mesa/src/amd/vulkan/radv_device.c

7205 lines
280 KiB
C

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <fcntl.h>
#include <stdbool.h>
#include <string.h>
#ifdef __FreeBSD__
#include <sys/types.h>
#endif
#ifdef MAJOR_IN_MKDEV
#include <sys/mkdev.h>
#endif
#ifdef MAJOR_IN_SYSMACROS
#include <sys/sysmacros.h>
#endif
#ifdef __linux__
#include <sys/inotify.h>
#endif
#include "util/debug.h"
#include "util/disk_cache.h"
#include "radv_cs.h"
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "vk_util.h"
#ifdef _WIN32
typedef void *drmDevicePtr;
#include <io.h>
#else
#include <amdgpu.h>
#include <xf86drm.h>
#include "drm-uapi/amdgpu_drm.h"
#include "winsys/amdgpu/radv_amdgpu_winsys_public.h"
#endif
#include "util/build_id.h"
#include "util/debug.h"
#include "util/driconf.h"
#include "util/mesa-sha1.h"
#include "util/os_time.h"
#include "util/timespec.h"
#include "util/u_atomic.h"
#include "winsys/null/radv_null_winsys_public.h"
#include "git_sha1.h"
#include "sid.h"
#include "vk_format.h"
#include "vk_sync.h"
#include "vk_sync_dummy.h"
#include "vulkan/vk_icd.h"
#ifdef LLVM_AVAILABLE
#include "ac_llvm_util.h"
#endif
/* The number of IBs per submit isn't infinite, it depends on the IP type
* (ie. some initial setup needed for a submit) and the number of IBs (4 DW).
* This limit is arbitrary but should be safe for now. Ideally, we should get
* this limit from the KMD.
*/
#define RADV_MAX_IBS_PER_SUBMIT 192
/* The "RAW" clocks on Linux are called "FAST" on FreeBSD */
#if !defined(CLOCK_MONOTONIC_RAW) && defined(CLOCK_MONOTONIC_FAST)
#define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC_FAST
#endif
static VkResult radv_queue_submit(struct vk_queue *vqueue, struct vk_queue_submit *submission);
uint64_t
radv_get_current_time(void)
{
return os_time_get_nano();
}
static void
parse_hex(char *out, const char *in, unsigned length)
{
for (unsigned i = 0; i < length; ++i)
out[i] = 0;
for (unsigned i = 0; i < 2 * length; ++i) {
unsigned v =
in[i] <= '9' ? in[i] - '0' : (in[i] >= 'a' ? (in[i] - 'a' + 10) : (in[i] - 'A' + 10));
out[i / 2] |= v << (4 * (1 - i % 2));
}
}
static int
radv_device_get_cache_uuid(struct radv_physical_device *pdevice, void *uuid)
{
enum radeon_family family = pdevice->rad_info.family;
struct mesa_sha1 ctx;
unsigned char sha1[20];
unsigned ptr_size = sizeof(void *);
memset(uuid, 0, VK_UUID_SIZE);
_mesa_sha1_init(&ctx);
#ifdef RADV_BUILD_ID_OVERRIDE
{
char data[strlen(RADV_BUILD_ID_OVERRIDE) / 2];
parse_hex(data, RADV_BUILD_ID_OVERRIDE, ARRAY_SIZE(data));
_mesa_sha1_update(&ctx, data, ARRAY_SIZE(data));
}
#else
if (!disk_cache_get_function_identifier(radv_device_get_cache_uuid, &ctx))
return -1;
#endif
#ifdef LLVM_AVAILABLE
if (pdevice->use_llvm &&
!disk_cache_get_function_identifier(LLVMInitializeAMDGPUTargetInfo, &ctx))
return -1;
#endif
_mesa_sha1_update(&ctx, &family, sizeof(family));
_mesa_sha1_update(&ctx, &ptr_size, sizeof(ptr_size));
_mesa_sha1_final(&ctx, sha1);
memcpy(uuid, sha1, VK_UUID_SIZE);
return 0;
}
static void
radv_get_driver_uuid(void *uuid)
{
ac_compute_driver_uuid(uuid, VK_UUID_SIZE);
}
static void
radv_get_device_uuid(struct radeon_info *info, void *uuid)
{
ac_compute_device_uuid(info, uuid, VK_UUID_SIZE);
}
static uint64_t
radv_get_adjusted_vram_size(struct radv_physical_device *device)
{
int ov = driQueryOptioni(&device->instance->dri_options, "override_vram_size");
if (ov >= 0)
return MIN2(device->rad_info.vram_size, (uint64_t)ov << 20);
return device->rad_info.vram_size;
}
static uint64_t
radv_get_visible_vram_size(struct radv_physical_device *device)
{
return MIN2(radv_get_adjusted_vram_size(device), device->rad_info.vram_vis_size);
}
static uint64_t
radv_get_vram_size(struct radv_physical_device *device)
{
uint64_t total_size = radv_get_adjusted_vram_size(device);
return total_size - MIN2(total_size, device->rad_info.vram_vis_size);
}
enum radv_heap {
RADV_HEAP_VRAM = 1 << 0,
RADV_HEAP_GTT = 1 << 1,
RADV_HEAP_VRAM_VIS = 1 << 2,
RADV_HEAP_MAX = 1 << 3,
};
static void
radv_physical_device_init_mem_types(struct radv_physical_device *device)
{
uint64_t visible_vram_size = radv_get_visible_vram_size(device);
uint64_t vram_size = radv_get_vram_size(device);
uint64_t gtt_size = device->rad_info.gart_size;
int vram_index = -1, visible_vram_index = -1, gart_index = -1;
device->memory_properties.memoryHeapCount = 0;
device->heaps = 0;
if (!device->rad_info.has_dedicated_vram) {
/* On APUs, the carveout is usually too small for games that request a minimum VRAM size
* greater than it. To workaround this, we compute the total available memory size (GTT +
* visible VRAM size) and report 2/3 as VRAM and 1/3 as GTT.
*/
const uint64_t total_size = gtt_size + visible_vram_size;
visible_vram_size = align64((total_size * 2) / 3, device->rad_info.gart_page_size);
gtt_size = total_size - visible_vram_size;
vram_size = 0;
}
/* Only get a VRAM heap if it is significant, not if it is a 16 MiB
* remainder above visible VRAM. */
if (vram_size > 0 && vram_size * 9 >= visible_vram_size) {
vram_index = device->memory_properties.memoryHeapCount++;
device->heaps |= RADV_HEAP_VRAM;
device->memory_properties.memoryHeaps[vram_index] = (VkMemoryHeap){
.size = vram_size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
};
}
if (gtt_size > 0) {
gart_index = device->memory_properties.memoryHeapCount++;
device->heaps |= RADV_HEAP_GTT;
device->memory_properties.memoryHeaps[gart_index] = (VkMemoryHeap){
.size = gtt_size,
.flags = 0,
};
}
if (visible_vram_size) {
visible_vram_index = device->memory_properties.memoryHeapCount++;
device->heaps |= RADV_HEAP_VRAM_VIS;
device->memory_properties.memoryHeaps[visible_vram_index] = (VkMemoryHeap){
.size = visible_vram_size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
};
}
unsigned type_count = 0;
if (vram_index >= 0 || visible_vram_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
device->memory_flags[type_count] = RADEON_FLAG_NO_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.heapIndex = vram_index >= 0 ? vram_index : visible_vram_index,
};
device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
device->memory_flags[type_count] = RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_32BIT;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.heapIndex = vram_index >= 0 ? vram_index : visible_vram_index,
};
}
if (gart_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_GTT;
device->memory_flags[type_count] = RADEON_FLAG_GTT_WC | RADEON_FLAG_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags =
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
.heapIndex = gart_index,
};
}
if (visible_vram_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
device->memory_flags[type_count] = RADEON_FLAG_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
.heapIndex = visible_vram_index,
};
}
if (gart_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_GTT;
device->memory_flags[type_count] = RADEON_FLAG_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
.heapIndex = gart_index,
};
}
device->memory_properties.memoryTypeCount = type_count;
if (device->rad_info.has_l2_uncached) {
for (int i = 0; i < device->memory_properties.memoryTypeCount; i++) {
VkMemoryType mem_type = device->memory_properties.memoryTypes[i];
if (((mem_type.propertyFlags &
(VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) ||
mem_type.propertyFlags == VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) &&
!(device->memory_flags[i] & RADEON_FLAG_32BIT)) {
VkMemoryPropertyFlags property_flags = mem_type.propertyFlags |
VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD |
VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD;
device->memory_domains[type_count] = device->memory_domains[i];
device->memory_flags[type_count] = device->memory_flags[i] | RADEON_FLAG_VA_UNCACHED;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = property_flags,
.heapIndex = mem_type.heapIndex,
};
}
}
device->memory_properties.memoryTypeCount = type_count;
}
for (unsigned i = 0; i < type_count; ++i) {
if (device->memory_flags[i] & RADEON_FLAG_32BIT)
device->memory_types_32bit |= BITFIELD_BIT(i);
}
}
static const char *
radv_get_compiler_string(struct radv_physical_device *pdevice)
{
if (!pdevice->use_llvm) {
/* Some games like SotTR apply shader workarounds if the LLVM
* version is too old or if the LLVM version string is
* missing. This gives 2-5% performance with SotTR and ACO.
*/
if (driQueryOptionb(&pdevice->instance->dri_options, "radv_report_llvm9_version_string")) {
return " (LLVM 9.0.1)";
}
return "";
}
#ifdef LLVM_AVAILABLE
return " (LLVM " MESA_LLVM_VERSION_STRING ")";
#else
unreachable("LLVM is not available");
#endif
}
int
radv_get_int_debug_option(const char *name, int default_value)
{
const char *str;
int result;
str = getenv(name);
if (!str) {
result = default_value;
} else {
char *endptr;
result = strtol(str, &endptr, 0);
if (str == endptr) {
/* No digits founs. */
result = default_value;
}
}
return result;
}
static bool
radv_thread_trace_enabled()
{
return radv_get_int_debug_option("RADV_THREAD_TRACE", -1) >= 0 ||
getenv("RADV_THREAD_TRACE_TRIGGER");
}
static bool
radv_spm_trace_enabled()
{
return radv_thread_trace_enabled() &&
debug_get_bool_option("RADV_THREAD_TRACE_CACHE_COUNTERS", false);
}
static bool
radv_perf_query_supported(const struct radv_physical_device *pdev)
{
/* SQTT / SPM interfere with the register states for perf counters, and
* the code has only been tested on GFX10.3 */
return pdev->rad_info.gfx_level == GFX10_3 && !radv_thread_trace_enabled();
}
#if defined(VK_USE_PLATFORM_WAYLAND_KHR) || defined(VK_USE_PLATFORM_XCB_KHR) || \
defined(VK_USE_PLATFORM_XLIB_KHR) || defined(VK_USE_PLATFORM_DISPLAY_KHR)
#define RADV_USE_WSI_PLATFORM
#endif
#ifdef ANDROID
#define RADV_API_VERSION VK_MAKE_VERSION(1, 1, VK_HEADER_VERSION)
#else
#define RADV_API_VERSION VK_MAKE_VERSION(1, 3, VK_HEADER_VERSION)
#endif
VKAPI_ATTR VkResult VKAPI_CALL
radv_EnumerateInstanceVersion(uint32_t *pApiVersion)
{
*pApiVersion = RADV_API_VERSION;
return VK_SUCCESS;
}
static const struct vk_instance_extension_table radv_instance_extensions_supported = {
.KHR_device_group_creation = true,
.KHR_external_fence_capabilities = true,
.KHR_external_memory_capabilities = true,
.KHR_external_semaphore_capabilities = true,
.KHR_get_physical_device_properties2 = true,
.EXT_debug_report = true,
.EXT_debug_utils = true,
#ifdef RADV_USE_WSI_PLATFORM
.KHR_get_surface_capabilities2 = true,
.KHR_surface = true,
.KHR_surface_protected_capabilities = true,
#endif
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
.KHR_wayland_surface = true,
#endif
#ifdef VK_USE_PLATFORM_XCB_KHR
.KHR_xcb_surface = true,
#endif
#ifdef VK_USE_PLATFORM_XLIB_KHR
.KHR_xlib_surface = true,
#endif
#ifdef VK_USE_PLATFORM_XLIB_XRANDR_EXT
.EXT_acquire_xlib_display = true,
#endif
#ifdef VK_USE_PLATFORM_DISPLAY_KHR
.KHR_display = true,
.KHR_get_display_properties2 = true,
.EXT_direct_mode_display = true,
.EXT_display_surface_counter = true,
.EXT_acquire_drm_display = true,
#endif
};
static void
radv_physical_device_get_supported_extensions(const struct radv_physical_device *device,
struct vk_device_extension_table *ext)
{
*ext = (struct vk_device_extension_table){
.KHR_8bit_storage = true,
.KHR_16bit_storage = true,
.KHR_acceleration_structure = radv_enable_rt(device, false),
.KHR_bind_memory2 = true,
.KHR_buffer_device_address = true,
.KHR_copy_commands2 = true,
.KHR_create_renderpass2 = true,
.KHR_dedicated_allocation = true,
.KHR_deferred_host_operations = true,
.KHR_depth_stencil_resolve = true,
.KHR_descriptor_update_template = true,
.KHR_device_group = true,
.KHR_draw_indirect_count = true,
.KHR_driver_properties = true,
.KHR_dynamic_rendering = true,
.KHR_external_fence = true,
.KHR_external_fence_fd = true,
.KHR_external_memory = true,
.KHR_external_memory_fd = true,
.KHR_external_semaphore = true,
.KHR_external_semaphore_fd = true,
.KHR_format_feature_flags2 = true,
.KHR_fragment_shading_rate = device->rad_info.gfx_level >= GFX10_3,
.KHR_get_memory_requirements2 = true,
.KHR_image_format_list = true,
.KHR_imageless_framebuffer = true,
#ifdef RADV_USE_WSI_PLATFORM
.KHR_incremental_present = true,
#endif
.KHR_maintenance1 = true,
.KHR_maintenance2 = true,
.KHR_maintenance3 = true,
.KHR_maintenance4 = true,
.KHR_multiview = true,
.KHR_performance_query = radv_perf_query_supported(device),
.KHR_pipeline_executable_properties = true,
.KHR_pipeline_library = !device->use_llvm,
.KHR_push_descriptor = true,
.KHR_ray_query = radv_enable_rt(device, false),
.KHR_ray_tracing_maintenance1 = radv_enable_rt(device, false),
.KHR_ray_tracing_pipeline = radv_enable_rt(device, true),
.KHR_relaxed_block_layout = true,
.KHR_sampler_mirror_clamp_to_edge = true,
.KHR_sampler_ycbcr_conversion = true,
.KHR_separate_depth_stencil_layouts = true,
.KHR_shader_atomic_int64 = true,
.KHR_shader_clock = true,
.KHR_shader_draw_parameters = true,
.KHR_shader_float16_int8 = true,
.KHR_shader_float_controls = true,
.KHR_shader_integer_dot_product = true,
.KHR_shader_non_semantic_info = true,
.KHR_shader_subgroup_extended_types = true,
.KHR_shader_subgroup_uniform_control_flow = true,
.KHR_shader_terminate_invocation = true,
.KHR_spirv_1_4 = true,
.KHR_storage_buffer_storage_class = true,
#ifdef RADV_USE_WSI_PLATFORM
.KHR_swapchain = true,
.KHR_swapchain_mutable_format = true,
#endif
.KHR_synchronization2 = true,
.KHR_timeline_semaphore = true,
.KHR_uniform_buffer_standard_layout = true,
.KHR_variable_pointers = true,
.KHR_vulkan_memory_model = true,
.KHR_workgroup_memory_explicit_layout = true,
.KHR_zero_initialize_workgroup_memory = true,
.EXT_4444_formats = true,
.EXT_border_color_swizzle = device->rad_info.gfx_level >= GFX10,
.EXT_buffer_device_address = true,
.EXT_calibrated_timestamps = RADV_SUPPORT_CALIBRATED_TIMESTAMPS,
.EXT_color_write_enable = true,
.EXT_conditional_rendering = true,
.EXT_conservative_rasterization = device->rad_info.gfx_level >= GFX9,
.EXT_custom_border_color = true,
.EXT_debug_marker = radv_thread_trace_enabled(),
.EXT_depth_clip_control = true,
.EXT_depth_clip_enable = true,
.EXT_depth_range_unrestricted = true,
.EXT_descriptor_indexing = true,
.EXT_discard_rectangles = true,
#ifdef VK_USE_PLATFORM_DISPLAY_KHR
.EXT_display_control = true,
#endif
.EXT_extended_dynamic_state = true,
.EXT_extended_dynamic_state2 = true,
.EXT_external_memory_dma_buf = true,
.EXT_external_memory_host = device->rad_info.has_userptr,
.EXT_global_priority = true,
.EXT_global_priority_query = true,
.EXT_host_query_reset = true,
.EXT_image_2d_view_of_3d = true,
.EXT_image_drm_format_modifier = device->rad_info.gfx_level >= GFX9,
.EXT_image_robustness = true,
.EXT_image_view_min_lod = true,
.EXT_index_type_uint8 = device->rad_info.gfx_level >= GFX8,
.EXT_inline_uniform_block = true,
.EXT_line_rasterization = true,
.EXT_memory_budget = true,
.EXT_memory_priority = true,
.EXT_multi_draw = true,
.EXT_non_seamless_cube_map = true,
.EXT_pci_bus_info = true,
#ifndef _WIN32
.EXT_physical_device_drm = true,
#endif
.EXT_pipeline_creation_cache_control = true,
.EXT_pipeline_creation_feedback = true,
.EXT_post_depth_coverage = device->rad_info.gfx_level >= GFX10,
.EXT_primitive_topology_list_restart = true,
.EXT_primitives_generated_query = true,
.EXT_private_data = true,
.EXT_provoking_vertex = true,
.EXT_queue_family_foreign = true,
.EXT_robustness2 = true,
.EXT_sample_locations = device->rad_info.gfx_level < GFX10,
.EXT_sampler_filter_minmax = true,
.EXT_scalar_block_layout = device->rad_info.gfx_level >= GFX7,
.EXT_separate_stencil_usage = true,
.EXT_shader_atomic_float = true,
#ifdef LLVM_AVAILABLE
.EXT_shader_atomic_float2 = !device->use_llvm || LLVM_VERSION_MAJOR >= 14,
#else
.EXT_shader_atomic_float2 = true,
#endif
.EXT_shader_demote_to_helper_invocation = true,
.EXT_shader_image_atomic_int64 = true,
.EXT_shader_module_identifier = true,
.EXT_shader_stencil_export = true,
.EXT_shader_subgroup_ballot = true,
.EXT_shader_subgroup_vote = true,
.EXT_shader_viewport_index_layer = true,
.EXT_subgroup_size_control = true,
.EXT_texel_buffer_alignment = true,
.EXT_transform_feedback = device->rad_info.gfx_level < GFX11,
.EXT_vertex_attribute_divisor = true,
.EXT_vertex_input_dynamic_state = !device->use_llvm,
.EXT_ycbcr_image_arrays = true,
.AMD_buffer_marker = true,
.AMD_device_coherent_memory = true,
.AMD_draw_indirect_count = true,
.AMD_gcn_shader = true,
.AMD_gpu_shader_half_float = device->rad_info.has_packed_math_16bit,
.AMD_gpu_shader_int16 = device->rad_info.has_packed_math_16bit,
.AMD_memory_overallocation_behavior = true,
.AMD_mixed_attachment_samples = true,
.AMD_rasterization_order = device->rad_info.has_out_of_order_rast,
.AMD_shader_ballot = true,
.AMD_shader_core_properties = true,
.AMD_shader_core_properties2 = true,
.AMD_shader_explicit_vertex_parameter = true,
.AMD_shader_fragment_mask = device->rad_info.gfx_level < GFX11,
.AMD_shader_image_load_store_lod = true,
.AMD_shader_trinary_minmax = true,
.AMD_texture_gather_bias_lod = true,
#ifdef ANDROID
.ANDROID_external_memory_android_hardware_buffer = RADV_SUPPORT_ANDROID_HARDWARE_BUFFER,
.ANDROID_native_buffer = true,
#endif
.GOOGLE_decorate_string = true,
.GOOGLE_hlsl_functionality1 = true,
.GOOGLE_user_type = true,
.INTEL_shader_integer_functions2 = true,
.NV_compute_shader_derivatives = true,
.NV_device_generated_commands = device->rad_info.gfx_level >= GFX7 && !(device->instance->debug_flags & RADV_DEBUG_NO_IBS) &&
driQueryOptionb(&device->instance->dri_options, "radv_dgc"),
.NV_mesh_shader = device->use_ngg && device->rad_info.gfx_level >= GFX10_3 &&
device->instance->perftest_flags & RADV_PERFTEST_NV_MS && !device->use_llvm,
/* Undocumented extension purely for vkd3d-proton. This check is to prevent anyone else from
* using it.
*/
.VALVE_descriptor_set_host_mapping =
device->vk.instance->app_info.engine_name &&
strcmp(device->vk.instance->app_info.engine_name, "vkd3d") == 0,
.VALVE_mutable_descriptor_type = true,
};
}
static bool
radv_is_conformant(const struct radv_physical_device *pdevice)
{
return pdevice->rad_info.gfx_level >= GFX8;
}
static void
radv_physical_device_init_queue_table(struct radv_physical_device *pdevice)
{
int idx = 0;
pdevice->vk_queue_to_radv[idx] = RADV_QUEUE_GENERAL;
idx++;
for (unsigned i = 1; i < RADV_MAX_QUEUE_FAMILIES; i++)
pdevice->vk_queue_to_radv[i] = RADV_MAX_QUEUE_FAMILIES + 1;
if (pdevice->rad_info.ip[AMD_IP_COMPUTE].num_queues > 0 &&
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) {
pdevice->vk_queue_to_radv[idx] = RADV_QUEUE_COMPUTE;
idx++;
}
pdevice->num_queues = idx;
}
static VkResult
radv_physical_device_try_create(struct radv_instance *instance, drmDevicePtr drm_device,
struct radv_physical_device **device_out)
{
VkResult result;
int fd = -1;
int master_fd = -1;
#ifdef _WIN32
assert(drm_device == NULL);
#else
if (drm_device) {
const char *path = drm_device->nodes[DRM_NODE_RENDER];
drmVersionPtr version;
fd = open(path, O_RDWR | O_CLOEXEC);
if (fd < 0) {
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"Could not open device %s: %m", path);
}
version = drmGetVersion(fd);
if (!version) {
close(fd);
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"Could not get the kernel driver version for device %s: %m", path);
}
if (strcmp(version->name, "amdgpu")) {
drmFreeVersion(version);
close(fd);
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"Device '%s' is not using the AMDGPU kernel driver: %m", path);
}
drmFreeVersion(version);
if (instance->debug_flags & RADV_DEBUG_STARTUP)
fprintf(stderr, "radv: info: Found compatible device '%s'.\n", path);
}
#endif
struct radv_physical_device *device = vk_zalloc2(&instance->vk.alloc, NULL, sizeof(*device), 8,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!device) {
result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_fd;
}
struct vk_physical_device_dispatch_table dispatch_table;
vk_physical_device_dispatch_table_from_entrypoints(&dispatch_table,
&radv_physical_device_entrypoints, true);
vk_physical_device_dispatch_table_from_entrypoints(&dispatch_table,
&wsi_physical_device_entrypoints, false);
result = vk_physical_device_init(&device->vk, &instance->vk, NULL, &dispatch_table);
if (result != VK_SUCCESS) {
goto fail_alloc;
}
device->instance = instance;
#ifdef _WIN32
device->ws = radv_null_winsys_create();
#else
if (drm_device) {
bool reserve_vmid = radv_thread_trace_enabled();
device->ws = radv_amdgpu_winsys_create(fd, instance->debug_flags, instance->perftest_flags,
reserve_vmid);
} else {
device->ws = radv_null_winsys_create();
}
#endif
if (!device->ws) {
result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED, "failed to initialize winsys");
goto fail_base;
}
device->vk.supported_sync_types = device->ws->get_sync_types(device->ws);
#ifndef _WIN32
if (drm_device && instance->vk.enabled_extensions.KHR_display) {
master_fd = open(drm_device->nodes[DRM_NODE_PRIMARY], O_RDWR | O_CLOEXEC);
if (master_fd >= 0) {
uint32_t accel_working = 0;
struct drm_amdgpu_info request = {.return_pointer = (uintptr_t)&accel_working,
.return_size = sizeof(accel_working),
.query = AMDGPU_INFO_ACCEL_WORKING};
if (drmCommandWrite(master_fd, DRM_AMDGPU_INFO, &request, sizeof(struct drm_amdgpu_info)) <
0 ||
!accel_working) {
close(master_fd);
master_fd = -1;
}
}
}
#endif
device->master_fd = master_fd;
device->local_fd = fd;
device->ws->query_info(device->ws, &device->rad_info);
device->use_llvm = instance->debug_flags & RADV_DEBUG_LLVM;
#ifndef LLVM_AVAILABLE
if (device->use_llvm) {
fprintf(stderr, "ERROR: LLVM compiler backend selected for radv, but LLVM support was not "
"enabled at build time.\n");
abort();
}
#endif
#ifdef ANDROID
device->emulate_etc2 = !radv_device_supports_etc(device);
#else
device->emulate_etc2 = !radv_device_supports_etc(device) &&
driQueryOptionb(&device->instance->dri_options, "radv_require_etc2");
#endif
snprintf(device->name, sizeof(device->name), "AMD RADV %s%s", device->rad_info.name,
radv_get_compiler_string(device));
const char *marketing_name = device->ws->get_chip_name(device->ws);
snprintf(device->marketing_name, sizeof(device->name), "%s (RADV %s%s)",
marketing_name, device->rad_info.name, radv_get_compiler_string(device));
#ifdef ENABLE_SHADER_CACHE
if (radv_device_get_cache_uuid(device, device->cache_uuid)) {
result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED, "cannot generate UUID");
goto fail_wsi;
}
/* The gpu id is already embedded in the uuid so we just pass "radv"
* when creating the cache.
*/
char buf[VK_UUID_SIZE * 2 + 1];
disk_cache_format_hex_id(buf, device->cache_uuid, VK_UUID_SIZE * 2);
device->disk_cache = disk_cache_create(device->name, buf, 0);
#endif
if (!radv_is_conformant(device))
vk_warn_non_conformant_implementation("radv");
radv_get_driver_uuid(&device->driver_uuid);
radv_get_device_uuid(&device->rad_info, &device->device_uuid);
device->out_of_order_rast_allowed =
device->rad_info.has_out_of_order_rast &&
!(device->instance->debug_flags & RADV_DEBUG_NO_OUT_OF_ORDER);
device->dcc_msaa_allowed = (device->instance->perftest_flags & RADV_PERFTEST_DCC_MSAA);
device->use_ngg = (device->rad_info.gfx_level >= GFX10 &&
device->rad_info.family != CHIP_NAVI14 &&
!(device->instance->debug_flags & RADV_DEBUG_NO_NGG)) ||
device->rad_info.gfx_level >= GFX11;
device->use_ngg_culling = device->use_ngg && device->rad_info.max_render_backends > 1 &&
(device->rad_info.gfx_level >= GFX10_3 ||
(device->instance->perftest_flags & RADV_PERFTEST_NGGC)) &&
!(device->instance->debug_flags & RADV_DEBUG_NO_NGGC);
device->use_ngg_streamout = false;
/* Determine the number of threads per wave for all stages. */
device->cs_wave_size = 64;
device->ps_wave_size = 64;
device->ge_wave_size = 64;
device->rt_wave_size = 64;
if (device->rad_info.gfx_level >= GFX10) {
if (device->instance->perftest_flags & RADV_PERFTEST_CS_WAVE_32)
device->cs_wave_size = 32;
/* For pixel shaders, wave64 is recommanded. */
if (device->instance->perftest_flags & RADV_PERFTEST_PS_WAVE_32)
device->ps_wave_size = 32;
if (device->instance->perftest_flags & RADV_PERFTEST_GE_WAVE_32)
device->ge_wave_size = 32;
if (!(device->instance->perftest_flags & RADV_PERFTEST_RT_WAVE_64))
device->rt_wave_size = 32;
}
radv_physical_device_init_mem_types(device);
radv_physical_device_get_supported_extensions(device, &device->vk.supported_extensions);
radv_get_nir_options(device);
#ifndef _WIN32
if (drm_device) {
struct stat primary_stat = {0}, render_stat = {0};
device->available_nodes = drm_device->available_nodes;
device->bus_info = *drm_device->businfo.pci;
if ((drm_device->available_nodes & (1 << DRM_NODE_PRIMARY)) &&
stat(drm_device->nodes[DRM_NODE_PRIMARY], &primary_stat) != 0) {
result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
"failed to stat DRM primary node %s",
drm_device->nodes[DRM_NODE_PRIMARY]);
goto fail_perfcounters;
}
device->primary_devid = primary_stat.st_rdev;
if ((drm_device->available_nodes & (1 << DRM_NODE_RENDER)) &&
stat(drm_device->nodes[DRM_NODE_RENDER], &render_stat) != 0) {
result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
"failed to stat DRM render node %s",
drm_device->nodes[DRM_NODE_RENDER]);
goto fail_perfcounters;
}
device->render_devid = render_stat.st_rdev;
}
#endif
if ((device->instance->debug_flags & RADV_DEBUG_INFO))
ac_print_gpu_info(&device->rad_info, stdout);
radv_physical_device_init_queue_table(device);
/* We don't check the error code, but later check if it is initialized. */
ac_init_perfcounters(&device->rad_info, false, false, &device->ac_perfcounters);
/* The WSI is structured as a layer on top of the driver, so this has
* to be the last part of initialization (at least until we get other
* semi-layers).
