv_rasterization_info {
bool discard_enable;
VkFrontFace front_face;
VkCullModeFlags cull_mode;
uint8_t polygon_mode; /* VkPolygonMode */
bool depth_bias_enable;
bool depth_clamp_enable;
float line_width;
float depth_bias_constant_factor;
float depth_bias_clamp;
float depth_bias_slope_factor;
VkConservativeRasterizationModeEXT conservative_mode;
bool provoking_vtx_last;
bool stippled_line_enable;
VkLineRasterizationModeEXT line_raster_mode;
uint32_t line_stipple_factor;
uint16_t line_stipple_pattern;
bool depth_clip_disable;
VkRasterizationOrderAMD order;
};
struct radv_discard_rectangle_info {
VkDiscardRectangleModeEXT mode;
VkRect2D rects[MAX_DISCARD_RECTANGLES];
uint8_t count;
};
struct radv_multisample_info {
bool sample_shading_enable;
bool alpha_to_coverage_enable;
bool sample_locs_enable;
VkSampleCountFlagBits raster_samples;
float min_sample_shading;
uint16_t sample_mask;
uint8_t sample_locs_count;
VkSampleCountFlagBits sample_locs_per_pixel;
VkExtent2D sample_locs_grid_size;
VkSampleLocationEXT sample_locs[MAX_SAMPLE_LOCATIONS];
};
struct radv_stencil_op_info {
VkStencilOp fail_op;
VkStencilOp pass_op;
VkStencilOp depth_fail_op;
VkCompareOp compare_op;
uint8_t compare_mask;
uint8_t write_mask;
uint8_t reference;
};
struct radv_depth_stencil_info {
bool stencil_test_enable;
bool depth_test_enable;
bool depth_write_enable;
bool depth_bounds_test_enable;
struct {
float min;
float max;
} depth_bounds;
struct radv_stencil_op_info front;
struct radv_stencil_op_info back;
VkCompareOp depth_compare_op;
};
struct radv_rendering_info {
uint32_t view_mask;
uint32_t color_att_count;
VkFormat color_att_formats[MAX_RTS];
VkFormat depth_att_format;
VkFormat stencil_att_format;
};
struct radv_color_blend_info {
bool logic_op_enable;
uint8_t att_count;
uint16_t logic_op;
uint32_t color_write_enable;
float blend_constants[4];
struct {
uint8_t color_write_mask;
bool blend_enable;
uint16_t color_blend_op;
uint16_t alpha_blend_op;
uint16_t src_color_blend_factor;
uint16_t dst_color_blend_factor;
uint16_t src_alpha_blend_factor;
uint16_t dst_alpha_blend_factor;
} att[MAX_RTS];
};
struct radv_fragment_shading_rate_info {
VkExtent2D size;
VkFragmentShadingRateCombinerOpKHR combiner_ops[2];
};
struct radv_graphics_pipeline_info {
struct radv_vertex_input_info vi;
struct radv_input_assembly_info ia;
struct radv_tessellation_info ts;
struct radv_viewport_info vp;
struct radv_rasterization_info rs;
struct radv_discard_rectangle_info dr;
struct radv_multisample_info ms;
struct radv_depth_stencil_info ds;
struct radv_rendering_info ri;
struct radv_color_blend_info cb;
struct radv_fragment_shading_rate_info fsr;
/* VK_AMD_mixed_attachment_samples */
uint8_t color_att_samples;
uint8_t ds_att_samples;
};
enum radv_depth_clamp_mode {
RADV_DEPTH_CLAMP_MODE_VIEWPORT = 0, /* Clamp to the viewport min/max depth bounds */
RADV_DEPTH_CLAMP_MODE_ZERO_TO_ONE = 1, /* Clamp between 0.0f and 1.0f */
RADV_DEPTH_CLAMP_MODE_DISABLED = 2, /* Disable depth clamping */
};
struct radv_pipeline {
struct vk_object_base base;
enum radv_pipeline_type type;
struct radv_device *device;
struct radv_pipeline_slab *slab;
struct radeon_winsys_bo *slab_bo;
bool need_indirect_descriptor_sets;
struct radv_shader *shaders[MESA_VULKAN_SHADER_STAGES];
struct radv_shader *gs_copy_shader;
struct radeon_cmdbuf cs;
uint32_t ctx_cs_hash;
struct radeon_cmdbuf ctx_cs;
uint32_t user_data_0[MESA_VULKAN_SHADER_STAGES];
unsigned max_waves;
unsigned scratch_bytes_per_wave;
/* Unique pipeline hash identifier. */
uint64_t pipeline_hash;
/* Pipeline layout info. */
uint32_t push_constant_size;
uint32_t dynamic_offset_count;
};
struct radv_graphics_pipeline {
struct radv_pipeline base;
VkShaderStageFlags active_stages;
struct radv_dynamic_state dynamic_state;
uint64_t dynamic_states;
struct radv_multisample_state ms;
struct radv_binning_state binning;
struct radv_vrs_state vrs;
uint32_t spi_baryc_cntl;
unsigned esgs_ring_size;
unsigned gsvs_ring_size;
uint32_t vtx_base_sgpr;
struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param;
uint8_t vtx_emit_num;
uint64_t needed_dynamic_state;
unsigned tess_patch_control_points;
unsigned pa_su_sc_mode_cntl;
unsigned db_depth_control;
unsigned pa_cl_clip_cntl;
unsigned cb_color_control;
uint32_t binding_stride[MAX_VBS];
uint8_t attrib_bindings[MAX_VERTEX_ATTRIBS];
uint32_t attrib_ends[MAX_VERTEX_ATTRIBS];
uint32_t attrib_index_offset[MAX_VERTEX_ATTRIBS];
uint8_t last_vertex_attrib_bit;
uint8_t next_vertex_stage : 8;
uint32_t vb_desc_usage_mask;
uint32_t vb_desc_alloc_size;
/* Last pre-PS API stage */
gl_shader_stage last_vgt_api_stage;
/* Used for rbplus */
uint32_t col_format;
uint32_t cb_target_mask;
bool disable_out_of_order_rast_for_occlusion;
bool uses_drawid;
bool uses_baseinstance;
bool uses_dynamic_stride;
bool uses_conservative_overestimate;
bool negative_one_to_one;
enum radv_depth_clamp_mode depth_clamp_mode;
bool use_per_attribute_vb_descs;
bool can_use_simple_input;
bool uses_user_sample_locations;
/* Whether the pipeline forces per-vertex VRS (GFX10.3+). */
bool force_vrs_per_vertex;
/* Whether the pipeline uses NGG (GFX10+). */
bool is_ngg;
bool has_ngg_culling;
/* Not NULL if graphics pipeline uses streamout. */
struct radv_shader *streamout_shader;
unsigned rast_prim;
float line_width;
};
struct radv_compute_pipeline {
struct radv_pipeline base;
bool cs_regalloc_hang_bug;
/* Raytracing */
struct radv_pipeline_group_handle *rt_group_handles;
struct radv_pipeline_shader_stack_size *rt_stack_sizes;
bool dynamic_stack_size;
uint32_t group_count;
};
struct radv_library_pipeline {
struct radv_pipeline base;
unsigned stage_count;
VkPipelineShaderStageCreateInfo *stages;
unsigned group_count;
VkRayTracingShaderGroupCreateInfoKHR *groups;
