mesa/ast_to_hir.cpp

2358 lines
73 KiB
C++

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file ast_to_hir.c
* Convert abstract syntax to to high-level intermediate reprensentation (HIR).
*
* During the conversion to HIR, the majority of the symantic checking is
* preformed on the program. This includes:
*
* * Symbol table management
* * Type checking
* * Function binding
*
* The majority of this work could be done during parsing, and the parser could
* probably generate HIR directly. However, this results in frequent changes
* to the parser code. Since we do not assume that every system this complier
* is built on will have Flex and Bison installed, we have to store the code
* generated by these tools in our version control system. In other parts of
* the system we've seen problems where a parser was changed but the generated
* code was not committed, merge conflicts where created because two developers
* had slightly different versions of Bison installed, etc.
*
* I have also noticed that running Bison generated parsers in GDB is very
* irritating. When you get a segfault on '$$ = $1->foo', you can't very
* well 'print $1' in GDB.
*
* As a result, my preference is to put as little C code as possible in the
* parser (and lexer) sources.
*/
#include <stdio.h>
#include "main/imports.h"
#include "glsl_symbol_table.h"
#include "glsl_parser_extras.h"
#include "ast.h"
#include "glsl_types.h"
#include "ir.h"
void
_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
{
_mesa_glsl_initialize_variables(instructions, state);
_mesa_glsl_initialize_constructors(instructions, state);
_mesa_glsl_initialize_functions(instructions, state);
state->current_function = NULL;
foreach_list_typed (ast_node, ast, link, & state->translation_unit)
ast->hir(instructions, state);
}
/**
* If a conversion is available, convert one operand to a different type
*
* The \c from \c ir_rvalue is converted "in place".
*
* \param to Type that the operand it to be converted to
* \param from Operand that is being converted
* \param state GLSL compiler state
*
* \return
* If a conversion is possible (or unnecessary), \c true is returned.
* Otherwise \c false is returned.
*/
static bool
apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
struct _mesa_glsl_parse_state *state)
{
if (to->base_type == from->type->base_type)
return true;
/* This conversion was added in GLSL 1.20. If the compilation mode is
* GLSL 1.10, the conversion is skipped.
*/
if (state->language_version < 120)
return false;
/* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
*
* "There are no implicit array or structure conversions. For
* example, an array of int cannot be implicitly converted to an
* array of float. There are no implicit conversions between
* signed and unsigned integers."
*/
/* FINISHME: The above comment is partially a lie. There is int/uint
* FINISHME: conversion for immediate constants.
*/
if (!to->is_float() || !from->type->is_numeric())
return false;
switch (from->type->base_type) {
case GLSL_TYPE_INT:
from = new ir_expression(ir_unop_i2f, to, from, NULL);
break;
case GLSL_TYPE_UINT:
from = new ir_expression(ir_unop_u2f, to, from, NULL);
break;
case GLSL_TYPE_BOOL:
from = new ir_expression(ir_unop_b2f, to, from, NULL);
break;
default:
assert(0);
}
return true;
}
static const struct glsl_type *
arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
bool multiply,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
const glsl_type *const type_a = value_a->type;
const glsl_type *const type_b = value_b->type;
/* From GLSL 1.50 spec, page 56:
*
* "The arithmetic binary operators add (+), subtract (-),
* multiply (*), and divide (/) operate on integer and
* floating-point scalars, vectors, and matrices."
*/
if (!type_a->is_numeric() || !type_b->is_numeric()) {
_mesa_glsl_error(loc, state,
"Operands to arithmetic operators must be numeric");
return glsl_type::error_type;
}
/* "If one operand is floating-point based and the other is
* not, then the conversions from Section 4.1.10 "Implicit
* Conversions" are applied to the non-floating-point-based operand."
*/
if (!apply_implicit_conversion(type_a, value_b, state)
&& !apply_implicit_conversion(type_b, value_a, state)) {
_mesa_glsl_error(loc, state,
"Could not implicitly convert operands to "
"arithmetic operator");
return glsl_type::error_type;
}
/* "If the operands are integer types, they must both be signed or
* both be unsigned."
*
* From this rule and the preceeding conversion it can be inferred that
* both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
* The is_numeric check above already filtered out the case where either
* type is not one of these, so now the base types need only be tested for
* equality.
*/
if (type_a->base_type != type_b->base_type) {
_mesa_glsl_error(loc, state,
"base type mismatch for arithmetic operator");
return glsl_type::error_type;
}
/* "All arithmetic binary operators result in the same fundamental type
* (signed integer, unsigned integer, or floating-point) as the
* operands they operate on, after operand type conversion. After
* conversion, the following cases are valid
*
* * The two operands are scalars. In this case the operation is
* applied, resulting in a scalar."
*/
if (type_a->is_scalar() && type_b->is_scalar())
return type_a;
/* "* One operand is a scalar, and the other is a vector or matrix.
* In this case, the scalar operation is applied independently to each
* component of the vector or matrix, resulting in the same size
* vector or matrix."
*/
if (type_a->is_scalar()) {
if (!type_b->is_scalar())
return type_b;
} else if (type_b->is_scalar()) {
return type_a;
}
/* All of the combinations of <scalar, scalar>, <vector, scalar>,
* <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
* handled.
*/
assert(!type_a->is_scalar());
assert(!type_b->is_scalar());
/* "* The two operands are vectors of the same size. In this case, the
* operation is done component-wise resulting in the same size
* vector."
*/
if (type_a->is_vector() && type_b->is_vector()) {
if (type_a == type_b) {
return type_a;
} else {
_mesa_glsl_error(loc, state,
"vector size mismatch for arithmetic operator");
return glsl_type::error_type;
}
}
/* All of the combinations of <scalar, scalar>, <vector, scalar>,
* <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
* <vector, vector> have been handled. At least one of the operands must
* be matrix. Further, since there are no integer matrix types, the base
* type of both operands must be float.
*/
assert(type_a->is_matrix() || type_b->is_matrix());
assert(type_a->base_type == GLSL_TYPE_FLOAT);
assert(type_b->base_type == GLSL_TYPE_FLOAT);
/* "* The operator is add (+), subtract (-), or divide (/), and the
* operands are matrices with the same number of rows and the same
* number of columns. In this case, the operation is done component-
* wise resulting in the same size matrix."
* * The operator is multiply (*), where both operands are matrices or
* one operand is a vector and the other a matrix. A right vector
* operand is treated as a column vector and a left vector operand as a
* row vector. In all these cases, it is required that the number of
* columns of the left operand is equal to the number of rows of the
* right operand. Then, the multiply (*) operation does a linear
* algebraic multiply, yielding an object that has the same number of
* rows as the left operand and the same number of columns as the right
* operand. Section 5.10 "Vector and Matrix Operations" explains in
* more detail how vectors and matrices are operated on."
*/
if (! multiply) {
if (type_a == type_b)
return type_a;
} else {
if (type_a->is_matrix() && type_b->is_matrix()) {
/* Matrix multiply. The columns of A must match the rows of B. Given
* the other previously tested constraints, this means the vector type
* of a row from A must be the same as the vector type of a column from
* B.
*/
if (type_a->row_type() == type_b->column_type()) {
/* The resulting matrix has the number of columns of matrix B and
* the number of rows of matrix A. We get the row count of A by
* looking at the size of a vector that makes up a column. The
* transpose (size of a row) is done for B.