*/
result = radv_init_wsi(device);
if (result != VK_SUCCESS) {
vk_error(instance, result);
goto fail_perfcounters;
}
device->gs_table_depth =
ac_get_gs_table_depth(device->rad_info.gfx_level, device->rad_info.family);
ac_get_hs_info(&device->rad_info, &device->hs);
ac_get_task_info(&device->rad_info, &device->task_info);
*device_out = device;
return VK_SUCCESS;
fail_perfcounters:
ac_destroy_perfcounters(&device->ac_perfcounters);
disk_cache_destroy(device->disk_cache);
#ifdef ENABLE_SHADER_CACHE
fail_wsi:
#endif
device->ws->destroy(device->ws);
fail_base:
vk_physical_device_finish(&device->vk);
fail_alloc:
vk_free(&instance->vk.alloc, device);
fail_fd:
if (fd != -1)
close(fd);
if (master_fd != -1)
close(master_fd);
return result;
}
static void
radv_physical_device_destroy(struct radv_physical_device *device)
{
radv_finish_wsi(device);
ac_destroy_perfcounters(&device->ac_perfcounters);
device->ws->destroy(device->ws);
disk_cache_destroy(device->disk_cache);
if (device->local_fd != -1)
close(device->local_fd);
if (device->master_fd != -1)
close(device->master_fd);
vk_physical_device_finish(&device->vk);
vk_free(&device->instance->vk.alloc, device);
}
static const struct debug_control radv_debug_options[] = {
{"nofastclears", RADV_DEBUG_NO_FAST_CLEARS},
{"nodcc", RADV_DEBUG_NO_DCC},
{"shaders", RADV_DEBUG_DUMP_SHADERS},
{"nocache", RADV_DEBUG_NO_CACHE},
{"shaderstats", RADV_DEBUG_DUMP_SHADER_STATS},
{"nohiz", RADV_DEBUG_NO_HIZ},
{"nocompute", RADV_DEBUG_NO_COMPUTE_QUEUE},
{"allbos", RADV_DEBUG_ALL_BOS},
{"noibs", RADV_DEBUG_NO_IBS},
{"spirv", RADV_DEBUG_DUMP_SPIRV},
{"vmfaults", RADV_DEBUG_VM_FAULTS},
{"zerovram", RADV_DEBUG_ZERO_VRAM},
{"syncshaders", RADV_DEBUG_SYNC_SHADERS},
{"preoptir", RADV_DEBUG_PREOPTIR},
{"nodynamicbounds", RADV_DEBUG_NO_DYNAMIC_BOUNDS},
{"nooutoforder", RADV_DEBUG_NO_OUT_OF_ORDER},
{"info", RADV_DEBUG_INFO},
{"startup", RADV_DEBUG_STARTUP},
{"checkir", RADV_DEBUG_CHECKIR},
{"nobinning", RADV_DEBUG_NOBINNING},
{"nongg", RADV_DEBUG_NO_NGG},
{"metashaders", RADV_DEBUG_DUMP_META_SHADERS},
{"nomemorycache", RADV_DEBUG_NO_MEMORY_CACHE},
{"discardtodemote", RADV_DEBUG_DISCARD_TO_DEMOTE},
{"llvm", RADV_DEBUG_LLVM},
{"forcecompress", RADV_DEBUG_FORCE_COMPRESS},
{"hang", RADV_DEBUG_HANG},
{"img", RADV_DEBUG_IMG},
{"noumr", RADV_DEBUG_NO_UMR},
{"invariantgeom", RADV_DEBUG_INVARIANT_GEOM},
{"splitfma", RADV_DEBUG_SPLIT_FMA},
{"nodisplaydcc", RADV_DEBUG_NO_DISPLAY_DCC},
{"notccompatcmask", RADV_DEBUG_NO_TC_COMPAT_CMASK},
{"novrsflatshading", RADV_DEBUG_NO_VRS_FLAT_SHADING},
{"noatocdithering", RADV_DEBUG_NO_ATOC_DITHERING},
{"nonggc", RADV_DEBUG_NO_NGGC},
{"prologs", RADV_DEBUG_DUMP_PROLOGS},
{"nodma", RADV_DEBUG_NO_DMA_BLIT},
{"epilogs", RADV_DEBUG_DUMP_EPILOGS},
{NULL, 0}};
const char *
radv_get_debug_option_name(int id)
{
assert(id < ARRAY_SIZE(radv_debug_options) - 1);
return radv_debug_options[id].string;
}
static const struct debug_control radv_perftest_options[] = {{"localbos", RADV_PERFTEST_LOCAL_BOS},
{"dccmsaa", RADV_PERFTEST_DCC_MSAA},
{"bolist", RADV_PERFTEST_BO_LIST},
{"cswave32", RADV_PERFTEST_CS_WAVE_32},
{"pswave32", RADV_PERFTEST_PS_WAVE_32},
{"gewave32", RADV_PERFTEST_GE_WAVE_32},
{"nosam", RADV_PERFTEST_NO_SAM},
{"sam", RADV_PERFTEST_SAM},
{"rt", RADV_PERFTEST_RT},
{"nggc", RADV_PERFTEST_NGGC},
{"emulate_rt", RADV_PERFTEST_EMULATE_RT},
{"nv_ms", RADV_PERFTEST_NV_MS},
{"rtwave64", RADV_PERFTEST_RT_WAVE_64},
{NULL, 0}};
const char *
radv_get_perftest_option_name(int id)
{
assert(id < ARRAY_SIZE(radv_perftest_options) - 1);
return radv_perftest_options[id].string;
}
// clang-format off
static const driOptionDescription radv_dri_options[] = {
DRI_CONF_SECTION_PERFORMANCE
DRI_CONF_ADAPTIVE_SYNC(true)
DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
DRI_CONF_VK_X11_STRICT_IMAGE_COUNT(false)
DRI_CONF_VK_X11_ENSURE_MIN_IMAGE_COUNT(false)
DRI_CONF_VK_XWAYLAND_WAIT_READY(true)
DRI_CONF_RADV_REPORT_LLVM9_VERSION_STRING(false)
DRI_CONF_RADV_ENABLE_MRT_OUTPUT_NAN_FIXUP(false)
DRI_CONF_RADV_DISABLE_SHRINK_IMAGE_STORE(false)
DRI_CONF_RADV_NO_DYNAMIC_BOUNDS(false)
DRI_CONF_RADV_ABSOLUTE_DEPTH_BIAS(false)
DRI_CONF_RADV_OVERRIDE_UNIFORM_OFFSET_ALIGNMENT(0)
DRI_CONF_SECTION_END
DRI_CONF_SECTION_DEBUG
DRI_CONF_OVERRIDE_VRAM_SIZE()
DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST(false)
DRI_CONF_RADV_ZERO_VRAM(false)
DRI_CONF_RADV_LOWER_DISCARD_TO_DEMOTE(false)
DRI_CONF_RADV_INVARIANT_GEOM(false)
DRI_CONF_RADV_SPLIT_FMA(false)
DRI_CONF_RADV_DISABLE_TC_COMPAT_HTILE_GENERAL(false)
DRI_CONF_RADV_DISABLE_DCC(false)
DRI_CONF_RADV_REQUIRE_ETC2(false)
DRI_CONF_RADV_DISABLE_ANISO_SINGLE_LEVEL(false)
DRI_CONF_RADV_DISABLE_SINKING_LOAD_INPUT_FS(false)
DRI_CONF_RADV_DGC(false)
DRI_CONF_SECTION_END
};
// clang-format on
static void
radv_init_dri_options(struct radv_instance *instance)
{
driParseOptionInfo(&instance->available_dri_options, radv_dri_options,
ARRAY_SIZE(radv_dri_options));
driParseConfigFiles(&instance->dri_options, &instance->available_dri_options, 0, "radv", NULL, NULL,
instance->vk.app_info.app_name, instance->vk.app_info.app_version,
instance->vk.app_info.engine_name, instance->vk.app_info.engine_version);
instance->enable_mrt_output_nan_fixup =
driQueryOptionb(&instance->dri_options, "radv_enable_mrt_output_nan_fixup");
instance->disable_shrink_image_store =
driQueryOptionb(&instance->dri_options, "radv_disable_shrink_image_store");
instance->absolute_depth_bias =
driQueryOptionb(&instance->dri_options, "radv_absolute_depth_bias");
instance->disable_tc_compat_htile_in_general =
driQueryOptionb(&instance->dri_options, "radv_disable_tc_compat_htile_general");
if (driQueryOptionb(&instance->dri_options, "radv_no_dynamic_bounds"))
instance->debug_flags |= RADV_DEBUG_NO_DYNAMIC_BOUNDS;
if (driQueryOptionb(&instance->dri_options, "radv_lower_discard_to_demote"))
instance->debug_flags |= RADV_DEBUG_DISCARD_TO_DEMOTE;
if (driQueryOptionb(&instance->dri_options, "radv_invariant_geom"))
instance->debug_flags |= RADV_DEBUG_INVARIANT_GEOM;
if (driQueryOptionb(&instance->dri_options, "radv_split_fma"))
instance->debug_flags |= RADV_DEBUG_SPLIT_FMA;
if (driQueryOptionb(&instance->dri_options, "radv_disable_dcc"))
instance->debug_flags |= RADV_DEBUG_NO_DCC;
instance->zero_vram =
driQueryOptionb(&instance->dri_options, "radv_zero_vram");
instance->disable_aniso_single_level =
driQueryOptionb(&instance->dri_options, "radv_disable_aniso_single_level");
instance->disable_sinking_load_input_fs =
driQueryOptionb(&instance->dri_options, "radv_disable_sinking_load_input_fs");
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_CreateInstance(const VkInstanceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkInstance *pInstance)
{
struct radv_instance *instance;
VkResult result;
if (!pAllocator)
pAllocator = vk_default_allocator();
instance = vk_zalloc(pAllocator, sizeof(*instance), 8, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!instance)
return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
struct vk_instance_dispatch_table dispatch_table;
vk_instance_dispatch_table_from_entrypoints(&dispatch_table, &radv_instance_entrypoints, true);
vk_instance_dispatch_table_from_entrypoints(&dispatch_table, &wsi_instance_entrypoints, false);
struct vk_instance_extension_table extensions_supported = radv_instance_extensions_supported;
result = vk_instance_init(&instance->vk, &extensions_supported, &dispatch_table,
pCreateInfo, pAllocator);
if (result != VK_SUCCESS) {
vk_free(pAllocator, instance);
return vk_error(instance, result);
}
instance->debug_flags = parse_debug_string(getenv("RADV_DEBUG"), radv_debug_options);
instance->perftest_flags = parse_debug_string(getenv("RADV_PERFTEST"), radv_perftest_options);
if (instance->debug_flags & RADV_DEBUG_STARTUP)
fprintf(stderr, "radv: info: Created an instance.\n");
instance->physical_devices_enumerated = false;
list_inithead(&instance->physical_devices);
VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
radv_init_dri_options(instance);
*pInstance = radv_instance_to_handle(instance);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
radv_DestroyInstance(VkInstance _instance, const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
if (!instance)
return;
list_for_each_entry_safe(struct radv_physical_device, pdevice, &instance->physical_devices, link)
{
radv_physical_device_destroy(pdevice);
}
VG(VALGRIND_DESTROY_MEMPOOL(instance));
driDestroyOptionCache(&instance->dri_options);
driDestroyOptionInfo(&instance->available_dri_options);
vk_instance_finish(&instance->vk);
vk_free(&instance->vk.alloc, instance);
}
static VkResult
radv_enumerate_physical_devices(struct radv_instance *instance)
{
if (instance->physical_devices_enumerated)
return VK_SUCCESS;
instance->physical_devices_enumerated = true;
VkResult result = VK_SUCCESS;
if (getenv("RADV_FORCE_FAMILY")) {
/* When RADV_FORCE_FAMILY is set, the driver creates a nul
* device that allows to test the compiler without having an
* AMDGPU instance.
*/
struct radv_physical_device *pdevice;
result = radv_physical_device_try_create(instance, NULL, &pdevice);
if (result != VK_SUCCESS)
return result;
list_addtail(&pdevice->link, &instance->physical_devices);
return VK_SUCCESS;
}
#ifndef _WIN32
/* TODO: Check for more devices ? */
drmDevicePtr devices[8];
int max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
if (instance->debug_flags & RADV_DEBUG_STARTUP)
fprintf(stderr, "radv: info: Found %d drm nodes.\n", max_devices);
if (max_devices < 1)
return vk_error(instance, VK_SUCCESS);
for (unsigned i = 0; i < (unsigned)max_devices; i++) {
if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
devices[i]->bustype == DRM_BUS_PCI &&
devices[i]->deviceinfo.pci->vendor_id == ATI_VENDOR_ID) {
struct radv_physical_device *pdevice;
result = radv_physical_device_try_create(instance, devices[i], &pdevice);
/* Incompatible DRM device, skip. */
if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
result = VK_SUCCESS;
continue;
}
/* Error creating the physical device, report the error. */
if (result != VK_SUCCESS)
break;
list_addtail(&pdevice->link, &instance->physical_devices);
}
}
drmFreeDevices(devices, max_devices);
#endif
/* If we successfully enumerated any devices, call it success */
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_EnumeratePhysicalDevices(VkInstance _instance, uint32_t *pPhysicalDeviceCount,
VkPhysicalDevice *pPhysicalDevices)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
VK_OUTARRAY_MAKE_TYPED(VkPhysicalDevice, out, pPhysicalDevices, pPhysicalDeviceCount);
VkResult result = radv_enumerate_physical_devices(instance);
if (result != VK_SUCCESS)
return result;
list_for_each_entry(struct radv_physical_device, pdevice, &instance->physical_devices, link)
{
vk_outarray_append_typed(VkPhysicalDevice, &out, i)
{
*i = radv_physical_device_to_handle(pdevice);
}
}
return vk_outarray_status(&out);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_EnumeratePhysicalDeviceGroups(VkInstance _instance, uint32_t *pPhysicalDeviceGroupCount,
VkPhysicalDeviceGroupProperties *pPhysicalDeviceGroupProperties)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
VK_OUTARRAY_MAKE_TYPED(VkPhysicalDeviceGroupProperties, out, pPhysicalDeviceGroupProperties,
pPhysicalDeviceGroupCount);
VkResult result = radv_enumerate_physical_devices(instance);
if (result != VK_SUCCESS)
return result;
list_for_each_entry(struct radv_physical_device, pdevice, &instance->physical_devices, link)
{
vk_outarray_append_typed(VkPhysicalDeviceGroupProperties, &out, p)
{
p->physicalDeviceCount = 1;
memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
p->physicalDevices[0] = radv_physical_device_to_handle(pdevice);
p->subsetAllocation = false;
}
}
return vk_outarray_status(&out);
}
VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures *pFeatures)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
memset(pFeatures, 0, sizeof(*pFeatures));
*pFeatures = (VkPhysicalDeviceFeatures){
.robustBufferAccess = true,
.fullDrawIndexUint32 = true,
.imageCubeArray = true,
.independentBlend = true,
.geometryShader = true,
.tessellationShader = true,
.sampleRateShading = true,
.dualSrcBlend = true,
.logicOp = true,
.multiDrawIndirect = true,
.drawIndirectFirstInstance = true,
.depthClamp = true,
.depthBiasClamp = true,
.fillModeNonSolid = true,
.depthBounds = true,
.wideLines = true,
.largePoints = true,
.alphaToOne = false,
.multiViewport = true,
.samplerAnisotropy = true,
.textureCompressionETC2 = radv_device_supports_etc(pdevice) || pdevice->emulate_etc2,
.textureCompressionASTC_LDR = false,
.textureCompressionBC = true,
.occlusionQueryPrecise = true,
.pipelineStatisticsQuery = true,
.vertexPipelineStoresAndAtomics = true,
.fragmentStoresAndAtomics = true,
.shaderTessellationAndGeometryPointSize = true,
.shaderImageGatherExtended = true,
.shaderStorageImageExtendedFormats = true,
.shaderStorageImageMultisample = true,
.shaderUniformBufferArrayDynamicIndexing = true,
.shaderSampledImageArrayDynamicIndexing = true,
.shaderStorageBufferArrayDynamicIndexing = true,
.shaderStorageImageArrayDynamicIndexing = true,
.shaderStorageImageReadWithoutFormat = true,
.shaderStorageImageWriteWithoutFormat = true,
.shaderClipDistance = true,
.shaderCullDistance = true,
.shaderFloat64 = true,
.shaderInt64 = true,
.shaderInt16 = true,
.sparseBinding = true,
.sparseResidencyBuffer = pdevice->rad_info.family >= CHIP_POLARIS10,
.sparseResidencyImage2D = pdevice->rad_info.family >= CHIP_POLARIS10,
.sparseResidencyAliased = pdevice->rad_info.family >= CHIP_POLARIS10,
.variableMultisampleRate = true,
.shaderResourceMinLod = true,
.shaderResourceResidency = true,
.inheritedQueries = true,
};
}
static void
radv_get_physical_device_features_1_1(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan11Features *f)
{
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
f->storageBuffer16BitAccess = true;
f->uniformAndStorageBuffer16BitAccess = true;
f->storagePushConstant16 = true;
f->storageInputOutput16 = pdevice->rad_info.has_packed_math_16bit;
f->multiview = true;
f->multiviewGeometryShader = true;
f->multiviewTessellationShader = true;
f->variablePointersStorageBuffer = true;
f->variablePointers = true;
f->protectedMemory = false;
f->samplerYcbcrConversion = true;
f->shaderDrawParameters = true;
}
static void
radv_get_physical_device_features_1_2(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan12Features *f)
{
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
f->samplerMirrorClampToEdge = true;
f->drawIndirectCount = true;
f->storageBuffer8BitAccess = true;
f->uniformAndStorageBuffer8BitAccess = true;
f->storagePushConstant8 = true;
f->shaderBufferInt64Atomics = true;
f->shaderSharedInt64Atomics = true;
f->shaderFloat16 = pdevice->rad_info.has_packed_math_16bit;
f->shaderInt8 = true;
f->descriptorIndexing = true;
f->shaderInputAttachmentArrayDynamicIndexing = true;
f->shaderUniformTexelBufferArrayDynamicIndexing = true;
f->shaderStorageTexelBufferArrayDynamicIndexing = true;
f->shaderUniformBufferArrayNonUniformIndexing = true;
f->shaderSampledImageArrayNonUniformIndexing = true;
f->shaderStorageBufferArrayNonUniformIndexing = true;
f->shaderStorageImageArrayNonUniformIndexing = true;
f->shaderInputAttachmentArrayNonUniformIndexing = true;
f->shaderUniformTexelBufferArrayNonUniformIndexing = true;
f->shaderStorageTexelBufferArrayNonUniformIndexing = true;
f->descriptorBindingUniformBufferUpdateAfterBind = true;
f->descriptorBindingSampledImageUpdateAfterBind = true;
f->descriptorBindingStorageImageUpdateAfterBind = true;
f->descriptorBindingStorageBufferUpdateAfterBind = true;
f->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
f->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
f->descriptorBindingUpdateUnusedWhilePending = true;
f->descriptorBindingPartiallyBound = true;
f->descriptorBindingVariableDescriptorCount = true;
f->runtimeDescriptorArray = true;
f->samplerFilterMinmax = true;
f->scalarBlockLayout = pdevice->rad_info.gfx_level >= GFX7;
f->imagelessFramebuffer = true;
f->uniformBufferStandardLayout = true;
f->shaderSubgroupExtendedTypes = true;
f->separateDepthStencilLayouts = true;
f->hostQueryReset = true;
f->timelineSemaphore = true, f->bufferDeviceAddress = true;
f->bufferDeviceAddressCaptureReplay = true;
f->bufferDeviceAddressMultiDevice = false;
f->vulkanMemoryModel = true;
f->vulkanMemoryModelDeviceScope = true;
f->vulkanMemoryModelAvailabilityVisibilityChains = false;
f->shaderOutputViewportIndex = true;
f->shaderOutputLayer = true;
f->subgroupBroadcastDynamicId = true;
}
static void
radv_get_physical_device_features_1_3(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan13Features *f)
{
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES);
f->robustImageAccess = true;
f->inlineUniformBlock = true;
f->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
f->pipelineCreationCacheControl = true;
f->privateData = true;
f->shaderDemoteToHelperInvocation = true;
f->shaderTerminateInvocation = true;
f->subgroupSizeControl = true;
f->computeFullSubgroups = true;
f->synchronization2 = true;
f->textureCompressionASTC_HDR = false;
f->shaderZeroInitializeWorkgroupMemory = true;
f->dynamicRendering = true;
f->shaderIntegerDotProduct = true;
f->maintenance4 = true;
}
VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures2 *pFeatures)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
radv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
VkPhysicalDeviceVulkan11Features core_1_1 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
};
radv_get_physical_device_features_1_1(pdevice, &core_1_1);
VkPhysicalDeviceVulkan12Features core_1_2 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
};
radv_get_physical_device_features_1_2(pdevice, &core_1_2);
VkPhysicalDeviceVulkan13Features core_1_3 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES,
};
radv_get_physical_device_features_1_3(pdevice, &core_1_3);
#define CORE_FEATURE(major, minor, feature) features->feature = core_##major##_##minor.feature
vk_foreach_struct(ext, pFeatures->pNext)
{
if (vk_get_physical_device_core_1_1_feature_ext(ext, &core_1_1))
continue;
if (vk_get_physical_device_core_1_2_feature_ext(ext, &core_1_2))
continue;
if (vk_get_physical_device_core_1_3_feature_ext(ext, &core_1_3))
continue;
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
(VkPhysicalDeviceConditionalRenderingFeaturesEXT *)ext;
features->conditionalRendering = true;
features->inheritedConditionalRendering = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
(VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
features->vertexAttributeInstanceRateDivisor = true;
features->vertexAttributeInstanceRateZeroDivisor = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
(VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
features->transformFeedback = pdevice->rad_info.gfx_level < GFX11;
features->geometryStreams = !pdevice->use_ngg_streamout && pdevice->rad_info.gfx_level < GFX11;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES: {
VkPhysicalDeviceScalarBlockLayoutFeatures *features =
(VkPhysicalDeviceScalarBlockLayoutFeatures *)ext;
CORE_FEATURE(1, 2, scalarBlockLayout);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PRIORITY_FEATURES_EXT: {
VkPhysicalDeviceMemoryPriorityFeaturesEXT *features =
(VkPhysicalDeviceMemoryPriorityFeaturesEXT *)ext;
features->memoryPriority = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features =
(VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *)ext;
CORE_FEATURE(1, 2, bufferDeviceAddress);
CORE_FEATURE(1, 2, bufferDeviceAddressCaptureReplay);
CORE_FEATURE(1, 2, bufferDeviceAddressMultiDevice);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
(VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
features->depthClipEnable = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
(VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
features->computeDerivativeGroupQuads = false;
features->computeDerivativeGroupLinear = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
(VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
features->ycbcrImageArrays = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
(VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
features->indexTypeUint8 = pdevice->rad_info.gfx_level >= GFX8;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
(VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
features->pipelineExecutableInfo = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
VkPhysicalDeviceShaderClockFeaturesKHR *features =
(VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
features->shaderSubgroupClock = true;
features->shaderDeviceClock = pdevice->rad_info.gfx_level >= GFX8;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
(VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
features->texelBufferAlignment = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COHERENT_MEMORY_FEATURES_AMD: {
VkPhysicalDeviceCoherentMemoryFeaturesAMD *features =
(VkPhysicalDeviceCoherentMemoryFeaturesAMD *)ext;
features->deviceCoherentMemory = pdevice->rad_info.has_l2_uncached;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
(VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
features->rectangularLines = false;
features->bresenhamLines = true;
features->smoothLines = false;
features->stippledRectangularLines = false;
/* FIXME: Some stippled Bresenham CTS fails on Vega10
* but work on Raven.