VkPipelineShaderStageModuleIdentifierCreateInfoEXT *identifiers;
struct {
uint8_t sha1[SHA1_DIGEST_LENGTH];
} *hashes;
};
#define RADV_DECL_PIPELINE_DOWNCAST(pipe_type, pipe_enum) \
static inline struct radv_##pipe_type##_pipeline * \
radv_pipeline_to_##pipe_type(struct radv_pipeline *pipeline) \
{ \
assert(pipeline->type == pipe_enum); \
return (struct radv_##pipe_type##_pipeline *) pipeline; \
}
RADV_DECL_PIPELINE_DOWNCAST(graphics, RADV_PIPELINE_GRAPHICS)
RADV_DECL_PIPELINE_DOWNCAST(compute, RADV_PIPELINE_COMPUTE)
RADV_DECL_PIPELINE_DOWNCAST(library, RADV_PIPELINE_LIBRARY)
struct radv_pipeline_stage {
gl_shader_stage stage;
struct {
const struct vk_object_base *object;
const char *data;
uint32_t size;
unsigned char sha1[20];
} spirv;
const char *entrypoint;
const VkSpecializationInfo *spec_info;
unsigned char shader_sha1[20];
nir_shader *nir;
nir_shader *internal_nir; /* meta shaders */
struct radv_shader_info info;
struct radv_shader_args args;
VkPipelineCreationFeedback feedback;
};
static inline bool
radv_pipeline_has_stage(const struct radv_graphics_pipeline *pipeline, gl_shader_stage stage)
{
return pipeline->base.shaders[stage];
}
bool radv_pipeline_has_ngg_passthrough(const struct radv_graphics_pipeline *pipeline);
bool radv_pipeline_has_gs_copy_shader(const struct radv_pipeline *pipeline);
struct radv_userdata_info *radv_lookup_user_sgpr(struct radv_pipeline *pipeline,
gl_shader_stage stage, int idx);
struct radv_shader *radv_get_shader(const struct radv_pipeline *pipeline, gl_shader_stage stage);
void radv_pipeline_emit_hw_cs(const struct radv_physical_device *pdevice, struct radeon_cmdbuf *cs,
const struct radv_shader *shader);
void radv_pipeline_emit_compute_state(const struct radv_physical_device *pdevice,
struct radeon_cmdbuf *cs, const struct radv_shader *shader);
struct radv_graphics_pipeline_create_info {
bool use_rectlist;
bool db_depth_clear;
bool db_stencil_clear;
bool depth_compress_disable;
bool stencil_compress_disable;
bool resummarize_enable;
uint32_t custom_blend_mode;
};
void radv_pipeline_init(struct radv_device *device, struct radv_pipeline *pipeline,
enum radv_pipeline_type type);
VkResult radv_graphics_pipeline_create(VkDevice device, VkPipelineCache cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *alloc, VkPipeline *pPipeline);
VkResult radv_compute_pipeline_create(VkDevice _device, VkPipelineCache _cache,
const VkComputePipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
const uint8_t *custom_hash,
struct radv_pipeline_shader_stack_size *rt_stack_sizes,
uint32_t rt_group_count, VkPipeline *pPipeline);
void radv_pipeline_destroy(struct radv_device *device, struct radv_pipeline *pipeline,
const VkAllocationCallbacks *allocator);
struct radv_binning_settings {
unsigned context_states_per_bin; /* allowed range: [1, 6] */
unsigned persistent_states_per_bin; /* allowed range: [1, 32] */
unsigned fpovs_per_batch; /* allowed range: [0, 255], 0 = unlimited */
};
struct radv_binning_settings radv_get_binning_settings(const struct radv_physical_device *pdev);
struct vk_format_description;
uint32_t radv_translate_buffer_dataformat(const struct util_format_description *desc,
int first_non_void);
uint32_t radv_translate_buffer_numformat(const struct util_format_description *desc,
int first_non_void);
bool radv_is_buffer_format_supported(VkFormat format, bool *scaled);
void radv_translate_vertex_format(const struct radv_physical_device *pdevice, VkFormat format,
const struct util_format_description *desc, unsigned *dfmt,
unsigned *nfmt, bool *post_shuffle,
enum radv_vs_input_alpha_adjust *alpha_adjust);
uint32_t radv_translate_colorformat(VkFormat format);
uint32_t radv_translate_color_numformat(VkFormat format, const struct util_format_description *desc,
int first_non_void);
uint32_t radv_colorformat_endian_swap(uint32_t colorformat);
unsigned radv_translate_colorswap(VkFormat format, bool do_endian_swap);
uint32_t radv_translate_dbformat(VkFormat format);
uint32_t radv_translate_tex_dataformat(VkFormat format, const struct util_format_description *desc,
int first_non_void);
uint32_t radv_translate_tex_numformat(VkFormat format, const struct util_format_description *desc,
int first_non_void);
bool radv_format_pack_clear_color(VkFormat format, uint32_t clear_vals[2],
VkClearColorValue *value);
bool radv_is_storage_image_format_supported(struct radv_physical_device *physical_device,
VkFormat format);
bool radv_is_colorbuffer_format_supported(const struct radv_physical_device *pdevice,
VkFormat format, bool *blendable);
bool radv_dcc_formats_compatible(enum amd_gfx_level gfx_level, VkFormat format1, VkFormat format2,
bool *sign_reinterpret);
bool radv_is_atomic_format_supported(VkFormat format);
bool radv_device_supports_etc(struct radv_physical_device *physical_device);
static const VkImageUsageFlags RADV_IMAGE_USAGE_WRITE_BITS =
VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_STORAGE_BIT;
struct radv_image_plane {
VkFormat format;
struct radeon_surf surface;
};
struct radv_image_binding {
/* Set when bound */
struct radeon_winsys_bo *bo;
VkDeviceSize offset;
};
struct radv_image {
struct vk_image vk;
struct ac_surf_info info;
VkDeviceSize size;
uint32_t alignment;
unsigned queue_family_mask;
bool exclusive;
bool shareable;
bool l2_coherent;
bool dcc_sign_reinterpret;
bool support_comp_to_single;
struct radv_image_binding bindings[3];
bool tc_compatible_cmask;
uint64_t clear_value_offset;
uint64_t fce_pred_offset;
uint64_t dcc_pred_offset;
/*
* Metadata for the TC-compat zrange workaround. If the 32-bit value
* stored at this offset is UINT_MAX, the driver will emit
* DB_Z_INFO.ZRANGE_PRECISION=0, otherwise it will skip the
* SET_CONTEXT_REG packet.