*/
const glsl_type *const type =
glsl_type::get_instance(type_a->base_type,
type_a->column_type()->vector_elements,
type_b->row_type()->vector_elements);
assert(type != glsl_type::error_type);
return type;
}
} else if (type_a->is_matrix()) {
/* A is a matrix and B is a column vector. Columns of A must match
* rows of B. Given the other previously tested constraints, this
* means the vector type of a row from A must be the same as the
* vector the type of B.
*/
if (type_a->row_type() == type_b)
return type_b;
} else {
assert(type_b->is_matrix());
/* A is a row vector and B is a matrix. Columns of A must match rows
* of B. Given the other previously tested constraints, this means
* the type of A must be the same as the vector type of a column from
* B.
*/
if (type_a == type_b->column_type())
return type_a;
}
_mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
return glsl_type::error_type;
}
/* "All other cases are illegal."
*/
_mesa_glsl_error(loc, state, "type mismatch");
return glsl_type::error_type;
}
static const struct glsl_type *
unary_arithmetic_result_type(const struct glsl_type *type,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
/* From GLSL 1.50 spec, page 57:
*
* "The arithmetic unary operators negate (-), post- and pre-increment
* and decrement (-- and ++) operate on integer or floating-point
* values (including vectors and matrices). All unary operators work
* component-wise on their operands. These result with the same type
* they operated on."
*/
if (!type->is_numeric()) {
_mesa_glsl_error(loc, state,
"Operands to arithmetic operators must be numeric");
return glsl_type::error_type;
}
return type;
}
static const struct glsl_type *
modulus_result_type(const struct glsl_type *type_a,
const struct glsl_type *type_b,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
/* From GLSL 1.50 spec, page 56:
* "The operator modulus (%) operates on signed or unsigned integers or
* integer vectors. The operand types must both be signed or both be
* unsigned."
*/
if (!type_a->is_integer() || !type_b->is_integer()
|| (type_a->base_type != type_b->base_type)) {
_mesa_glsl_error(loc, state, "type mismatch");
return glsl_type::error_type;
}
/* "The operands cannot be vectors of differing size. If one operand is
* a scalar and the other vector, then the scalar is applied component-
* wise to the vector, resulting in the same type as the vector. If both
* are vectors of the same size, the result is computed component-wise."
*/
if (type_a->is_vector()) {
if (!type_b->is_vector()
|| (type_a->vector_elements == type_b->vector_elements))
return type_a;
} else
return type_b;
/* "The operator modulus (%) is not defined for any other data types
* (non-integer types)."
*/
_mesa_glsl_error(loc, state, "type mismatch");
return glsl_type::error_type;
}
static const struct glsl_type *
relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
const glsl_type *const type_a = value_a->type;
const glsl_type *const type_b = value_b->type;
/* From GLSL 1.50 spec, page 56:
* "The relational operators greater than (>), less than (<), greater
* than or equal (>=), and less than or equal (<=) operate only on
* scalar integer and scalar floating-point expressions."
*/
if (!type_a->is_numeric()
|| !type_b->is_numeric()
|| !type_a->is_scalar()
|| !type_b->is_scalar()) {
_mesa_glsl_error(loc, state,
"Operands to relational operators must be scalar and "
"numeric");
return glsl_type::error_type;
}
/* "Either the operands' types must match, or the conversions from
* Section 4.1.10 "Implicit Conversions" will be applied to the integer
* operand, after which the types must match."
*/
if (!apply_implicit_conversion(type_a, value_b, state)
&& !apply_implicit_conversion(type_b, value_a, state)) {
_mesa_glsl_error(loc, state,
"Could not implicitly convert operands to "
"relational operator");
return glsl_type::error_type;
}
if (type_a->base_type != type_b->base_type) {
_mesa_glsl_error(loc, state, "base type mismatch");
return glsl_type::error_type;
}
/* "The result is scalar Boolean."
*/
return glsl_type::bool_type;
}
/**
* Validates that a value can be assigned to a location with a specified type
*
* Validates that \c rhs can be assigned to some location. If the types are
* not an exact match but an automatic conversion is possible, \c rhs will be
* converted.
*
* \return
* \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
* Otherwise the actual RHS to be assigned will be returned. This may be
* \c rhs, or it may be \c rhs after some type conversion.
*
* \note
* In addition to being used for assignments, this function is used to
* type-check return values.
*/
ir_rvalue *
validate_assignment(const glsl_type *lhs_type, ir_rvalue *rhs)
{
const glsl_type *const rhs_type = rhs->type;
/* If there is already some error in the RHS, just return it. Anything
* else will lead to an avalanche of error message back to the user.
*/
if (rhs_type->is_error())
return rhs;
/* If the types are identical, the assignment can trivially proceed.
*/
if (rhs_type == lhs_type)
return rhs;
/* If the array element types are the same and the size of the LHS is zero,
* the assignment is okay.
*
* Note: Whole-array assignments are not permitted in GLSL 1.10, but this
* is handled by ir_dereference::is_lvalue.
*/
if (lhs_type->is_array() && rhs->type->is_array()
&& (lhs_type->element_type() == rhs->type->element_type())
&& (lhs_type->array_size() == 0)) {
return rhs;
}
/* FINISHME: Check for and apply automatic conversions. */
return NULL;
}
ir_rvalue *
do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
ir_rvalue *lhs, ir_rvalue *rhs,
YYLTYPE lhs_loc)
{
bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
if (!error_emitted) {
/* FINISHME: This does not handle 'foo.bar.a.b.c[5].d = 5' */
if (!lhs->is_lvalue()) {
_mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
error_emitted = true;
}
}
ir_rvalue *new_rhs = validate_assignment(lhs->type, rhs);
if (new_rhs == NULL) {
_mesa_glsl_error(& lhs_loc, state, "type mismatch");
} else {
rhs = new_rhs;
/* If the LHS array was not declared with a size, it takes it size from
* the RHS. If the LHS is an l-value and a whole array, it must be a
* dereference of a variable. Any other case would require that the LHS
* is either not an l-value or not a whole array.
*/
if (lhs->type->array_size() == 0) {
ir_dereference *const d = lhs->as_dereference();
assert(d != NULL);
ir_variable *const var = d->variable_referenced();
assert(var != NULL);
if (var->max_array_access >= unsigned(rhs->type->array_size())) {
/* FINISHME: This should actually log the location of the RHS. */
_mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
"previous access",
var->max_array_access);
}
var->type = glsl_type::get_array_instance(lhs->type->element_type(),
rhs->type->array_size());
}
}
ir_instruction *tmp = new ir_assignment(lhs, rhs, NULL);
instructions->push_tail(tmp);
return rhs;
}
/**
* Generate a new temporary and add its declaration to the instruction stream
*/
static ir_variable *
generate_temporary(const glsl_type *type, exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
char *name = (char *) malloc(sizeof(char) * 13);
snprintf(name, 13, "tmp_%08X", state->temp_index);
state->temp_index++;
ir_variable *const var = new ir_variable(type, name);
instructions->push_tail(var);
return var;
}
static ir_rvalue *
get_lvalue_copy(exec_list *instructions, struct _mesa_glsl_parse_state *state,
ir_rvalue *lvalue, YYLTYPE loc)
{
ir_variable *var;
ir_rvalue *var_deref;
/* FINISHME: Give unique names to the temporaries. */
var = new ir_variable(lvalue->type, "_internal_tmp");
var->mode = ir_var_auto;
var_deref = new ir_dereference_variable(var);
do_assignment(instructions, state, var_deref, lvalue, loc);
/* Once we've created this temporary, mark it read only so it's no
* longer considered an lvalue.