*/
features->stippledBresenhamLines = pdevice->rad_info.gfx_level != GFX9;
features->stippledSmoothLines = false;
break;
}
case VK_STRUCTURE_TYPE_DEVICE_MEMORY_OVERALLOCATION_CREATE_INFO_AMD: {
VkDeviceMemoryOverallocationCreateInfoAMD *features =
(VkDeviceMemoryOverallocationCreateInfoAMD *)ext;
features->overallocationBehavior = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
VkPhysicalDeviceRobustness2FeaturesEXT *features =
(VkPhysicalDeviceRobustness2FeaturesEXT *)ext;
features->robustBufferAccess2 = true;
features->robustImageAccess2 = true;
features->nullDescriptor = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
VkPhysicalDeviceCustomBorderColorFeaturesEXT *features =
(VkPhysicalDeviceCustomBorderColorFeaturesEXT *)ext;
features->customBorderColors = true;
features->customBorderColorWithoutFormat = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_FEATURES_EXT: {
VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *features =
(VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *)ext;
features->extendedDynamicState = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT: {
VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *features =
(VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *)ext;
features->shaderBufferFloat32Atomics = true;
features->shaderBufferFloat32AtomicAdd = false;
features->shaderBufferFloat64Atomics = true;
features->shaderBufferFloat64AtomicAdd = false;
features->shaderSharedFloat32Atomics = true;
features->shaderSharedFloat32AtomicAdd = pdevice->rad_info.gfx_level >= GFX8;
features->shaderSharedFloat64Atomics = true;
features->shaderSharedFloat64AtomicAdd = false;
features->shaderImageFloat32Atomics = true;
features->shaderImageFloat32AtomicAdd = false;
features->sparseImageFloat32Atomics = true;
features->sparseImageFloat32AtomicAdd = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_4444_FORMATS_FEATURES_EXT: {
VkPhysicalDevice4444FormatsFeaturesEXT *features =
(VkPhysicalDevice4444FormatsFeaturesEXT *)ext;
features->formatA4R4G4B4 = true;
features->formatA4B4G4R4 = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_IMAGE_ATOMIC_INT64_FEATURES_EXT: {
VkPhysicalDeviceShaderImageAtomicInt64FeaturesEXT *features =
(VkPhysicalDeviceShaderImageAtomicInt64FeaturesEXT *)ext;
features->shaderImageInt64Atomics = true;
features->sparseImageInt64Atomics = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MUTABLE_DESCRIPTOR_TYPE_FEATURES_VALVE: {
VkPhysicalDeviceMutableDescriptorTypeFeaturesVALVE *features =
(VkPhysicalDeviceMutableDescriptorTypeFeaturesVALVE *)ext;
features->mutableDescriptorType = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR: {
VkPhysicalDeviceFragmentShadingRateFeaturesKHR *features =
(VkPhysicalDeviceFragmentShadingRateFeaturesKHR *)ext;
features->pipelineFragmentShadingRate = true;
features->primitiveFragmentShadingRate = true;
features->attachmentFragmentShadingRate =
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_HIZ) &&
pdevice->rad_info.gfx_level < GFX11; /* TODO: VRS no longer uses HTILE. */
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_WORKGROUP_MEMORY_EXPLICIT_LAYOUT_FEATURES_KHR: {
VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR *features =
(VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR *)ext;
features->workgroupMemoryExplicitLayout = true;
features->workgroupMemoryExplicitLayoutScalarBlockLayout = true;
features->workgroupMemoryExplicitLayout8BitAccess = true;
features->workgroupMemoryExplicitLayout16BitAccess = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT: {
VkPhysicalDeviceProvokingVertexFeaturesEXT *features =
(VkPhysicalDeviceProvokingVertexFeaturesEXT *)ext;
features->provokingVertexLast = true;
features->transformFeedbackPreservesProvokingVertex = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_2_FEATURES_EXT: {
VkPhysicalDeviceExtendedDynamicState2FeaturesEXT *features =
(VkPhysicalDeviceExtendedDynamicState2FeaturesEXT *)ext;
features->extendedDynamicState2 = true;
features->extendedDynamicState2LogicOp = true;
features->extendedDynamicState2PatchControlPoints = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GLOBAL_PRIORITY_QUERY_FEATURES_KHR: {
VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR *features =
(VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR *)ext;
features->globalPriorityQuery = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR: {
VkPhysicalDeviceAccelerationStructureFeaturesKHR *features =
(VkPhysicalDeviceAccelerationStructureFeaturesKHR *)ext;
features->accelerationStructure = true;
features->accelerationStructureCaptureReplay = false;
features->accelerationStructureIndirectBuild = false;
features->accelerationStructureHostCommands = true;
features->descriptorBindingAccelerationStructureUpdateAfterBind = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_UNIFORM_CONTROL_FLOW_FEATURES_KHR: {
VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR *features =
(VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR *)ext;
features->shaderSubgroupUniformControlFlow = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_FEATURES_EXT: {
VkPhysicalDeviceMultiDrawFeaturesEXT *features = (VkPhysicalDeviceMultiDrawFeaturesEXT *)ext;
features->multiDraw = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COLOR_WRITE_ENABLE_FEATURES_EXT: {
VkPhysicalDeviceColorWriteEnableFeaturesEXT *features =
(VkPhysicalDeviceColorWriteEnableFeaturesEXT *)ext;
features->colorWriteEnable = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_2_FEATURES_EXT: {
VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT *features =
(VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT *)ext;
bool has_shader_buffer_float_minmax = radv_has_shader_buffer_float_minmax(pdevice);
bool has_shader_image_float_minmax =
pdevice->rad_info.gfx_level != GFX8 && pdevice->rad_info.gfx_level != GFX9;
features->shaderBufferFloat16Atomics = false;
features->shaderBufferFloat16AtomicAdd = false;
features->shaderBufferFloat16AtomicMinMax = false;
features->shaderBufferFloat32AtomicMinMax = has_shader_buffer_float_minmax;
features->shaderBufferFloat64AtomicMinMax = has_shader_buffer_float_minmax;
features->shaderSharedFloat16Atomics = false;
features->shaderSharedFloat16AtomicAdd = false;
features->shaderSharedFloat16AtomicMinMax = false;
features->shaderSharedFloat32AtomicMinMax = true;
features->shaderSharedFloat64AtomicMinMax = true;
features->shaderImageFloat32AtomicMinMax = has_shader_image_float_minmax;
features->sparseImageFloat32AtomicMinMax = has_shader_image_float_minmax;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVE_TOPOLOGY_LIST_RESTART_FEATURES_EXT: {
VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT *features =
(VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT *)ext;
features->primitiveTopologyListRestart = true;
features->primitiveTopologyPatchListRestart = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_QUERY_FEATURES_KHR: {
VkPhysicalDeviceRayQueryFeaturesKHR *features =
(VkPhysicalDeviceRayQueryFeaturesKHR *)ext;
features->rayQuery = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR: {
VkPhysicalDeviceRayTracingPipelineFeaturesKHR *features =
(VkPhysicalDeviceRayTracingPipelineFeaturesKHR *)ext;
features->rayTracingPipeline = true;
features->rayTracingPipelineShaderGroupHandleCaptureReplay = false;
features->rayTracingPipelineShaderGroupHandleCaptureReplayMixed = false;
features->rayTracingPipelineTraceRaysIndirect = true;
features->rayTraversalPrimitiveCulling = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_MAINTENANCE_1_FEATURES_KHR: {
VkPhysicalDeviceRayTracingMaintenance1FeaturesKHR *features =
(VkPhysicalDeviceRayTracingMaintenance1FeaturesKHR *)ext;
features->rayTracingMaintenance1 = true;
features->rayTracingPipelineTraceRaysIndirect2 = radv_enable_rt(pdevice, true);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES: {
VkPhysicalDeviceMaintenance4Features *features =
(VkPhysicalDeviceMaintenance4Features *)ext;
features->maintenance4 = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_INPUT_DYNAMIC_STATE_FEATURES_EXT: {
VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT *features =
(VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT *)ext;
features->vertexInputDynamicState = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_VIEW_MIN_LOD_FEATURES_EXT: {
VkPhysicalDeviceImageViewMinLodFeaturesEXT *features =
(VkPhysicalDeviceImageViewMinLodFeaturesEXT *)ext;
features->minLod = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SYNCHRONIZATION_2_FEATURES: {
VkPhysicalDeviceSynchronization2Features *features =
(VkPhysicalDeviceSynchronization2Features *)ext;
features->synchronization2 = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES: {
VkPhysicalDeviceDynamicRenderingFeatures *features =
(VkPhysicalDeviceDynamicRenderingFeatures *)ext;
features->dynamicRendering = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_FEATURES_NV: {
VkPhysicalDeviceMeshShaderFeaturesNV *features =
(VkPhysicalDeviceMeshShaderFeaturesNV *)ext;
features->meshShader = true;
features->taskShader = false; /* TODO */
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXTURE_COMPRESSION_ASTC_HDR_FEATURES: {
VkPhysicalDeviceTextureCompressionASTCHDRFeatures *features =
(VkPhysicalDeviceTextureCompressionASTCHDRFeatures *)ext;
features->textureCompressionASTC_HDR = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_SET_HOST_MAPPING_FEATURES_VALVE: {
VkPhysicalDeviceDescriptorSetHostMappingFeaturesVALVE *features =
(VkPhysicalDeviceDescriptorSetHostMappingFeaturesVALVE *)ext;
features->descriptorSetHostMapping = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_CONTROL_FEATURES_EXT: {
VkPhysicalDeviceDepthClipControlFeaturesEXT *features =
(VkPhysicalDeviceDepthClipControlFeaturesEXT *)ext;
features->depthClipControl = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_2D_VIEW_OF_3D_FEATURES_EXT: {
VkPhysicalDeviceImage2DViewOf3DFeaturesEXT *features =
(VkPhysicalDeviceImage2DViewOf3DFeaturesEXT *)ext;
features->image2DViewOf3D = true;
features->sampler2DViewOf3D = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_FUNCTIONS_2_FEATURES_INTEL: {
VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL *features =
(VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL *)ext;
features->shaderIntegerFunctions2 = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVES_GENERATED_QUERY_FEATURES_EXT: {
VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT *features =
(VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT *)ext;
features->primitivesGeneratedQuery = true;
features->primitivesGeneratedQueryWithRasterizerDiscard = true;
features->primitivesGeneratedQueryWithNonZeroStreams = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_NON_SEAMLESS_CUBE_MAP_FEATURES_EXT : {
VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT *features =
(VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT *)ext;
features->nonSeamlessCubeMap = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BORDER_COLOR_SWIZZLE_FEATURES_EXT: {
VkPhysicalDeviceBorderColorSwizzleFeaturesEXT *features =
(VkPhysicalDeviceBorderColorSwizzleFeaturesEXT *)ext;
features->borderColorSwizzle = true;
features->borderColorSwizzleFromImage = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_FEATURES_EXT: {
VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT *features =
(VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT *)ext;
features->shaderModuleIdentifier = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_FEATURES_KHR: {
VkPhysicalDevicePerformanceQueryFeaturesKHR *features =
(VkPhysicalDevicePerformanceQueryFeaturesKHR *)ext;
features->performanceCounterQueryPools = radv_perf_query_supported(pdevice);
features->performanceCounterMultipleQueryPools = features->performanceCounterQueryPools;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_GENERATED_COMMANDS_FEATURES_NV: {
VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV *features =
(VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV *)ext;
features->deviceGeneratedCommands = true;
break;
}
default:
break;
}
}
}
static size_t
radv_max_descriptor_set_size()
{
/* make sure that the entire descriptor set is addressable with a signed
* 32-bit int. So the sum of all limits scaled by descriptor size has to
* be at most 2 GiB. the combined image & samples object count as one of
* both. This limit is for the pipeline layout, not for the set layout, but
* there is no set limit, so we just set a pipeline limit. I don't think
* any app is going to hit this soon. */
return ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS -
MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) /
(32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
32 /* storage buffer, 32 due to potential space wasted on alignment */ +
32 /* sampler, largest when combined with image */ + 64 /* sampled image */ +
64 /* storage image */);
}
static uint32_t
radv_uniform_buffer_offset_alignment(const struct radv_physical_device *pdevice)
{
uint32_t uniform_offset_alignment =
driQueryOptioni(&pdevice->instance->dri_options, "radv_override_uniform_offset_alignment");
if (!util_is_power_of_two_or_zero(uniform_offset_alignment)) {
fprintf(stderr,
"ERROR: invalid radv_override_uniform_offset_alignment setting %d:"
"not a power of two\n",
uniform_offset_alignment);
uniform_offset_alignment = 0;
}
/* Take at least the hardware limit. */
return MAX2(uniform_offset_alignment, 4);
}
VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties *pProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
VkSampleCountFlags sample_counts = 0xf;
size_t max_descriptor_set_size = radv_max_descriptor_set_size();
VkPhysicalDeviceLimits limits = {
.maxImageDimension1D = (1 << 14),
.maxImageDimension2D = (1 << 14),
.maxImageDimension3D = (1 << 11),
.maxImageDimensionCube = (1 << 14),
.maxImageArrayLayers = (1 << 11),
.maxTexelBufferElements = UINT32_MAX,
.maxUniformBufferRange = UINT32_MAX,
.maxStorageBufferRange = UINT32_MAX,
.maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
.maxMemoryAllocationCount = UINT32_MAX,
.maxSamplerAllocationCount = 64 * 1024,
.bufferImageGranularity = 1,
.sparseAddressSpaceSize = RADV_MAX_MEMORY_ALLOCATION_SIZE, /* buffer max size */
.maxBoundDescriptorSets = MAX_SETS,
.maxPerStageDescriptorSamplers = max_descriptor_set_size,
.maxPerStageDescriptorUniformBuffers = max_descriptor_set_size,
.maxPerStageDescriptorStorageBuffers = max_descriptor_set_size,
.maxPerStageDescriptorSampledImages = max_descriptor_set_size,
.maxPerStageDescriptorStorageImages = max_descriptor_set_size,
.maxPerStageDescriptorInputAttachments = max_descriptor_set_size,
.maxPerStageResources = max_descriptor_set_size,
.maxDescriptorSetSamplers = max_descriptor_set_size,
.maxDescriptorSetUniformBuffers = max_descriptor_set_size,
.maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS,
.maxDescriptorSetStorageBuffers = max_descriptor_set_size,
.maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS,
.maxDescriptorSetSampledImages = max_descriptor_set_size,
.maxDescriptorSetStorageImages = max_descriptor_set_size,
.maxDescriptorSetInputAttachments = max_descriptor_set_size,
.maxVertexInputAttributes = MAX_VERTEX_ATTRIBS,
.maxVertexInputBindings = MAX_VBS,
.maxVertexInputAttributeOffset = UINT32_MAX,
.maxVertexInputBindingStride = 2048,
.maxVertexOutputComponents = 128,
.maxTessellationGenerationLevel = 64,
.maxTessellationPatchSize = 32,
.maxTessellationControlPerVertexInputComponents = 128,
.maxTessellationControlPerVertexOutputComponents = 128,
.maxTessellationControlPerPatchOutputComponents = 120,
.maxTessellationControlTotalOutputComponents = 4096,
.maxTessellationEvaluationInputComponents = 128,
.maxTessellationEvaluationOutputComponents = 128,
.maxGeometryShaderInvocations = 127,
.maxGeometryInputComponents = 64,
.maxGeometryOutputComponents = 128,
.maxGeometryOutputVertices = 256,
.maxGeometryTotalOutputComponents = 1024,
.maxFragmentInputComponents = 128,
.maxFragmentOutputAttachments = 8,
.maxFragmentDualSrcAttachments = 1,
.maxFragmentCombinedOutputResources = max_descriptor_set_size,
.maxComputeSharedMemorySize = pdevice->rad_info.gfx_level >= GFX7 ? 65536 : 32768,
.maxComputeWorkGroupCount = {65535, 65535, 65535},
.maxComputeWorkGroupInvocations = 1024,
.maxComputeWorkGroupSize = {1024, 1024, 1024},
.subPixelPrecisionBits = 8,
.subTexelPrecisionBits = 8,
.mipmapPrecisionBits = 8,
.maxDrawIndexedIndexValue = UINT32_MAX,
.maxDrawIndirectCount = UINT32_MAX,
.maxSamplerLodBias = 16,
.maxSamplerAnisotropy = 16,
.maxViewports = MAX_VIEWPORTS,
.maxViewportDimensions = {(1 << 14), (1 << 14)},
.viewportBoundsRange = {INT16_MIN, INT16_MAX},
.viewportSubPixelBits = 8,
.minMemoryMapAlignment = 4096, /* A page */
.minTexelBufferOffsetAlignment = 4,
.minUniformBufferOffsetAlignment = radv_uniform_buffer_offset_alignment(pdevice),
.minStorageBufferOffsetAlignment = 4,
.minTexelOffset = -32,
.maxTexelOffset = 31,
.minTexelGatherOffset = -32,
.maxTexelGatherOffset = 31,
.minInterpolationOffset = -2,
.maxInterpolationOffset = 2,
.subPixelInterpolationOffsetBits = 8,
.maxFramebufferWidth = MAX_FRAMEBUFFER_WIDTH,
.maxFramebufferHeight = MAX_FRAMEBUFFER_HEIGHT,
.maxFramebufferLayers = (1 << 10),
.framebufferColorSampleCounts = sample_counts,
.framebufferDepthSampleCounts = sample_counts,
.framebufferStencilSampleCounts = sample_counts,
.framebufferNoAttachmentsSampleCounts = sample_counts,
.maxColorAttachments = MAX_RTS,
.sampledImageColorSampleCounts = sample_counts,
.sampledImageIntegerSampleCounts = sample_counts,
.sampledImageDepthSampleCounts = sample_counts,
.sampledImageStencilSampleCounts = sample_counts,
.storageImageSampleCounts = sample_counts,
.maxSampleMaskWords = 1,
.timestampComputeAndGraphics = true,
.timestampPeriod = 1000000.0 / pdevice->rad_info.clock_crystal_freq,
.maxClipDistances = 8,
.maxCullDistances = 8,
.maxCombinedClipAndCullDistances = 8,
.discreteQueuePriorities = 2,
.pointSizeRange = {0.0, 8191.875},
.lineWidthRange = {0.0, 8191.875},
.pointSizeGranularity = (1.0 / 8.0),
.lineWidthGranularity = (1.0 / 8.0),
.strictLines = false, /* FINISHME */
.standardSampleLocations = true,
.optimalBufferCopyOffsetAlignment = 1,
.optimalBufferCopyRowPitchAlignment = 1,
.nonCoherentAtomSize = 64,
};
VkPhysicalDeviceType device_type;
if (pdevice->rad_info.has_dedicated_vram) {
device_type = VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU;
} else {
device_type = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
}
*pProperties = (VkPhysicalDeviceProperties){
.apiVersion = RADV_API_VERSION,
.driverVersion = vk_get_driver_version(),
.vendorID = ATI_VENDOR_ID,
.deviceID = pdevice->rad_info.pci_id,
.deviceType = device_type,
.limits = limits,
.sparseProperties =
{
.residencyNonResidentStrict = pdevice->rad_info.family >= CHIP_POLARIS10,
.residencyStandard2DBlockShape = pdevice->rad_info.family >= CHIP_POLARIS10,
},
};
strcpy(pProperties->deviceName, pdevice->marketing_name);
memcpy(pProperties->pipelineCacheUUID, pdevice->cache_uuid, VK_UUID_SIZE);
}
static void
radv_get_physical_device_properties_1_1(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan11Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
memset(p->deviceLUID, 0, VK_LUID_SIZE);
/* The LUID is for Windows. */
p->deviceLUIDValid = false;
p->deviceNodeMask = 0;
p->subgroupSize = RADV_SUBGROUP_SIZE;
p->subgroupSupportedStages = VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT;
p->subgroupSupportedOperations =
VK_SUBGROUP_FEATURE_BASIC_BIT | VK_SUBGROUP_FEATURE_VOTE_BIT |
VK_SUBGROUP_FEATURE_ARITHMETIC_BIT | VK_SUBGROUP_FEATURE_BALLOT_BIT |
VK_SUBGROUP_FEATURE_CLUSTERED_BIT | VK_SUBGROUP_FEATURE_QUAD_BIT |
VK_SUBGROUP_FEATURE_SHUFFLE_BIT | VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT;
p->subgroupQuadOperationsInAllStages = true;
p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
p->maxMultiviewViewCount = MAX_VIEWS;
p->maxMultiviewInstanceIndex = INT_MAX;
p->protectedNoFault = false;
p->maxPerSetDescriptors = RADV_MAX_PER_SET_DESCRIPTORS;
p->maxMemoryAllocationSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
}
static void
radv_get_physical_device_properties_1_2(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan12Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
p->driverID = VK_DRIVER_ID_MESA_RADV;
snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE, "radv");
snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE, "Mesa " PACKAGE_VERSION MESA_GIT_SHA1 "%s",
radv_get_compiler_string(pdevice));
if (radv_is_conformant(pdevice)) {
if (pdevice->rad_info.gfx_level >= GFX10_3) {
p->conformanceVersion = (VkConformanceVersion){
.major = 1,
.minor = 3,
.subminor = 0,
.patch = 0,
};
} else {
p->conformanceVersion = (VkConformanceVersion){
.major = 1,
.minor = 2,
.subminor = 7,
.patch = 1,
};
}
} else {
p->conformanceVersion = (VkConformanceVersion){
.major = 0,
.minor = 0,
.subminor = 0,
.patch = 0,
};
}
/* On AMD hardware, denormals and rounding modes for fp16/fp64 are
* controlled by the same config register.
*/
if (pdevice->rad_info.has_packed_math_16bit) {
p->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY;
p->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY;
} else {
p->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL;
p->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL;
}
/* With LLVM, do not allow both preserving and flushing denorms because
* different shaders in the same pipeline can have different settings and
* this won't work for merged shaders. To make it work, this requires LLVM
* support for changing the register. The same logic applies for the
* rounding modes because they are configured with the same config
* register.
*/
p->shaderDenormFlushToZeroFloat32 = true;
p->shaderDenormPreserveFloat32 = !pdevice->use_llvm;
p->shaderRoundingModeRTEFloat32 = true;
p->shaderRoundingModeRTZFloat32 = !pdevice->use_llvm;
p->shaderSignedZeroInfNanPreserveFloat32 = true;
p->shaderDenormFlushToZeroFloat16 =
pdevice->rad_info.has_packed_math_16bit && !pdevice->use_llvm;
p->shaderDenormPreserveFloat16 = pdevice->rad_info.has_packed_math_16bit;
p->shaderRoundingModeRTEFloat16 = pdevice->rad_info.has_packed_math_16bit;
p->shaderRoundingModeRTZFloat16 = pdevice->rad_info.has_packed_math_16bit && !pdevice->use_llvm;
p->shaderSignedZeroInfNanPreserveFloat16 = pdevice->rad_info.has_packed_math_16bit;
p->shaderDenormFlushToZeroFloat64 = pdevice->rad_info.gfx_level >= GFX8 && !pdevice->use_llvm;
p->shaderDenormPreserveFloat64 = pdevice->rad_info.gfx_level >= GFX8;
p->shaderRoundingModeRTEFloat64 = pdevice->rad_info.gfx_level >= GFX8;
p->shaderRoundingModeRTZFloat64 = pdevice->rad_info.gfx_level >= GFX8 && !pdevice->use_llvm;
p->shaderSignedZeroInfNanPreserveFloat64 = pdevice->rad_info.gfx_level >= GFX8;
p->maxUpdateAfterBindDescriptorsInAllPools = UINT32_MAX / 64;
p->shaderUniformBufferArrayNonUniformIndexingNative = false;
p->shaderSampledImageArrayNonUniformIndexingNative = false;
p->shaderStorageBufferArrayNonUniformIndexingNative = false;
p->shaderStorageImageArrayNonUniformIndexingNative = false;
p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
p->robustBufferAccessUpdateAfterBind = true;
p->quadDivergentImplicitLod = false;
size_t max_descriptor_set_size =
((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS -
MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) /
(32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
32 /* storage buffer, 32 due to potential space wasted on alignment */ +
32 /* sampler, largest when combined with image */ + 64 /* sampled image */ +
64 /* storage image */);
p->maxPerStageDescriptorUpdateAfterBindSamplers = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindInputAttachments = max_descriptor_set_size;
p->maxPerStageUpdateAfterBindResources = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindSamplers = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindUniformBuffers = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS;
p->maxDescriptorSetUpdateAfterBindStorageBuffers = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS;
p->maxDescriptorSetUpdateAfterBindSampledImages = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindStorageImages = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindInputAttachments = max_descriptor_set_size;
/* We support all of the depth resolve modes */
p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT |
VK_RESOLVE_MODE_AVERAGE_BIT | VK_RESOLVE_MODE_MIN_BIT |
VK_RESOLVE_MODE_MAX_BIT;
/* Average doesn't make sense for stencil so we don't support that */
p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT |
VK_RESOLVE_MODE_MIN_BIT | VK_RESOLVE_MODE_MAX_BIT;
p->independentResolveNone = true;
p->independentResolve = true;
/* GFX6-8 only support single channel min/max filter. */
p->filterMinmaxImageComponentMapping = pdevice->rad_info.gfx_level >= GFX9;
p->filterMinmaxSingleComponentFormats = true;
p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
p->framebufferIntegerColorSampleCounts = VK_SAMPLE_COUNT_1_BIT;
}
static void
radv_get_physical_device_properties_1_3(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan13Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES);
p->minSubgroupSize = 64;
p->maxSubgroupSize = 64;
p->maxComputeWorkgroupSubgroups = UINT32_MAX;
p->requiredSubgroupSizeStages = 0;
if (pdevice->rad_info.gfx_level >= GFX10) {
/* Only GFX10+ supports wave32. */
p->minSubgroupSize = 32;
p->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
}
p->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
p->maxPerStageDescriptorInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
p->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
p->maxDescriptorSetInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
p->maxDescriptorSetUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
p->maxInlineUniformTotalSize = UINT16_MAX;
bool accel = pdevice->rad_info.has_accelerated_dot_product;
p->integerDotProduct8BitUnsignedAccelerated = accel;
p->integerDotProduct8BitSignedAccelerated = accel;
p->integerDotProduct8BitMixedSignednessAccelerated = false;
p->integerDotProduct4x8BitPackedUnsignedAccelerated = accel;
p->integerDotProduct4x8BitPackedSignedAccelerated = accel;
p->integerDotProduct4x8BitPackedMixedSignednessAccelerated = false;
p->integerDotProduct16BitUnsignedAccelerated = accel;
p->integerDotProduct16BitSignedAccelerated = accel;
p->integerDotProduct16BitMixedSignednessAccelerated = false;
p->integerDotProduct32BitUnsignedAccelerated = false;
p->integerDotProduct32BitSignedAccelerated = false;
p->integerDotProduct32BitMixedSignednessAccelerated = false;
p->integerDotProduct64BitUnsignedAccelerated = false;
p->integerDotProduct64BitSignedAccelerated = false;
p->integerDotProduct64BitMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating8BitUnsignedAccelerated = accel;
p->integerDotProductAccumulatingSaturating8BitSignedAccelerated = accel;
p->integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated = accel;
p->integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated = accel;
p->integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating16BitUnsignedAccelerated = accel;
p->integerDotProductAccumulatingSaturating16BitSignedAccelerated = accel;
p->integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating32BitUnsignedAccelerated = false;
p->integerDotProductAccumulatingSaturating32BitSignedAccelerated = false;
p->integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating64BitUnsignedAccelerated = false;
p->integerDotProductAccumulatingSaturating64BitSignedAccelerated = false;
p->integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated = false;
p->storageTexelBufferOffsetAlignmentBytes = 4;
p->storageTexelBufferOffsetSingleTexelAlignment = true;
p->uniformTexelBufferOffsetAlignmentBytes = 4;
p->uniformTexelBufferOffsetSingleTexelAlignment = true;
p->maxBufferSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
}
VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties2 *pProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
radv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
VkPhysicalDeviceVulkan11Properties core_1_1 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
};
radv_get_physical_device_properties_1_1(pdevice, &core_1_1);
VkPhysicalDeviceVulkan12Properties core_1_2 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
};
radv_get_physical_device_properties_1_2(pdevice, &core_1_2);
VkPhysicalDeviceVulkan13Properties core_1_3 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES,
};
radv_get_physical_device_properties_1_3(pdevice, &core_1_3);
vk_foreach_struct(ext, pProperties->pNext)
{
if (vk_get_physical_device_core_1_1_property_ext(ext, &core_1_1))
continue;
if (vk_get_physical_device_core_1_2_property_ext(ext, &core_1_2))
continue;
if (vk_get_physical_device_core_1_3_property_ext(ext, &core_1_3))
continue;
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
(VkPhysicalDevicePushDescriptorPropertiesKHR *)ext;
properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT: {
VkPhysicalDeviceDiscardRectanglePropertiesEXT *properties =
(VkPhysicalDeviceDiscardRectanglePropertiesEXT *)ext;
properties->maxDiscardRectangles = MAX_DISCARD_RECTANGLES;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
VkPhysicalDeviceExternalMemoryHostPropertiesEXT *properties =
(VkPhysicalDeviceExternalMemoryHostPropertiesEXT *)ext;
properties->minImportedHostPointerAlignment = 4096;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD: {
VkPhysicalDeviceShaderCorePropertiesAMD *properties =
(VkPhysicalDeviceShaderCorePropertiesAMD *)ext;
/* Shader engines. */
properties->shaderEngineCount = pdevice->rad_info.max_se;
properties->shaderArraysPerEngineCount = pdevice->rad_info.max_sa_per_se;
properties->computeUnitsPerShaderArray = pdevice->rad_info.min_good_cu_per_sa;
properties->simdPerComputeUnit = pdevice->rad_info.num_simd_per_compute_unit;
properties->wavefrontsPerSimd = pdevice->rad_info.max_wave64_per_simd;
properties->wavefrontSize = 64;
/* SGPR. */
properties->sgprsPerSimd = pdevice->rad_info.num_physical_sgprs_per_simd;
properties->minSgprAllocation = pdevice->rad_info.min_sgpr_alloc;
properties->maxSgprAllocation = pdevice->rad_info.max_sgpr_alloc;
properties->sgprAllocationGranularity = pdevice->rad_info.sgpr_alloc_granularity;
/* VGPR. */
properties->vgprsPerSimd = pdevice->rad_info.num_physical_wave64_vgprs_per_simd;
properties->minVgprAllocation = pdevice->rad_info.min_wave64_vgpr_alloc;
properties->maxVgprAllocation = pdevice->rad_info.max_vgpr_alloc;
properties->vgprAllocationGranularity = pdevice->rad_info.wave64_vgpr_alloc_granularity;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_2_AMD: {
VkPhysicalDeviceShaderCoreProperties2AMD *properties =
(VkPhysicalDeviceShaderCoreProperties2AMD *)ext;
properties->shaderCoreFeatures = 0;
properties->activeComputeUnitCount = pdevice->rad_info.num_good_compute_units;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *properties =
(VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
properties->maxVertexAttribDivisor = UINT32_MAX;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT: {
VkPhysicalDeviceConservativeRasterizationPropertiesEXT *properties =
(VkPhysicalDeviceConservativeRasterizationPropertiesEXT *)ext;
properties->primitiveOverestimationSize = 0;
properties->maxExtraPrimitiveOverestimationSize = 0;
properties->extraPrimitiveOverestimationSizeGranularity = 0;
properties->primitiveUnderestimation = false;
properties->conservativePointAndLineRasterization = false;
properties->degenerateTrianglesRasterized = true;
properties->degenerateLinesRasterized = false;
properties->fullyCoveredFragmentShaderInputVariable = false;
properties->conservativeRasterizationPostDepthCoverage = false;
break;
}
#ifndef _WIN32
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
(VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
properties->pciDomain = pdevice->bus_info.domain;
properties->pciBus = pdevice->bus_info.bus;
properties->pciDevice = pdevice->bus_info.dev;
properties->pciFunction = pdevice->bus_info.func;
break;
}
#endif
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
VkPhysicalDeviceTransformFeedbackPropertiesEXT *properties =
(VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
properties->maxTransformFeedbackStreams = MAX_SO_STREAMS;
properties->maxTransformFeedbackBuffers = MAX_SO_BUFFERS;
properties->maxTransformFeedbackBufferSize = UINT32_MAX;
properties->maxTransformFeedbackStreamDataSize = 512;
properties->maxTransformFeedbackBufferDataSize = 512;
properties->maxTransformFeedbackBufferDataStride = 512;
properties->transformFeedbackQueries = !pdevice->use_ngg_streamout;
properties->transformFeedbackStreamsLinesTriangles = !pdevice->use_ngg_streamout;
properties->transformFeedbackRasterizationStreamSelect = false;
properties->transformFeedbackDraw = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT: {
VkPhysicalDeviceSampleLocationsPropertiesEXT *properties =
(VkPhysicalDeviceSampleLocationsPropertiesEXT *)ext;
properties->sampleLocationSampleCounts = VK_SAMPLE_COUNT_2_BIT | VK_SAMPLE_COUNT_4_BIT |
VK_SAMPLE_COUNT_8_BIT;
properties->maxSampleLocationGridSize = (VkExtent2D){2, 2};
properties->sampleLocationCoordinateRange[0] = 0.0f;
properties->sampleLocationCoordinateRange[1] = 0.9375f;
properties->sampleLocationSubPixelBits = 4;
properties->variableSampleLocations = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
(VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
props->lineSubPixelPrecisionBits = 4;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: {
VkPhysicalDeviceRobustness2PropertiesEXT *properties =
(VkPhysicalDeviceRobustness2PropertiesEXT *)ext;
properties->robustStorageBufferAccessSizeAlignment = 4;
properties->robustUniformBufferAccessSizeAlignment = 4;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT: {
VkPhysicalDeviceCustomBorderColorPropertiesEXT *props =
(VkPhysicalDeviceCustomBorderColorPropertiesEXT *)ext;
props->maxCustomBorderColorSamplers = RADV_BORDER_COLOR_COUNT;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR: {
VkPhysicalDeviceFragmentShadingRatePropertiesKHR *props =
(VkPhysicalDeviceFragmentShadingRatePropertiesKHR *)ext;
props->minFragmentShadingRateAttachmentTexelSize = (VkExtent2D){8, 8};
props->maxFragmentShadingRateAttachmentTexelSize = (VkExtent2D){8, 8};
props->maxFragmentShadingRateAttachmentTexelSizeAspectRatio = 1;
props->primitiveFragmentShadingRateWithMultipleViewports = true;
props->layeredShadingRateAttachments = false; /* TODO */
props->fragmentShadingRateNonTrivialCombinerOps = true;
props->maxFragmentSize = (VkExtent2D){2, 2};
props->maxFragmentSizeAspectRatio = 2;
props->maxFragmentShadingRateCoverageSamples = 32;
props->maxFragmentShadingRateRasterizationSamples = VK_SAMPLE_COUNT_8_BIT;
props->fragmentShadingRateWithShaderDepthStencilWrites = false;
props->fragmentShadingRateWithSampleMask = true;
props->fragmentShadingRateWithShaderSampleMask = false;
props->fragmentShadingRateWithConservativeRasterization = true;
props->fragmentShadingRateWithFragmentShaderInterlock = false;
props->fragmentShadingRateWithCustomSampleLocations = false;
props->fragmentShadingRateStrictMultiplyCombiner = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_PROPERTIES_EXT: {
VkPhysicalDeviceProvokingVertexPropertiesEXT *props =
(VkPhysicalDeviceProvokingVertexPropertiesEXT *)ext;
props->provokingVertexModePerPipeline = true;
props->transformFeedbackPreservesTriangleFanProvokingVertex = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_PROPERTIES_KHR: {
VkPhysicalDeviceAccelerationStructurePropertiesKHR *props =
(VkPhysicalDeviceAccelerationStructurePropertiesKHR *)ext;
props->maxGeometryCount = (1 << 24) - 1;
props->maxInstanceCount = (1 << 24) - 1;
props->maxPrimitiveCount = (1 << 29) - 1;
props->maxPerStageDescriptorAccelerationStructures =
pProperties->properties.limits.maxPerStageDescriptorStorageBuffers;
props->maxPerStageDescriptorUpdateAfterBindAccelerationStructures =
pProperties->properties.limits.maxPerStageDescriptorStorageBuffers;
props->maxDescriptorSetAccelerationStructures =
pProperties->properties.limits.maxDescriptorSetStorageBuffers;
props->maxDescriptorSetUpdateAfterBindAccelerationStructures =
pProperties->properties.limits.maxDescriptorSetStorageBuffers;
props->minAccelerationStructureScratchOffsetAlignment = 128;
break;
}
#ifndef _WIN32
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRM_PROPERTIES_EXT: {
VkPhysicalDeviceDrmPropertiesEXT *props = (VkPhysicalDeviceDrmPropertiesEXT *)ext;
if (pdevice->available_nodes & (1 << DRM_NODE_PRIMARY)) {
props->hasPrimary = true;
props->primaryMajor = (int64_t)major(pdevice->primary_devid);
props->primaryMinor = (int64_t)minor(pdevice->primary_devid);
} else {
props->hasPrimary = false;
}
if (pdevice->available_nodes & (1 << DRM_NODE_RENDER)) {
props->hasRender = true;
props->renderMajor = (int64_t)major(pdevice->render_devid);
props->renderMinor = (int64_t)minor(pdevice->render_devid);
} else {
props->hasRender = false;
}
break;
}
#endif
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_PROPERTIES_EXT: {
VkPhysicalDeviceMultiDrawPropertiesEXT *props = (VkPhysicalDeviceMultiDrawPropertiesEXT *)ext;
props->maxMultiDrawCount = 2048;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_PROPERTIES_KHR: {
VkPhysicalDeviceRayTracingPipelinePropertiesKHR *props =
(VkPhysicalDeviceRayTracingPipelinePropertiesKHR *)ext;
props->shaderGroupHandleSize = RADV_RT_HANDLE_SIZE;
props->maxRayRecursionDepth = 31; /* Minimum allowed for DXR. */
props->maxShaderGroupStride = 16384; /* dummy */
props->shaderGroupBaseAlignment = 16;
props->shaderGroupHandleCaptureReplaySize = 16;
props->maxRayDispatchInvocationCount = 1024 * 1024 * 64;
props->shaderGroupHandleAlignment = 16;
props->maxRayHitAttributeSize = RADV_MAX_HIT_ATTRIB_SIZE;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_PROPERTIES: {
VkPhysicalDeviceMaintenance4Properties *properties =
(VkPhysicalDeviceMaintenance4Properties *)ext;
properties->maxBufferSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_PROPERTIES_NV: {
VkPhysicalDeviceMeshShaderPropertiesNV *properties =
(VkPhysicalDeviceMeshShaderPropertiesNV *)ext;
/* Task shader limitations:
* Same as compute, because TS are compiled to CS.
*/
properties->maxDrawMeshTasksCount = 65535;
properties->maxTaskTotalMemorySize = 65536;
properties->maxTaskWorkGroupInvocations = 1024;
properties->maxTaskWorkGroupSize[0] = 1024;
properties->maxTaskWorkGroupSize[1] = 1024;
properties->maxTaskWorkGroupSize[2] = 1024;
properties->maxTaskOutputCount = 65535;
/* Mesh shader limitations:
* Same as NGG, because MS are compiled to NGG.