*/
uint64_t tc_compat_zrange_offset;
/* For VK_ANDROID_native_buffer, the WSI image owns the memory, */
VkDeviceMemory owned_memory;
unsigned plane_count;
struct radv_image_plane planes[0];
};
/* Whether the image has a htile that is known consistent with the contents of
* the image and is allowed to be in compressed form.
*
* If this is false reads that don't use the htile should be able to return
* correct results.
*/
bool radv_layout_is_htile_compressed(const struct radv_device *device,
const struct radv_image *image, VkImageLayout layout,
bool in_render_loop, unsigned queue_mask);
bool radv_layout_can_fast_clear(const struct radv_device *device, const struct radv_image *image,
unsigned level, VkImageLayout layout, bool in_render_loop,
unsigned queue_mask);
bool radv_layout_dcc_compressed(const struct radv_device *device, const struct radv_image *image,
unsigned level, VkImageLayout layout, bool in_render_loop,
unsigned queue_mask);
bool radv_layout_fmask_compressed(const struct radv_device *device, const struct radv_image *image,
VkImageLayout layout, unsigned queue_mask);
/**
* Return whether the image has CMASK metadata for color surfaces.
*/
static inline bool
radv_image_has_cmask(const struct radv_image *image)
{
return image->planes[0].surface.cmask_offset;
}
/**
* Return whether the image has FMASK metadata for color surfaces.
*/
static inline bool
radv_image_has_fmask(const struct radv_image *image)
{
return image->planes[0].surface.fmask_offset;
}
/**
* Return whether the image has DCC metadata for color surfaces.
*/
static inline bool
radv_image_has_dcc(const struct radv_image *image)
{
return !(image->planes[0].surface.flags & RADEON_SURF_Z_OR_SBUFFER) &&
image->planes[0].surface.meta_offset;
}
/**
* Return whether the image is TC-compatible CMASK.
*/
static inline bool
radv_image_is_tc_compat_cmask(const struct radv_image *image)
{
return radv_image_has_fmask(image) && image->tc_compatible_cmask;
}
/**
* Return whether DCC metadata is enabled for a level.
*/
static inline bool
radv_dcc_enabled(const struct radv_image *image, unsigned level)
{
return radv_image_has_dcc(image) && level < image->planes[0].surface.num_meta_levels;
}
/**
* Return whether the image has CB metadata.
*/
static inline bool
radv_image_has_CB_metadata(const struct radv_image *image)
{
return radv_image_has_cmask(image) || radv_image_has_fmask(image) || radv_image_has_dcc(image);
}
/**
* Return whether the image has HTILE metadata for depth surfaces.
*/
static inline bool
radv_image_has_htile(const struct radv_image *image)
{
return image->planes[0].surface.flags & RADEON_SURF_Z_OR_SBUFFER &&
image->planes[0].surface.meta_size;
}
/**
* Return whether the image has VRS HTILE metadata for depth surfaces
*/
static inline bool
radv_image_has_vrs_htile(const struct radv_device *device, const struct radv_image *image)
{
/* Any depth buffer can potentially use VRS. */
return device->attachment_vrs_enabled && radv_image_has_htile(image) &&
(image->vk.usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT);
}
/**
* Return whether HTILE metadata is enabled for a level.
*/
static inline bool
radv_htile_enabled(const struct radv_image *image, unsigned level)
{
return radv_image_has_htile(image) && level < image->planes[0].surface.num_meta_levels;
}
/**
* Return whether the image is TC-compatible HTILE.
*/
static inline bool
radv_image_is_tc_compat_htile(const struct radv_image *image)
{
return radv_image_has_htile(image) &&
(image->planes[0].surface.flags & RADEON_SURF_TC_COMPATIBLE_HTILE);
}
/**
* Return whether the entire HTILE buffer can be used for depth in order to
* improve HiZ Z-Range precision.
*/
static inline bool
radv_image_tile_stencil_disabled(const struct radv_device *device, const struct radv_image *image)
{
if (device->physical_device->rad_info.gfx_level >= GFX9) {
return !vk_format_has_stencil(image->vk.format) && !radv_image_has_vrs_htile(device, image);
} else {
/* Due to a hw bug, TILE_STENCIL_DISABLE must be set to 0 for
* the TC-compat ZRANGE issue even if no stencil is used.