*/
var->read_only = true;
return var_deref;
}
ir_rvalue *
ast_node::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
(void) instructions;
(void) state;
return NULL;
}
ir_rvalue *
ast_expression::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
static const int operations[AST_NUM_OPERATORS] = {
-1, /* ast_assign doesn't convert to ir_expression. */
-1, /* ast_plus doesn't convert to ir_expression. */
ir_unop_neg,
ir_binop_add,
ir_binop_sub,
ir_binop_mul,
ir_binop_div,
ir_binop_mod,
ir_binop_lshift,
ir_binop_rshift,
ir_binop_less,
ir_binop_greater,
ir_binop_lequal,
ir_binop_gequal,
ir_binop_equal,
ir_binop_nequal,
ir_binop_bit_and,
ir_binop_bit_xor,
ir_binop_bit_or,
ir_unop_bit_not,
ir_binop_logic_and,
ir_binop_logic_xor,
ir_binop_logic_or,
ir_unop_logic_not,
/* Note: The following block of expression types actually convert
* to multiple IR instructions.
*/
ir_binop_mul, /* ast_mul_assign */
ir_binop_div, /* ast_div_assign */
ir_binop_mod, /* ast_mod_assign */
ir_binop_add, /* ast_add_assign */
ir_binop_sub, /* ast_sub_assign */
ir_binop_lshift, /* ast_ls_assign */
ir_binop_rshift, /* ast_rs_assign */
ir_binop_bit_and, /* ast_and_assign */
ir_binop_bit_xor, /* ast_xor_assign */
ir_binop_bit_or, /* ast_or_assign */
-1, /* ast_conditional doesn't convert to ir_expression. */
ir_binop_add, /* ast_pre_inc. */
ir_binop_sub, /* ast_pre_dec. */
ir_binop_add, /* ast_post_inc. */
ir_binop_sub, /* ast_post_dec. */
-1, /* ast_field_selection doesn't conv to ir_expression. */
-1, /* ast_array_index doesn't convert to ir_expression. */
-1, /* ast_function_call doesn't conv to ir_expression. */
-1, /* ast_identifier doesn't convert to ir_expression. */
-1, /* ast_int_constant doesn't convert to ir_expression. */
-1, /* ast_uint_constant doesn't conv to ir_expression. */
-1, /* ast_float_constant doesn't conv to ir_expression. */
-1, /* ast_bool_constant doesn't conv to ir_expression. */
-1, /* ast_sequence doesn't convert to ir_expression. */
};
ir_rvalue *result = NULL;
ir_rvalue *op[2];
const struct glsl_type *type = glsl_type::error_type;
bool error_emitted = false;
YYLTYPE loc;
loc = this->get_location();
switch (this->oper) {
case ast_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
result = do_assignment(instructions, state, op[0], op[1],
this->subexpressions[0]->get_location());
error_emitted = result->type->is_error();
type = result->type;
break;
}
case ast_plus:
op[0] = this->subexpressions[0]->hir(instructions, state);
error_emitted = op[0]->type->is_error();
if (type->is_error())
op[0]->type = type;
result = op[0];
break;
case ast_neg:
op[0] = this->subexpressions[0]->hir(instructions, state);
type = unary_arithmetic_result_type(op[0]->type, state, & loc);
error_emitted = type->is_error();
result = new ir_expression(operations[this->oper], type,
op[0], NULL);
break;
case ast_add:
case ast_sub:
case ast_mul:
case ast_div:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = arithmetic_result_type(op[0], op[1],
(this->oper == ast_mul),
state, & loc);
error_emitted = type->is_error();
result = new ir_expression(operations[this->oper], type,
op[0], op[1]);
break;
case ast_mod:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
assert(operations[this->oper] == ir_binop_mod);
result = new ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted = type->is_error();
break;
case ast_lshift:
case ast_rshift:
_mesa_glsl_error(& loc, state, "FINISHME: implement bit-shift operators");
error_emitted = true;
break;
case ast_less:
case ast_greater:
case ast_lequal:
case ast_gequal:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = relational_result_type(op[0], op[1], state, & loc);
/* The relational operators must either generate an error or result
* in a scalar boolean. See page 57 of the GLSL 1.50 spec.
*/
assert(type->is_error()
|| ((type->base_type == GLSL_TYPE_BOOL)
&& type->is_scalar()));
result = new ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted = type->is_error();
break;
case ast_nequal:
case ast_equal:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
/* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
*
* "The equality operators equal (==), and not equal (!=)
* operate on all types. They result in a scalar Boolean. If
* the operand types do not match, then there must be a
* conversion from Section 4.1.10 "Implicit Conversions"
* applied to one operand that can make them match, in which
* case this conversion is done."
*/
if ((!apply_implicit_conversion(op[0]->type, op[1], state)
&& !apply_implicit_conversion(op[1]->type, op[0], state))
|| (op[0]->type != op[1]->type)) {
_mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
"type", (this->oper == ast_equal) ? "==" : "!=");
error_emitted = true;
} else if ((state->language_version <= 110)
&& (op[0]->type->is_array() || op[1]->type->is_array())) {
_mesa_glsl_error(& loc, state, "array comparisons forbidden in "
"GLSL 1.10");
error_emitted = true;
}
result = new ir_expression(operations[this->oper], glsl_type::bool_type,
op[0], op[1]);
type = glsl_type::bool_type;
assert(result->type == glsl_type::bool_type);
break;
case ast_bit_and:
case ast_bit_xor:
case ast_bit_or:
case ast_bit_not:
_mesa_glsl_error(& loc, state, "FINISHME: implement bit-wise operators");
error_emitted = true;
break;
case ast_logic_and: {
op[0] = this->subexpressions[0]->hir(instructions, state);
if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
YYLTYPE loc = this->subexpressions[0]->get_location();
_mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
operator_string(this->oper));
error_emitted = true;
}
ir_constant *op0_const = op[0]->constant_expression_value();
if (op0_const) {
if (op0_const->value.b[0]) {
op[1] = this->subexpressions[1]->hir(instructions, state);
if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
YYLTYPE loc = this->subexpressions[1]->get_location();
_mesa_glsl_error(& loc, state,
"RHS of `%s' must be scalar boolean",
operator_string(this->oper));
error_emitted = true;
}
result = op[1];
} else {
result = op0_const;
}
type = glsl_type::bool_type;
} else {
ir_if *const stmt = new ir_if(op[0]);
instructions->push_tail(stmt);
op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
YYLTYPE loc = this->subexpressions[1]->get_location();
_mesa_glsl_error(& loc, state,
"RHS of `%s' must be scalar boolean",
operator_string(this->oper));
error_emitted = true;
}
ir_variable *const tmp = generate_temporary(glsl_type::bool_type,
instructions, state);
ir_dereference *const then_deref = new ir_dereference_variable(tmp);
ir_assignment *const then_assign =
new ir_assignment(then_deref, op[1], NULL);
stmt->then_instructions.push_tail(then_assign);
ir_dereference *const else_deref = new ir_dereference_variable(tmp);
ir_assignment *const else_assign =
new ir_assignment(else_deref, new ir_constant(false), NULL);
stmt->else_instructions.push_tail(else_assign);
result = new ir_dereference_variable(tmp);
type = tmp->type;
}
break;
}
case ast_logic_or: {
op[0] = this->subexpressions[0]->hir(instructions, state);
if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
YYLTYPE loc = this->subexpressions[0]->get_location();
_mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
operator_string(this->oper));
error_emitted = true;
}
ir_constant *op0_const = op[0]->constant_expression_value();
if (op0_const) {
if (op0_const->value.b[0]) {