*/
properties->maxMeshMultiviewViewCount = MAX_VIEWS;
properties->maxMeshOutputPrimitives = 256;
properties->maxMeshOutputVertices = 256;
properties->maxMeshTotalMemorySize = 31 * 1024; /* Reserve 1K for prim indices, etc. */
properties->maxMeshWorkGroupInvocations = 256;
properties->maxMeshWorkGroupSize[0] = 256;
properties->maxMeshWorkGroupSize[1] = 256;
properties->maxMeshWorkGroupSize[2] = 256;
properties->meshOutputPerPrimitiveGranularity = 1;
properties->meshOutputPerVertexGranularity = 1;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_PROPERTIES_EXT: {
VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT *properties =
(VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT *)ext;
STATIC_ASSERT(sizeof(vk_shaderModuleIdentifierAlgorithmUUID) ==
sizeof(properties->shaderModuleIdentifierAlgorithmUUID));
memcpy(properties->shaderModuleIdentifierAlgorithmUUID,
vk_shaderModuleIdentifierAlgorithmUUID,
sizeof(properties->shaderModuleIdentifierAlgorithmUUID));
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_PROPERTIES_KHR: {
VkPhysicalDevicePerformanceQueryPropertiesKHR *properties =
(VkPhysicalDevicePerformanceQueryPropertiesKHR *)ext;
properties->allowCommandBufferQueryCopies = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_GENERATED_COMMANDS_PROPERTIES_NV: {
VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV *properties =
(VkPhysicalDeviceDeviceGeneratedCommandsPropertiesNV *)ext;
properties->maxIndirectCommandsStreamCount = 1;
properties->maxIndirectCommandsStreamStride = UINT32_MAX;
properties->maxIndirectCommandsTokenCount = UINT32_MAX;
properties->maxIndirectCommandsTokenOffset = UINT16_MAX;
properties->minIndirectCommandsBufferOffsetAlignment = 4;
properties->minSequencesCountBufferOffsetAlignment = 4;
properties->minSequencesIndexBufferOffsetAlignment = 4;
/* Don't support even a shader group count = 1 until we support shader
* overrides during pipeline creation. */
properties->maxGraphicsShaderGroupCount = 0;
properties->maxIndirectSequenceCount = UINT32_MAX;
break;
}
default:
break;
}
}
}
static void
radv_get_physical_device_queue_family_properties(struct radv_physical_device *pdevice,
uint32_t *pCount,
VkQueueFamilyProperties **pQueueFamilyProperties)
{
int num_queue_families = 1;
int idx;
if (pdevice->rad_info.ip[AMD_IP_COMPUTE].num_queues > 0 &&
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE))
num_queue_families++;
if (pQueueFamilyProperties == NULL) {
*pCount = num_queue_families;
return;
}
if (!*pCount)
return;
idx = 0;
if (*pCount >= 1) {
*pQueueFamilyProperties[idx] = (VkQueueFamilyProperties){
.queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT |
VK_QUEUE_SPARSE_BINDING_BIT,
.queueCount = 1,
.timestampValidBits = 64,
.minImageTransferGranularity = (VkExtent3D){1, 1, 1},
};
idx++;
}
if (pdevice->rad_info.ip[AMD_IP_COMPUTE].num_queues > 0 &&
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) {
if (*pCount > idx) {
*pQueueFamilyProperties[idx] = (VkQueueFamilyProperties){
.queueFlags =
VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT | VK_QUEUE_SPARSE_BINDING_BIT,
.queueCount = pdevice->rad_info.ip[AMD_IP_COMPUTE].num_queues,
.timestampValidBits = 64,
.minImageTransferGranularity = (VkExtent3D){1, 1, 1},
};
idx++;
}
}
*pCount = idx;
}
static const VkQueueGlobalPriorityKHR radv_global_queue_priorities[] = {
VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR,
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR,
VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR,
VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR,
};
VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice, uint32_t *pCount,
VkQueueFamilyProperties2 *pQueueFamilyProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
if (!pQueueFamilyProperties) {
radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
return;
}
VkQueueFamilyProperties *properties[] = {
&pQueueFamilyProperties[0].queueFamilyProperties,
&pQueueFamilyProperties[1].queueFamilyProperties,
&pQueueFamilyProperties[2].queueFamilyProperties,
};
radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
assert(*pCount <= 3);
for (uint32_t i = 0; i < *pCount; i++) {
vk_foreach_struct(ext, pQueueFamilyProperties[i].pNext)
{
switch (ext->sType) {
case VK_STRUCTURE_TYPE_QUEUE_FAMILY_GLOBAL_PRIORITY_PROPERTIES_KHR: {
VkQueueFamilyGlobalPriorityPropertiesKHR *prop =
(VkQueueFamilyGlobalPriorityPropertiesKHR *)ext;
STATIC_ASSERT(ARRAY_SIZE(radv_global_queue_priorities) <= VK_MAX_GLOBAL_PRIORITY_SIZE_KHR);
prop->priorityCount = ARRAY_SIZE(radv_global_queue_priorities);
memcpy(&prop->priorities, radv_global_queue_priorities, sizeof(radv_global_queue_priorities));
break;
}
default:
break;
}
}
}
}
static void
radv_get_memory_budget_properties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
{
RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice);
VkPhysicalDeviceMemoryProperties *memory_properties = &device->memory_properties;
/* For all memory heaps, the computation of budget is as follow:
* heap_budget = heap_size - global_heap_usage + app_heap_usage
*
* The Vulkan spec 1.1.97 says that the budget should include any
* currently allocated device memory.
*
* Note that the application heap usages are not really accurate (eg.
* in presence of shared buffers).
*/
if (!device->rad_info.has_dedicated_vram) {
/* On APUs, the driver exposes fake heaps to the application because usually the carveout is
* too small for games but the budgets need to be redistributed accordingly.
*/
assert(device->heaps == (RADV_HEAP_GTT | RADV_HEAP_VRAM_VIS));
assert(device->memory_properties.memoryHeaps[0].flags == 0); /* GTT */
assert(device->memory_properties.memoryHeaps[1].flags == VK_MEMORY_HEAP_DEVICE_LOCAL_BIT);
uint8_t gtt_heap_idx = 0, vram_vis_heap_idx = 1;
/* Get the visible VRAM/GTT heap sizes and internal usages. */
uint64_t gtt_heap_size = device->memory_properties.memoryHeaps[gtt_heap_idx].size;
uint64_t vram_vis_heap_size = device->memory_properties.memoryHeaps[vram_vis_heap_idx].size;
uint64_t vram_vis_internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM_VIS) +
device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM);
uint64_t gtt_internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_GTT);
/* Compute the total heap size, internal and system usage. */
uint64_t total_heap_size = vram_vis_heap_size + gtt_heap_size;
uint64_t total_internal_usage = vram_vis_internal_usage + gtt_internal_usage;
uint64_t total_system_usage = device->ws->query_value(device->ws, RADEON_VRAM_VIS_USAGE) +
device->ws->query_value(device->ws, RADEON_GTT_USAGE);
uint64_t total_usage = MAX2(total_internal_usage, total_system_usage);
/* Compute the total free space that can be allocated for this process accross all heaps. */
uint64_t total_free_space = total_heap_size - MIN2(total_heap_size, total_usage);
/* Compute the remaining visible VRAM size for this process. */
uint64_t vram_vis_free_space = vram_vis_heap_size - MIN2(vram_vis_heap_size, vram_vis_internal_usage);
/* Distribute the total free space (2/3rd as VRAM and 1/3rd as GTT) to match the heap sizes,
* and align down to the page size to be conservative.
*/
vram_vis_free_space = ROUND_DOWN_TO(MIN2((total_free_space * 2) / 3, vram_vis_free_space),
device->rad_info.gart_page_size);
uint64_t gtt_free_space = total_free_space - vram_vis_free_space;
memoryBudget->heapBudget[vram_vis_heap_idx] = vram_vis_free_space + vram_vis_internal_usage;
memoryBudget->heapUsage[vram_vis_heap_idx] = vram_vis_internal_usage;
memoryBudget->heapBudget[gtt_heap_idx] = gtt_free_space + gtt_internal_usage;
memoryBudget->heapUsage[gtt_heap_idx] = gtt_internal_usage;
} else {
unsigned mask = device->heaps;
unsigned heap = 0;
while (mask) {
uint64_t internal_usage = 0, system_usage = 0;
unsigned type = 1u << u_bit_scan(&mask);
switch (type) {
case RADV_HEAP_VRAM:
internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM);
system_usage = device->ws->query_value(device->ws, RADEON_VRAM_USAGE);
break;
case RADV_HEAP_VRAM_VIS:
internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM_VIS);
if (!(device->heaps & RADV_HEAP_VRAM))
internal_usage += device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM);
system_usage = device->ws->query_value(device->ws, RADEON_VRAM_VIS_USAGE);
break;
case RADV_HEAP_GTT:
internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_GTT);
system_usage = device->ws->query_value(device->ws, RADEON_GTT_USAGE);
break;
}
uint64_t total_usage = MAX2(internal_usage, system_usage);
uint64_t free_space = device->memory_properties.memoryHeaps[heap].size -
MIN2(device->memory_properties.memoryHeaps[heap].size, total_usage);
memoryBudget->heapBudget[heap] = free_space + internal_usage;
memoryBudget->heapUsage[heap] = internal_usage;
++heap;
}
assert(heap == memory_properties->memoryHeapCount);
}
/* The heapBudget and heapUsage values must be zero for array elements
* greater than or equal to
* VkPhysicalDeviceMemoryProperties::memoryHeapCount.
*/
for (uint32_t i = memory_properties->memoryHeapCount; i < VK_MAX_MEMORY_HEAPS; i++) {
memoryBudget->heapBudget[i] = 0;
memoryBudget->heapUsage[i] = 0;
}
}
VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceMemoryProperties2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties2 *pMemoryProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
pMemoryProperties->memoryProperties = pdevice->memory_properties;
VkPhysicalDeviceMemoryBudgetPropertiesEXT *memory_budget =
vk_find_struct(pMemoryProperties->pNext, PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT);
if (memory_budget)
radv_get_memory_budget_properties(physicalDevice, memory_budget);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetMemoryHostPointerPropertiesEXT(
VkDevice _device, VkExternalMemoryHandleTypeFlagBits handleType, const void *pHostPointer,
VkMemoryHostPointerPropertiesEXT *pMemoryHostPointerProperties)
{
RADV_FROM_HANDLE(radv_device, device, _device);
switch (handleType) {
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
const struct radv_physical_device *physical_device = device->physical_device;
uint32_t memoryTypeBits = 0;
for (int i = 0; i < physical_device->memory_properties.memoryTypeCount; i++) {
if (physical_device->memory_domains[i] == RADEON_DOMAIN_GTT &&
!(physical_device->memory_flags[i] & RADEON_FLAG_GTT_WC)) {
memoryTypeBits = (1 << i);
break;
}
}
pMemoryHostPointerProperties->memoryTypeBits = memoryTypeBits;
return VK_SUCCESS;
}
default:
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
}
}
static enum radeon_ctx_priority
radv_get_queue_global_priority(const VkDeviceQueueGlobalPriorityCreateInfoKHR *pObj)
{
/* Default to MEDIUM when a specific global priority isn't requested */
if (!pObj)
return RADEON_CTX_PRIORITY_MEDIUM;
switch (pObj->globalPriority) {
case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR:
return RADEON_CTX_PRIORITY_REALTIME;
case VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR:
return RADEON_CTX_PRIORITY_HIGH;
case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR:
return RADEON_CTX_PRIORITY_MEDIUM;
case VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR:
return RADEON_CTX_PRIORITY_LOW;
default:
unreachable("Illegal global priority value");
return RADEON_CTX_PRIORITY_INVALID;
}
}
int
radv_queue_init(struct radv_device *device, struct radv_queue *queue, int idx,
const VkDeviceQueueCreateInfo *create_info,
const VkDeviceQueueGlobalPriorityCreateInfoKHR *global_priority)
{
queue->device = device;
queue->priority = radv_get_queue_global_priority(global_priority);
queue->hw_ctx = device->hw_ctx[queue->priority];
queue->state.qf = vk_queue_to_radv(device->physical_device, create_info->queueFamilyIndex);
VkResult result = vk_queue_init(&queue->vk, &device->vk, create_info, idx);
if (result != VK_SUCCESS)
return result;
queue->vk.driver_submit = radv_queue_submit;
return VK_SUCCESS;
}
static void
radv_queue_state_finish(struct radv_queue_state *queue, struct radeon_winsys *ws)
{
if (queue->initial_full_flush_preamble_cs)
ws->cs_destroy(queue->initial_full_flush_preamble_cs);
if (queue->initial_preamble_cs)
ws->cs_destroy(queue->initial_preamble_cs);
if (queue->continue_preamble_cs)
ws->cs_destroy(queue->continue_preamble_cs);
if (queue->descriptor_bo)
ws->buffer_destroy(ws, queue->descriptor_bo);
if (queue->scratch_bo)
ws->buffer_destroy(ws, queue->scratch_bo);
if (queue->esgs_ring_bo)
ws->buffer_destroy(ws, queue->esgs_ring_bo);
if (queue->gsvs_ring_bo)
ws->buffer_destroy(ws, queue->gsvs_ring_bo);
if (queue->tess_rings_bo)
ws->buffer_destroy(ws, queue->tess_rings_bo);
if (queue->task_rings_bo)
ws->buffer_destroy(ws, queue->task_rings_bo);
if (queue->gds_bo)
ws->buffer_destroy(ws, queue->gds_bo);
if (queue->gds_oa_bo)
ws->buffer_destroy(ws, queue->gds_oa_bo);
if (queue->compute_scratch_bo)
ws->buffer_destroy(ws, queue->compute_scratch_bo);
}
static void
radv_queue_finish(struct radv_queue *queue)
{
radv_queue_state_finish(&queue->state, queue->device->ws);
vk_queue_finish(&queue->vk);
}
static VkResult
radv_device_init_border_color(struct radv_device *device)
{
VkResult result;
result = device->ws->buffer_create(
device->ws, RADV_BORDER_COLOR_BUFFER_SIZE, 4096, RADEON_DOMAIN_VRAM,
RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_READ_ONLY | RADEON_FLAG_NO_INTERPROCESS_SHARING,
RADV_BO_PRIORITY_SHADER, 0, &device->border_color_data.bo);
if (result != VK_SUCCESS)
return vk_error(device, result);
result = device->ws->buffer_make_resident(device->ws, device->border_color_data.bo, true);
if (result != VK_SUCCESS)
return vk_error(device, result);
device->border_color_data.colors_gpu_ptr = device->ws->buffer_map(device->border_color_data.bo);
if (!device->border_color_data.colors_gpu_ptr)
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
mtx_init(&device->border_color_data.mutex, mtx_plain);
return VK_SUCCESS;
}
static void
radv_device_finish_border_color(struct radv_device *device)
{
if (device->border_color_data.bo) {
device->ws->buffer_make_resident(device->ws, device->border_color_data.bo, false);
device->ws->buffer_destroy(device->ws, device->border_color_data.bo);
mtx_destroy(&device->border_color_data.mutex);
}
}
static VkResult
radv_device_init_vs_prologs(struct radv_device *device)
{
u_rwlock_init(&device->vs_prologs_lock);
device->vs_prologs = _mesa_hash_table_create(NULL, &radv_hash_vs_prolog, &radv_cmp_vs_prolog);
if (!device->vs_prologs)
return vk_error(device->physical_device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
/* don't pre-compile prologs if we want to print them */
if (device->instance->debug_flags & RADV_DEBUG_DUMP_PROLOGS)
return VK_SUCCESS;
struct radv_vs_input_state state;
state.nontrivial_divisors = 0;
memset(state.offsets, 0, sizeof(state.offsets));
state.alpha_adjust_lo = 0;
state.alpha_adjust_hi = 0;
memset(state.formats, 0, sizeof(state.formats));
struct radv_vs_prolog_key key;
key.state = &state;
key.misaligned_mask = 0;
key.as_ls = false;
key.is_ngg = device->physical_device->use_ngg;
key.next_stage = MESA_SHADER_VERTEX;
key.wave32 = device->physical_device->ge_wave_size == 32;
for (unsigned i = 1; i <= MAX_VERTEX_ATTRIBS; i++) {
state.attribute_mask = BITFIELD_MASK(i);
state.instance_rate_inputs = 0;
key.num_attributes = i;
device->simple_vs_prologs[i - 1] = radv_create_vs_prolog(device, &key);
if (!device->simple_vs_prologs[i - 1])
return vk_error(device->physical_device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
}
unsigned idx = 0;
for (unsigned num_attributes = 1; num_attributes <= 16; num_attributes++) {
state.attribute_mask = BITFIELD_MASK(num_attributes);
for (unsigned i = 0; i < num_attributes; i++)
state.divisors[i] = 1;
for (unsigned count = 1; count <= num_attributes; count++) {
for (unsigned start = 0; start <= (num_attributes - count); start++) {
state.instance_rate_inputs = u_bit_consecutive(start, count);
key.num_attributes = num_attributes;
struct radv_shader_part *prolog = radv_create_vs_prolog(device, &key);
if (!prolog)
return vk_error(device->physical_device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
assert(idx ==
radv_instance_rate_prolog_index(num_attributes, state.instance_rate_inputs));
device->instance_rate_vs_prologs[idx++] = prolog;
}
}
}
assert(idx == ARRAY_SIZE(device->instance_rate_vs_prologs));
return VK_SUCCESS;
}
static void
radv_device_finish_vs_prologs(struct radv_device *device)
{
if (device->vs_prologs) {
hash_table_foreach(device->vs_prologs, entry)
{
free((void *)entry->key);
radv_shader_part_destroy(device, entry->data);
}
_mesa_hash_table_destroy(device->vs_prologs, NULL);
}
for (unsigned i = 0; i < ARRAY_SIZE(device->simple_vs_prologs); i++)
radv_shader_part_destroy(device, device->simple_vs_prologs[i]);
for (unsigned i = 0; i < ARRAY_SIZE(device->instance_rate_vs_prologs); i++)
radv_shader_part_destroy(device, device->instance_rate_vs_prologs[i]);
}
VkResult
radv_device_init_vrs_state(struct radv_device *device)
{
/* FIXME: 4k depth buffers should be large enough for now but we might want to adjust this
* dynamically at some point.
*/
uint32_t width = 4096, height = 4096;
VkDeviceMemory mem;
VkBuffer buffer;
VkResult result;
VkImage image;
VkImageCreateInfo image_create_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.imageType = VK_IMAGE_TYPE_2D,
.format = VK_FORMAT_D16_UNORM,
.extent = {width, height, 1},
.mipLevels = 1,
.arrayLayers = 1,
.samples = VK_SAMPLE_COUNT_1_BIT,
.tiling = VK_IMAGE_TILING_OPTIMAL,
.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = NULL,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
};
result = radv_CreateImage(radv_device_to_handle(device), &image_create_info,
&device->meta_state.alloc, &image);
if (result != VK_SUCCESS)
return result;
VkBufferCreateInfo buffer_create_info = {
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.size = radv_image_from_handle(image)->planes[0].surface.meta_size,
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
};
result = radv_CreateBuffer(radv_device_to_handle(device), &buffer_create_info,
&device->meta_state.alloc, &buffer);
if (result != VK_SUCCESS)
goto fail_create;
VkBufferMemoryRequirementsInfo2 info = {
.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2,
.buffer = buffer,
};
VkMemoryRequirements2 mem_req = {
.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2,
};
radv_GetBufferMemoryRequirements2(radv_device_to_handle(device), &info, &mem_req);
VkMemoryAllocateInfo alloc_info = {
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
.allocationSize = mem_req.memoryRequirements.size,
};
result = radv_AllocateMemory(radv_device_to_handle(device), &alloc_info,
&device->meta_state.alloc, &mem);
if (result != VK_SUCCESS)
goto fail_alloc;
VkBindBufferMemoryInfo bind_info = {
.sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
.buffer = buffer,
.memory = mem,
.memoryOffset = 0
};
result = radv_BindBufferMemory2(radv_device_to_handle(device), 1, &bind_info);
if (result != VK_SUCCESS)
goto fail_bind;
device->vrs.image = radv_image_from_handle(image);
device->vrs.buffer = radv_buffer_from_handle(buffer);
device->vrs.mem = radv_device_memory_from_handle(mem);
return VK_SUCCESS;
fail_bind:
radv_FreeMemory(radv_device_to_handle(device), mem, &device->meta_state.alloc);
fail_alloc:
radv_DestroyBuffer(radv_device_to_handle(device), buffer, &device->meta_state.alloc);
fail_create:
radv_DestroyImage(radv_device_to_handle(device), image, &device->meta_state.alloc);
return result;
}
static void
radv_device_finish_vrs_image(struct radv_device *device)
{
if (!device->vrs.image)
return;
radv_FreeMemory(radv_device_to_handle(device), radv_device_memory_to_handle(device->vrs.mem),
&device->meta_state.alloc);
radv_DestroyBuffer(radv_device_to_handle(device), radv_buffer_to_handle(device->vrs.buffer),
&device->meta_state.alloc);
radv_DestroyImage(radv_device_to_handle(device), radv_image_to_handle(device->vrs.image),
&device->meta_state.alloc);
}
static enum radv_force_vrs
radv_parse_vrs_rates(const char *str)
{
if (!strcmp(str, "2x2")) {
return RADV_FORCE_VRS_2x2;
} else if (!strcmp(str, "2x1")) {
return RADV_FORCE_VRS_2x1;
} else if (!strcmp(str, "1x2")) {
return RADV_FORCE_VRS_1x2;
} else if (!strcmp(str, "1x1")) {
return RADV_FORCE_VRS_1x1;
}
fprintf(stderr, "radv: Invalid VRS rates specified (valid values are 2x2, 2x1, 1x2 and 1x1)\n");
return RADV_FORCE_VRS_1x1;
}
static const char *
radv_get_force_vrs_config_file(void)
{
return getenv("RADV_FORCE_VRS_CONFIG_FILE");
}
static enum radv_force_vrs
radv_parse_force_vrs_config_file(const char *config_file)
{
enum radv_force_vrs force_vrs = RADV_FORCE_VRS_1x1;
char buf[4];
FILE *f;
f = fopen(config_file, "r");
if (!f) {
fprintf(stderr, "radv: Can't open file: '%s'.\n", config_file);
return force_vrs;
}
if (fread(buf, sizeof(buf), 1, f) == 1) {
buf[3] = '\0';
force_vrs = radv_parse_vrs_rates(buf);
}
fclose(f);
return force_vrs;
}
#ifdef __linux__
#define BUF_LEN ((10 * (sizeof(struct inotify_event) + NAME_MAX + 1)))
static int
radv_notifier_thread_run(void *data)
{
struct radv_device *device = data;
struct radv_notifier *notifier = &device->notifier;
char buf[BUF_LEN];
while (!notifier->quit) {
const char *file = radv_get_force_vrs_config_file();
struct timespec tm = { .tv_nsec = 100000000 }; /* 1OOms */
int length, i = 0;
length = read(notifier->fd, buf, BUF_LEN);
while (i < length) {
struct inotify_event *event = (struct inotify_event *)&buf[i];
i += sizeof(struct inotify_event) + event->len;
if (event->mask & IN_MODIFY || event->mask & IN_DELETE_SELF) {
/* Sleep 100ms for editors that use a temporary file and delete the original. */
thrd_sleep(&tm, NULL);
device->force_vrs = radv_parse_force_vrs_config_file(file);
fprintf(stderr, "radv: Updated the per-vertex VRS rate to '%d'.\n", device->force_vrs);
if (event->mask & IN_DELETE_SELF) {
inotify_rm_watch(notifier->fd, notifier->watch);
notifier->watch = inotify_add_watch(notifier->fd, file, IN_MODIFY | IN_DELETE_SELF);
}
}
}
thrd_sleep(&tm, NULL);
}
return 0;
}
#endif
static int
radv_device_init_notifier(struct radv_device *device)
{
#ifndef __linux__
return true;
#else
struct radv_notifier *notifier = &device->notifier;
const char *file = radv_get_force_vrs_config_file();
int ret;
notifier->fd = inotify_init1(IN_NONBLOCK);
if (notifier->fd < 0)
return false;
notifier->watch = inotify_add_watch(notifier->fd, file, IN_MODIFY | IN_DELETE_SELF);
if (notifier->watch < 0)
goto fail_watch;
ret = thrd_create(&notifier->thread, radv_notifier_thread_run, device);
if (ret)
goto fail_thread;
return true;
fail_thread:
inotify_rm_watch(notifier->fd, notifier->watch);
fail_watch:
close(notifier->fd);
return false;
#endif
}
static void
radv_device_finish_notifier(struct radv_device *device)
{
#ifdef __linux__
struct radv_notifier *notifier = &device->notifier;
if (!notifier->thread)
return;
notifier->quit = true;
thrd_join(notifier->thread, NULL);
inotify_rm_watch(notifier->fd, notifier->watch);
close(notifier->fd);
#endif
}
static void
radv_device_finish_perf_counter_lock_cs(struct radv_device *device)
{
if (!device->perf_counter_lock_cs)
return;
for (unsigned i = 0; i < 2 * PERF_CTR_MAX_PASSES; ++i) {
if (device->perf_counter_lock_cs[i])
device->ws->cs_destroy(device->perf_counter_lock_cs[i]);
}
free(device->perf_counter_lock_cs);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_CreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice)
{
RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
VkResult result;
struct radv_device *device;
bool keep_shader_info = false;
bool robust_buffer_access = false;
bool robust_buffer_access2 = false;
bool overallocation_disallowed = false;
bool custom_border_colors = false;
bool attachment_vrs_enabled = false;
bool image_float32_atomics = false;
bool vs_prologs = false;
bool global_bo_list = false;
bool image_2d_view_of_3d = false;
bool primitives_generated_query = false;
bool use_perf_counters = false;
bool use_dgc = false;
/* Check enabled features */
if (pCreateInfo->pEnabledFeatures) {
if (pCreateInfo->pEnabledFeatures->robustBufferAccess)
robust_buffer_access = true;
}
vk_foreach_struct_const(ext, pCreateInfo->pNext)
{
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
const VkPhysicalDeviceFeatures2 *features = (const void *)ext;
if (features->features.robustBufferAccess)
robust_buffer_access = true;
break;
}
case VK_STRUCTURE_TYPE_DEVICE_MEMORY_OVERALLOCATION_CREATE_INFO_AMD: {
const VkDeviceMemoryOverallocationCreateInfoAMD *overallocation = (const void *)ext;
if (overallocation->overallocationBehavior ==
VK_MEMORY_OVERALLOCATION_BEHAVIOR_DISALLOWED_AMD)
overallocation_disallowed = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
const VkPhysicalDeviceCustomBorderColorFeaturesEXT *border_color_features =
(const void *)ext;
custom_border_colors = border_color_features->customBorderColors;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR: {
const VkPhysicalDeviceFragmentShadingRateFeaturesKHR *vrs = (const void *)ext;
attachment_vrs_enabled = vrs->attachmentFragmentShadingRate;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
const VkPhysicalDeviceRobustness2FeaturesEXT *features = (const void *)ext;
if (features->robustBufferAccess2)
robust_buffer_access2 = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT: {
const VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *features = (const void *)ext;
if (features->shaderImageFloat32Atomics ||
features->sparseImageFloat32Atomics)
image_float32_atomics = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_2_FEATURES_EXT: {
const VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT *features = (const void *)ext;
if (features->shaderImageFloat32AtomicMinMax ||
features->sparseImageFloat32AtomicMinMax)
image_float32_atomics = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_INPUT_DYNAMIC_STATE_FEATURES_EXT: {
const VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT *features = (const void *)ext;
if (features->vertexInputDynamicState)
vs_prologs = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES: {
const VkPhysicalDeviceVulkan12Features *features = (const void *)ext;
if (features->bufferDeviceAddress || features->descriptorIndexing)
global_bo_list = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_2D_VIEW_OF_3D_FEATURES_EXT: {
const VkPhysicalDeviceImage2DViewOf3DFeaturesEXT *features = (const void *)ext;
if (features->image2DViewOf3D)
image_2d_view_of_3d = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVES_GENERATED_QUERY_FEATURES_EXT: {
const VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT *features = (const void *)ext;
if (features->primitivesGeneratedQuery ||
features->primitivesGeneratedQueryWithRasterizerDiscard ||
features->primitivesGeneratedQueryWithNonZeroStreams)
primitives_generated_query = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_FEATURES_KHR: {
const VkPhysicalDevicePerformanceQueryFeaturesKHR *features = (const void *)ext;
if (features->performanceCounterQueryPools)
use_perf_counters = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_GENERATED_COMMANDS_FEATURES_NV: {
const VkPhysicalDeviceDeviceGeneratedCommandsFeaturesNV *features = (const void *)ext;
if (features->deviceGeneratedCommands)
use_dgc = true;
break;
}
default:
break;
}
}
device = vk_zalloc2(&physical_device->instance->vk.alloc, pAllocator, sizeof(*device), 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!device)
return vk_error(physical_device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
struct vk_device_dispatch_table dispatch_table;
if (physical_device->instance->vk.app_info.app_name &&
!strcmp(physical_device->instance->vk.app_info.app_name, "metroexodus")) {
/* Metro Exodus (Linux native) calls vkGetSemaphoreCounterValue() with a NULL semaphore and it
* crashes sometimes. Workaround this game bug by enabling an internal layer. Remove this
* when the game is fixed.
*/
vk_device_dispatch_table_from_entrypoints(&dispatch_table, &metro_exodus_device_entrypoints, true);
vk_device_dispatch_table_from_entrypoints(&dispatch_table, &radv_device_entrypoints, false);
} else if (radv_thread_trace_enabled()) {
vk_device_dispatch_table_from_entrypoints(&dispatch_table, &sqtt_device_entrypoints, true);
vk_device_dispatch_table_from_entrypoints(&dispatch_table, &radv_device_entrypoints, false);
} else {
vk_device_dispatch_table_from_entrypoints(&dispatch_table, &radv_device_entrypoints, true);
}
vk_device_dispatch_table_from_entrypoints(&dispatch_table, &wsi_device_entrypoints, false);
result =
vk_device_init(&device->vk, &physical_device->vk, &dispatch_table, pCreateInfo, pAllocator);
if (result != VK_SUCCESS) {
vk_free(&device->vk.alloc, device);
return result;
}
device->instance = physical_device->instance;
device->physical_device = physical_device;
simple_mtx_init(&device->trace_mtx, mtx_plain);
simple_mtx_init(&device->pstate_mtx, mtx_plain);
device->ws = physical_device->ws;
vk_device_set_drm_fd(&device->vk, device->ws->get_fd(device->ws));
/* With update after bind we can't attach bo's to the command buffer
* from the descriptor set anymore, so we have to use a global BO list.
*/
device->use_global_bo_list = global_bo_list ||
(device->instance->perftest_flags & RADV_PERFTEST_BO_LIST) ||
device->vk.enabled_extensions.EXT_descriptor_indexing ||
device->vk.enabled_extensions.EXT_buffer_device_address ||
device->vk.enabled_extensions.KHR_buffer_device_address ||
device->vk.enabled_extensions.KHR_ray_tracing_pipeline ||
device->vk.enabled_extensions.KHR_acceleration_structure ||
device->vk.enabled_extensions.VALVE_descriptor_set_host_mapping;
device->robust_buffer_access = robust_buffer_access || robust_buffer_access2;
device->robust_buffer_access2 = robust_buffer_access2;
device->attachment_vrs_enabled = attachment_vrs_enabled;
device->image_float32_atomics = image_float32_atomics;
device->image_2d_view_of_3d = image_2d_view_of_3d;
device->primitives_generated_query = primitives_generated_query;
device->uses_device_generated_commands = use_dgc;
radv_init_shader_arenas(device);
device->overallocation_disallowed = overallocation_disallowed;
mtx_init(&device->overallocation_mutex, mtx_plain);
/* Create one context per queue priority. */
for (unsigned i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
const VkDeviceQueueCreateInfo *queue_create = &pCreateInfo->pQueueCreateInfos[i];
const VkDeviceQueueGlobalPriorityCreateInfoKHR *global_priority =
vk_find_struct_const(queue_create->pNext, DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_KHR);
enum radeon_ctx_priority priority = radv_get_queue_global_priority(global_priority);
if (device->hw_ctx[priority])
continue;
result = device->ws->ctx_create(device->ws, priority, &device->hw_ctx[priority]);
if (result != VK_SUCCESS)
goto fail;
}
for (unsigned i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
const VkDeviceQueueCreateInfo *queue_create = &pCreateInfo->pQueueCreateInfos[i];
uint32_t qfi = queue_create->queueFamilyIndex;
const VkDeviceQueueGlobalPriorityCreateInfoKHR *global_priority =
vk_find_struct_const(queue_create->pNext, DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_KHR);
device->queues[qfi] =
vk_alloc(&device->vk.alloc, queue_create->queueCount * sizeof(struct radv_queue), 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!device->queues[qfi]) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
memset(device->queues[qfi], 0, queue_create->queueCount * sizeof(struct radv_queue));
device->queue_count[qfi] = queue_create->queueCount;
for (unsigned q = 0; q < queue_create->queueCount; q++) {
result = radv_queue_init(device, &device->queues[qfi][q], q, queue_create, global_priority);
if (result != VK_SUCCESS)
goto fail;
}
}
device->private_sdma_queue = VK_NULL_HANDLE;
device->pbb_allowed = device->physical_device->rad_info.gfx_level >= GFX9 &&
!(device->instance->debug_flags & RADV_DEBUG_NOBINNING);
/* The maximum number of scratch waves. Scratch space isn't divided
* evenly between CUs. The number is only a function of the number of CUs.