*/
return !vk_format_has_stencil(image->vk.format) && !radv_image_is_tc_compat_htile(image);
}
}
static inline bool
radv_image_has_clear_value(const struct radv_image *image)
{
return image->clear_value_offset != 0;
}
static inline uint64_t
radv_image_get_fast_clear_va(const struct radv_image *image, uint32_t base_level)
{
assert(radv_image_has_clear_value(image));
uint64_t va = radv_buffer_get_va(image->bindings[0].bo);
va += image->bindings[0].offset + image->clear_value_offset + base_level * 8;
return va;
}
static inline uint64_t
radv_image_get_fce_pred_va(const struct radv_image *image, uint32_t base_level)
{
assert(image->fce_pred_offset != 0);
uint64_t va = radv_buffer_get_va(image->bindings[0].bo);
va += image->bindings[0].offset + image->fce_pred_offset + base_level * 8;
return va;
}
static inline uint64_t
radv_image_get_dcc_pred_va(const struct radv_image *image, uint32_t base_level)
{
assert(image->dcc_pred_offset != 0);
uint64_t va = radv_buffer_get_va(image->bindings[0].bo);
va += image->bindings[0].offset + image->dcc_pred_offset + base_level * 8;
return va;
}
static inline uint64_t
radv_get_tc_compat_zrange_va(const struct radv_image *image, uint32_t base_level)
{
assert(image->tc_compat_zrange_offset != 0);
uint64_t va = radv_buffer_get_va(image->bindings[0].bo);
va += image->bindings[0].offset + image->tc_compat_zrange_offset + base_level * 4;
return va;
}
static inline uint64_t
radv_get_ds_clear_value_va(const struct radv_image *image, uint32_t base_level)
{
assert(radv_image_has_clear_value(image));
uint64_t va = radv_buffer_get_va(image->bindings[0].bo);
va += image->bindings[0].offset + image->clear_value_offset + base_level * 8;
return va;
}
static inline uint32_t
radv_get_htile_initial_value(const struct radv_device *device, const struct radv_image *image)
{
uint32_t initial_value;
if (radv_image_tile_stencil_disabled(device, image)) {
/* Z only (no stencil):
*
* |31 18|17 4|3 0|
* +---------+---------+-------+
* | Max Z | Min Z | ZMask |
*/
initial_value = 0xfffc000f;
} else {
/* Z and stencil:
*
* |31 12|11 10|9 8|7 6|5 4|3 0|
* +-----------+-----+------+-----+-----+-------+
* | Z Range | | SMem | SR1 | SR0 | ZMask |
*
* SR0/SR1 contains the stencil test results. Initializing
* SR0/SR1 to 0x3 means the stencil test result is unknown.
*
* Z, stencil and 4 bit VRS encoding:
* |31 12|11 10|9 8|7 6|5 4|3 0|
* +-----------+------------+------+------------+-----+-------+
* | Z Range | VRS y-rate | SMem | VRS x-rate | SR0 | ZMask |
*/
if (radv_image_has_vrs_htile(device, image)) {
/* Initialize the VRS x-rate value at 0, so the hw interprets it as 1 sample. */
initial_value = 0xfffff33f;
} else {
initial_value = 0xfffff3ff;
}
}
return initial_value;
}
static inline bool
radv_image_get_iterate256(struct radv_device *device, struct radv_image *image)
{
/* ITERATE_256 is required for depth or stencil MSAA images that are TC-compatible HTILE. */
return device->physical_device->rad_info.gfx_level >= GFX10 &&
(image->vk.usage &
(VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT)) &&
radv_image_is_tc_compat_htile(image) && image->info.samples > 1;
}
unsigned radv_image_queue_family_mask(const struct radv_image *image,
enum radv_queue_family family,
enum radv_queue_family queue_family);
static inline uint32_t
radv_get_layerCount(const struct radv_image *image, const VkImageSubresourceRange *range)
{
return range->layerCount == VK_REMAINING_ARRAY_LAYERS
? image->info.array_size - range->baseArrayLayer
: range->layerCount;
}
static inline uint32_t
radv_get_levelCount(const struct radv_image *image, const VkImageSubresourceRange *range)
{
return range->levelCount == VK_REMAINING_MIP_LEVELS ? image->info.levels - range->baseMipLevel
: range->levelCount;
}
bool radv_image_is_renderable(struct radv_device *device, struct radv_image *image);
struct radeon_bo_metadata;
void radv_init_metadata(struct radv_device *device, struct radv_image *image,
struct radeon_bo_metadata *metadata);
void radv_image_override_offset_stride(struct radv_device *device, struct radv_image *image,
uint64_t offset, uint32_t stride);
union radv_descriptor {
struct {
uint32_t plane0_descriptor[8];
uint32_t fmask_descriptor[8];
};
struct {
uint32_t plane_descriptors[3][8];
};
};
struct radv_image_view {
struct vk_image_view vk;
struct radv_image *image; /**< VkImageViewCreateInfo::image */
unsigned plane_id;
VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
/* Whether the image iview supports fast clear. */
bool support_fast_clear;
bool disable_dcc_mrt;
union radv_descriptor descriptor;
/* Descriptor for use as a storage image as opposed to a sampled image.
* This has a few differences for cube maps (e.g. type).