result = op0_const;
} else {
op[1] = this->subexpressions[1]->hir(instructions, state);
if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
YYLTYPE loc = this->subexpressions[1]->get_location();
_mesa_glsl_error(& loc, state,
"RHS of `%s' must be scalar boolean",
operator_string(this->oper));
error_emitted = true;
}
result = op[1];
}
type = glsl_type::bool_type;
} else {
ir_if *const stmt = new ir_if(op[0]);
instructions->push_tail(stmt);
ir_variable *const tmp = generate_temporary(glsl_type::bool_type,
instructions, state);
op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
YYLTYPE loc = this->subexpressions[1]->get_location();
_mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
operator_string(this->oper));
error_emitted = true;
}
ir_dereference *const then_deref = new ir_dereference_variable(tmp);
ir_assignment *const then_assign =
new ir_assignment(then_deref, new ir_constant(true), NULL);
stmt->then_instructions.push_tail(then_assign);
ir_dereference *const else_deref = new ir_dereference_variable(tmp);
ir_assignment *const else_assign =
new ir_assignment(else_deref, op[1], NULL);
stmt->else_instructions.push_tail(else_assign);
result = new ir_dereference_variable(tmp);
type = tmp->type;
}
break;
}
case ast_logic_xor:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
result = new ir_expression(operations[this->oper], glsl_type::bool_type,
op[0], op[1]);
type = glsl_type::bool_type;
break;
case ast_logic_not:
op[0] = this->subexpressions[0]->hir(instructions, state);
if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
YYLTYPE loc = this->subexpressions[0]->get_location();
_mesa_glsl_error(& loc, state,
"operand of `!' must be scalar boolean");
error_emitted = true;
}
result = new ir_expression(operations[this->oper], glsl_type::bool_type,
op[0], NULL);
type = glsl_type::bool_type;
break;
case ast_mul_assign:
case ast_div_assign:
case ast_add_assign:
case ast_sub_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = arithmetic_result_type(op[0], op[1],
(this->oper == ast_mul_assign),
state, & loc);
ir_rvalue *temp_rhs = new ir_expression(operations[this->oper], type,
op[0], op[1]);
result = do_assignment(instructions, state, op[0], temp_rhs,
this->subexpressions[0]->get_location());
type = result->type;
error_emitted = (op[0]->type->is_error());
/* GLSL 1.10 does not allow array assignment. However, we don't have to
* explicitly test for this because none of the binary expression
* operators allow array operands either.
*/
break;
}
case ast_mod_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
assert(operations[this->oper] == ir_binop_mod);
struct ir_rvalue *temp_rhs;
temp_rhs = new ir_expression(operations[this->oper], type,
op[0], op[1]);
result = do_assignment(instructions, state, op[0], temp_rhs,
this->subexpressions[0]->get_location());
type = result->type;
error_emitted = type->is_error();
break;
}
case ast_ls_assign:
case ast_rs_assign:
_mesa_glsl_error(& loc, state,
"FINISHME: implement bit-shift assignment operators");
error_emitted = true;
break;
case ast_and_assign:
case ast_xor_assign:
case ast_or_assign:
_mesa_glsl_error(& loc, state,
"FINISHME: implement logic assignment operators");
error_emitted = true;
break;
case ast_conditional: {
op[0] = this->subexpressions[0]->hir(instructions, state);
/* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
*
* "The ternary selection operator (?:). It operates on three
* expressions (exp1 ? exp2 : exp3). This operator evaluates the
* first expression, which must result in a scalar Boolean."
*/
if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
YYLTYPE loc = this->subexpressions[0]->get_location();
_mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
error_emitted = true;
}
/* The :? operator is implemented by generating an anonymous temporary
* followed by an if-statement. The last instruction in each branch of
* the if-statement assigns a value to the anonymous temporary. This
* temporary is the r-value of the expression.
*/
ir_variable *const tmp = generate_temporary(glsl_type::error_type,
instructions, state);
ir_if *const stmt = new ir_if(op[0]);
instructions->push_tail(stmt);
op[1] = this->subexpressions[1]->hir(& stmt->then_instructions, state);
ir_dereference *const then_deref = new ir_dereference_variable(tmp);
ir_assignment *const then_assign =
new ir_assignment(then_deref, op[1], NULL);
stmt->then_instructions.push_tail(then_assign);
op[2] = this->subexpressions[2]->hir(& stmt->else_instructions, state);
ir_dereference *const else_deref = new ir_dereference_variable(tmp);
ir_assignment *const else_assign =
new ir_assignment(else_deref, op[2], NULL);
stmt->else_instructions.push_tail(else_assign);
/* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
*
* "The second and third expressions can be any type, as
* long their types match, or there is a conversion in
* Section 4.1.10 "Implicit Conversions" that can be applied
* to one of the expressions to make their types match. This
* resulting matching type is the type of the entire
* expression."
*/
if ((!apply_implicit_conversion(op[1]->type, op[2], state)
&& !apply_implicit_conversion(op[2]->type, op[1], state))
|| (op[1]->type != op[2]->type)) {
YYLTYPE loc = this->subexpressions[1]->get_location();
_mesa_glsl_error(& loc, state, "Second and third operands of ?: "
"operator must have matching types.");
error_emitted = true;
} else {
tmp->type = op[1]->type;
}
result = new ir_dereference_variable(tmp);
type = tmp->type;
break;
}
case ast_pre_inc:
case ast_pre_dec: {
op[0] = this->subexpressions[0]->hir(instructions, state);
if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
op[1] = new ir_constant(1.0f);
else
op[1] = new ir_constant(1);
type = arithmetic_result_type(op[0], op[1], false, state, & loc);
struct ir_rvalue *temp_rhs;
temp_rhs = new ir_expression(operations[this->oper], type,
op[0], op[1]);
result = do_assignment(instructions, state, op[0], temp_rhs,
this->subexpressions[0]->get_location());
type = result->type;
error_emitted = op[0]->type->is_error();
break;
}
case ast_post_inc:
case ast_post_dec: {
op[0] = this->subexpressions[0]->hir(instructions, state);
if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
op[1] = new ir_constant(1.0f);
else
op[1] = new ir_constant(1);
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
type = arithmetic_result_type(op[0], op[1], false, state, & loc);
struct ir_rvalue *temp_rhs;
temp_rhs = new ir_expression(operations[this->oper], type,
op[0], op[1]);
/* Get a temporary of a copy of the lvalue before it's modified.
* This may get thrown away later.
*/
result = get_lvalue_copy(instructions, state, op[0],
this->subexpressions[0]->get_location());
(void)do_assignment(instructions, state, op[0], temp_rhs,
this->subexpressions[0]->get_location());
type = result->type;
error_emitted = op[0]->type->is_error();
break;
}
case ast_field_selection:
result = _mesa_ast_field_selection_to_hir(this, instructions, state);
type = result->type;
break;
case ast_array_index: {
YYLTYPE index_loc = subexpressions[1]->get_location();
op[0] = subexpressions[0]->hir(instructions, state);
op[1] = subexpressions[1]->hir(instructions, state);
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
ir_rvalue *const array = op[0];
result = new ir_dereference_array(op[0], op[1]);
/* Do not use op[0] after this point. Use array.