* We can decrease the constant to decrease the scratch buffer size.
*
* sctx->scratch_waves must be >= the maximum possible size of
* 1 threadgroup, so that the hw doesn't hang from being unable
* to start any.
*
* The recommended value is 4 per CU at most. Higher numbers don't
* bring much benefit, but they still occupy chip resources (think
* async compute). I've seen ~2% performance difference between 4 and 32.
*/
uint32_t max_threads_per_block = 2048;
device->scratch_waves =
MAX2(32 * physical_device->rad_info.num_good_compute_units, max_threads_per_block / 64);
device->dispatch_initiator = S_00B800_COMPUTE_SHADER_EN(1);
if (device->physical_device->rad_info.gfx_level >= GFX7) {
/* If the KMD allows it (there is a KMD hw register for it),
* allow launching waves out-of-order.
*/
device->dispatch_initiator |= S_00B800_ORDER_MODE(1);
}
if (device->instance->debug_flags & RADV_DEBUG_HANG) {
/* Enable GPU hangs detection and dump logs if a GPU hang is
* detected.
*/
keep_shader_info = true;
if (!radv_init_trace(device))
goto fail;
fprintf(stderr,
"*****************************************************************************\n");
fprintf(stderr,
"* WARNING: RADV_DEBUG=hang is costly and should only be used for debugging! *\n");
fprintf(stderr,
"*****************************************************************************\n");
/* Wait for idle after every draw/dispatch to identify the
* first bad call.
*/
device->instance->debug_flags |= RADV_DEBUG_SYNC_SHADERS;
radv_dump_enabled_options(device, stderr);
}
if (radv_thread_trace_enabled()) {
if (device->physical_device->rad_info.gfx_level < GFX8 ||
device->physical_device->rad_info.gfx_level > GFX10_3) {
fprintf(stderr, "GPU hardware not supported: refer to "
"the RGP documentation for the list of "
"supported GPUs!\n");
abort();
}
if (!radv_thread_trace_init(device))
goto fail;
fprintf(stderr, "radv: Thread trace support is enabled (initial buffer size: %u MiB, "
"instruction timing: %s, cache counters: %s).\n",
device->thread_trace.buffer_size / (1024 * 1024),
radv_is_instruction_timing_enabled() ? "enabled" : "disabled",
radv_spm_trace_enabled() ? "enabled" : "disabled");
if (radv_spm_trace_enabled()) {
if (device->physical_device->rad_info.gfx_level >= GFX10) {
if (!radv_spm_init(device))
goto fail;
} else {
fprintf(stderr, "radv: SPM isn't supported for this GPU (%s)!\n",
device->physical_device->name);
}
}
}
if (getenv("RADV_TRAP_HANDLER")) {
/* TODO: Add support for more hardware. */
assert(device->physical_device->rad_info.gfx_level == GFX8);
fprintf(stderr, "**********************************************************************\n");
fprintf(stderr, "* WARNING: RADV_TRAP_HANDLER is experimental and only for debugging! *\n");
fprintf(stderr, "**********************************************************************\n");
/* To get the disassembly of the faulty shaders, we have to
* keep some shader info around.
*/
keep_shader_info = true;
if (!radv_trap_handler_init(device))
goto fail;
}
if (device->physical_device->rad_info.gfx_level >= GFX10_3) {
if (getenv("RADV_FORCE_VRS_CONFIG_FILE")) {
const char *file = radv_get_force_vrs_config_file();
device->force_vrs = radv_parse_force_vrs_config_file(file);
if (radv_device_init_notifier(device)) {
device->force_vrs_enabled = true;
} else {
fprintf(stderr, "radv: Failed to initialize the notifier for RADV_FORCE_VRS_CONFIG_FILE!\n");
}
} else if (getenv("RADV_FORCE_VRS")) {
const char *vrs_rates = getenv("RADV_FORCE_VRS");
device->force_vrs = radv_parse_vrs_rates(vrs_rates);
device->force_vrs_enabled = device->force_vrs != RADV_FORCE_VRS_1x1;
}
}
/* PKT3_LOAD_SH_REG_INDEX is supported on GFX8+, but it hangs with compute queues until GFX10.3. */
device->load_grid_size_from_user_sgpr = device->physical_device->rad_info.gfx_level >= GFX10_3;
device->keep_shader_info = keep_shader_info;
result = radv_device_init_meta(device);
if (result != VK_SUCCESS)
goto fail;
radv_device_init_msaa(device);
/* If the border color extension is enabled, let's create the buffer we need. */
if (custom_border_colors) {
result = radv_device_init_border_color(device);
if (result != VK_SUCCESS)
goto fail;
}
if (vs_prologs) {
result = radv_device_init_vs_prologs(device);
if (result != VK_SUCCESS)
goto fail;
}
if (device->physical_device->rad_info.gfx_level >= GFX7)
cik_create_gfx_config(device);
VkPipelineCacheCreateInfo ci;
ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
ci.pNext = NULL;
ci.flags = 0;
ci.pInitialData = NULL;
ci.initialDataSize = 0;
VkPipelineCache pc;
result = radv_CreatePipelineCache(radv_device_to_handle(device), &ci, NULL, &pc);
if (result != VK_SUCCESS)
goto fail_meta;
device->mem_cache = radv_pipeline_cache_from_handle(pc);
device->force_aniso = MIN2(16, radv_get_int_debug_option("RADV_TEX_ANISO", -1));
if (device->force_aniso >= 0) {
fprintf(stderr, "radv: Forcing anisotropy filter to %ix\n",
1 << util_logbase2(device->force_aniso));
}
if (use_perf_counters) {
size_t bo_size = PERF_CTR_BO_PASS_OFFSET + sizeof(uint64_t) * PERF_CTR_MAX_PASSES;
result =
device->ws->buffer_create(device->ws, bo_size, 4096, RADEON_DOMAIN_GTT,
RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING,
RADV_BO_PRIORITY_UPLOAD_BUFFER, 0, &device->perf_counter_bo);
if (result != VK_SUCCESS)
goto fail_cache;
device->perf_counter_lock_cs =
calloc(sizeof(struct radeon_winsys_cs *), 2 * PERF_CTR_MAX_PASSES);
if (!device->perf_counter_lock_cs) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail_cache;
}
if (!device->physical_device->ac_perfcounters.blocks) {
result = VK_ERROR_INITIALIZATION_FAILED;
goto fail_cache;
}
}
*pDevice = radv_device_to_handle(device);
return VK_SUCCESS;
fail_cache:
radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL);
fail_meta:
radv_device_finish_meta(device);
fail:
radv_thread_trace_finish(device);
radv_spm_finish(device);
radv_trap_handler_finish(device);
radv_finish_trace(device);
radv_device_finish_perf_counter_lock_cs(device);
if (device->perf_counter_bo)
device->ws->buffer_destroy(device->ws, device->perf_counter_bo);
if (device->gfx_init)
device->ws->buffer_destroy(device->ws, device->gfx_init);
radv_device_finish_notifier(device);
radv_device_finish_vs_prologs(device);
radv_device_finish_border_color(device);
for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
for (unsigned q = 0; q < device->queue_count[i]; q++)
radv_queue_finish(&device->queues[i][q]);
if (device->queue_count[i])
vk_free(&device->vk.alloc, device->queues[i]);
}
for (unsigned i = 0; i < RADV_NUM_HW_CTX; i++) {
if (device->hw_ctx[i])
device->ws->ctx_destroy(device->hw_ctx[i]);
}
simple_mtx_destroy(&device->pstate_mtx);
simple_mtx_destroy(&device->trace_mtx);
mtx_destroy(&device->overallocation_mutex);
vk_device_finish(&device->vk);
vk_free(&device->vk.alloc, device);
return result;
}
VKAPI_ATTR void VKAPI_CALL
radv_DestroyDevice(VkDevice _device, const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
if (!device)
return;
radv_device_finish_perf_counter_lock_cs(device);
if (device->perf_counter_bo)
device->ws->buffer_destroy(device->ws, device->perf_counter_bo);
if (device->gfx_init)
device->ws->buffer_destroy(device->ws, device->gfx_init);
radv_device_finish_notifier(device);
radv_device_finish_vs_prologs(device);
radv_device_finish_border_color(device);
radv_device_finish_vrs_image(device);
for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
for (unsigned q = 0; q < device->queue_count[i]; q++)
radv_queue_finish(&device->queues[i][q]);
if (device->queue_count[i])
vk_free(&device->vk.alloc, device->queues[i]);
}
if (device->private_sdma_queue != VK_NULL_HANDLE) {
radv_queue_finish(device->private_sdma_queue);
vk_free(&device->vk.alloc, device->private_sdma_queue);
}
for (unsigned i = 0; i < RADV_NUM_HW_CTX; i++) {
if (device->hw_ctx[i])
device->ws->ctx_destroy(device->hw_ctx[i]);
}
mtx_destroy(&device->overallocation_mutex);
simple_mtx_destroy(&device->pstate_mtx);
simple_mtx_destroy(&device->trace_mtx);
radv_device_finish_meta(device);
VkPipelineCache pc = radv_pipeline_cache_to_handle(device->mem_cache);
radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL);
radv_trap_handler_finish(device);
radv_finish_trace(device);
radv_destroy_shader_arenas(device);
radv_thread_trace_finish(device);
radv_spm_finish(device);
vk_device_finish(&device->vk);
vk_free(&device->vk.alloc, device);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_EnumerateInstanceLayerProperties(uint32_t *pPropertyCount, VkLayerProperties *pProperties)
{
if (pProperties == NULL) {
*pPropertyCount = 0;
return VK_SUCCESS;
}
/* None supported at this time */
return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_EnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice, uint32_t *pPropertyCount,
VkLayerProperties *pProperties)
{
if (pProperties == NULL) {
*pPropertyCount = 0;
return VK_SUCCESS;
}
/* None supported at this time */
return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
}
static void
radv_fill_shader_rings(struct radv_device *device, uint32_t *map, bool add_sample_positions,
uint32_t esgs_ring_size, struct radeon_winsys_bo *esgs_ring_bo,
uint32_t gsvs_ring_size, struct radeon_winsys_bo *gsvs_ring_bo,
struct radeon_winsys_bo *tess_rings_bo,
struct radeon_winsys_bo *task_rings_bo,
struct radeon_winsys_bo *mesh_scratch_ring_bo)
{
uint32_t *desc = &map[4];
if (esgs_ring_bo) {
uint64_t esgs_va = radv_buffer_get_va(esgs_ring_bo);
/* stride 0, num records - size, add tid, swizzle, elsize4,
index stride 64 */
desc[0] = esgs_va;
desc[1] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32);
desc[2] = esgs_ring_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_INDEX_STRIDE(3) | S_008F0C_ADD_TID_ENABLE(1);
if (device->physical_device->rad_info.gfx_level >= GFX11)
desc[1] |= S_008F04_SWIZZLE_ENABLE_GFX11(1);
else
desc[1] |= S_008F04_SWIZZLE_ENABLE_GFX6(1);
if (device->physical_device->rad_info.gfx_level >= GFX11) {
desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED);
} else if (device->physical_device->rad_info.gfx_level >= GFX10) {
desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(1);
}
/* GS entry for ES->GS ring */
/* stride 0, num records - size, elsize0,
index stride 0 */
desc[4] = esgs_va;
desc[5] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32);
desc[6] = esgs_ring_size;
desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (device->physical_device->rad_info.gfx_level >= GFX11) {
desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED);
} else if (device->physical_device->rad_info.gfx_level >= GFX10) {
desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
}
desc += 8;
if (gsvs_ring_bo) {
uint64_t gsvs_va = radv_buffer_get_va(gsvs_ring_bo);
/* VS entry for GS->VS ring */
/* stride 0, num records - size, elsize0,
index stride 0 */
desc[0] = gsvs_va;
desc[1] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32);
desc[2] = gsvs_ring_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (device->physical_device->rad_info.gfx_level >= GFX11) {
desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED);
} else if (device->physical_device->rad_info.gfx_level >= GFX10) {
desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
/* stride gsvs_itemsize, num records 64
elsize 4, index stride 16 */
/* shader will patch stride and desc[2] */
desc[4] = gsvs_va;
desc[5] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32);
desc[6] = 0;
desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_INDEX_STRIDE(1) | S_008F0C_ADD_TID_ENABLE(true);
if (device->physical_device->rad_info.gfx_level >= GFX11)
desc[5] |= S_008F04_SWIZZLE_ENABLE_GFX11(1);
else
desc[5] |= S_008F04_SWIZZLE_ENABLE_GFX6(1);
if (device->physical_device->rad_info.gfx_level >= GFX11) {
desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED);
} else if (device->physical_device->rad_info.gfx_level >= GFX10) {
desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(1);
}
}
desc += 8;
if (tess_rings_bo) {
uint64_t tess_va = radv_buffer_get_va(tess_rings_bo);
uint64_t tess_offchip_va = tess_va + device->physical_device->hs.tess_offchip_ring_offset;
desc[0] = tess_va;
desc[1] = S_008F04_BASE_ADDRESS_HI(tess_va >> 32);
desc[2] = device->physical_device->hs.tess_factor_ring_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (device->physical_device->rad_info.gfx_level >= GFX11) {
desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW);
} else if (device->physical_device->rad_info.gfx_level >= GFX10) {
desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
desc[4] = tess_offchip_va;
desc[5] = S_008F04_BASE_ADDRESS_HI(tess_offchip_va >> 32);
desc[6] = device->physical_device->hs.tess_offchip_ring_size;
desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (device->physical_device->rad_info.gfx_level >= GFX11) {
desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW);
} else if (device->physical_device->rad_info.gfx_level >= GFX10) {
desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
}
desc += 8;
if (task_rings_bo) {
uint64_t task_va = radv_buffer_get_va(task_rings_bo);
uint64_t task_draw_ring_va = task_va + device->physical_device->task_info.draw_ring_offset;
uint64_t task_payload_ring_va = task_va + device->physical_device->task_info.payload_ring_offset;
desc[0] = task_draw_ring_va;
desc[1] = S_008F04_BASE_ADDRESS_HI(task_draw_ring_va >> 32);
desc[2] = device->physical_device->task_info.num_entries * AC_TASK_DRAW_ENTRY_BYTES;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (device->physical_device->rad_info.gfx_level >= GFX11) {
desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_UINT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED);
} else {
assert(device->physical_device->rad_info.gfx_level >= GFX10_3);
desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_UINT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
}
desc[4] = task_payload_ring_va;
desc[5] = S_008F04_BASE_ADDRESS_HI(task_payload_ring_va >> 32);
desc[6] = device->physical_device->task_info.num_entries * AC_TASK_PAYLOAD_ENTRY_BYTES;
desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (device->physical_device->rad_info.gfx_level >= GFX11) {
desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_UINT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED);
} else {
assert(device->physical_device->rad_info.gfx_level >= GFX10_3);
desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_UINT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
}
}
desc += 8;
if (mesh_scratch_ring_bo) {
uint64_t va = radv_buffer_get_va(mesh_scratch_ring_bo);
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32);
desc[2] = RADV_MESH_SCRATCH_NUM_ENTRIES * RADV_MESH_SCRATCH_ENTRY_BYTES;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (device->physical_device->rad_info.gfx_level >= GFX11) {
desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_UINT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED);
} else {
assert(device->physical_device->rad_info.gfx_level >= GFX10_3);
desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_UINT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
}
}
desc += 4;
if (add_sample_positions) {
/* add sample positions after all rings */
memcpy(desc, device->sample_locations_1x, 8);
desc += 2;
memcpy(desc, device->sample_locations_2x, 16);
desc += 4;
memcpy(desc, device->sample_locations_4x, 32);
desc += 8;
memcpy(desc, device->sample_locations_8x, 64);
}
}
static void
radv_emit_gs_ring_sizes(struct radv_device *device, struct radeon_cmdbuf *cs,
struct radeon_winsys_bo *esgs_ring_bo, uint32_t esgs_ring_size,
struct radeon_winsys_bo *gsvs_ring_bo, uint32_t gsvs_ring_size)
{
if (!esgs_ring_bo && !gsvs_ring_bo)
return;
if (esgs_ring_bo)
radv_cs_add_buffer(device->ws, cs, esgs_ring_bo);
if (gsvs_ring_bo)
radv_cs_add_buffer(device->ws, cs, gsvs_ring_bo);
if (device->physical_device->rad_info.gfx_level >= GFX7) {
radeon_set_uconfig_reg_seq(cs, R_030900_VGT_ESGS_RING_SIZE, 2);
radeon_emit(cs, esgs_ring_size >> 8);
radeon_emit(cs, gsvs_ring_size >> 8);
} else {
radeon_set_config_reg_seq(cs, R_0088C8_VGT_ESGS_RING_SIZE, 2);
radeon_emit(cs, esgs_ring_size >> 8);
radeon_emit(cs, gsvs_ring_size >> 8);
}
}
static void
radv_emit_tess_factor_ring(struct radv_device *device, struct radeon_cmdbuf *cs,
struct radeon_winsys_bo *tess_rings_bo)
{
uint64_t tf_va;
uint32_t tf_ring_size;
if (!tess_rings_bo)
return;
tf_ring_size = device->physical_device->hs.tess_factor_ring_size / 4;
tf_va = radv_buffer_get_va(tess_rings_bo);
radv_cs_add_buffer(device->ws, cs, tess_rings_bo);
if (device->physical_device->rad_info.gfx_level >= GFX7) {
if (device->physical_device->rad_info.gfx_level >= GFX11) {
/* TF_RING_SIZE is per SE on GFX11. */
tf_ring_size /= device->physical_device->rad_info.max_se;
}
radeon_set_uconfig_reg(cs, R_030938_VGT_TF_RING_SIZE, S_030938_SIZE(tf_ring_size));
radeon_set_uconfig_reg(cs, R_030940_VGT_TF_MEMORY_BASE, tf_va >> 8);
if (device->physical_device->rad_info.gfx_level >= GFX10) {
radeon_set_uconfig_reg(cs, R_030984_VGT_TF_MEMORY_BASE_HI,
S_030984_BASE_HI(tf_va >> 40));
} else if (device->physical_device->rad_info.gfx_level == GFX9) {
radeon_set_uconfig_reg(cs, R_030944_VGT_TF_MEMORY_BASE_HI, S_030944_BASE_HI(tf_va >> 40));
}
radeon_set_uconfig_reg(cs, R_03093C_VGT_HS_OFFCHIP_PARAM, device->physical_device->hs.hs_offchip_param);
} else {
radeon_set_config_reg(cs, R_008988_VGT_TF_RING_SIZE, S_008988_SIZE(tf_ring_size));
radeon_set_config_reg(cs, R_0089B8_VGT_TF_MEMORY_BASE, tf_va >> 8);
radeon_set_config_reg(cs, R_0089B0_VGT_HS_OFFCHIP_PARAM, device->physical_device->hs.hs_offchip_param);
}
}
static VkResult
radv_initialise_task_control_buffer(struct radv_device *device,
struct radeon_winsys_bo *task_rings_bo)
{
uint32_t *ptr = (uint32_t *)device->ws->buffer_map(task_rings_bo);
if (!ptr)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
const uint32_t num_entries = device->physical_device->task_info.num_entries;
const uint64_t task_va = radv_buffer_get_va(task_rings_bo);
const uint64_t task_draw_ring_va = task_va + device->physical_device->task_info.draw_ring_offset;
assert((task_draw_ring_va & 0xFFFFFF00) == (task_draw_ring_va & 0xFFFFFFFF));
/* 64-bit write_ptr */
ptr[0] = num_entries;
ptr[1] = 0;
/* 64-bit read_ptr */
ptr[2] = num_entries;
ptr[3] = 0;
/* 64-bit dealloc_ptr */
ptr[4] = num_entries;
ptr[5] = 0;
/* num_entries */
ptr[6] = num_entries;
/* 64-bit draw ring address */
ptr[7] = task_draw_ring_va;
ptr[8] = task_draw_ring_va >> 32;
device->ws->buffer_unmap(task_rings_bo);
return VK_SUCCESS;
}
static void
radv_emit_task_rings(struct radv_device *device, struct radeon_cmdbuf *cs,
struct radeon_winsys_bo *task_rings_bo, bool compute)
{
if (!task_rings_bo)
return;
const uint64_t task_ctrlbuf_va = radv_buffer_get_va(task_rings_bo);
assert(radv_is_aligned(task_ctrlbuf_va, 256));
radv_cs_add_buffer(device->ws, cs, task_rings_bo);
/* Tell the GPU where the task control buffer is. */
radeon_emit(cs, PKT3(PKT3_DISPATCH_TASK_STATE_INIT, 1, 0) | PKT3_SHADER_TYPE_S(!!compute));
/* bits [31:8]: control buffer address lo, bits[7:0]: reserved (set to zero) */
radeon_emit(cs, task_ctrlbuf_va & 0xFFFFFF00);
/* bits [31:0]: control buffer address hi */
radeon_emit(cs, task_ctrlbuf_va >> 32);
}
static void
radv_emit_graphics_scratch(struct radv_device *device, struct radeon_cmdbuf *cs,
uint32_t size_per_wave, uint32_t waves,
struct radeon_winsys_bo *scratch_bo)
{
struct radeon_info *info = &device->physical_device->rad_info;
if (!scratch_bo)
return;
radv_cs_add_buffer(device->ws, cs, scratch_bo);
if (info->gfx_level >= GFX11) {
uint64_t va = radv_buffer_get_va(scratch_bo);
/* WAVES is per SE for SPI_TMPRING_SIZE. */
waves /= info->num_se;
radeon_set_context_reg_seq(cs, R_0286E8_SPI_TMPRING_SIZE, 3);
radeon_emit(cs, S_0286E8_WAVES(waves) | S_0286E8_WAVESIZE(round_up_u32(size_per_wave, 256)));
radeon_emit(cs, va >> 8); /* SPI_GFX_SCRATCH_BASE_LO */
radeon_emit(cs, va >> 40); /* SPI_GFX_SCRATCH_BASE_HI */
} else {
radeon_set_context_reg(
cs, R_0286E8_SPI_TMPRING_SIZE,
S_0286E8_WAVES(waves) | S_0286E8_WAVESIZE(round_up_u32(size_per_wave, 1024)));
}
}
static void
radv_emit_compute_scratch(struct radv_device *device, struct radeon_cmdbuf *cs,
uint32_t size_per_wave, uint32_t waves,
struct radeon_winsys_bo *compute_scratch_bo)
{
struct radeon_info *info = &device->physical_device->rad_info;
uint64_t scratch_va;
uint32_t rsrc1;
if (!compute_scratch_bo)
return;
scratch_va = radv_buffer_get_va(compute_scratch_bo);
rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32);
if (device->physical_device->rad_info.gfx_level >= GFX11)
rsrc1 |= S_008F04_SWIZZLE_ENABLE_GFX11(1);
else
rsrc1 |= S_008F04_SWIZZLE_ENABLE_GFX6(1);
radv_cs_add_buffer(device->ws, cs, compute_scratch_bo);
if (info->gfx_level >= GFX11) {
radeon_set_sh_reg_seq(cs, R_00B840_COMPUTE_DISPATCH_SCRATCH_BASE_LO, 4);
radeon_emit(cs, scratch_va >> 8);
radeon_emit(cs, scratch_va >> 40);
} else {
radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, 2);
}
radeon_emit(cs, scratch_va);
radeon_emit(cs, rsrc1);
radeon_set_sh_reg(cs, R_00B860_COMPUTE_TMPRING_SIZE,
S_00B860_WAVES(waves) |
S_00B860_WAVESIZE(round_up_u32(size_per_wave, info->gfx_level >= GFX11 ? 256 : 1024)));
}
static void
radv_emit_compute_shader_pointers(struct radv_device *device, struct radeon_cmdbuf *cs,
struct radeon_winsys_bo *descriptor_bo)
{
if (!descriptor_bo)
return;
uint64_t va = radv_buffer_get_va(descriptor_bo);
radv_cs_add_buffer(device->ws, cs, descriptor_bo);
/* Compute shader user data 0-1 have the scratch pointer (unlike GFX shaders),
* so emit the descriptor pointer to user data 2-3 instead (task_ring_offsets arg).
*/
radv_emit_shader_pointer(device, cs, R_00B908_COMPUTE_USER_DATA_2, va, true);
}
static void
radv_emit_graphics_shader_pointers(struct radv_device *device, struct radeon_cmdbuf *cs,
struct radeon_winsys_bo *descriptor_bo)
{
uint64_t va;
if (!descriptor_bo)
return;
va = radv_buffer_get_va(descriptor_bo);
radv_cs_add_buffer(device->ws, cs, descriptor_bo);
if (device->physical_device->rad_info.gfx_level >= GFX11) {
uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0,
R_00B420_SPI_SHADER_PGM_LO_HS,
R_00B220_SPI_SHADER_PGM_LO_GS};
for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
radv_emit_shader_pointer(device, cs, regs[i], va, true);
}
} else if (device->physical_device->rad_info.gfx_level >= GFX10) {
uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0,
R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS,
R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS};
for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
radv_emit_shader_pointer(device, cs, regs[i], va, true);
}
} else if (device->physical_device->rad_info.gfx_level == GFX9) {
uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0,
R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS,
R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS};
for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
radv_emit_shader_pointer(device, cs, regs[i], va, true);
}
} else {
uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0,
R_00B230_SPI_SHADER_USER_DATA_GS_0, R_00B330_SPI_SHADER_USER_DATA_ES_0,
R_00B430_SPI_SHADER_USER_DATA_HS_0, R_00B530_SPI_SHADER_USER_DATA_LS_0};
for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
radv_emit_shader_pointer(device, cs, regs[i], va, true);
}
}
}
static void
radv_init_graphics_state(struct radeon_cmdbuf *cs, struct radv_device *device)
{
if (device->gfx_init) {
uint64_t va = radv_buffer_get_va(device->gfx_init);
radeon_emit(cs, PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, device->gfx_init_size_dw & 0xffff);
radv_cs_add_buffer(device->ws, cs, device->gfx_init);
} else {
si_emit_graphics(device, cs);
}
}
static void
radv_init_compute_state(struct radeon_cmdbuf *cs, struct radv_device *device)
{
si_emit_compute(device, cs);
}
static VkResult
radv_update_preamble_cs(struct radv_queue_state *queue, struct radv_device *device,
const struct radv_queue_ring_info *needs)
{
struct radeon_winsys *ws = device->ws;
struct radeon_winsys_bo *scratch_bo = queue->scratch_bo;
struct radeon_winsys_bo *descriptor_bo = queue->descriptor_bo;
struct radeon_winsys_bo *compute_scratch_bo = queue->compute_scratch_bo;
struct radeon_winsys_bo *esgs_ring_bo = queue->esgs_ring_bo;
struct radeon_winsys_bo *gsvs_ring_bo = queue->gsvs_ring_bo;
struct radeon_winsys_bo *tess_rings_bo = queue->tess_rings_bo;
struct radeon_winsys_bo *task_rings_bo = queue->task_rings_bo;
struct radeon_winsys_bo *mesh_scratch_ring_bo = queue->mesh_scratch_ring_bo;
struct radeon_winsys_bo *gds_bo = queue->gds_bo;
struct radeon_winsys_bo *gds_oa_bo = queue->gds_oa_bo;
struct radeon_cmdbuf *dest_cs[3] = {0};
const uint32_t ring_bo_flags = RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING;
VkResult result = VK_SUCCESS;
const bool add_sample_positions = !queue->ring_info.sample_positions && needs->sample_positions;
const uint32_t scratch_size = needs->scratch_size_per_wave * needs->scratch_waves;
const uint32_t queue_scratch_size =
queue->ring_info.scratch_size_per_wave * queue->ring_info.scratch_waves;
if (scratch_size > queue_scratch_size) {
result = ws->buffer_create(ws, scratch_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH, 0, &scratch_bo);
if (result != VK_SUCCESS)
goto fail;
}
const uint32_t compute_scratch_size =
needs->compute_scratch_size_per_wave * needs->compute_scratch_waves;
const uint32_t compute_queue_scratch_size =
queue->ring_info.compute_scratch_size_per_wave * queue->ring_info.compute_scratch_waves;
if (compute_scratch_size > compute_queue_scratch_size) {
result = ws->buffer_create(ws, compute_scratch_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH, 0, &compute_scratch_bo);
if (result != VK_SUCCESS)
goto fail;
}
if (needs->esgs_ring_size > queue->ring_info.esgs_ring_size) {
result = ws->buffer_create(ws, needs->esgs_ring_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH, 0, &esgs_ring_bo);
if (result != VK_SUCCESS)
goto fail;
}
if (needs->gsvs_ring_size > queue->ring_info.gsvs_ring_size) {
result = ws->buffer_create(ws, needs->gsvs_ring_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH, 0, &gsvs_ring_bo);
if (result != VK_SUCCESS)
goto fail;
}
if (!queue->ring_info.tess_rings && needs->tess_rings) {
result = ws->buffer_create(
ws, device->physical_device->hs.tess_offchip_ring_offset + device->physical_device->hs.tess_offchip_ring_size, 256,
RADEON_DOMAIN_VRAM, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH, 0, &tess_rings_bo);
if (result != VK_SUCCESS)
goto fail;
}
if (!queue->ring_info.task_rings && needs->task_rings) {
assert(device->physical_device->rad_info.gfx_level >= GFX10_3);
/* We write the control buffer from the CPU, so need to grant CPU access to the BO.
* The draw ring needs to be zero-initialized otherwise the ready bits will be incorrect.
*/
uint32_t task_rings_bo_flags =
RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_ZERO_VRAM;
result = ws->buffer_create(ws, device->physical_device->task_info.bo_size_bytes, 256,
RADEON_DOMAIN_VRAM, task_rings_bo_flags, RADV_BO_PRIORITY_SCRATCH,
0, &task_rings_bo);
if (result != VK_SUCCESS)
goto fail;
result = radv_initialise_task_control_buffer(device, task_rings_bo);
if (result != VK_SUCCESS)
goto fail;
}
if (!queue->ring_info.mesh_scratch_ring && needs->mesh_scratch_ring) {
assert(device->physical_device->rad_info.gfx_level >= GFX10_3);
result =
ws->buffer_create(ws, RADV_MESH_SCRATCH_NUM_ENTRIES * RADV_MESH_SCRATCH_ENTRY_BYTES, 256,
RADEON_DOMAIN_VRAM, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH, 0, &mesh_scratch_ring_bo);
if (result != VK_SUCCESS)
goto fail;
}
if (!queue->ring_info.gds && needs->gds) {
assert(device->physical_device->rad_info.gfx_level >= GFX10);
/* 4 streamout GDS counters.