*/
union radv_descriptor storage_descriptor;
};
struct radv_image_create_info {
const VkImageCreateInfo *vk_info;
bool scanout;
bool no_metadata_planes;
bool prime_blit_src;
const struct radeon_bo_metadata *bo_metadata;
};
VkResult
radv_image_create_layout(struct radv_device *device, struct radv_image_create_info create_info,
const struct VkImageDrmFormatModifierExplicitCreateInfoEXT *mod_info,
struct radv_image *image);
VkResult radv_image_create(VkDevice _device, const struct radv_image_create_info *info,
const VkAllocationCallbacks *alloc, VkImage *pImage);
bool radv_are_formats_dcc_compatible(const struct radv_physical_device *pdev, const void *pNext,
VkFormat format, VkImageCreateFlags flags,
bool *sign_reinterpret);
bool vi_alpha_is_on_msb(struct radv_device *device, VkFormat format);
VkResult radv_image_from_gralloc(VkDevice device_h, const VkImageCreateInfo *base_info,
const VkNativeBufferANDROID *gralloc_info,
const VkAllocationCallbacks *alloc, VkImage *out_image_h);
uint64_t radv_ahb_usage_from_vk_usage(const VkImageCreateFlags vk_create,
const VkImageUsageFlags vk_usage);
VkResult radv_import_ahb_memory(struct radv_device *device, struct radv_device_memory *mem,
unsigned priority,
const VkImportAndroidHardwareBufferInfoANDROID *info);
VkResult radv_create_ahb_memory(struct radv_device *device, struct radv_device_memory *mem,
unsigned priority, const VkMemoryAllocateInfo *pAllocateInfo);
VkFormat radv_select_android_external_format(const void *next, VkFormat default_format);
bool radv_android_gralloc_supports_format(VkFormat format, VkImageUsageFlagBits usage);
struct radv_image_view_extra_create_info {
bool disable_compression;
bool enable_compression;
bool disable_dcc_mrt;
bool from_client; /**< Set only if this came from vkCreateImage */
};
void radv_image_view_init(struct radv_image_view *view, struct radv_device *device,
const VkImageViewCreateInfo *pCreateInfo,
VkImageCreateFlags img_create_flags,
const struct radv_image_view_extra_create_info *extra_create_info);
void radv_image_view_finish(struct radv_image_view *iview);
VkFormat radv_get_aspect_format(struct radv_image *image, VkImageAspectFlags mask);
struct radv_sampler_ycbcr_conversion_state {
VkFormat format;
VkSamplerYcbcrModelConversion ycbcr_model;
VkSamplerYcbcrRange ycbcr_range;
VkComponentMapping components;
VkChromaLocation chroma_offsets[2];
VkFilter chroma_filter;
};
struct radv_sampler_ycbcr_conversion {
struct vk_object_base base;
/* The state is hashed for the descriptor set layout. */
struct radv_sampler_ycbcr_conversion_state state;
};
struct radv_buffer_view {
struct vk_object_base base;
struct radeon_winsys_bo *bo;
VkFormat vk_format;
uint64_t range; /**< VkBufferViewCreateInfo::range */
uint32_t state[4];
};
void radv_buffer_view_init(struct radv_buffer_view *view, struct radv_device *device,
const VkBufferViewCreateInfo *pCreateInfo);
void radv_buffer_view_finish(struct radv_buffer_view *view);
static inline bool
radv_image_extent_compare(const struct radv_image *image, const VkExtent3D *extent)
{
if (extent->width != image->info.width || extent->height != image->info.height ||
extent->depth != image->info.depth)
return false;
return true;
}
struct radv_sampler {
struct vk_object_base base;
uint32_t state[4];
struct radv_sampler_ycbcr_conversion *ycbcr_sampler;
uint32_t border_color_slot;
};
struct radv_subpass_barrier {
VkPipelineStageFlags2 src_stage_mask;
VkPipelineStageFlags2 dst_stage_mask;
VkAccessFlags2 src_access_mask;
VkAccessFlags2 dst_access_mask;
};
void radv_emit_subpass_barrier(struct radv_cmd_buffer *cmd_buffer,
const struct radv_subpass_barrier *barrier);
struct radv_subpass_attachment {
uint32_t attachment;
VkImageLayout layout;
VkImageLayout stencil_layout;
bool in_render_loop;
};
struct radv_subpass {
uint32_t attachment_count;
struct radv_subpass_attachment *attachments;
uint32_t input_count;
uint32_t color_count;
struct radv_subpass_attachment *input_attachments;
struct radv_subpass_attachment *color_attachments;
struct radv_subpass_attachment *resolve_attachments;
struct radv_subpass_attachment *depth_stencil_attachment;
struct radv_subpass_attachment *ds_resolve_attachment;
struct radv_subpass_attachment *vrs_attachment;
VkResolveModeFlagBits depth_resolve_mode;
VkResolveModeFlagBits stencil_resolve_mode;
/** Subpass has at least one color resolve attachment */
bool has_color_resolve;
struct radv_subpass_barrier start_barrier;
uint32_t view_mask;
VkSampleCountFlagBits color_sample_count;
VkSampleCountFlagBits depth_sample_count;
VkSampleCountFlagBits max_sample_count;
/* Whether the subpass has ingoing/outgoing external dependencies. */
bool has_ingoing_dep;
bool has_outgoing_dep;
};
uint32_t radv_get_subpass_id(struct radv_cmd_buffer *cmd_buffer);
struct radv_render_pass_attachment {
VkFormat format;
uint32_t samples;
VkAttachmentLoadOp load_op;
VkAttachmentLoadOp stencil_load_op;
VkImageLayout initial_layout;
VkImageLayout final_layout;
VkImageLayout stencil_initial_layout;
VkImageLayout stencil_final_layout;
/* The subpass id in which the attachment will be used first/last. */
uint32_t first_subpass_idx;
uint32_t last_subpass_idx;
};
struct radv_render_pass {