*/
op[0] = NULL;
if (error_emitted)
break;
if (!array->type->is_array()
&& !array->type->is_matrix()
&& !array->type->is_vector()) {
_mesa_glsl_error(& index_loc, state,
"cannot dereference non-array / non-matrix / "
"non-vector");
error_emitted = true;
}
if (!op[1]->type->is_integer()) {
_mesa_glsl_error(& index_loc, state,
"array index must be integer type");
error_emitted = true;
} else if (!op[1]->type->is_scalar()) {
_mesa_glsl_error(& index_loc, state,
"array index must be scalar");
error_emitted = true;
}
/* If the array index is a constant expression and the array has a
* declared size, ensure that the access is in-bounds. If the array
* index is not a constant expression, ensure that the array has a
* declared size.
*/
ir_constant *const const_index = op[1]->constant_expression_value();
if (const_index != NULL) {
const int idx = const_index->value.i[0];
const char *type_name;
unsigned bound = 0;
if (array->type->is_matrix()) {
type_name = "matrix";
} else if (array->type->is_vector()) {
type_name = "vector";
} else {
type_name = "array";
}
/* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
*
* "It is illegal to declare an array with a size, and then
* later (in the same shader) index the same array with an
* integral constant expression greater than or equal to the
* declared size. It is also illegal to index an array with a
* negative constant expression."
*/
if (array->type->is_matrix()) {
if (array->type->row_type()->vector_elements <= idx) {
bound = array->type->row_type()->vector_elements;
}
} else if (array->type->is_vector()) {
if (array->type->vector_elements <= idx) {
bound = array->type->vector_elements;
}
} else {
if ((array->type->array_size() > 0)
&& (array->type->array_size() <= idx)) {
bound = array->type->array_size();
}
}
if (bound > 0) {
_mesa_glsl_error(& loc, state, "%s index must be < %u",
type_name, bound);
error_emitted = true;
} else if (idx < 0) {
_mesa_glsl_error(& loc, state, "%s index must be >= 0",
type_name);
error_emitted = true;
}
if (array->type->is_array()) {
/* If the array is a variable dereference, it dereferences the
* whole array, by definition. Use this to get the variable.
*
* FINISHME: Should some methods for getting / setting / testing
* FINISHME: array access limits be added to ir_dereference?
*/
ir_variable *const v = array->whole_variable_referenced();
if ((v != NULL) && (unsigned(idx) > v->max_array_access))
v->max_array_access = idx;
}
}
if (error_emitted)
result->type = glsl_type::error_type;
type = result->type;
break;
}
case ast_function_call:
/* Should *NEVER* get here. ast_function_call should always be handled
* by ast_function_expression::hir.
*/
assert(0);
break;
case ast_identifier: {
/* ast_identifier can appear several places in a full abstract syntax
* tree. This particular use must be at location specified in the grammar
* as 'variable_identifier'.
*/
ir_variable *var =
state->symbols->get_variable(this->primary_expression.identifier);
result = new ir_dereference_variable(var);
if (var != NULL) {
type = result->type;
} else {
_mesa_glsl_error(& loc, state, "`%s' undeclared",
this->primary_expression.identifier);
error_emitted = true;
}
break;
}
case ast_int_constant:
type = glsl_type::int_type;
result = new ir_constant(type, & this->primary_expression);
break;
case ast_uint_constant:
type = glsl_type::uint_type;
result = new ir_constant(type, & this->primary_expression);
break;
case ast_float_constant:
type = glsl_type::float_type;
result = new ir_constant(type, & this->primary_expression);
break;
case ast_bool_constant:
type = glsl_type::bool_type;
result = new ir_constant(type, & this->primary_expression);
break;
case ast_sequence: {
/* It should not be possible to generate a sequence in the AST without
* any expressions in it.
*/
assert(!this->expressions.is_empty());
/* The r-value of a sequence is the last expression in the sequence. If
* the other expressions in the sequence do not have side-effects (and
* therefore add instructions to the instruction list), they get dropped
* on the floor.
*/
foreach_list_typed (ast_node, ast, link, &this->expressions)
result = ast->hir(instructions, state);
type = result->type;
/* Any errors should have already been emitted in the loop above.
*/
error_emitted = true;
break;
}
}
if (type->is_error() && !error_emitted)
_mesa_glsl_error(& loc, state, "type mismatch");
return result;
}
ir_rvalue *
ast_expression_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
/* It is possible to have expression statements that don't have an
* expression. This is the solitary semicolon:
*
* for (i = 0; i < 5; i++)
* ;
*
* In this case the expression will be NULL. Test for NULL and don't do
* anything in that case.
*/
if (expression != NULL)
expression->hir(instructions, state);
/* Statements do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_compound_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
if (new_scope)
state->symbols->push_scope();
foreach_list_typed (ast_node, ast, link, &this->statements)
ast->hir(instructions, state);
if (new_scope)
state->symbols->pop_scope();
/* Compound statements do not have r-values.
*/
return NULL;
}
static const glsl_type *
process_array_type(const glsl_type *base, ast_node *array_size,
struct _mesa_glsl_parse_state *state)
{
unsigned length = 0;
/* FINISHME: Reject delcarations of multidimensional arrays. */
if (array_size != NULL) {
exec_list dummy_instructions;
ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
YYLTYPE loc = array_size->get_location();
/* FINISHME: Verify that the grammar forbids side-effects in array
* FINISHME: sizes. i.e., 'vec4 [x = 12] data'
*/
assert(dummy_instructions.is_empty());
if (ir != NULL) {
if (!ir->type->is_integer()) {
_mesa_glsl_error(& loc, state, "array size must be integer type");
} else if (!ir->type->is_scalar()) {
_mesa_glsl_error(& loc, state, "array size must be scalar type");
} else {
ir_constant *const size = ir->constant_expression_value();
if (size == NULL) {
_mesa_glsl_error(& loc, state, "array size must be a "
"constant valued expression");
} else if (size->value.i[0] <= 0) {
_mesa_glsl_error(& loc, state, "array size must be > 0");
} else {
assert(size->type == ir->type);
length = size->value.u[0];
}
}
}
}
return glsl_type::get_array_instance(base, length);
}
const glsl_type *
ast_type_specifier::glsl_type(const char **name,
struct _mesa_glsl_parse_state *state) const
{
const struct glsl_type *type;
if ((this->type_specifier == ast_struct) && (this->type_name == NULL)) {
/* FINISHME: Handle annonymous structures. */
type = NULL;
} else {
type = state->symbols->get_type(this->type_name);
*name = this->type_name;
if (this->is_array) {
type = process_array_type(type, this->array_size, state);
}
}
return type;
}
static void
apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
struct ir_variable *var,
struct _mesa_glsl_parse_state *state,
YYLTYPE *loc)
{
if (qual->invariant)
var->invariant = 1;
/* FINISHME: Mark 'in' variables at global scope as read-only. */
if (qual->constant || qual->attribute || qual->uniform
|| (qual->varying && (state->target == fragment_shader)))
var->read_only = 1;
if (qual->centroid)
var->centroid = 1;
if (qual->attribute && state->target != vertex_shader) {
var->type = glsl_type::error_type;
_mesa_glsl_error(loc, state,
"`attribute' variables may not be declared in the "
"%s shader",
_mesa_glsl_shader_target_name(state->target));
}
/* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
*
* "The varying qualifier can be used only with the data types
* float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
* these."