* We need 256B (64 dw) of GDS, otherwise streamout hangs.
*/
result = ws->buffer_create(ws, 256, 4, RADEON_DOMAIN_GDS, ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH, 0, &gds_bo);
if (result != VK_SUCCESS)
goto fail;
}
if (!queue->ring_info.gds_oa && needs->gds_oa) {
assert(device->physical_device->rad_info.gfx_level >= GFX10);
result = ws->buffer_create(ws, 4, 1, RADEON_DOMAIN_OA, ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH, 0, &gds_oa_bo);
if (result != VK_SUCCESS)
goto fail;
}
/* Re-initialize the descriptor BO when any ring BOs changed.
*
* Additionally, make sure to create the descriptor BO for the compute queue
* when it uses the task shader rings. The task rings BO is shared between the
* GFX and compute queues and already initialized here.
*/
if ((queue->qf == RADV_QUEUE_COMPUTE && !descriptor_bo && task_rings_bo) ||
scratch_bo != queue->scratch_bo || esgs_ring_bo != queue->esgs_ring_bo ||
gsvs_ring_bo != queue->gsvs_ring_bo || tess_rings_bo != queue->tess_rings_bo ||
task_rings_bo != queue->task_rings_bo || mesh_scratch_ring_bo != queue->mesh_scratch_ring_bo ||
add_sample_positions) {
uint32_t size = 0;
if (gsvs_ring_bo || esgs_ring_bo || tess_rings_bo || task_rings_bo || mesh_scratch_ring_bo || add_sample_positions) {
size = 160; /* 2 dword + 2 padding + 4 dword * 9 */
if (add_sample_positions)
size += 128; /* 64+32+16+8 = 120 bytes */
} else if (scratch_bo) {
size = 8; /* 2 dword */
}
result = ws->buffer_create(
ws, size, 4096, RADEON_DOMAIN_VRAM,
RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_READ_ONLY,
RADV_BO_PRIORITY_DESCRIPTOR, 0, &descriptor_bo);
if (result != VK_SUCCESS)
goto fail;
}
if (descriptor_bo != queue->descriptor_bo) {
uint32_t *map = (uint32_t *)ws->buffer_map(descriptor_bo);
if (!map)
goto fail;
if (scratch_bo) {
uint64_t scratch_va = radv_buffer_get_va(scratch_bo);
uint32_t rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32);
if (device->physical_device->rad_info.gfx_level >= GFX11)
rsrc1 |= S_008F04_SWIZZLE_ENABLE_GFX11(1);
else
rsrc1 |= S_008F04_SWIZZLE_ENABLE_GFX6(1);
map[0] = scratch_va;
map[1] = rsrc1;
}
if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo || task_rings_bo || mesh_scratch_ring_bo || add_sample_positions)
radv_fill_shader_rings(device, map, add_sample_positions, needs->esgs_ring_size,
esgs_ring_bo, needs->gsvs_ring_size, gsvs_ring_bo, tess_rings_bo,
task_rings_bo, mesh_scratch_ring_bo);
ws->buffer_unmap(descriptor_bo);
}
for (int i = 0; i < 3; ++i) {
/* Don't create continue preamble when it's not necessary. */
if (i == 2) {
/* We only need the continue preamble when we can't use indirect buffers. */
if (!(device->instance->debug_flags & RADV_DEBUG_NO_IBS) &&
device->physical_device->rad_info.gfx_level >= GFX7)
continue;
/* Continue preamble is unnecessary when no shader rings are used. */
if (!needs->scratch_size_per_wave && !needs->compute_scratch_size_per_wave &&
!needs->esgs_ring_size && !needs->gsvs_ring_size && !needs->tess_rings &&
!needs->task_rings && !needs->mesh_scratch_ring && !needs->gds && !needs->gds_oa && !needs->sample_positions)
continue;
}
enum rgp_flush_bits sqtt_flush_bits = 0;
struct radeon_cmdbuf *cs = NULL;
cs = ws->cs_create(ws, radv_queue_family_to_ring(device->physical_device, queue->qf));
if (!cs) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
dest_cs[i] = cs;
if (scratch_bo)
radv_cs_add_buffer(ws, cs, scratch_bo);
/* Emit initial configuration. */
switch (queue->qf) {
case RADV_QUEUE_GENERAL:
radv_init_graphics_state(cs, device);
if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo || task_rings_bo) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
}
radv_emit_gs_ring_sizes(device, cs, esgs_ring_bo, needs->esgs_ring_size, gsvs_ring_bo,
needs->gsvs_ring_size);
radv_emit_tess_factor_ring(device, cs, tess_rings_bo);
radv_emit_task_rings(device, cs, task_rings_bo, false);
radv_emit_graphics_shader_pointers(device, cs, descriptor_bo);
radv_emit_compute_scratch(device, cs, needs->compute_scratch_size_per_wave,
needs->compute_scratch_waves, compute_scratch_bo);
radv_emit_graphics_scratch(device, cs, needs->scratch_size_per_wave, needs->scratch_waves,
scratch_bo);
break;
case RADV_QUEUE_COMPUTE:
radv_init_compute_state(cs, device);
if (task_rings_bo) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
}
radv_emit_task_rings(device, cs, task_rings_bo, true);
radv_emit_compute_shader_pointers(device, cs, descriptor_bo);
radv_emit_compute_scratch(device, cs, needs->compute_scratch_size_per_wave,
needs->compute_scratch_waves, compute_scratch_bo);
break;
default:
break;
}
if (gds_bo)
radv_cs_add_buffer(ws, cs, gds_bo);
if (gds_oa_bo)
radv_cs_add_buffer(ws, cs, gds_oa_bo);
if (i < 2) {
/* The two initial preambles have a cache flush at the beginning. */
const enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level;
const bool is_mec = queue->qf == RADV_QUEUE_COMPUTE && gfx_level >= GFX7;
enum radv_cmd_flush_bits flush_bits = RADV_CMD_FLAG_INV_ICACHE | RADV_CMD_FLAG_INV_SCACHE |
RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_L2 |
RADV_CMD_FLAG_START_PIPELINE_STATS;
if (i == 0) {
/* The full flush preamble should also wait for previous shader work to finish. */
flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
if (queue->qf == RADV_QUEUE_GENERAL)
flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH;
}
si_cs_emit_cache_flush(cs, gfx_level, NULL, 0, is_mec, flush_bits, &sqtt_flush_bits, 0);
}
result = ws->cs_finalize(cs);
if (result != VK_SUCCESS)
goto fail;
}
if (queue->initial_full_flush_preamble_cs)
ws->cs_destroy(queue->initial_full_flush_preamble_cs);
if (queue->initial_preamble_cs)
ws->cs_destroy(queue->initial_preamble_cs);
if (queue->continue_preamble_cs)
ws->cs_destroy(queue->continue_preamble_cs);
queue->initial_full_flush_preamble_cs = dest_cs[0];
queue->initial_preamble_cs = dest_cs[1];
queue->continue_preamble_cs = dest_cs[2];
if (scratch_bo != queue->scratch_bo) {
if (queue->scratch_bo)
ws->buffer_destroy(ws, queue->scratch_bo);
queue->scratch_bo = scratch_bo;
}
if (compute_scratch_bo != queue->compute_scratch_bo) {
if (queue->compute_scratch_bo)
ws->buffer_destroy(ws, queue->compute_scratch_bo);
queue->compute_scratch_bo = compute_scratch_bo;
}
if (esgs_ring_bo != queue->esgs_ring_bo) {
if (queue->esgs_ring_bo)
ws->buffer_destroy(ws, queue->esgs_ring_bo);
queue->esgs_ring_bo = esgs_ring_bo;
}
if (gsvs_ring_bo != queue->gsvs_ring_bo) {
if (queue->gsvs_ring_bo)
ws->buffer_destroy(ws, queue->gsvs_ring_bo);
queue->gsvs_ring_bo = gsvs_ring_bo;
}
if (descriptor_bo != queue->descriptor_bo) {
if (queue->descriptor_bo)
ws->buffer_destroy(ws, queue->descriptor_bo);
queue->descriptor_bo = descriptor_bo;
}
queue->tess_rings_bo = tess_rings_bo;
queue->task_rings_bo = task_rings_bo;
queue->mesh_scratch_ring_bo = mesh_scratch_ring_bo;
queue->gds_bo = gds_bo;
queue->gds_oa_bo = gds_oa_bo;
queue->ring_info = *needs;
return VK_SUCCESS;
fail:
for (int i = 0; i < ARRAY_SIZE(dest_cs); ++i)
if (dest_cs[i])
ws->cs_destroy(dest_cs[i]);
if (descriptor_bo && descriptor_bo != queue->descriptor_bo)
ws->buffer_destroy(ws, descriptor_bo);
if (scratch_bo && scratch_bo != queue->scratch_bo)
ws->buffer_destroy(ws, scratch_bo);
if (compute_scratch_bo && compute_scratch_bo != queue->compute_scratch_bo)
ws->buffer_destroy(ws, compute_scratch_bo);
if (esgs_ring_bo && esgs_ring_bo != queue->esgs_ring_bo)
ws->buffer_destroy(ws, esgs_ring_bo);
if (gsvs_ring_bo && gsvs_ring_bo != queue->gsvs_ring_bo)
ws->buffer_destroy(ws, gsvs_ring_bo);
if (tess_rings_bo && tess_rings_bo != queue->tess_rings_bo)
ws->buffer_destroy(ws, tess_rings_bo);
if (task_rings_bo && task_rings_bo != queue->task_rings_bo)
ws->buffer_destroy(ws, task_rings_bo);
if (gds_bo && gds_bo != queue->gds_bo)
ws->buffer_destroy(ws, gds_bo);
if (gds_oa_bo && gds_oa_bo != queue->gds_oa_bo)
ws->buffer_destroy(ws, gds_oa_bo);
return vk_error(queue, result);
}
static struct radeon_cmdbuf *
radv_create_perf_counter_lock_cs(struct radv_device *device, unsigned pass, bool unlock)
{
struct radeon_cmdbuf **cs_ref = &device->perf_counter_lock_cs[pass * 2 + (unlock ? 1 : 0)];
struct radeon_cmdbuf *cs;
if (*cs_ref)
return *cs_ref;
cs = device->ws->cs_create(device->ws, AMD_IP_GFX);
if (!cs)
return NULL;
ASSERTED unsigned cdw = radeon_check_space(device->ws, cs, 21);
if (!unlock) {
uint64_t mutex_va = radv_buffer_get_va(device->perf_counter_bo) + PERF_CTR_BO_LOCK_OFFSET;
radeon_emit(cs, PKT3(PKT3_ATOMIC_MEM, 7, 0));
radeon_emit(cs, ATOMIC_OP(TC_OP_ATOMIC_CMPSWAP_32) | ATOMIC_COMMAND(ATOMIC_COMMAND_LOOP));
radeon_emit(cs, mutex_va); /* addr lo */
radeon_emit(cs, mutex_va >> 32); /* addr hi */
radeon_emit(cs, 1); /* data lo */
radeon_emit(cs, 0); /* data hi */
radeon_emit(cs, 0); /* compare data lo */
radeon_emit(cs, 0); /* compare data hi */
radeon_emit(cs, 10); /* loop interval */
}
uint64_t va = radv_buffer_get_va(device->perf_counter_bo) + PERF_CTR_BO_PASS_OFFSET;
uint64_t unset_va = va + (unlock ? 8 * pass : 0);
uint64_t set_va = va + (unlock ? 0 : 8 * pass);
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
COPY_DATA_COUNT_SEL | COPY_DATA_WR_CONFIRM);
radeon_emit(cs, 0); /* immediate */
radeon_emit(cs, 0);
radeon_emit(cs, unset_va);
radeon_emit(cs, unset_va >> 32);
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
COPY_DATA_COUNT_SEL | COPY_DATA_WR_CONFIRM);
radeon_emit(cs, 1); /* immediate */
radeon_emit(cs, 0);
radeon_emit(cs, set_va);
radeon_emit(cs, set_va >> 32);
if (unlock) {
uint64_t mutex_va = radv_buffer_get_va(device->perf_counter_bo) + PERF_CTR_BO_LOCK_OFFSET;
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
COPY_DATA_COUNT_SEL | COPY_DATA_WR_CONFIRM);
radeon_emit(cs, 0); /* immediate */
radeon_emit(cs, 0);
radeon_emit(cs, mutex_va);
radeon_emit(cs, mutex_va >> 32);
}
assert(cs->cdw <= cdw);
VkResult result = device->ws->cs_finalize(cs);
if (result != VK_SUCCESS) {
device->ws->cs_destroy(cs);
return NULL;
}
/* All the casts are to avoid MSVC errors around pointer truncation in a non-taken
* alternative.
*/
if (p_atomic_cmpxchg((uintptr_t*)cs_ref, 0, (uintptr_t)cs) != 0) {
device->ws->cs_destroy(cs);
}
return *cs_ref;
}
static VkResult
radv_sparse_buffer_bind_memory(struct radv_device *device, const VkSparseBufferMemoryBindInfo *bind)
{
RADV_FROM_HANDLE(radv_buffer, buffer, bind->buffer);
VkResult result;
for (uint32_t i = 0; i < bind->bindCount; ++i) {
struct radv_device_memory *mem = NULL;
if (bind->pBinds[i].memory != VK_NULL_HANDLE)
mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
result = device->ws->buffer_virtual_bind(device->ws, buffer->bo,
bind->pBinds[i].resourceOffset, bind->pBinds[i].size,
mem ? mem->bo : NULL, bind->pBinds[i].memoryOffset);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
static VkResult
radv_sparse_image_opaque_bind_memory(struct radv_device *device,
const VkSparseImageOpaqueMemoryBindInfo *bind)
{
RADV_FROM_HANDLE(radv_image, image, bind->image);
VkResult result;
for (uint32_t i = 0; i < bind->bindCount; ++i) {
struct radv_device_memory *mem = NULL;
if (bind->pBinds[i].memory != VK_NULL_HANDLE)
mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
result = device->ws->buffer_virtual_bind(device->ws, image->bo,
bind->pBinds[i].resourceOffset, bind->pBinds[i].size,
mem ? mem->bo : NULL, bind->pBinds[i].memoryOffset);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
static VkResult
radv_sparse_image_bind_memory(struct radv_device *device, const VkSparseImageMemoryBindInfo *bind)
{
RADV_FROM_HANDLE(radv_image, image, bind->image);
struct radeon_surf *surface = &image->planes[0].surface;
uint32_t bs = vk_format_get_blocksize(image->vk.format);
VkResult result;
for (uint32_t i = 0; i < bind->bindCount; ++i) {
struct radv_device_memory *mem = NULL;
uint32_t offset, pitch;
uint32_t mem_offset = bind->pBinds[i].memoryOffset;
const uint32_t layer = bind->pBinds[i].subresource.arrayLayer;
const uint32_t level = bind->pBinds[i].subresource.mipLevel;
VkExtent3D bind_extent = bind->pBinds[i].extent;
bind_extent.width =
DIV_ROUND_UP(bind_extent.width, vk_format_get_blockwidth(image->vk.format));
bind_extent.height =
DIV_ROUND_UP(bind_extent.height, vk_format_get_blockheight(image->vk.format));
VkOffset3D bind_offset = bind->pBinds[i].offset;
bind_offset.x /= vk_format_get_blockwidth(image->vk.format);
bind_offset.y /= vk_format_get_blockheight(image->vk.format);
if (bind->pBinds[i].memory != VK_NULL_HANDLE)
mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
if (device->physical_device->rad_info.gfx_level >= GFX9) {
offset = surface->u.gfx9.surf_slice_size * layer + surface->u.gfx9.prt_level_offset[level];
pitch = surface->u.gfx9.prt_level_pitch[level];
} else {
offset = (uint64_t)surface->u.legacy.level[level].offset_256B * 256 +
surface->u.legacy.level[level].slice_size_dw * 4 * layer;
pitch = surface->u.legacy.level[level].nblk_x;
}
offset += (bind_offset.y * pitch * bs) + (bind_offset.x * surface->prt_tile_height * bs);
uint32_t aligned_extent_width = ALIGN(bind_extent.width, surface->prt_tile_width);
bool whole_subres = bind_offset.x == 0 && aligned_extent_width == pitch;
if (whole_subres) {
uint32_t aligned_extent_height = ALIGN(bind_extent.height, surface->prt_tile_height);
uint32_t size = aligned_extent_width * aligned_extent_height * bs;
result = device->ws->buffer_virtual_bind(device->ws, image->bo, offset, size,
mem ? mem->bo : NULL, mem_offset);
if (result != VK_SUCCESS)
return result;
} else {
uint32_t img_increment = pitch * bs;
uint32_t mem_increment = aligned_extent_width * bs;
uint32_t size = mem_increment * surface->prt_tile_height;
for (unsigned y = 0; y < bind_extent.height; y += surface->prt_tile_height) {
result = device->ws->buffer_virtual_bind(
device->ws, image->bo, offset + img_increment * y, size, mem ? mem->bo : NULL,
mem_offset + mem_increment * y);
if (result != VK_SUCCESS)
return result;
}
}
}
return VK_SUCCESS;
}
static VkResult
radv_update_preambles(struct radv_queue_state *queue, struct radv_device *device,
struct vk_command_buffer *const *cmd_buffers, uint32_t cmd_buffer_count,
bool *uses_perf_counters)
{
if (queue->qf == RADV_QUEUE_TRANSFER)
return VK_SUCCESS;
/* Figure out the needs of the current submission.
* Start by copying the queue's current info.
* This is done because we only allow two possible behaviours for these buffers:
* - Grow when the newly needed amount is larger than what we had
* - Allocate the max size and reuse it, but don't free it until the queue is destroyed
*/
struct radv_queue_ring_info needs = queue->ring_info;
*uses_perf_counters = false;
for (uint32_t j = 0; j < cmd_buffer_count; j++) {
struct radv_cmd_buffer *cmd_buffer = container_of(cmd_buffers[j], struct radv_cmd_buffer, vk);
needs.scratch_size_per_wave =
MAX2(needs.scratch_size_per_wave, cmd_buffer->scratch_size_per_wave_needed);
needs.scratch_waves = MAX2(needs.scratch_waves, cmd_buffer->scratch_waves_wanted);
needs.compute_scratch_size_per_wave = MAX2(needs.compute_scratch_size_per_wave,
cmd_buffer->compute_scratch_size_per_wave_needed);
needs.compute_scratch_waves =
MAX2(needs.compute_scratch_waves, cmd_buffer->compute_scratch_waves_wanted);
needs.esgs_ring_size = MAX2(needs.esgs_ring_size, cmd_buffer->esgs_ring_size_needed);
needs.gsvs_ring_size = MAX2(needs.gsvs_ring_size, cmd_buffer->gsvs_ring_size_needed);
needs.tess_rings |= cmd_buffer->tess_rings_needed;
needs.task_rings |= cmd_buffer->task_rings_needed;
needs.mesh_scratch_ring |= cmd_buffer->mesh_scratch_ring_needed;
needs.gds |= cmd_buffer->gds_needed;
needs.gds_oa |= cmd_buffer->gds_oa_needed;
needs.sample_positions |= cmd_buffer->sample_positions_needed;
*uses_perf_counters |= cmd_buffer->state.uses_perf_counters;
}
/* Sanitize scratch size information. */
needs.scratch_waves = needs.scratch_size_per_wave
? MIN2(needs.scratch_waves, UINT32_MAX / needs.scratch_size_per_wave)
: 0;
needs.compute_scratch_waves =
needs.compute_scratch_size_per_wave
? MIN2(needs.compute_scratch_waves, UINT32_MAX / needs.compute_scratch_size_per_wave)
: 0;
/* Return early if we already match these needs.
* Note that it's not possible for any of the needed values to be less
* than what the queue already had, because we only ever increase the allocated size.
*/
if (queue->initial_full_flush_preamble_cs &&
queue->ring_info.scratch_size_per_wave == needs.scratch_size_per_wave &&
queue->ring_info.scratch_waves == needs.scratch_waves &&
queue->ring_info.compute_scratch_size_per_wave == needs.compute_scratch_size_per_wave &&
queue->ring_info.compute_scratch_waves == needs.compute_scratch_waves &&
queue->ring_info.esgs_ring_size == needs.esgs_ring_size &&
queue->ring_info.gsvs_ring_size == needs.gsvs_ring_size &&
queue->ring_info.tess_rings == needs.tess_rings &&
queue->ring_info.task_rings == needs.task_rings &&
queue->ring_info.mesh_scratch_ring == needs.mesh_scratch_ring &&
queue->ring_info.gds == needs.gds &&
queue->ring_info.gds_oa == needs.gds_oa &&
queue->ring_info.sample_positions == needs.sample_positions)
return VK_SUCCESS;
return radv_update_preamble_cs(queue, device, &needs);
}
struct radv_deferred_queue_submission {
struct radv_queue *queue;
VkCommandBuffer *cmd_buffers;
uint32_t cmd_buffer_count;
/* Sparse bindings that happen on a queue. */
VkSparseBufferMemoryBindInfo *buffer_binds;
uint32_t buffer_bind_count;
VkSparseImageOpaqueMemoryBindInfo *image_opaque_binds;
uint32_t image_opaque_bind_count;
VkSparseImageMemoryBindInfo *image_binds;
uint32_t image_bind_count;
bool flush_caches;
VkPipelineStageFlags2 wait_dst_stage_mask;
struct radv_semaphore_part **wait_semaphores;
uint32_t wait_semaphore_count;
struct radv_semaphore_part **signal_semaphores;
uint32_t signal_semaphore_count;
VkFence fence;
uint64_t *wait_values;
uint64_t *signal_values;
struct radv_semaphore_part *temporary_semaphore_parts;
uint32_t temporary_semaphore_part_count;
struct list_head queue_pending_list;
uint32_t submission_wait_count;
struct list_head processing_list;
};
static VkResult
radv_queue_submit_bind_sparse_memory(struct radv_device *device, struct vk_queue_submit *submission)
{
for (uint32_t i = 0; i < submission->buffer_bind_count; ++i) {
VkResult result = radv_sparse_buffer_bind_memory(device, submission->buffer_binds + i);
if (result != VK_SUCCESS)
return result;
}
for (uint32_t i = 0; i < submission->image_opaque_bind_count; ++i) {
VkResult result =
radv_sparse_image_opaque_bind_memory(device, submission->image_opaque_binds + i);
if (result != VK_SUCCESS)
return result;
}
for (uint32_t i = 0; i < submission->image_bind_count; ++i) {
VkResult result = radv_sparse_image_bind_memory(device, submission->image_binds + i);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
static VkResult
radv_queue_submit_empty(struct radv_queue *queue, struct vk_queue_submit *submission)
{
struct radeon_winsys_ctx *ctx = queue->hw_ctx;
struct radv_winsys_submit_info submit = {
.ip_type = radv_queue_ring(queue),
.queue_index = queue->vk.index_in_family,
};
return queue->device->ws->cs_submit(ctx, 1, &submit, submission->wait_count, submission->waits,
submission->signal_count, submission->signals, false);
}
static VkResult
radv_queue_submit_normal(struct radv_queue *queue, struct vk_queue_submit *submission)
{
struct radeon_winsys_ctx *ctx = queue->hw_ctx;
uint32_t max_cs_submission = queue->device->trace_bo ? 1 : RADV_MAX_IBS_PER_SUBMIT;
bool can_patch = true;
uint32_t advance;
VkResult result;
bool uses_perf_counters = false;
unsigned cmd_buffer_count = submission->command_buffer_count;
result = radv_update_preambles(&queue->state, queue->device, submission->command_buffers,
submission->command_buffer_count, &uses_perf_counters);
if (result != VK_SUCCESS)
return result;
if (queue->device->trace_bo)
simple_mtx_lock(&queue->device->trace_mtx);
if (uses_perf_counters)
cmd_buffer_count += 2;
struct radeon_cmdbuf **cs_array = malloc(sizeof(struct radeon_cmdbuf *) * cmd_buffer_count);
if (!cs_array)
goto fail;
for (uint32_t j = 0; j < submission->command_buffer_count; j++) {
struct radv_cmd_buffer *cmd_buffer = (struct radv_cmd_buffer *)submission->command_buffers[j];
assert(cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
cs_array[j + (uses_perf_counters ? 1 : 0)] = cmd_buffer->cs;
if ((cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT))
can_patch = false;
cmd_buffer->status = RADV_CMD_BUFFER_STATUS_PENDING;
}
if (uses_perf_counters) {
cs_array[0] =
radv_create_perf_counter_lock_cs(queue->device, submission->perf_pass_index, false);
cs_array[cmd_buffer_count - 1] =
radv_create_perf_counter_lock_cs(queue->device, submission->perf_pass_index, true);
can_patch = false;
if (!cs_array[0] || !cs_array[cmd_buffer_count - 1]) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
}
/* For fences on the same queue/vm amdgpu doesn't wait till all processing is finished
* before starting the next cmdbuffer, so we need to do it here. */
bool need_wait = submission->wait_count > 0;
struct radv_winsys_submit_info submit = {
.ip_type = radv_queue_ring(queue),
.queue_index = queue->vk.index_in_family,
.cs_array = cs_array,
.cs_count = 0,
.initial_preamble_cs =
need_wait ? queue->state.initial_full_flush_preamble_cs : queue->state.initial_preamble_cs,
.continue_preamble_cs = queue->state.continue_preamble_cs,
};
for (uint32_t j = 0; j < cmd_buffer_count; j += advance) {
advance = MIN2(max_cs_submission, cmd_buffer_count - j);
bool last_submit = j + advance == cmd_buffer_count;
if (queue->device->trace_bo)
*queue->device->trace_id_ptr = 0;
submit.cs_count = advance;
result = queue->device->ws->cs_submit(
ctx, 1, &submit, j == 0 ? submission->wait_count : 0, submission->waits,
last_submit ? submission->signal_count : 0, submission->signals, can_patch);
if (result != VK_SUCCESS)
goto fail;
if (queue->device->trace_bo) {
radv_check_gpu_hangs(queue, cs_array[j]);
}
if (queue->device->tma_bo) {
radv_check_trap_handler(queue);
}
submit.cs_array += advance;
submit.initial_preamble_cs = queue->state.initial_preamble_cs;
}
fail:
free(cs_array);
if (queue->device->trace_bo)
simple_mtx_unlock(&queue->device->trace_mtx);
return result;
}
static VkResult
radv_queue_submit(struct vk_queue *vqueue, struct vk_queue_submit *submission)
{
struct radv_queue *queue = (struct radv_queue *)vqueue;
VkResult result;
result = radv_queue_submit_bind_sparse_memory(queue->device, submission);
if (result != VK_SUCCESS)
goto fail;
if (!submission->command_buffer_count && !submission->wait_count && !submission->signal_count)
return VK_SUCCESS;
if (!submission->command_buffer_count) {
result = radv_queue_submit_empty(queue, submission);
} else {
result = radv_queue_submit_normal(queue, submission);
}
fail:
if (result != VK_SUCCESS && result != VK_ERROR_DEVICE_LOST) {
/* When something bad happened during the submission, such as
* an out of memory issue, it might be hard to recover from
* this inconsistent state. To avoid this sort of problem, we
* assume that we are in a really bad situation and return
* VK_ERROR_DEVICE_LOST to ensure the clients do not attempt
* to submit the same job again to this device.
*/
result = vk_device_set_lost(&queue->device->vk, "vkQueueSubmit() failed");
}
return result;
}
bool
radv_queue_internal_submit(struct radv_queue *queue, struct radeon_cmdbuf *cs)
{
struct radeon_winsys_ctx *ctx = queue->hw_ctx;
struct radv_winsys_submit_info submit = {
.ip_type = radv_queue_ring(queue),
.queue_index = queue->vk.index_in_family,
.cs_array = &cs,
.cs_count = 1,
};
VkResult result = queue->device->ws->cs_submit(ctx, 1, &submit, 0, NULL, 0, NULL, false);
if (result != VK_SUCCESS)
return false;
return true;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_EnumerateInstanceExtensionProperties(const char *pLayerName, uint32_t *pPropertyCount,
VkExtensionProperties *pProperties)
{
if (pLayerName)
return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
return vk_enumerate_instance_extension_properties(&radv_instance_extensions_supported,
pPropertyCount, pProperties);
}
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL
radv_GetInstanceProcAddr(VkInstance _instance, const char *pName)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
/* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
* when we have to return valid function pointers, NULL, or it's left
* undefined. See the table for exact details.
*/
if (pName == NULL)
return NULL;
#define LOOKUP_RADV_ENTRYPOINT(entrypoint) \
if (strcmp(pName, "vk" #entrypoint) == 0) \
return (PFN_vkVoidFunction)radv_##entrypoint
LOOKUP_RADV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
LOOKUP_RADV_ENTRYPOINT(EnumerateInstanceLayerProperties);
LOOKUP_RADV_ENTRYPOINT(EnumerateInstanceVersion);
LOOKUP_RADV_ENTRYPOINT(CreateInstance);
/* GetInstanceProcAddr() can also be called with a NULL instance.
* See https://gitlab.khronos.org/vulkan/vulkan/issues/2057
*/
LOOKUP_RADV_ENTRYPOINT(GetInstanceProcAddr);
#undef LOOKUP_RADV_ENTRYPOINT
if (instance == NULL)
return NULL;
return vk_instance_get_proc_addr(&instance->vk, &radv_instance_entrypoints, pName);
}
/* Windows will use a dll definition file to avoid build errors. */
#ifdef _WIN32
#undef PUBLIC
#define PUBLIC
#endif
/* The loader wants us to expose a second GetInstanceProcAddr function
* to work around certain LD_PRELOAD issues seen in apps.