struct vk_object_base base;
uint32_t attachment_count;
uint32_t subpass_count;
struct radv_subpass_attachment *subpass_attachments;
struct radv_render_pass_attachment *attachments;
struct radv_subpass_barrier end_barrier;
struct radv_subpass subpasses[0];
};
VkResult radv_device_init_meta(struct radv_device *device);
void radv_device_finish_meta(struct radv_device *device);
struct radv_query_pool {
struct vk_object_base base;
struct radeon_winsys_bo *bo;
uint32_t stride;
uint32_t availability_offset;
uint64_t size;
char *ptr;
VkQueryType type;
uint32_t pipeline_stats_mask;
bool uses_gds; /* For NGG GS on GFX10+ */
};
struct radv_perfcounter_impl;
struct radv_pc_query_pool {
struct radv_query_pool b;
uint32_t *pc_regs;
unsigned num_pc_regs;
unsigned num_passes;
unsigned num_counters;
struct radv_perfcounter_impl *counters;
};
void radv_pc_deinit_query_pool(struct radv_pc_query_pool *pool);
VkResult radv_pc_init_query_pool(struct radv_physical_device *pdevice,
const VkQueryPoolCreateInfo *pCreateInfo,
struct radv_pc_query_pool *pool);
void radv_pc_begin_query(struct radv_cmd_buffer *cmd_buffer, struct radv_pc_query_pool *pool,
uint64_t va);
void radv_pc_end_query(struct radv_cmd_buffer *cmd_buffer, struct radv_pc_query_pool *pool,
uint64_t va);
void radv_pc_get_results(const struct radv_pc_query_pool *pc_pool, const uint64_t *data, void *out);
bool radv_queue_internal_submit(struct radv_queue *queue, struct radeon_cmdbuf *cs);
int radv_queue_init(struct radv_device *device, struct radv_queue *queue, int idx,
const VkDeviceQueueCreateInfo *create_info,
const VkDeviceQueueGlobalPriorityCreateInfoKHR *global_priority);
void radv_set_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point,
struct radv_descriptor_set *set, unsigned idx);
void radv_cmd_update_descriptor_sets(struct radv_device *device, struct radv_cmd_buffer *cmd_buffer,
VkDescriptorSet overrideSet, uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites,
uint32_t descriptorCopyCount,
const VkCopyDescriptorSet *pDescriptorCopies);
void radv_cmd_update_descriptor_set_with_template(struct radv_device *device,
struct radv_cmd_buffer *cmd_buffer,
struct radv_descriptor_set *set,
VkDescriptorUpdateTemplate descriptorUpdateTemplate,
const void *pData);
void radv_meta_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer,
VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout _layout,
uint32_t set, uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites);
uint32_t radv_init_dcc(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, uint32_t value);
uint32_t radv_init_fmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range);
/* radv_nir_to_llvm.c */
struct radv_shader_args;
struct radv_nir_compiler_options;
struct radv_shader_info;
void llvm_compile_shader(const struct radv_nir_compiler_options *options,
const struct radv_shader_info *info, unsigned shader_count,
struct nir_shader *const *shaders, struct radv_shader_binary **binary,
const struct radv_shader_args *args);
/* radv_shader_info.h */
struct radv_shader_info;
void radv_nir_shader_info_pass(struct radv_device *device, const struct nir_shader *nir,
const struct radv_pipeline_layout *layout,
const struct radv_pipeline_key *pipeline_key,
struct radv_shader_info *info);
void radv_nir_shader_info_init(struct radv_shader_info *info);
bool radv_thread_trace_init(struct radv_device *device);
void radv_thread_trace_finish(struct radv_device *device);
bool radv_begin_thread_trace(struct radv_queue *queue);
bool radv_end_thread_trace(struct radv_queue *queue);
bool radv_get_thread_trace(struct radv_queue *queue, struct ac_thread_trace *thread_trace);
void radv_emit_thread_trace_userdata(struct radv_cmd_buffer *cmd_buffer, const void *data,
uint32_t num_dwords);
bool radv_is_instruction_timing_enabled(void);
void radv_emit_inhibit_clockgating(struct radv_device *device, struct radeon_cmdbuf *cs,
bool inhibit);
void radv_emit_spi_config_cntl(struct radv_device *device, struct radeon_cmdbuf *cs, bool enable);
bool radv_sdma_copy_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
struct radv_buffer *buffer, const VkBufferImageCopy2 *region);
/* radv_sqtt_layer_.c */
struct radv_barrier_data {
union {
struct {
uint16_t depth_stencil_expand : 1;
uint16_t htile_hiz_range_expand : 1;
uint16_t depth_stencil_resummarize : 1;
uint16_t dcc_decompress : 1;
uint16_t fmask_decompress : 1;
uint16_t fast_clear_eliminate : 1;
uint16_t fmask_color_expand : 1;
uint16_t init_mask_ram : 1;
uint16_t reserved : 8;
};
uint16_t all;
} layout_transitions;
};
/**
* Value for the reason field of an RGP barrier start marker originating from
* the Vulkan client (does not include PAL-defined values). (Table 15)
*/
enum rgp_barrier_reason {
RGP_BARRIER_UNKNOWN_REASON = 0xFFFFFFFF,
/* External app-generated barrier reasons, i.e. API synchronization
* commands Range of valid values: [0x00000001 ... 0x7FFFFFFF].
*/
RGP_BARRIER_EXTERNAL_CMD_PIPELINE_BARRIER = 0x00000001,
RGP_BARRIER_EXTERNAL_RENDER_PASS_SYNC = 0x00000002,
RGP_BARRIER_EXTERNAL_CMD_WAIT_EVENTS = 0x00000003,
/* Internal barrier reasons, i.e. implicit synchronization inserted by
* the Vulkan driver Range of valid values: [0xC0000000 ... 0xFFFFFFFE].