*/
if (qual->varying && var->type->base_type != GLSL_TYPE_FLOAT) {
var->type = glsl_type::error_type;
_mesa_glsl_error(loc, state,
"varying variables must be of base type float");
}
if (qual->in && qual->out)
var->mode = ir_var_inout;
else if (qual->attribute || qual->in
|| (qual->varying && (state->target == fragment_shader)))
var->mode = ir_var_in;
else if (qual->out || (qual->varying && (state->target == vertex_shader)))
var->mode = ir_var_out;
else if (qual->uniform)
var->mode = ir_var_uniform;
else
var->mode = ir_var_auto;
if (qual->uniform)
var->shader_in = true;
if (qual->varying) {
if (qual->in)
var->shader_in = true;
if (qual->out)
var->shader_out = true;
}
if (qual->flat)
var->interpolation = ir_var_flat;
else if (qual->noperspective)
var->interpolation = ir_var_noperspective;
else
var->interpolation = ir_var_smooth;
if (var->type->is_array() && (state->language_version >= 120)) {
var->array_lvalue = true;
}
}
ir_rvalue *
ast_declarator_list::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
const struct glsl_type *decl_type;
const char *type_name = NULL;
ir_rvalue *result = NULL;
YYLTYPE loc = this->get_location();
/* The type specifier may contain a structure definition. Process that
* before any of the variable declarations.
*/
(void) this->type->specifier->hir(instructions, state);
/* FINISHME: Handle vertex shader "invariant" declarations that do not
* FINISHME: include a type. These re-declare built-in variables to be
* FINISHME: invariant.
*/
decl_type = this->type->specifier->glsl_type(& type_name, state);
if (this->declarations.is_empty()) {
/* There are only two valid cases where the declaration list can be
* empty.
*
* 1. The declaration is setting the default precision of a built-in
* type (e.g., 'precision highp vec4;').
*
* 2. Adding 'invariant' to an existing vertex shader output.
*/
if (this->type->qualifier.invariant) {
} else if (decl_type != NULL) {
} else {
_mesa_glsl_error(& loc, state, "incomplete declaration");
}
}
foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
const struct glsl_type *var_type;
struct ir_variable *var;
/* FINISHME: Emit a warning if a variable declaration shadows a
* FINISHME: declaration at a higher scope.
*/
if ((decl_type == NULL) || decl_type->is_void()) {
if (type_name != NULL) {
_mesa_glsl_error(& loc, state,
"invalid type `%s' in declaration of `%s'",
type_name, decl->identifier);
} else {
_mesa_glsl_error(& loc, state,
"invalid type in declaration of `%s'",
decl->identifier);
}
continue;
}
if (decl->is_array) {
var_type = process_array_type(decl_type, decl->array_size, state);
} else {
var_type = decl_type;
}
var = new ir_variable(var_type, decl->identifier);
/* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
*
* "Global variables can only use the qualifiers const,
* attribute, uni form, or varying. Only one may be
* specified.
*
* Local variables can only use the qualifier const."
*
* This is relaxed in GLSL 1.30.
*/
if (state->language_version < 120) {
if (this->type->qualifier.out) {
_mesa_glsl_error(& loc, state,
"`out' qualifier in declaration of `%s' "
"only valid for function parameters in GLSL 1.10.",
decl->identifier);
}
if (this->type->qualifier.in) {
_mesa_glsl_error(& loc, state,
"`in' qualifier in declaration of `%s' "
"only valid for function parameters in GLSL 1.10.",
decl->identifier);
}
/* FINISHME: Test for other invalid qualifiers. */
}
apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
& loc);
/* Attempt to add the variable to the symbol table. If this fails, it
* means the variable has already been declared at this scope. Arrays
* fudge this rule a little bit.
*
* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
*
* "It is legal to declare an array without a size and then
* later re-declare the same name as an array of the same
* type and specify a size."
*/
if (state->symbols->name_declared_this_scope(decl->identifier)) {
ir_variable *const earlier =
state->symbols->get_variable(decl->identifier);
if ((earlier != NULL)
&& (earlier->type->array_size() == 0)
&& var->type->is_array()
&& (var->type->element_type() == earlier->type->element_type())) {
/* FINISHME: This doesn't match the qualifiers on the two
* FINISHME: declarations. It's not 100% clear whether this is
* FINISHME: required or not.
*/
if (var->type->array_size() <= (int)earlier->max_array_access) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "array size must be > %u due to "
"previous access",
earlier->max_array_access);
}
earlier->type = var->type;
delete var;
var = NULL;
} else {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "`%s' redeclared",
decl->identifier);
}
continue;
}
/* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
*
* "Identifiers starting with "gl_" are reserved for use by
* OpenGL, and may not be declared in a shader as either a
* variable or a function."
*/
if (strncmp(decl->identifier, "gl_", 3) == 0) {
/* FINISHME: This should only trigger if we're not redefining
* FINISHME: a builtin (to add a qualifier, for example).
*/
_mesa_glsl_error(& loc, state,
"identifier `%s' uses reserved `gl_' prefix",
decl->identifier);
}
instructions->push_tail(var);
if (state->current_function != NULL) {
const char *mode = NULL;
const char *extra = "";
/* There is no need to check for 'inout' here because the parser will
* only allow that in function parameter lists.
*/
if (this->type->qualifier.attribute) {
mode = "attribute";
} else if (this->type->qualifier.uniform) {
mode = "uniform";
} else if (this->type->qualifier.varying) {
mode = "varying";
} else if (this->type->qualifier.in) {
mode = "in";
extra = " or in function parameter list";
} else if (this->type->qualifier.out) {
mode = "out";
extra = " or in function parameter list";
}
if (mode) {
_mesa_glsl_error(& loc, state,
"%s variable `%s' must be declared at "
"global scope%s",
mode, var->name, extra);
}
} else if (var->mode == ir_var_in) {
if (state->target == vertex_shader) {
bool error_emitted = false;
/* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
*
* "Vertex shader inputs can only be float, floating-point
* vectors, matrices, signed and unsigned integers and integer
* vectors. Vertex shader inputs can also form arrays of these
* types, but not structures."
*
* From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
*
* "Vertex shader inputs can only be float, floating-point
* vectors, matrices, signed and unsigned integers and integer
* vectors. They cannot be arrays or structures."
*
* From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
*
* "The attribute qualifier can be used only with float,
* floating-point vectors, and matrices. Attribute variables
* cannot be declared as arrays or structures."
*/
const glsl_type *check_type = var->type->is_array()
? var->type->fields.array : var->type;
switch (check_type->base_type) {
case GLSL_TYPE_FLOAT:
break;
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
if (state->language_version > 120)
break;
/* FALLTHROUGH */
default:
_mesa_glsl_error(& loc, state,
"vertex shader input / attribute cannot have "
"type %s`%s'",
var->type->is_array() ? "array of " : "",
check_type->name);
error_emitted = true;
}
if (!error_emitted && (state->language_version <= 130)
&& var->type->is_array()) {
_mesa_glsl_error(& loc, state,
"vertex shader input / attribute cannot have "
"array type");
error_emitted = true;
}
}
}
if (decl->initializer != NULL) {
YYLTYPE initializer_loc = decl->initializer->get_location();
/* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
*
* "All uniform variables are read-only and are initialized either
* directly by an application via API commands, or indirectly by
* OpenGL."