*/
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL
vk_icdGetInstanceProcAddr(VkInstance instance, const char *pName)
{
return radv_GetInstanceProcAddr(instance, pName);
}
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL
vk_icdGetPhysicalDeviceProcAddr(VkInstance _instance, const char *pName)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
return vk_instance_get_physical_device_proc_addr(&instance->vk, pName);
}
bool
radv_get_memory_fd(struct radv_device *device, struct radv_device_memory *memory, int *pFD)
{
/* Only set BO metadata for the first plane */
if (memory->image && memory->image->offset == 0) {
struct radeon_bo_metadata metadata;
radv_init_metadata(device, memory->image, &metadata);
device->ws->buffer_set_metadata(device->ws, memory->bo, &metadata);
}
return device->ws->buffer_get_fd(device->ws, memory->bo, pFD);
}
void
radv_device_memory_init(struct radv_device_memory *mem, struct radv_device *device,
struct radeon_winsys_bo *bo)
{
memset(mem, 0, sizeof(*mem));
vk_object_base_init(&device->vk, &mem->base, VK_OBJECT_TYPE_DEVICE_MEMORY);
mem->bo = bo;
}
void
radv_device_memory_finish(struct radv_device_memory *mem)
{
vk_object_base_finish(&mem->base);
}
void
radv_free_memory(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
struct radv_device_memory *mem)
{
if (mem == NULL)
return;
#if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER
if (mem->android_hardware_buffer)
AHardwareBuffer_release(mem->android_hardware_buffer);
#endif
if (mem->bo) {
if (device->overallocation_disallowed) {
mtx_lock(&device->overallocation_mutex);
device->allocated_memory_size[mem->heap_index] -= mem->alloc_size;
mtx_unlock(&device->overallocation_mutex);
}
if (device->use_global_bo_list)
device->ws->buffer_make_resident(device->ws, mem->bo, false);
device->ws->buffer_destroy(device->ws, mem->bo);
mem->bo = NULL;
}
radv_device_memory_finish(mem);
vk_free2(&device->vk.alloc, pAllocator, mem);
}
static VkResult
radv_alloc_memory(struct radv_device *device, const VkMemoryAllocateInfo *pAllocateInfo,
const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMem)
{
struct radv_device_memory *mem;
VkResult result;
enum radeon_bo_domain domain;
uint32_t flags = 0;
assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
const VkImportMemoryFdInfoKHR *import_info =
vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
const VkMemoryDedicatedAllocateInfo *dedicate_info =
vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
const VkExportMemoryAllocateInfo *export_info =
vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
const struct VkImportAndroidHardwareBufferInfoANDROID *ahb_import_info =
vk_find_struct_const(pAllocateInfo->pNext, IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
const struct wsi_memory_allocate_info *wsi_info =
vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
if (pAllocateInfo->allocationSize == 0 && !ahb_import_info &&
!(export_info && (export_info->handleTypes &
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID))) {
/* Apparently, this is allowed */
*pMem = VK_NULL_HANDLE;
return VK_SUCCESS;
}
mem =
vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*mem), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (mem == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
radv_device_memory_init(mem, device, NULL);
if (wsi_info) {
if(wsi_info->implicit_sync)
flags |= RADEON_FLAG_IMPLICIT_SYNC;
/* In case of prime, linear buffer is allocated in default heap which is VRAM.
* Due to this when display is connected to iGPU and render on dGPU, ddx
* function amdgpu_present_check_flip() fails due to which there is blit
* instead of flip. Setting the flag RADEON_FLAG_GTT_WC allows kernel to
* allocate GTT memory in supported hardware where GTT can be directly scanout.
* Using wsi_info variable check to set the flag RADEON_FLAG_GTT_WC so that
* only for memory allocated by driver this flag is set.
*/
flags |= RADEON_FLAG_GTT_WC;
}
if (dedicate_info) {
mem->image = radv_image_from_handle(dedicate_info->image);
mem->buffer = radv_buffer_from_handle(dedicate_info->buffer);
} else {
mem->image = NULL;
mem->buffer = NULL;
}
if (wsi_info && wsi_info->implicit_sync && mem->buffer) {
/* Mark the linear prime buffer (aka the destination of the prime blit
* as uncached.
*/
flags |= RADEON_FLAG_VA_UNCACHED;
}
float priority_float = 0.5;
const struct VkMemoryPriorityAllocateInfoEXT *priority_ext =
vk_find_struct_const(pAllocateInfo->pNext, MEMORY_PRIORITY_ALLOCATE_INFO_EXT);
if (priority_ext)
priority_float = priority_ext->priority;
uint64_t replay_address = 0;
const VkMemoryOpaqueCaptureAddressAllocateInfo *replay_info =
vk_find_struct_const(pAllocateInfo->pNext, MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO);
if (replay_info && replay_info->opaqueCaptureAddress)
replay_address = replay_info->opaqueCaptureAddress;
unsigned priority = MIN2(RADV_BO_PRIORITY_APPLICATION_MAX - 1,
(int)(priority_float * RADV_BO_PRIORITY_APPLICATION_MAX));
mem->user_ptr = NULL;
#if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER
mem->android_hardware_buffer = NULL;
#endif
if (ahb_import_info) {
result = radv_import_ahb_memory(device, mem, priority, ahb_import_info);
if (result != VK_SUCCESS)
goto fail;
} else if (export_info && (export_info->handleTypes &
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)) {
result = radv_create_ahb_memory(device, mem, priority, pAllocateInfo);
if (result != VK_SUCCESS)
goto fail;
} else if (import_info) {
assert(import_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
import_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
result = device->ws->buffer_from_fd(device->ws, import_info->fd, priority, &mem->bo, NULL);
if (result != VK_SUCCESS) {
goto fail;
} else {
close(import_info->fd);
}
if (mem->image && mem->image->plane_count == 1 &&
!vk_format_is_depth_or_stencil(mem->image->vk.format) && mem->image->info.samples == 1 &&
mem->image->vk.tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
struct radeon_bo_metadata metadata;
device->ws->buffer_get_metadata(device->ws, mem->bo, &metadata);
struct radv_image_create_info create_info = {.no_metadata_planes = true,
.bo_metadata = &metadata};
/* This gives a basic ability to import radeonsi images
* that don't have DCC. This is not guaranteed by any
* spec and can be removed after we support modifiers. */
result = radv_image_create_layout(device, create_info, NULL, mem->image);
if (result != VK_SUCCESS) {
device->ws->buffer_destroy(device->ws, mem->bo);
goto fail;
}
}
} else if (host_ptr_info) {
assert(host_ptr_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
result = device->ws->buffer_from_ptr(device->ws, host_ptr_info->pHostPointer,
pAllocateInfo->allocationSize, priority, &mem->bo);
if (result != VK_SUCCESS) {
goto fail;
} else {
mem->user_ptr = host_ptr_info->pHostPointer;
}
} else {
uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
uint32_t heap_index;
heap_index =
device->physical_device->memory_properties.memoryTypes[pAllocateInfo->memoryTypeIndex]
.heapIndex;
domain = device->physical_device->memory_domains[pAllocateInfo->memoryTypeIndex];
flags |= device->physical_device->memory_flags[pAllocateInfo->memoryTypeIndex];
if (!import_info && (!export_info || !export_info->handleTypes)) {
flags |= RADEON_FLAG_NO_INTERPROCESS_SHARING;
if (device->use_global_bo_list) {
flags |= RADEON_FLAG_PREFER_LOCAL_BO;
}
}
const VkMemoryAllocateFlagsInfo *flags_info = vk_find_struct_const(pAllocateInfo->pNext, MEMORY_ALLOCATE_FLAGS_INFO);
if (flags_info && flags_info->flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT)
flags |= RADEON_FLAG_REPLAYABLE;
if (device->instance->zero_vram)
flags |= RADEON_FLAG_ZERO_VRAM;
if (device->overallocation_disallowed) {
uint64_t total_size =
device->physical_device->memory_properties.memoryHeaps[heap_index].size;
mtx_lock(&device->overallocation_mutex);
if (device->allocated_memory_size[heap_index] + alloc_size > total_size) {
mtx_unlock(&device->overallocation_mutex);
result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
goto fail;
}
device->allocated_memory_size[heap_index] += alloc_size;
mtx_unlock(&device->overallocation_mutex);
}
result = device->ws->buffer_create(device->ws, alloc_size,
device->physical_device->rad_info.max_alignment, domain,
flags, priority, replay_address, &mem->bo);
if (result != VK_SUCCESS) {
if (device->overallocation_disallowed) {
mtx_lock(&device->overallocation_mutex);
device->allocated_memory_size[heap_index] -= alloc_size;
mtx_unlock(&device->overallocation_mutex);
}
goto fail;
}
mem->heap_index = heap_index;
mem->alloc_size = alloc_size;
}
if (!wsi_info) {
if (device->use_global_bo_list) {
result = device->ws->buffer_make_resident(device->ws, mem->bo, true);
if (result != VK_SUCCESS)
goto fail;
}
}
*pMem = radv_device_memory_to_handle(mem);
return VK_SUCCESS;
fail:
radv_free_memory(device, pAllocator, mem);
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_AllocateMemory(VkDevice _device, const VkMemoryAllocateInfo *pAllocateInfo,
const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMem)
{
RADV_FROM_HANDLE(radv_device, device, _device);
return radv_alloc_memory(device, pAllocateInfo, pAllocator, pMem);
}
VKAPI_ATTR void VKAPI_CALL
radv_FreeMemory(VkDevice _device, VkDeviceMemory _mem, const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, mem, _mem);
radv_free_memory(device, pAllocator, mem);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_MapMemory(VkDevice _device, VkDeviceMemory _memory, VkDeviceSize offset, VkDeviceSize size,
VkMemoryMapFlags flags, void **ppData)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
if (mem->user_ptr)
*ppData = mem->user_ptr;
else
*ppData = device->ws->buffer_map(mem->bo);
if (*ppData) {
*ppData = (uint8_t *)*ppData + offset;
return VK_SUCCESS;
}
return vk_error(device, VK_ERROR_MEMORY_MAP_FAILED);
}
VKAPI_ATTR void VKAPI_CALL
radv_UnmapMemory(VkDevice _device, VkDeviceMemory _memory)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
if (mem->user_ptr == NULL)
device->ws->buffer_unmap(mem->bo);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_FlushMappedMemoryRanges(VkDevice _device, uint32_t memoryRangeCount,
const VkMappedMemoryRange *pMemoryRanges)
{
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_InvalidateMappedMemoryRanges(VkDevice _device, uint32_t memoryRangeCount,
const VkMappedMemoryRange *pMemoryRanges)
{
return VK_SUCCESS;
}
static void
radv_get_buffer_memory_requirements(struct radv_device *device, VkDeviceSize size,
VkBufferCreateFlags flags, VkBufferCreateFlags usage,
VkMemoryRequirements2 *pMemoryRequirements)
{
pMemoryRequirements->memoryRequirements.memoryTypeBits =
((1u << device->physical_device->memory_properties.memoryTypeCount) - 1u) &
~device->physical_device->memory_types_32bit;
/* Allow 32-bit address-space for DGC usage, as this buffer will contain
* cmd buffer upload buffers, and those get passed to shaders through 32-bit
* pointers.
*
* We only allow it with this usage set, to "protect" the 32-bit address space
* from being overused. The actual requirement is done as part of
* vkGetGeneratedCommandsMemoryRequirementsNV. (we have to make sure their
* intersection is non-zero at least)
*/
if ((usage & VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT) && device->uses_device_generated_commands)
pMemoryRequirements->memoryRequirements.memoryTypeBits |=
device->physical_device->memory_types_32bit;
if (flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT)
pMemoryRequirements->memoryRequirements.alignment = 4096;
else
pMemoryRequirements->memoryRequirements.alignment = 16;
/* Top level acceleration structures need the bottom 6 bits to store
* the root ids of instances. The hardware also needs bvh nodes to
* be 64 byte aligned.
*/
if (usage & VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR)
pMemoryRequirements->memoryRequirements.alignment =
MAX2(pMemoryRequirements->memoryRequirements.alignment, 64);
pMemoryRequirements->memoryRequirements.size =
align64(size, pMemoryRequirements->memoryRequirements.alignment);
vk_foreach_struct(ext, pMemoryRequirements->pNext)
{
switch (ext->sType) {
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
VkMemoryDedicatedRequirements *req = (VkMemoryDedicatedRequirements *)ext;
req->requiresDedicatedAllocation = false;
req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
break;
}
default:
break;
}
}
}
VKAPI_ATTR void VKAPI_CALL
radv_GetBufferMemoryRequirements2(VkDevice _device, const VkBufferMemoryRequirementsInfo2 *pInfo,
VkMemoryRequirements2 *pMemoryRequirements)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_buffer, buffer, pInfo->buffer);
radv_get_buffer_memory_requirements(device, buffer->vk.size, buffer->vk.create_flags,
buffer->vk.usage, pMemoryRequirements);
}
VKAPI_ATTR void VKAPI_CALL
radv_GetDeviceBufferMemoryRequirements(VkDevice _device,
const VkDeviceBufferMemoryRequirements *pInfo,
VkMemoryRequirements2 *pMemoryRequirements)
{
RADV_FROM_HANDLE(radv_device, device, _device);
radv_get_buffer_memory_requirements(device, pInfo->pCreateInfo->size, pInfo->pCreateInfo->flags,
pInfo->pCreateInfo->usage, pMemoryRequirements);
}
VKAPI_ATTR void VKAPI_CALL
radv_GetImageMemoryRequirements2(VkDevice _device, const VkImageMemoryRequirementsInfo2 *pInfo,
VkMemoryRequirements2 *pMemoryRequirements)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_image, image, pInfo->image);
pMemoryRequirements->memoryRequirements.memoryTypeBits =
((1u << device->physical_device->memory_properties.memoryTypeCount) - 1u) &
~device->physical_device->memory_types_32bit;
pMemoryRequirements->memoryRequirements.size = image->size;
pMemoryRequirements->memoryRequirements.alignment = image->alignment;
vk_foreach_struct(ext, pMemoryRequirements->pNext)
{
switch (ext->sType) {
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
VkMemoryDedicatedRequirements *req = (VkMemoryDedicatedRequirements *)ext;
req->requiresDedicatedAllocation =
image->shareable && image->vk.tiling != VK_IMAGE_TILING_LINEAR;
req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
break;
}
default:
break;
}
}
}
VKAPI_ATTR void VKAPI_CALL
radv_GetDeviceImageMemoryRequirements(VkDevice device,
const VkDeviceImageMemoryRequirements *pInfo,
VkMemoryRequirements2 *pMemoryRequirements)
{
UNUSED VkResult result;
VkImage image;
/* Determining the image size/alignment require to create a surface, which is complicated without
* creating an image.
* TODO: Avoid creating an image.
*/
result = radv_CreateImage(device, pInfo->pCreateInfo, NULL, &image);
assert(result == VK_SUCCESS);
VkImageMemoryRequirementsInfo2 info2 = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2,
.image = image,
};
radv_GetImageMemoryRequirements2(device, &info2, pMemoryRequirements);
radv_DestroyImage(device, image, NULL);
}
VKAPI_ATTR void VKAPI_CALL
radv_GetDeviceMemoryCommitment(VkDevice device, VkDeviceMemory memory,
VkDeviceSize *pCommittedMemoryInBytes)
{
*pCommittedMemoryInBytes = 0;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_BindBufferMemory2(VkDevice _device, uint32_t bindInfoCount,
const VkBindBufferMemoryInfo *pBindInfos)
{
RADV_FROM_HANDLE(radv_device, device, _device);
for (uint32_t i = 0; i < bindInfoCount; ++i) {
RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory);
RADV_FROM_HANDLE(radv_buffer, buffer, pBindInfos[i].buffer);
if (mem->alloc_size) {
VkBufferMemoryRequirementsInfo2 info = {
.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2,
.buffer = pBindInfos[i].buffer,
};
VkMemoryRequirements2 reqs = {
.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2,
};
radv_GetBufferMemoryRequirements2(_device, &info, &reqs);
if (pBindInfos[i].memoryOffset + reqs.memoryRequirements.size > mem->alloc_size) {
return vk_errorf(device, VK_ERROR_UNKNOWN,
"Device memory object too small for the buffer.\n");
}
}
buffer->bo = mem->bo;
buffer->offset = pBindInfos[i].memoryOffset;
}
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_BindImageMemory2(VkDevice _device, uint32_t bindInfoCount,
const VkBindImageMemoryInfo *pBindInfos)
{
RADV_FROM_HANDLE(radv_device, device, _device);
for (uint32_t i = 0; i < bindInfoCount; ++i) {
RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory);
RADV_FROM_HANDLE(radv_image, image, pBindInfos[i].image);
if (mem->alloc_size) {
VkImageMemoryRequirementsInfo2 info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2,
.image = pBindInfos[i].image,
};
VkMemoryRequirements2 reqs = {
.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2,
};
radv_GetImageMemoryRequirements2(_device, &info, &reqs);
if (pBindInfos[i].memoryOffset + reqs.memoryRequirements.size > mem->alloc_size) {
return vk_errorf(device, VK_ERROR_UNKNOWN,
"Device memory object too small for the image.\n");
}
}
image->bo = mem->bo;
image->offset = pBindInfos[i].memoryOffset;
}
return VK_SUCCESS;
}
static void
radv_destroy_event(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
struct radv_event *event)
{
if (event->bo)
device->ws->buffer_destroy(device->ws, event->bo);
vk_object_base_finish(&event->base);
vk_free2(&device->vk.alloc, pAllocator, event);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_CreateEvent(VkDevice _device, const VkEventCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkEvent *pEvent)
{
RADV_FROM_HANDLE(radv_device, device, _device);
enum radeon_bo_domain bo_domain;
enum radeon_bo_flag bo_flags;
struct radv_event *event;
VkResult result;
event = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*event), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!event)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &event->base, VK_OBJECT_TYPE_EVENT);
if (pCreateInfo->flags & VK_EVENT_CREATE_DEVICE_ONLY_BIT) {
bo_domain = RADEON_DOMAIN_VRAM;
bo_flags = RADEON_FLAG_NO_CPU_ACCESS;
} else {
bo_domain = RADEON_DOMAIN_GTT;
bo_flags = RADEON_FLAG_CPU_ACCESS;
}
result = device->ws->buffer_create(
device->ws, 8, 8, bo_domain,
RADEON_FLAG_VA_UNCACHED | RADEON_FLAG_NO_INTERPROCESS_SHARING | bo_flags,
RADV_BO_PRIORITY_FENCE, 0, &event->bo);
if (result != VK_SUCCESS) {
radv_destroy_event(device, pAllocator, event);
return vk_error(device, result);
}
if (!(pCreateInfo->flags & VK_EVENT_CREATE_DEVICE_ONLY_BIT)) {
event->map = (uint64_t *)device->ws->buffer_map(event->bo);
if (!event->map) {
radv_destroy_event(device, pAllocator, event);
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
}
}
*pEvent = radv_event_to_handle(event);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
radv_DestroyEvent(VkDevice _device, VkEvent _event, const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_event, event, _event);
if (!event)
return;
radv_destroy_event(device, pAllocator, event);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetEventStatus(VkDevice _device, VkEvent _event)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_event, event, _event);
if (vk_device_is_lost(&device->vk))
return VK_ERROR_DEVICE_LOST;
if (*event->map == 1)
return VK_EVENT_SET;
return VK_EVENT_RESET;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_SetEvent(VkDevice _device, VkEvent _event)
{
RADV_FROM_HANDLE(radv_event, event, _event);
*event->map = 1;
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_ResetEvent(VkDevice _device, VkEvent _event)
{
RADV_FROM_HANDLE(radv_event, event, _event);
*event->map = 0;
return VK_SUCCESS;
}
void
radv_buffer_init(struct radv_buffer *buffer, struct radv_device *device,
struct radeon_winsys_bo *bo, uint64_t size,
uint64_t offset)
{
VkBufferCreateInfo createInfo = {
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.size = size,
};
vk_buffer_init(&device->vk, &buffer->vk, &createInfo);
buffer->bo = bo;
buffer->offset = offset;
}
void
radv_buffer_finish(struct radv_buffer *buffer)
{
vk_buffer_finish(&buffer->vk);
}
static void
radv_destroy_buffer(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
struct radv_buffer *buffer)
{
if ((buffer->vk.create_flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) && buffer->bo)
device->ws->buffer_destroy(device->ws, buffer->bo);
radv_buffer_finish(buffer);
vk_free2(&device->vk.alloc, pAllocator, buffer);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_CreateBuffer(VkDevice _device, const VkBufferCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_buffer *buffer;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
buffer = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*buffer), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (buffer == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_buffer_init(&device->vk, &buffer->vk, pCreateInfo);
buffer->bo = NULL;
buffer->offset = 0;
if (pCreateInfo->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) {
enum radeon_bo_flag flags = RADEON_FLAG_VIRTUAL;
if (pCreateInfo->flags & VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT)
flags |= RADEON_FLAG_REPLAYABLE;
uint64_t replay_address = 0;
const VkBufferOpaqueCaptureAddressCreateInfo *replay_info =
vk_find_struct_const(pCreateInfo->pNext, BUFFER_OPAQUE_CAPTURE_ADDRESS_CREATE_INFO);
if (replay_info && replay_info->opaqueCaptureAddress)
replay_address = replay_info->opaqueCaptureAddress;
VkResult result =
device->ws->buffer_create(device->ws, align64(buffer->vk.size, 4096), 4096, 0, flags,
RADV_BO_PRIORITY_VIRTUAL, replay_address, &buffer->bo);
if (result != VK_SUCCESS) {
radv_destroy_buffer(device, pAllocator, buffer);
return vk_error(device, result);
}
}
*pBuffer = radv_buffer_to_handle(buffer);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
radv_DestroyBuffer(VkDevice _device, VkBuffer _buffer, const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
if (!buffer)
return;
radv_destroy_buffer(device, pAllocator, buffer);
}
VKAPI_ATTR VkDeviceAddress VKAPI_CALL
radv_GetBufferDeviceAddress(VkDevice device, const VkBufferDeviceAddressInfo *pInfo)
{
RADV_FROM_HANDLE(radv_buffer, buffer, pInfo->buffer);
return radv_buffer_get_va(buffer->bo) + buffer->offset;
}
VKAPI_ATTR uint64_t VKAPI_CALL
radv_GetBufferOpaqueCaptureAddress(VkDevice device, const VkBufferDeviceAddressInfo *pInfo)
{
RADV_FROM_HANDLE(radv_buffer, buffer, pInfo->buffer);
return buffer->bo ? radv_buffer_get_va(buffer->bo) + buffer->offset : 0;
}
VKAPI_ATTR uint64_t VKAPI_CALL
radv_GetDeviceMemoryOpaqueCaptureAddress(VkDevice device,
const VkDeviceMemoryOpaqueCaptureAddressInfo *pInfo)
{
RADV_FROM_HANDLE(radv_device_memory, mem, pInfo->memory);
return radv_buffer_get_va(mem->bo);
}
static inline unsigned
si_tile_mode_index(const struct radv_image_plane *plane, unsigned level, bool stencil)
{
if (stencil)
return plane->surface.u.legacy.zs.stencil_tiling_index[level];
else
return plane->surface.u.legacy.tiling_index[level];
}
static uint32_t
radv_surface_max_layer_count(struct radv_image_view *iview)
{
return iview->vk.view_type == VK_IMAGE_VIEW_TYPE_3D ? iview->extent.depth
: (iview->vk.base_array_layer + iview->vk.layer_count);
}
static unsigned
get_dcc_max_uncompressed_block_size(const struct radv_device *device,
const struct radv_image_view *iview)
{
if (device->physical_device->rad_info.gfx_level < GFX10 && iview->image->info.samples > 1) {
if (iview->image->planes[0].surface.bpe == 1)
return V_028C78_MAX_BLOCK_SIZE_64B;
else if (iview->image->planes[0].surface.bpe == 2)
return V_028C78_MAX_BLOCK_SIZE_128B;
}
return V_028C78_MAX_BLOCK_SIZE_256B;
}
static unsigned
get_dcc_min_compressed_block_size(const struct radv_device *device)
{
if (!device->physical_device->rad_info.has_dedicated_vram) {
/* amdvlk: [min-compressed-block-size] should be set to 32 for
* dGPU and 64 for APU because all of our APUs to date use
* DIMMs which have a request granularity size of 64B while all
* other chips have a 32B request size.
*/
return V_028C78_MIN_BLOCK_SIZE_64B;
}
return V_028C78_MIN_BLOCK_SIZE_32B;
}
static uint32_t
radv_init_dcc_control_reg(struct radv_device *device, struct radv_image_view *iview)
{
unsigned max_uncompressed_block_size = get_dcc_max_uncompressed_block_size(device, iview);
unsigned min_compressed_block_size = get_dcc_min_compressed_block_size(device);
unsigned max_compressed_block_size;
unsigned independent_128b_blocks;
unsigned independent_64b_blocks;
if (!radv_dcc_enabled(iview->image, iview->vk.base_mip_level))
return 0;
/* For GFX9+ ac_surface computes values for us (except min_compressed
* and max_uncompressed) */
if (device->physical_device->rad_info.gfx_level >= GFX9) {
max_compressed_block_size =
iview->image->planes[0].surface.u.gfx9.color.dcc.max_compressed_block_size;
independent_128b_blocks = iview->image->planes[0].surface.u.gfx9.color.dcc.independent_128B_blocks;
independent_64b_blocks = iview->image->planes[0].surface.u.gfx9.color.dcc.independent_64B_blocks;
} else {
independent_128b_blocks = 0;
if (iview->image->vk.usage & (VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) {
/* If this DCC image is potentially going to be used in texture
* fetches, we need some special settings.
*/
independent_64b_blocks = 1;
max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B;
} else {
/* MAX_UNCOMPRESSED_BLOCK_SIZE must be >=
* MAX_COMPRESSED_BLOCK_SIZE. Set MAX_COMPRESSED_BLOCK_SIZE as
* big as possible for better compression state.
*/
independent_64b_blocks = 0;
max_compressed_block_size = max_uncompressed_block_size;
}
}
uint32_t result = S_028C78_MAX_UNCOMPRESSED_BLOCK_SIZE(max_uncompressed_block_size) |
S_028C78_MAX_COMPRESSED_BLOCK_SIZE(max_compressed_block_size) |
S_028C78_MIN_COMPRESSED_BLOCK_SIZE(min_compressed_block_size) |
S_028C78_INDEPENDENT_64B_BLOCKS(independent_64b_blocks);
if (device->physical_device->rad_info.gfx_level >= GFX11) {
result |= S_028C78_INDEPENDENT_128B_BLOCKS_GFX11(independent_128b_blocks) |
S_028C78_DISABLE_CONSTANT_ENCODE_REG(1) |
S_028C78_FDCC_ENABLE(radv_dcc_enabled(iview->image, iview->vk.base_mip_level));
} else {
result |= S_028C78_INDEPENDENT_128B_BLOCKS_GFX10(independent_128b_blocks);
}
return result;
}
void
radv_initialise_color_surface(struct radv_device *device, struct radv_color_buffer_info *cb,
struct radv_image_view *iview)
{
const struct util_format_description *desc;
unsigned ntype, format, swap, endian;
unsigned blend_clamp = 0, blend_bypass = 0;
uint64_t va;
const struct radv_image_plane *plane = &iview->image->planes[iview->plane_id];
const struct radeon_surf *surf = &plane->surface;
desc = vk_format_description(iview->vk.format);
memset(cb, 0, sizeof(*cb));
/* Intensity is implemented as Red, so treat it that way. */
if (device->physical_device->rad_info.gfx_level >= GFX11)
cb->cb_color_attrib = S_028C74_FORCE_DST_ALPHA_1_GFX11(desc->swizzle[3] == PIPE_SWIZZLE_1);
else
cb->cb_color_attrib = S_028C74_FORCE_DST_ALPHA_1_GFX6(desc->swizzle[3] == PIPE_SWIZZLE_1);
va = radv_buffer_get_va(iview->image->bo) + iview->image->offset;
cb->cb_color_base = va >> 8;
if (device->physical_device->rad_info.gfx_level >= GFX9) {
if (device->physical_device->rad_info.gfx_level >= GFX11) {
cb->cb_color_attrib3 |= S_028EE0_COLOR_SW_MODE(surf->u.gfx9.swizzle_mode) |
S_028EE0_DCC_PIPE_ALIGNED(surf->u.gfx9.color.dcc.pipe_aligned);
} else if (device->physical_device->rad_info.gfx_level >= GFX10) {
cb->cb_color_attrib3 |= S_028EE0_COLOR_SW_MODE(surf->u.gfx9.swizzle_mode) |
S_028EE0_FMASK_SW_MODE(surf->u.gfx9.color.fmask_swizzle_mode) |
S_028EE0_CMASK_PIPE_ALIGNED(1) |
S_028EE0_DCC_PIPE_ALIGNED(surf->u.gfx9.color.dcc.pipe_aligned);
} else {
struct gfx9_surf_meta_flags meta = {
.rb_aligned = 1,
.pipe_aligned = 1,
};
if (surf->meta_offset)
meta = surf->u.gfx9.color.dcc;
cb->cb_color_attrib |= S_028C74_COLOR_SW_MODE(surf->u.gfx9.swizzle_mode) |
S_028C74_FMASK_SW_MODE(surf->u.gfx9.color.fmask_swizzle_mode) |
S_028C74_RB_ALIGNED(meta.rb_aligned) |
S_028C74_PIPE_ALIGNED(meta.pipe_aligned);
cb->cb_mrt_epitch = S_0287A0_EPITCH(surf->u.gfx9.epitch);
}
cb->cb_color_base += surf->u.gfx9.surf_offset >> 8;
cb->cb_color_base |= surf->tile_swizzle;
} else {
const struct legacy_surf_level *level_info = &surf->u.legacy.level[iview->vk.base_mip_level];
unsigned pitch_tile_max, slice_tile_max, tile_mode_index;
cb->cb_color_base += level_info->offset_256B;
if (level_info->mode == RADEON_SURF_MODE_2D)
cb->cb_color_base |= surf->tile_swizzle;
pitch_tile_max = level_info->nblk_x / 8 - 1;
slice_tile_max = (level_info->nblk_x * level_info->nblk_y) / 64 - 1;
tile_mode_index = si_tile_mode_index(plane, iview->vk.base_mip_level, false);
cb->cb_color_pitch = S_028C64_TILE_MAX(pitch_tile_max);
cb->cb_color_slice = S_028C68_TILE_MAX(slice_tile_max);
cb->cb_color_cmask_slice = surf->u.legacy.color.cmask_slice_tile_max;
cb->cb_color_attrib |= S_028C74_TILE_MODE_INDEX(tile_mode_index);
if (radv_image_has_fmask(iview->image)) {
if (device->physical_device->rad_info.gfx_level >= GFX7)
cb->cb_color_pitch |=
S_028C64_FMASK_TILE_MAX(surf->u.legacy.color.fmask.pitch_in_pixels / 8 - 1);
cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(surf->u.legacy.color.fmask.tiling_index);
cb->cb_color_fmask_slice = S_028C88_TILE_MAX(surf->u.legacy.color.fmask.slice_tile_max);
} else {
/* This must be set for fast clear to work without FMASK. */
if (device->physical_device->rad_info.gfx_level >= GFX7)
cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(pitch_tile_max);
cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(tile_mode_index);
cb->cb_color_fmask_slice = S_028C88_TILE_MAX(slice_tile_max);
}
}
/* CMASK variables */
va = radv_buffer_get_va(iview->image->bo) + iview->image->offset;
va += surf->cmask_offset;
cb->cb_color_cmask = va >> 8;
va = radv_buffer_get_va(iview->image->bo) + iview->image->offset;
va += surf->meta_offset;
if (radv_dcc_enabled(iview->image, iview->vk.base_mip_level) &&
device->physical_device->rad_info.gfx_level <= GFX8)
va += plane->surface.u.legacy.color.dcc_level[iview->vk.base_mip_level].dcc_offset;
unsigned dcc_tile_swizzle = surf->tile_swizzle;
dcc_tile_swizzle &= ((1 << surf->meta_alignment_log2) - 1) >> 8;
cb->cb_dcc_base = va >> 8;
cb->cb_dcc_base |= dcc_tile_swizzle;
/* GFX10 field has the same base shift as the GFX6 field. */
uint32_t max_slice = radv_surface_max_layer_count(iview) - 1;
cb->cb_color_view =
S_028C6C_SLICE_START(iview->vk.base_array_layer) | S_028C6C_SLICE_MAX_GFX10(max_slice);
if (iview->image->info.samples > 1) {
unsigned log_samples = util_logbase2(iview->image->info.samples);
if (device->physical_device->rad_info.gfx_level >= GFX11)
cb->cb_color_attrib |= S_028C74_NUM_FRAGMENTS_GFX11(log_samples);
else
cb->cb_color_attrib |=
S_028C74_NUM_SAMPLES(log_samples) | S_028C74_NUM_FRAGMENTS_GFX6(log_samples);
}
if (radv_image_has_fmask(iview->image)) {
va = radv_buffer_get_va(iview->image->bo) + iview->image->offset + surf->fmask_offset;
cb->cb_color_fmask = va >> 8;
cb->cb_color_fmask |= surf->fmask_tile_swizzle;
} else {
cb->cb_color_fmask = cb->cb_color_base;
}
ntype = radv_translate_color_numformat(iview->vk.format, desc,
vk_format_get_first_non_void_channel(iview->vk.format));
format = radv_translate_colorformat(iview->vk.format);
assert(format != V_028C70_COLOR_INVALID);
swap = radv_translate_colorswap(iview->vk.format, false);
endian = radv_colorformat_endian_swap(format);
/* blend clamp should be set for all NORM/SRGB types */
if (ntype == V_028C70_NUMBER_UNORM || ntype == V_028C70_NUMBER_SNORM ||
ntype == V_028C70_NUMBER_SRGB)
blend_clamp = 1;
/* set blend bypass according to docs if SINT/UINT or
8/24 COLOR variants */
if (ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT ||
format == V_028C70_COLOR_8_24 || format == V_028C70_COLOR_24_8 ||
format == V_028C70_COLOR_X24_8_32_FLOAT) {
blend_clamp = 0;
blend_bypass = 1;
}
#if 0
if ((ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT) &&
(format == V_028C70_COLOR_8 ||
format == V_028C70_COLOR_8_8 ||
format == V_028C70_COLOR_8_8_8_8))
->color_is_int8 = true;
#endif
cb->cb_color_info =
S_028C70_COMP_SWAP(swap) | S_028C70_BLEND_CLAMP(blend_clamp) |
S_028C70_BLEND_BYPASS(blend_bypass) | S_028C70_SIMPLE_FLOAT(1) |
S_028C70_ROUND_MODE(ntype != V_028C70_NUMBER_UNORM && ntype != V_028C70_NUMBER_SNORM &&
ntype != V_028C70_NUMBER_SRGB && format != V_028C70_COLOR_8_24 &&
format != V_028C70_COLOR_24_8) |
S_028C70_NUMBER_TYPE(ntype);
if (device->physical_device->rad_info.gfx_level >= GFX11)
cb->cb_color_info |= S_028C70_FORMAT_GFX11(format);
else
cb->cb_color_info |= S_028C70_FORMAT_GFX6(format) | S_028C70_ENDIAN(endian);
if (radv_image_has_fmask(iview->image)) {
cb->cb_color_info |= S_028C70_COMPRESSION(1);
if (device->physical_device->rad_info.gfx_level == GFX6) {
unsigned fmask_bankh = util_logbase2(surf->u.legacy.color.fmask.bankh);
cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(fmask_bankh);
}
if (radv_image_is_tc_compat_cmask(iview->image)) {
/* Allow the texture block to read FMASK directly
* without decompressing it. This bit must be cleared
* when performing FMASK_DECOMPRESS or DCC_COMPRESS,
* otherwise the operation doesn't happen.