*/
RGP_BARRIER_INTERNAL_BASE = 0xC0000000,
RGP_BARRIER_INTERNAL_PRE_RESET_QUERY_POOL_SYNC = RGP_BARRIER_INTERNAL_BASE + 0,
RGP_BARRIER_INTERNAL_POST_RESET_QUERY_POOL_SYNC = RGP_BARRIER_INTERNAL_BASE + 1,
RGP_BARRIER_INTERNAL_GPU_EVENT_RECYCLE_STALL = RGP_BARRIER_INTERNAL_BASE + 2,
RGP_BARRIER_INTERNAL_PRE_COPY_QUERY_POOL_RESULTS_SYNC = RGP_BARRIER_INTERNAL_BASE + 3
};
void radv_describe_begin_cmd_buffer(struct radv_cmd_buffer *cmd_buffer);
void radv_describe_end_cmd_buffer(struct radv_cmd_buffer *cmd_buffer);
void radv_describe_draw(struct radv_cmd_buffer *cmd_buffer);
void radv_describe_dispatch(struct radv_cmd_buffer *cmd_buffer, int x, int y, int z);
void radv_describe_begin_render_pass_clear(struct radv_cmd_buffer *cmd_buffer,
VkImageAspectFlagBits aspects);
void radv_describe_end_render_pass_clear(struct radv_cmd_buffer *cmd_buffer);
void radv_describe_begin_render_pass_resolve(struct radv_cmd_buffer *cmd_buffer);
void radv_describe_end_render_pass_resolve(struct radv_cmd_buffer *cmd_buffer);
void radv_describe_barrier_start(struct radv_cmd_buffer *cmd_buffer,
enum rgp_barrier_reason reason);
void radv_describe_barrier_end(struct radv_cmd_buffer *cmd_buffer);
void radv_describe_barrier_end_delayed(struct radv_cmd_buffer *cmd_buffer);
void radv_describe_layout_transition(struct radv_cmd_buffer *cmd_buffer,
const struct radv_barrier_data *barrier);
struct radv_indirect_command_layout {
struct vk_object_base base;
uint32_t input_stride;
uint32_t token_count;
bool indexed;
bool binds_index_buffer;
bool binds_state;
uint16_t draw_params_offset;
uint16_t index_buffer_offset;
uint16_t state_offset;
uint32_t bind_vbo_mask;
uint32_t vbo_offsets[MAX_VBS];
uint64_t push_constant_mask;
uint32_t push_constant_offsets[MAX_PUSH_CONSTANTS_SIZE / 4];
uint32_t ibo_type_32;
uint32_t ibo_type_8;
VkIndirectCommandsLayoutTokenNV tokens[0];
};
uint32_t radv_get_indirect_cmdbuf_size(const VkGeneratedCommandsInfoNV *cmd_info);
void radv_prepare_dgc(struct radv_cmd_buffer *cmd_buffer,
const VkGeneratedCommandsInfoNV *pGeneratedCommandsInfo);
uint64_t radv_get_current_time(void);
static inline uint32_t
si_conv_gl_prim_to_vertices(enum shader_prim gl_prim)
{
switch (gl_prim) {
case SHADER_PRIM_POINTS:
return 1;
case SHADER_PRIM_LINES:
case SHADER_PRIM_LINE_STRIP:
return 2;
case SHADER_PRIM_TRIANGLES:
case SHADER_PRIM_TRIANGLE_STRIP:
return 3;
case SHADER_PRIM_LINES_ADJACENCY:
return 4;
case SHADER_PRIM_TRIANGLES_ADJACENCY:
return 6;
case SHADER_PRIM_QUADS:
return V_028A6C_TRISTRIP;
default:
assert(0);
return 0;
}
}
static inline uint32_t
si_conv_prim_to_gs_out(uint32_t topology)
{
switch (topology) {
case V_008958_DI_PT_POINTLIST:
case V_008958_DI_PT_PATCH:
return V_028A6C_POINTLIST;
case V_008958_DI_PT_LINELIST:
case V_008958_DI_PT_LINESTRIP:
case V_008958_DI_PT_LINELIST_ADJ:
case V_008958_DI_PT_LINESTRIP_ADJ:
return V_028A6C_LINESTRIP;
case V_008958_DI_PT_TRILIST:
case V_008958_DI_PT_TRISTRIP:
case V_008958_DI_PT_TRIFAN:
case V_008958_DI_PT_TRILIST_ADJ:
case V_008958_DI_PT_TRISTRIP_ADJ:
return V_028A6C_TRISTRIP;
default:
assert(0);
return 0;
}
}
static inline uint32_t
si_translate_prim(unsigned topology)
{
switch (topology) {
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
return V_008958_DI_PT_POINTLIST;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
return V_008958_DI_PT_LINELIST;
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
return V_008958_DI_PT_LINESTRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
return V_008958_DI_PT_TRILIST;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
return V_008958_DI_PT_TRISTRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
return V_008958_DI_PT_TRIFAN;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
return V_008958_DI_PT_LINELIST_ADJ;
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
return V_008958_DI_PT_LINESTRIP_ADJ;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
return V_008958_DI_PT_TRILIST_ADJ;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
return V_008958_DI_PT_TRISTRIP_ADJ;
case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
return V_008958_DI_PT_PATCH;
default:
unreachable("unhandled primitive type");
}
}
static inline bool
radv_prim_is_points_or_lines(unsigned topology)
{
switch (topology) {
case V_008958_DI_PT_POINTLIST:
case V_008958_DI_PT_LINELIST:
case V_008958_DI_PT_LINESTRIP:
case V_008958_DI_PT_LINELIST_ADJ:
case V_008958_DI_PT_LINESTRIP_ADJ:
return true;
default:
return false;
}
}
static inline bool
radv_rast_prim_is_point(unsigned rast_prim)
{
return rast_prim == V_028A6C_POINTLIST;
}
static inline bool
radv_rast_prim_is_line(unsigned rast_prim)
{
return rast_prim == V_028A6C_LINESTRIP;
}
static inline bool
radv_rast_prim_is_points_or_lines(unsigned rast_prim)
{
return radv_rast_prim_is_point(rast_prim) || radv_rast_prim_is_line(rast_prim);
}
static inline uint32_t
si_translate_stencil_op(enum VkStencilOp op)
{
switch (op) {
case VK_STENCIL_OP_KEEP:
return V_02842C_STENCIL_KEEP;
case VK_STENCIL_OP_ZERO:
return V_02842C_STENCIL_ZERO;
case VK_STENCIL_OP_REPLACE:
return V_02842C_STENCIL_REPLACE_TEST;
case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
return V_02842C_STENCIL_ADD_CLAMP;
case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
return V_02842C_STENCIL_SUB_CLAMP;
case VK_STENCIL_OP_INVERT:
return V_02842C_STENCIL_INVERT;
case VK_STENCIL_OP_INCREMENT_AND_WRAP:
return V_02842C_STENCIL_ADD_WRAP;
case VK_STENCIL_OP_DECREMENT_AND_WRAP:
return V_02842C_STENCIL_SUB_WRAP;
default:
return 0;
}
}
static inline uint32_t
si_translate_blend_logic_op(VkLogicOp op)
{
switch (op) {
case VK_LOGIC_OP_CLEAR:
return V_028808_ROP3_CLEAR;
case VK_LOGIC_OP_AND:
return V_028808_ROP3_AND;
case VK_LOGIC_OP_AND_REVERSE:
return V_028808_ROP3_AND_REVERSE;
case VK_LOGIC_OP_COPY:
return V_028808_ROP3_COPY;
case VK_LOGIC_OP_AND_INVERTED:
return V_028808_ROP3_AND_INVERTED;
case VK_LOGIC_OP_NO_OP:
return V_028808_ROP3_NO_OP;
case VK_LOGIC_OP_XOR:
return V_028808_ROP3_XOR;
case VK_LOGIC_OP_OR:
return V_028808_ROP3_OR;
case VK_LOGIC_OP_NOR:
return V_028808_ROP3_NOR;
case VK_LOGIC_OP_EQUIVALENT:
return V_028808_ROP3_EQUIVALENT;
case VK_LOGIC_OP_INVERT:
return V_028808_ROP3_INVERT;
case VK_LOGIC_OP_OR_REVERSE:
return V_028808_ROP3_OR_REVERSE;
case VK_LOGIC_OP_COPY_INVERTED:
return V_028808_ROP3_COPY_INVERTED;
case VK_LOGIC_OP_OR_INVERTED:
return V_028808_ROP3_OR_INVERTED;
case VK_LOGIC_OP_NAND:
return V_028808_ROP3_NAND;
case VK_LOGIC_OP_SET:
return V_028808_ROP3_SET;
default:
unreachable("Unhandled logic op");
}
}
/*
* Queue helper to get ring.