*/
if ((state->language_version <= 110)
&& (var->mode == ir_var_uniform)) {
_mesa_glsl_error(& initializer_loc, state,
"cannot initialize uniforms in GLSL 1.10");
}
if (var->type->is_sampler()) {
_mesa_glsl_error(& initializer_loc, state,
"cannot initialize samplers");
}
if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
_mesa_glsl_error(& initializer_loc, state,
"cannot initialize %s shader input / %s",
_mesa_glsl_shader_target_name(state->target),
(state->target == vertex_shader)
? "attribute" : "varying");
}
ir_dereference *const lhs = new ir_dereference_variable(var);
ir_rvalue *rhs = decl->initializer->hir(instructions, state);
/* Calculate the constant value if this is a const
* declaration.
*/
if (this->type->qualifier.constant) {
ir_constant *constant_value = rhs->constant_expression_value();
if (!constant_value) {
_mesa_glsl_error(& initializer_loc, state,
"initializer of const variable `%s' must be a "
"constant expression",
decl->identifier);
} else {
rhs = constant_value;
var->constant_value = constant_value;
}
}
if (rhs && !rhs->type->is_error()) {
bool temp = var->read_only;
if (this->type->qualifier.constant)
var->read_only = false;
result = do_assignment(instructions, state, lhs, rhs,
this->get_location());
var->read_only = temp;
}
}
/* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
*
* "It is an error to write to a const variable outside of
* its declaration, so they must be initialized when
* declared."
*/
if (this->type->qualifier.constant && decl->initializer == NULL) {
_mesa_glsl_error(& loc, state,
"const declaration of `%s' must be initialized");
}
/* Add the vairable to the symbol table after processing the initializer.
* This differs from most C-like languages, but it follows the GLSL
* specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
* spec:
*
* "Within a declaration, the scope of a name starts immediately
* after the initializer if present or immediately after the name
* being declared if not."
*/
const bool added_variable =
state->symbols->add_variable(decl->identifier, var);
assert(added_variable);
}
/* Generally, variable declarations do not have r-values. However,
* one is used for the declaration in
*
* while (bool b = some_condition()) {
* ...
* }
*
* so we return the rvalue from the last seen declaration here.
*/
return result;
}
ir_rvalue *
ast_parameter_declarator::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
const struct glsl_type *type;
const char *name = NULL;
YYLTYPE loc = this->get_location();
type = this->type->specifier->glsl_type(& name, state);
if (type == NULL) {
if (name != NULL) {
_mesa_glsl_error(& loc, state,
"invalid type `%s' in declaration of `%s'",
name, this->identifier);
} else {
_mesa_glsl_error(& loc, state,
"invalid type in declaration of `%s'",
this->identifier);
}
type = glsl_type::error_type;
}
/* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
*
* "Functions that accept no input arguments need not use void in the
* argument list because prototypes (or definitions) are required and
* therefore there is no ambiguity when an empty argument list "( )" is
* declared. The idiom "(void)" as a parameter list is provided for
* convenience."
*
* Placing this check here prevents a void parameter being set up
* for a function, which avoids tripping up checks for main taking
* parameters and lookups of an unnamed symbol.
*/
if (type->is_void()) {
if (this->identifier != NULL)
_mesa_glsl_error(& loc, state,
"named parameter cannot have type `void'");
is_void = true;
return NULL;
}
if (formal_parameter && (this->identifier == NULL)) {
_mesa_glsl_error(& loc, state, "formal parameter lacks a name");
return NULL;
}
is_void = false;
ir_variable *var = new ir_variable(type, this->identifier);
/* FINISHME: Handle array declarations. Note that this requires
* FINISHME: complete handling of constant expressions.
*/
/* Apply any specified qualifiers to the parameter declaration. Note that
* for function parameters the default mode is 'in'.
*/
apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
if (var->mode == ir_var_auto)
var->mode = ir_var_in;
instructions->push_tail(var);
/* Parameter declarations do not have r-values.
*/
return NULL;
}
void
ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
bool formal,
exec_list *ir_parameters,
_mesa_glsl_parse_state *state)
{
ast_parameter_declarator *void_param = NULL;
unsigned count = 0;
foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
param->formal_parameter = formal;
param->hir(ir_parameters, state);
if (param->is_void)
void_param = param;
count++;
}
if ((void_param != NULL) && (count > 1)) {
YYLTYPE loc = void_param->get_location();
_mesa_glsl_error(& loc, state,
"`void' parameter must be only parameter");
}
}
ir_rvalue *
ast_function::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
ir_function *f = NULL;
ir_function_signature *sig = NULL;
exec_list hir_parameters;
/* Convert the list of function parameters to HIR now so that they can be
* used below to compare this function's signature with previously seen
* signatures for functions with the same name.
*/
ast_parameter_declarator::parameters_to_hir(& this->parameters,
is_definition,
& hir_parameters, state);
const char *return_type_name;
const glsl_type *return_type =
this->return_type->specifier->glsl_type(& return_type_name, state);
assert(return_type != NULL);
/* Verify that this function's signature either doesn't match a previously
* seen signature for a function with the same name, or, if a match is found,
* that the previously seen signature does not have an associated definition.
*/
const char *const name = identifier;
f = state->symbols->get_function(name);
if (f != NULL) {
ir_function_signature *sig = f->exact_matching_signature(&hir_parameters);
if (sig != NULL) {
const char *badvar = sig->qualifiers_match(&hir_parameters);
if (badvar != NULL) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
"qualifiers don't match prototype", name, badvar);
}
if (sig->return_type != return_type) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
"match prototype", name);
}
if (is_definition && sig->is_defined) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "function `%s' redefined", name);
sig = NULL;
}
}
} else if (state->symbols->name_declared_this_scope(name)) {
/* This function name shadows a non-function use of the same name.
*/
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "function name `%s' conflicts with "
"non-function", name);
sig = NULL;
} else {
f = new ir_function(name);
state->symbols->add_function(f->name, f);
/* Emit the new function header */
instructions->push_tail(f);
}
/* Verify the return type of main() */
if (strcmp(name, "main") == 0) {
if (! return_type->is_void()) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "main() must return void");
}
if (!hir_parameters.is_empty()) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "main() must not take any parameters");
}
}
/* Finish storing the information about this new function in its signature.
*/
if (sig == NULL) {
sig = new ir_function_signature(return_type);
f->add_signature(sig);
}
sig->replace_parameters(&hir_parameters);
signature = sig;
/* Function declarations (prototypes) do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_function_definition::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
prototype->is_definition = true;
prototype->hir(instructions, state);
ir_function_signature *signature = prototype->signature;
assert(state->current_function == NULL);
state->current_function = signature;
/* Duplicate parameters declared in the prototype as concrete variables.
* Add these to the symbol table.
*/
state->symbols->push_scope();
foreach_iter(exec_list_iterator, iter, signature->parameters) {
ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
assert(var != NULL);
/* The only way a parameter would "exist" is if two parameters have
* the same name.
*/
if (state->symbols->name_declared_this_scope(var->name)) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
} else {
state->symbols->add_variable(var->name, var);
}
}
/* Convert the body of the function to HIR. */
this->body->hir(&signature->body, state);
signature->is_defined = true;
state->symbols->pop_scope();
assert(state->current_function == signature);
state->current_function = NULL;
/* Function definitions do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_jump_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
switch (mode) {
case ast_return: {
ir_return *inst;
assert(state->current_function);
if (opt_return_value) {
if (state->current_function->return_type->base_type ==
GLSL_TYPE_VOID) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"`return` with a value, in function `%s' "
"returning void",
state->current_function->function_name());
}
ir_expression *const ret = (ir_expression *)
opt_return_value->hir(instructions, state);
assert(ret != NULL);
/* FINISHME: Make sure the type of the return value matches the return
* FINISHME: type of the enclosing function.
*/
inst = new ir_return(ret);
} else {
if (state->current_function->return_type->base_type !=
GLSL_TYPE_VOID) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"`return' with no value, in function %s returning "
"non-void",
state->current_function->function_name());
}
inst = new ir_return;
}
instructions->push_tail(inst);
break;
}
case ast_discard:
/* FINISHME: discard support */
if (state->target != fragment_shader) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"`discard' may only appear in a fragment shader");
}
break;
case ast_break:
case ast_continue:
/* FINISHME: Handle switch-statements. They cannot contain 'continue',
* FINISHME: and they use a different IR instruction for 'break'.
*/
/* FINISHME: Correctly handle the nesting. If a switch-statement is
* FINISHME: inside a loop, a 'continue' is valid and will bind to the
* FINISHME: loop.
*/
if (state->loop_or_switch_nesting == NULL) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"`%s' may only appear in a loop",
(mode == ast_break) ? "break" : "continue");
} else {
ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
if (loop != NULL) {
ir_loop_jump *const jump =
new ir_loop_jump(loop,
(mode == ast_break)
? ir_loop_jump::jump_break
: ir_loop_jump::jump_continue);
instructions->push_tail(jump);
}
}
break;
}
/* Jump instructions do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_selection_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
ir_rvalue *const condition = this->condition->hir(instructions, state);
/* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
*
* "Any expression whose type evaluates to a Boolean can be used as the
* conditional expression bool-expression. Vector types are not accepted
* as the expression to if."
*
* The checks are separated so that higher quality diagnostics can be
* generated for cases where both rules are violated.
*/
if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
YYLTYPE loc = this->condition->get_location();
_mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
"boolean");
}
ir_if *const stmt = new ir_if(condition);
if (then_statement != NULL)
then_statement->hir(& stmt->then_instructions, state);
if (else_statement != NULL)
else_statement->hir(& stmt->else_instructions, state);
instructions->push_tail(stmt);
/* if-statements do not have r-values.
*/
return NULL;
}
void
ast_iteration_statement::condition_to_hir(ir_loop *stmt,
struct _mesa_glsl_parse_state *state)
{
if (condition != NULL) {
ir_rvalue *const cond =
condition->hir(& stmt->body_instructions, state);
if ((cond == NULL)
|| !cond->type->is_boolean() || !cond->type->is_scalar()) {
YYLTYPE loc = condition->get_location();
_mesa_glsl_error(& loc, state,
"loop condition must be scalar boolean");
} else {
/* As the first code in the loop body, generate a block that looks
* like 'if (!condition) break;' as the loop termination condition.
*/
ir_rvalue *const not_cond =
new ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
NULL);
ir_if *const if_stmt = new ir_if(not_cond);
ir_jump *const break_stmt =
new ir_loop_jump(stmt, ir_loop_jump::jump_break);
if_stmt->then_instructions.push_tail(break_stmt);
stmt->body_instructions.push_tail(if_stmt);
}
}
}
ir_rvalue *
ast_iteration_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
/* For-loops and while-loops start a new scope, but do-while loops do not.
*/
if (mode != ast_do_while)
state->symbols->push_scope();
if (init_statement != NULL)
init_statement->hir(instructions, state);
ir_loop *const stmt = new ir_loop();
instructions->push_tail(stmt);
/* Track the current loop and / or switch-statement nesting.
*/
ir_instruction *const nesting = state->loop_or_switch_nesting;
state->loop_or_switch_nesting = stmt;
if (mode != ast_do_while)
condition_to_hir(stmt, state);
if (body != NULL)
body->hir(& stmt->body_instructions, state);
if (rest_expression != NULL)
rest_expression->hir(& stmt->body_instructions, state);
if (mode == ast_do_while)
condition_to_hir(stmt, state);
if (mode != ast_do_while)
state->symbols->pop_scope();
/* Restore previous nesting before returning.
*/
state->loop_or_switch_nesting = nesting;
/* Loops do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_type_specifier::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
if (this->structure != NULL)
return this->structure->hir(instructions, state);
return NULL;
}
ir_rvalue *
ast_struct_specifier::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
unsigned decl_count = 0;
/* Make an initial pass over the list of structure fields to determine how
* many there are. Each element in this list is an ast_declarator_list.
* This means that we actually need to count the number of elements in the
* 'declarations' list in each of the elements.
*/
foreach_list_typed (ast_declarator_list, decl_list, link,
&this->declarations) {
foreach_list_const (decl_ptr, & decl_list->declarations) {
decl_count++;
}
}
/* Allocate storage for the structure fields and process the field
* declarations. As the declarations are processed, try to also convert
* the types to HIR. This ensures that structure definitions embedded in
* other structure definitions are processed.
*/
glsl_struct_field *const fields = (glsl_struct_field *)
malloc(sizeof(*fields) * decl_count);
unsigned i = 0;
foreach_list_typed (ast_declarator_list, decl_list, link,
&this->declarations) {
const char *type_name;
decl_list->type->specifier->hir(instructions, state);
const glsl_type *decl_type =
decl_list->type->specifier->glsl_type(& type_name, state);
foreach_list_typed (ast_declaration, decl, link,
&decl_list->declarations) {
const struct glsl_type *const field_type =
(decl->is_array)
? process_array_type(decl_type, decl->array_size, state)
: decl_type;
fields[i].type = (field_type != NULL)
? field_type : glsl_type::error_type;
fields[i].name = decl->identifier;
i++;
}
}
assert(i == decl_count);
const char *name;
if (this->name == NULL) {
static unsigned anon_count = 1;
char buf[32];
snprintf(buf, sizeof(buf), "#anon_struct_%04x", anon_count);
anon_count++;
name = strdup(buf);
} else {
name = this->name;
}
glsl_type *t = new glsl_type(fields, decl_count, name);
YYLTYPE loc = this->get_location();
if (!state->symbols->add_type(name, t)) {
_mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
} else {
/* This logic is a bit tricky. It is an error to declare a structure at
* global scope if there is also a function with the same name.
*/
if ((state->current_function == NULL)
&& (state->symbols->get_function(name) != NULL)) {
_mesa_glsl_error(& loc, state, "name `%s' previously defined", name);
} else {
t->generate_constructor(state->symbols);
}
const glsl_type **s = (const glsl_type **)
realloc(state->user_structures,
sizeof(state->user_structures[0]) *
(state->num_user_structures + 1));
if (s != NULL) {
s[state->num_user_structures] = t;
state->user_structures = s;
state->num_user_structures++;
}
}
/* Structure type definitions do not have r-values.
*/
return NULL;
}