* placed here as it needs queue + device structs.
*/
static inline enum amd_ip_type
radv_queue_ring(struct radv_queue *queue)
{
return radv_queue_family_to_ring(queue->device->physical_device, queue->state.qf);
}
/**
* Helper used for debugging compiler issues by enabling/disabling LLVM for a
* specific shader stage (developers only).
*/
static inline bool
radv_use_llvm_for_stage(struct radv_device *device, UNUSED gl_shader_stage stage)
{
return device->physical_device->use_llvm;
}
static inline bool
radv_has_shader_buffer_float_minmax(const struct radv_physical_device *pdevice)
{
return (pdevice->rad_info.gfx_level <= GFX7 && !pdevice->use_llvm) ||
pdevice->rad_info.gfx_level >= GFX10;
}
struct radv_acceleration_structure {
struct vk_object_base base;
struct radeon_winsys_bo *bo;
uint64_t mem_offset;
uint64_t size;
};
static inline uint64_t
radv_accel_struct_get_va(const struct radv_acceleration_structure *accel)
{
return radv_buffer_get_va(accel->bo) + accel->mem_offset;
}
/* radv_perfcounter.c */
void radv_perfcounter_emit_shaders(struct radeon_cmdbuf *cs, unsigned shaders);
void radv_perfcounter_emit_spm_reset(struct radeon_cmdbuf *cs);
void radv_perfcounter_emit_spm_start(struct radv_device *device, struct radeon_cmdbuf *cs,
int family);
void radv_perfcounter_emit_spm_stop(struct radv_device *device, struct radeon_cmdbuf *cs,
int family);
/* radv_spm.c */
bool radv_spm_init(struct radv_device *device);
void radv_spm_finish(struct radv_device *device);
void radv_emit_spm_setup(struct radv_device *device, struct radeon_cmdbuf *cs);
#define RADV_FROM_HANDLE(__radv_type, __name, __handle) \
VK_FROM_HANDLE(__radv_type, __name, __handle)
VK_DEFINE_HANDLE_CASTS(radv_cmd_buffer, vk.base, VkCommandBuffer,
VK_OBJECT_TYPE_COMMAND_BUFFER)
VK_DEFINE_HANDLE_CASTS(radv_device, vk.base, VkDevice, VK_OBJECT_TYPE_DEVICE)
VK_DEFINE_HANDLE_CASTS(radv_instance, vk.base, VkInstance, VK_OBJECT_TYPE_INSTANCE)
VK_DEFINE_HANDLE_CASTS(radv_physical_device, vk.base, VkPhysicalDevice,
VK_OBJECT_TYPE_PHYSICAL_DEVICE)
VK_DEFINE_HANDLE_CASTS(radv_queue, vk.base, VkQueue, VK_OBJECT_TYPE_QUEUE)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_acceleration_structure, base,
VkAccelerationStructureKHR,
VK_OBJECT_TYPE_ACCELERATION_STRUCTURE_KHR)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_cmd_pool, vk.base, VkCommandPool,
VK_OBJECT_TYPE_COMMAND_POOL)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_buffer, vk.base, VkBuffer, VK_OBJECT_TYPE_BUFFER)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_buffer_view, base, VkBufferView,
VK_OBJECT_TYPE_BUFFER_VIEW)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_pool, base, VkDescriptorPool,
VK_OBJECT_TYPE_DESCRIPTOR_POOL)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_set, header.base, VkDescriptorSet,
VK_OBJECT_TYPE_DESCRIPTOR_SET)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_set_layout, base,
VkDescriptorSetLayout,
VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_update_template, base,
VkDescriptorUpdateTemplate,
VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_device_memory, base, VkDeviceMemory,
VK_OBJECT_TYPE_DEVICE_MEMORY)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_event, base, VkEvent, VK_OBJECT_TYPE_EVENT)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_image, vk.base, VkImage, VK_OBJECT_TYPE_IMAGE)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_image_view, vk.base, VkImageView,
VK_OBJECT_TYPE_IMAGE_VIEW);
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_indirect_command_layout, base, VkIndirectCommandsLayoutNV,
VK_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NV)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_pipeline_cache, base, VkPipelineCache,
VK_OBJECT_TYPE_PIPELINE_CACHE)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_pipeline, base, VkPipeline,
VK_OBJECT_TYPE_PIPELINE)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_pipeline_layout, base, VkPipelineLayout,
VK_OBJECT_TYPE_PIPELINE_LAYOUT)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_query_pool, base, VkQueryPool,
VK_OBJECT_TYPE_QUERY_POOL)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_render_pass, base, VkRenderPass,
VK_OBJECT_TYPE_RENDER_PASS)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_sampler, base, VkSampler,
VK_OBJECT_TYPE_SAMPLER)
VK_DEFINE_NONDISP_HANDLE_CASTS(radv_sampler_ycbcr_conversion, base,
VkSamplerYcbcrConversion,
VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION)
#ifdef __cplusplus
}
#endif
#endif /* RADV_PRIVATE_H */