*/
cb->cb_color_info |= S_028C70_FMASK_COMPRESS_1FRAG_ONLY(1);
if (device->physical_device->rad_info.gfx_level == GFX8) {
/* Set CMASK into a tiling format that allows
* the texture block to read it.
*/
cb->cb_color_info |= S_028C70_CMASK_ADDR_TYPE(2);
}
}
}
if (radv_image_has_cmask(iview->image) &&
!(device->instance->debug_flags & RADV_DEBUG_NO_FAST_CLEARS))
cb->cb_color_info |= S_028C70_FAST_CLEAR(1);
if (radv_dcc_enabled(iview->image, iview->vk.base_mip_level) && !iview->disable_dcc_mrt &&
device->physical_device->rad_info.gfx_level < GFX11)
cb->cb_color_info |= S_028C70_DCC_ENABLE(1);
cb->cb_dcc_control = radv_init_dcc_control_reg(device, iview);
/* This must be set for fast clear to work without FMASK. */
if (!radv_image_has_fmask(iview->image) && device->physical_device->rad_info.gfx_level == GFX6) {
unsigned bankh = util_logbase2(surf->u.legacy.bankh);
cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(bankh);
}
if (device->physical_device->rad_info.gfx_level >= GFX9) {
unsigned mip0_depth = iview->image->vk.image_type == VK_IMAGE_TYPE_3D
? (iview->extent.depth - 1)
: (iview->image->info.array_size - 1);
unsigned width =
vk_format_get_plane_width(iview->image->vk.format, iview->plane_id, iview->extent.width);
unsigned height =
vk_format_get_plane_height(iview->image->vk.format, iview->plane_id, iview->extent.height);
if (device->physical_device->rad_info.gfx_level >= GFX10) {
cb->cb_color_view |= S_028C6C_MIP_LEVEL_GFX10(iview->vk.base_mip_level);
cb->cb_color_attrib3 |=
S_028EE0_MIP0_DEPTH(mip0_depth) | S_028EE0_RESOURCE_TYPE(surf->u.gfx9.resource_type) |
S_028EE0_RESOURCE_LEVEL(device->physical_device->rad_info.gfx_level >= GFX11 ? 0 : 1);
} else {
cb->cb_color_view |= S_028C6C_MIP_LEVEL_GFX9(iview->vk.base_mip_level);
cb->cb_color_attrib |=
S_028C74_MIP0_DEPTH(mip0_depth) | S_028C74_RESOURCE_TYPE(surf->u.gfx9.resource_type);
}
cb->cb_color_attrib2 = S_028C68_MIP0_WIDTH(width - 1) | S_028C68_MIP0_HEIGHT(height - 1) |
S_028C68_MAX_MIP(iview->image->info.levels - 1);
}
}
static unsigned
radv_calc_decompress_on_z_planes(struct radv_device *device, struct radv_image_view *iview)
{
unsigned max_zplanes = 0;
assert(radv_image_is_tc_compat_htile(iview->image));
if (device->physical_device->rad_info.gfx_level >= GFX9) {
/* Default value for 32-bit depth surfaces. */
max_zplanes = 4;
if (iview->vk.format == VK_FORMAT_D16_UNORM && iview->image->info.samples > 1)
max_zplanes = 2;
/* Workaround for a DB hang when ITERATE_256 is set to 1. Only affects 4X MSAA D/S images. */
if (device->physical_device->rad_info.has_two_planes_iterate256_bug &&
radv_image_get_iterate256(device, iview->image) &&
!radv_image_tile_stencil_disabled(device, iview->image) &&
iview->image->info.samples == 4) {
max_zplanes = 1;
}
max_zplanes = max_zplanes + 1;
} else {
if (iview->vk.format == VK_FORMAT_D16_UNORM) {
/* Do not enable Z plane compression for 16-bit depth
* surfaces because isn't supported on GFX8. Only
* 32-bit depth surfaces are supported by the hardware.
* This allows to maintain shader compatibility and to
* reduce the number of depth decompressions.
*/
max_zplanes = 1;
} else {
if (iview->image->info.samples <= 1)
max_zplanes = 5;
else if (iview->image->info.samples <= 4)
max_zplanes = 3;
else
max_zplanes = 2;
}
}
return max_zplanes;
}
void
radv_initialise_vrs_surface(struct radv_image *image, struct radv_buffer *htile_buffer,
struct radv_ds_buffer_info *ds)
{
const struct radeon_surf *surf = &image->planes[0].surface;
assert(image->vk.format == VK_FORMAT_D16_UNORM);
memset(ds, 0, sizeof(*ds));
ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16);
ds->db_z_info = S_028038_FORMAT(V_028040_Z_16) |
S_028038_SW_MODE(surf->u.gfx9.swizzle_mode) |
S_028038_ZRANGE_PRECISION(1) |
S_028038_TILE_SURFACE_ENABLE(1);
ds->db_stencil_info = S_02803C_FORMAT(V_028044_STENCIL_INVALID);
ds->db_depth_size = S_02801C_X_MAX(image->info.width - 1) |
S_02801C_Y_MAX(image->info.height - 1);
ds->db_htile_data_base = radv_buffer_get_va(htile_buffer->bo) >> 8;
ds->db_htile_surface = S_028ABC_FULL_CACHE(1) | S_028ABC_PIPE_ALIGNED(1) |
S_028ABC_VRS_HTILE_ENCODING(V_028ABC_VRS_HTILE_4BIT_ENCODING);
}
void
radv_initialise_ds_surface(struct radv_device *device, struct radv_ds_buffer_info *ds,
struct radv_image_view *iview)
{
unsigned level = iview->vk.base_mip_level;
unsigned format, stencil_format;
uint64_t va, s_offs, z_offs;
bool stencil_only = iview->image->vk.format == VK_FORMAT_S8_UINT;
const struct radv_image_plane *plane = &iview->image->planes[0];
const struct radeon_surf *surf = &plane->surface;
assert(vk_format_get_plane_count(iview->image->vk.format) == 1);
memset(ds, 0, sizeof(*ds));
if (!device->instance->absolute_depth_bias) {
switch (iview->image->vk.format) {
case VK_FORMAT_D24_UNORM_S8_UINT:
case VK_FORMAT_X8_D24_UNORM_PACK32:
ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-24);
break;
case VK_FORMAT_D16_UNORM:
case VK_FORMAT_D16_UNORM_S8_UINT:
ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16);
break;
case VK_FORMAT_D32_SFLOAT:
case VK_FORMAT_D32_SFLOAT_S8_UINT:
ds->pa_su_poly_offset_db_fmt_cntl =
S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-23) | S_028B78_POLY_OFFSET_DB_IS_FLOAT_FMT(1);
break;
default:
break;
}
}
format = radv_translate_dbformat(iview->image->vk.format);
stencil_format = surf->has_stencil ? V_028044_STENCIL_8 : V_028044_STENCIL_INVALID;
uint32_t max_slice = radv_surface_max_layer_count(iview) - 1;
ds->db_depth_view = S_028008_SLICE_START(iview->vk.base_array_layer) |
S_028008_SLICE_MAX(max_slice);
if (device->physical_device->rad_info.gfx_level >= GFX10) {
ds->db_depth_view |= S_028008_SLICE_START_HI(iview->vk.base_array_layer >> 11) |
S_028008_SLICE_MAX_HI(max_slice >> 11);
}
ds->db_htile_data_base = 0;
ds->db_htile_surface = 0;
va = radv_buffer_get_va(iview->image->bo) + iview->image->offset;
s_offs = z_offs = va;
if (device->physical_device->rad_info.gfx_level >= GFX9) {
assert(surf->u.gfx9.surf_offset == 0);
s_offs += surf->u.gfx9.zs.stencil_offset;
ds->db_z_info = S_028038_FORMAT(format) |
S_028038_NUM_SAMPLES(util_logbase2(iview->image->info.samples)) |
S_028038_SW_MODE(surf->u.gfx9.swizzle_mode) |
S_028038_MAXMIP(iview->image->info.levels - 1) |
S_028038_ZRANGE_PRECISION(1) |
S_028040_ITERATE_256(device->physical_device->rad_info.gfx_level >= GFX11);
ds->db_stencil_info = S_02803C_FORMAT(stencil_format) |
S_02803C_SW_MODE(surf->u.gfx9.zs.stencil_swizzle_mode) |
S_028044_ITERATE_256(device->physical_device->rad_info.gfx_level >= GFX11);
if (device->physical_device->rad_info.gfx_level == GFX9) {
ds->db_z_info2 = S_028068_EPITCH(surf->u.gfx9.epitch);
ds->db_stencil_info2 = S_02806C_EPITCH(surf->u.gfx9.zs.stencil_epitch);
}
ds->db_depth_view |= S_028008_MIPID(level);
ds->db_depth_size = S_02801C_X_MAX(iview->image->info.width - 1) |
S_02801C_Y_MAX(iview->image->info.height - 1);
if (radv_htile_enabled(iview->image, level)) {
ds->db_z_info |= S_028038_TILE_SURFACE_ENABLE(1);
if (radv_image_is_tc_compat_htile(iview->image)) {
unsigned max_zplanes = radv_calc_decompress_on_z_planes(device, iview);
ds->db_z_info |= S_028038_DECOMPRESS_ON_N_ZPLANES(max_zplanes);
if (device->physical_device->rad_info.gfx_level >= GFX10) {
bool iterate256 = radv_image_get_iterate256(device, iview->image);
ds->db_z_info |= S_028040_ITERATE_FLUSH(1);
ds->db_stencil_info |= S_028044_ITERATE_FLUSH(1);
ds->db_z_info |= S_028040_ITERATE_256(iterate256);
ds->db_stencil_info |= S_028044_ITERATE_256(iterate256);
} else {
ds->db_z_info |= S_028038_ITERATE_FLUSH(1);
ds->db_stencil_info |= S_02803C_ITERATE_FLUSH(1);
}
}
if (radv_image_tile_stencil_disabled(device, iview->image)) {
ds->db_stencil_info |= S_02803C_TILE_STENCIL_DISABLE(1);
}
va = radv_buffer_get_va(iview->image->bo) + iview->image->offset + surf->meta_offset;
ds->db_htile_data_base = va >> 8;
ds->db_htile_surface = S_028ABC_FULL_CACHE(1) | S_028ABC_PIPE_ALIGNED(1);
if (device->physical_device->rad_info.gfx_level == GFX9) {
ds->db_htile_surface |= S_028ABC_RB_ALIGNED(1);
}
if (radv_image_has_vrs_htile(device, iview->image)) {
ds->db_htile_surface |= S_028ABC_VRS_HTILE_ENCODING(V_028ABC_VRS_HTILE_4BIT_ENCODING);
}
}
} else {
const struct legacy_surf_level *level_info = &surf->u.legacy.level[level];
if (stencil_only)
level_info = &surf->u.legacy.zs.stencil_level[level];
z_offs += (uint64_t)surf->u.legacy.level[level].offset_256B * 256;
s_offs += (uint64_t)surf->u.legacy.zs.stencil_level[level].offset_256B * 256;
ds->db_depth_info = S_02803C_ADDR5_SWIZZLE_MASK(!radv_image_is_tc_compat_htile(iview->image));
ds->db_z_info = S_028040_FORMAT(format) | S_028040_ZRANGE_PRECISION(1);
ds->db_stencil_info = S_028044_FORMAT(stencil_format);
if (iview->image->info.samples > 1)
ds->db_z_info |= S_028040_NUM_SAMPLES(util_logbase2(iview->image->info.samples));
if (device->physical_device->rad_info.gfx_level >= GFX7) {
struct radeon_info *info = &device->physical_device->rad_info;
unsigned tiling_index = surf->u.legacy.tiling_index[level];
unsigned stencil_index = surf->u.legacy.zs.stencil_tiling_index[level];
unsigned macro_index = surf->u.legacy.macro_tile_index;
unsigned tile_mode = info->si_tile_mode_array[tiling_index];
unsigned stencil_tile_mode = info->si_tile_mode_array[stencil_index];
unsigned macro_mode = info->cik_macrotile_mode_array[macro_index];
if (stencil_only)
tile_mode = stencil_tile_mode;
ds->db_depth_info |= S_02803C_ARRAY_MODE(G_009910_ARRAY_MODE(tile_mode)) |
S_02803C_PIPE_CONFIG(G_009910_PIPE_CONFIG(tile_mode)) |
S_02803C_BANK_WIDTH(G_009990_BANK_WIDTH(macro_mode)) |
S_02803C_BANK_HEIGHT(G_009990_BANK_HEIGHT(macro_mode)) |
S_02803C_MACRO_TILE_ASPECT(G_009990_MACRO_TILE_ASPECT(macro_mode)) |
S_02803C_NUM_BANKS(G_009990_NUM_BANKS(macro_mode));
ds->db_z_info |= S_028040_TILE_SPLIT(G_009910_TILE_SPLIT(tile_mode));
ds->db_stencil_info |= S_028044_TILE_SPLIT(G_009910_TILE_SPLIT(stencil_tile_mode));
} else {
unsigned tile_mode_index = si_tile_mode_index(&iview->image->planes[0], level, false);
ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
tile_mode_index = si_tile_mode_index(&iview->image->planes[0], level, true);
ds->db_stencil_info |= S_028044_TILE_MODE_INDEX(tile_mode_index);
if (stencil_only)
ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
}
ds->db_depth_size = S_028058_PITCH_TILE_MAX((level_info->nblk_x / 8) - 1) |
S_028058_HEIGHT_TILE_MAX((level_info->nblk_y / 8) - 1);
ds->db_depth_slice =
S_02805C_SLICE_TILE_MAX((level_info->nblk_x * level_info->nblk_y) / 64 - 1);
if (radv_htile_enabled(iview->image, level)) {
ds->db_z_info |= S_028040_TILE_SURFACE_ENABLE(1);
if (radv_image_tile_stencil_disabled(device, iview->image)) {
ds->db_stencil_info |= S_028044_TILE_STENCIL_DISABLE(1);
}
va = radv_buffer_get_va(iview->image->bo) + iview->image->offset + surf->meta_offset;
ds->db_htile_data_base = va >> 8;
ds->db_htile_surface = S_028ABC_FULL_CACHE(1);
if (radv_image_is_tc_compat_htile(iview->image)) {
unsigned max_zplanes = radv_calc_decompress_on_z_planes(device, iview);
ds->db_htile_surface |= S_028ABC_TC_COMPATIBLE(1);
ds->db_z_info |= S_028040_DECOMPRESS_ON_N_ZPLANES(max_zplanes);
}
}
}
ds->db_z_read_base = ds->db_z_write_base = z_offs >> 8;
ds->db_stencil_read_base = ds->db_stencil_write_base = s_offs >> 8;
}
static unsigned
radv_tex_wrap(VkSamplerAddressMode address_mode)
{
switch (address_mode) {
case VK_SAMPLER_ADDRESS_MODE_REPEAT:
return V_008F30_SQ_TEX_WRAP;
case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT:
return V_008F30_SQ_TEX_MIRROR;
case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:
return V_008F30_SQ_TEX_CLAMP_LAST_TEXEL;
case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER:
return V_008F30_SQ_TEX_CLAMP_BORDER;
case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE:
return V_008F30_SQ_TEX_MIRROR_ONCE_LAST_TEXEL;
default:
unreachable("illegal tex wrap mode");
break;
}
}
static unsigned
radv_tex_compare(VkCompareOp op)
{
switch (op) {
case VK_COMPARE_OP_NEVER:
return V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER;
case VK_COMPARE_OP_LESS:
return V_008F30_SQ_TEX_DEPTH_COMPARE_LESS;
case VK_COMPARE_OP_EQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_EQUAL;
case VK_COMPARE_OP_LESS_OR_EQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_LESSEQUAL;
case VK_COMPARE_OP_GREATER:
return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATER;
case VK_COMPARE_OP_NOT_EQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_NOTEQUAL;
case VK_COMPARE_OP_GREATER_OR_EQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATEREQUAL;
case VK_COMPARE_OP_ALWAYS:
return V_008F30_SQ_TEX_DEPTH_COMPARE_ALWAYS;
default:
unreachable("illegal compare mode");
break;
}
}
static unsigned
radv_tex_filter(VkFilter filter, unsigned max_ansio)
{
switch (filter) {
case VK_FILTER_NEAREST:
return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_POINT
: V_008F38_SQ_TEX_XY_FILTER_POINT);
case VK_FILTER_LINEAR:
return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_BILINEAR
: V_008F38_SQ_TEX_XY_FILTER_BILINEAR);
case VK_FILTER_CUBIC_EXT:
default:
fprintf(stderr, "illegal texture filter");
return 0;
}
}
static unsigned
radv_tex_mipfilter(VkSamplerMipmapMode mode)
{
switch (mode) {
case VK_SAMPLER_MIPMAP_MODE_NEAREST:
return V_008F38_SQ_TEX_Z_FILTER_POINT;
case VK_SAMPLER_MIPMAP_MODE_LINEAR:
return V_008F38_SQ_TEX_Z_FILTER_LINEAR;
default:
return V_008F38_SQ_TEX_Z_FILTER_NONE;
}
}
static unsigned
radv_tex_bordercolor(VkBorderColor bcolor)
{
switch (bcolor) {
case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK:
case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK:
return V_008F3C_SQ_TEX_BORDER_COLOR_TRANS_BLACK;
case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK:
case VK_BORDER_COLOR_INT_OPAQUE_BLACK:
return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_BLACK;
case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE:
case VK_BORDER_COLOR_INT_OPAQUE_WHITE:
return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_WHITE;
case VK_BORDER_COLOR_FLOAT_CUSTOM_EXT:
case VK_BORDER_COLOR_INT_CUSTOM_EXT:
return V_008F3C_SQ_TEX_BORDER_COLOR_REGISTER;
default:
break;
}
return 0;
}
static unsigned
radv_tex_aniso_filter(unsigned filter)
{
return MIN2(util_logbase2(filter), 4);
}
static unsigned
radv_tex_filter_mode(VkSamplerReductionMode mode)
{
switch (mode) {
case VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE:
return V_008F30_SQ_IMG_FILTER_MODE_BLEND;
case VK_SAMPLER_REDUCTION_MODE_MIN:
return V_008F30_SQ_IMG_FILTER_MODE_MIN;
case VK_SAMPLER_REDUCTION_MODE_MAX:
return V_008F30_SQ_IMG_FILTER_MODE_MAX;
default:
break;
}
return 0;
}
static uint32_t
radv_get_max_anisotropy(struct radv_device *device, const VkSamplerCreateInfo *pCreateInfo)
{
if (device->force_aniso >= 0)
return device->force_aniso;
if (pCreateInfo->anisotropyEnable && pCreateInfo->maxAnisotropy > 1.0f)
return (uint32_t)pCreateInfo->maxAnisotropy;
return 0;
}
static uint32_t
radv_register_border_color(struct radv_device *device, VkClearColorValue value)
{
uint32_t slot;
mtx_lock(&device->border_color_data.mutex);
for (slot = 0; slot < RADV_BORDER_COLOR_COUNT; slot++) {
if (!device->border_color_data.used[slot]) {
/* Copy to the GPU wrt endian-ness. */
util_memcpy_cpu_to_le32(&device->border_color_data.colors_gpu_ptr[slot], &value,
sizeof(VkClearColorValue));
device->border_color_data.used[slot] = true;
break;
}
}
mtx_unlock(&device->border_color_data.mutex);
return slot;
}
static void
radv_unregister_border_color(struct radv_device *device, uint32_t slot)
{
mtx_lock(&device->border_color_data.mutex);
device->border_color_data.used[slot] = false;
mtx_unlock(&device->border_color_data.mutex);
}
static void
radv_init_sampler(struct radv_device *device, struct radv_sampler *sampler,
const VkSamplerCreateInfo *pCreateInfo)
{
uint32_t max_aniso = radv_get_max_anisotropy(device, pCreateInfo);
uint32_t max_aniso_ratio = radv_tex_aniso_filter(max_aniso);
bool compat_mode = device->physical_device->rad_info.gfx_level == GFX8 ||
device->physical_device->rad_info.gfx_level == GFX9;
unsigned filter_mode = V_008F30_SQ_IMG_FILTER_MODE_BLEND;
unsigned depth_compare_func = V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER;
bool trunc_coord =
pCreateInfo->minFilter == VK_FILTER_NEAREST && pCreateInfo->magFilter == VK_FILTER_NEAREST;
bool uses_border_color = pCreateInfo->addressModeU == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER ||
pCreateInfo->addressModeV == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER ||
pCreateInfo->addressModeW == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
VkBorderColor border_color =
uses_border_color ? pCreateInfo->borderColor : VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
uint32_t border_color_ptr;
bool disable_cube_wrap = pCreateInfo->flags & VK_SAMPLER_CREATE_NON_SEAMLESS_CUBE_MAP_BIT_EXT;
const struct VkSamplerReductionModeCreateInfo *sampler_reduction =
vk_find_struct_const(pCreateInfo->pNext, SAMPLER_REDUCTION_MODE_CREATE_INFO);
if (sampler_reduction)
filter_mode = radv_tex_filter_mode(sampler_reduction->reductionMode);
if (pCreateInfo->compareEnable)
depth_compare_func = radv_tex_compare(pCreateInfo->compareOp);
sampler->border_color_slot = RADV_BORDER_COLOR_COUNT;
if (border_color == VK_BORDER_COLOR_FLOAT_CUSTOM_EXT ||
border_color == VK_BORDER_COLOR_INT_CUSTOM_EXT) {
const VkSamplerCustomBorderColorCreateInfoEXT *custom_border_color =
vk_find_struct_const(pCreateInfo->pNext, SAMPLER_CUSTOM_BORDER_COLOR_CREATE_INFO_EXT);
assert(custom_border_color);
sampler->border_color_slot =
radv_register_border_color(device, custom_border_color->customBorderColor);
/* Did we fail to find a slot? */
if (sampler->border_color_slot == RADV_BORDER_COLOR_COUNT) {
fprintf(stderr, "WARNING: no free border color slots, defaulting to TRANS_BLACK.\n");
border_color = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
}
}
/* If we don't have a custom color, set the ptr to 0 */
border_color_ptr =
sampler->border_color_slot != RADV_BORDER_COLOR_COUNT ? sampler->border_color_slot : 0;
sampler->state[0] =
(S_008F30_CLAMP_X(radv_tex_wrap(pCreateInfo->addressModeU)) |
S_008F30_CLAMP_Y(radv_tex_wrap(pCreateInfo->addressModeV)) |
S_008F30_CLAMP_Z(radv_tex_wrap(pCreateInfo->addressModeW)) |
S_008F30_MAX_ANISO_RATIO(max_aniso_ratio) | S_008F30_DEPTH_COMPARE_FUNC(depth_compare_func) |
S_008F30_FORCE_UNNORMALIZED(pCreateInfo->unnormalizedCoordinates ? 1 : 0) |
S_008F30_ANISO_THRESHOLD(max_aniso_ratio >> 1) | S_008F30_ANISO_BIAS(max_aniso_ratio) |
S_008F30_DISABLE_CUBE_WRAP(disable_cube_wrap) | S_008F30_COMPAT_MODE(compat_mode) |
S_008F30_FILTER_MODE(filter_mode) | S_008F30_TRUNC_COORD(trunc_coord));
sampler->state[1] = (S_008F34_MIN_LOD(radv_float_to_ufixed(CLAMP(pCreateInfo->minLod, 0, 15), 8)) |
S_008F34_MAX_LOD(radv_float_to_ufixed(CLAMP(pCreateInfo->maxLod, 0, 15), 8)) |
S_008F34_PERF_MIP(max_aniso_ratio ? max_aniso_ratio + 6 : 0));
sampler->state[2] = (S_008F38_LOD_BIAS(radv_float_to_sfixed(CLAMP(pCreateInfo->mipLodBias, -16, 16), 8)) |
S_008F38_XY_MAG_FILTER(radv_tex_filter(pCreateInfo->magFilter, max_aniso)) |
S_008F38_XY_MIN_FILTER(radv_tex_filter(pCreateInfo->minFilter, max_aniso)) |
S_008F38_MIP_FILTER(radv_tex_mipfilter(pCreateInfo->mipmapMode)));
sampler->state[3] = S_008F3C_BORDER_COLOR_TYPE(radv_tex_bordercolor(border_color));
if (device->physical_device->rad_info.gfx_level >= GFX10) {
sampler->state[2] |=
S_008F38_ANISO_OVERRIDE_GFX10(device->instance->disable_aniso_single_level);
} else {
sampler->state[2] |=
S_008F38_DISABLE_LSB_CEIL(device->physical_device->rad_info.gfx_level <= GFX8) |
S_008F38_FILTER_PREC_FIX(1) |
S_008F38_ANISO_OVERRIDE_GFX8(device->instance->disable_aniso_single_level &&
device->physical_device->rad_info.gfx_level >= GFX8);
}
if (device->physical_device->rad_info.gfx_level >= GFX11) {
sampler->state[3] |= S_008F3C_BORDER_COLOR_PTR_GFX11(border_color_ptr);
} else {
sampler->state[3] |= S_008F3C_BORDER_COLOR_PTR_GFX6(border_color_ptr);
}
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_CreateSampler(VkDevice _device, const VkSamplerCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkSampler *pSampler)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_sampler *sampler;
const struct VkSamplerYcbcrConversionInfo *ycbcr_conversion =
vk_find_struct_const(pCreateInfo->pNext, SAMPLER_YCBCR_CONVERSION_INFO);
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO);
sampler = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*sampler), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!sampler)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &sampler->base, VK_OBJECT_TYPE_SAMPLER);
radv_init_sampler(device, sampler, pCreateInfo);
sampler->ycbcr_sampler =
ycbcr_conversion ? radv_sampler_ycbcr_conversion_from_handle(ycbcr_conversion->conversion)
: NULL;
*pSampler = radv_sampler_to_handle(sampler);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
radv_DestroySampler(VkDevice _device, VkSampler _sampler, const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_sampler, sampler, _sampler);
if (!sampler)
return;
if (sampler->border_color_slot != RADV_BORDER_COLOR_COUNT)
radv_unregister_border_color(device, sampler->border_color_slot);
vk_object_base_finish(&sampler->base);
vk_free2(&device->vk.alloc, pAllocator, sampler);
}
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion)
{
/* For the full details on loader interface versioning, see
* <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
* What follows is a condensed summary, to help you navigate the large and
* confusing official doc.
*
* - Loader interface v0 is incompatible with later versions. We don't
* support it.
*
* - In loader interface v1:
* - The first ICD entrypoint called by the loader is
* vk_icdGetInstanceProcAddr(). The ICD must statically expose this
* entrypoint.
* - The ICD must statically expose no other Vulkan symbol unless it is
* linked with -Bsymbolic.
* - Each dispatchable Vulkan handle created by the ICD must be
* a pointer to a struct whose first member is VK_LOADER_DATA. The
* ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
* - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
* vkDestroySurfaceKHR(). The ICD must be capable of working with
* such loader-managed surfaces.
*
* - Loader interface v2 differs from v1 in:
* - The first ICD entrypoint called by the loader is
* vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
* statically expose this entrypoint.
*
* - Loader interface v3 differs from v2 in:
* - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
* vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
* because the loader no longer does so.
*
* - Loader interface v4 differs from v3 in:
* - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
*
* - Loader interface v5 differs from v4 in:
* - The ICD must support Vulkan API version 1.1 and must not return
* VK_ERROR_INCOMPATIBLE_DRIVER from vkCreateInstance() unless a
* Vulkan Loader with interface v4 or smaller is being used and the
* application provides an API version that is greater than 1.0.
*/
*pSupportedVersion = MIN2(*pSupportedVersion, 5u);
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetMemoryFdKHR(VkDevice _device, const VkMemoryGetFdInfoKHR *pGetFdInfo, int *pFD)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, memory, pGetFdInfo->memory);
assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
/* At the moment, we support only the below handle types. */
assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
bool ret = radv_get_memory_fd(device, memory, pFD);
if (ret == false)
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
return VK_SUCCESS;
}
static uint32_t
radv_compute_valid_memory_types_attempt(struct radv_physical_device *dev,
enum radeon_bo_domain domains, enum radeon_bo_flag flags,
enum radeon_bo_flag ignore_flags)
{
/* Don't count GTT/CPU as relevant:
*
* - We're not fully consistent between the two.
* - Sometimes VRAM gets VRAM|GTT.
*/
const enum radeon_bo_domain relevant_domains =
RADEON_DOMAIN_VRAM | RADEON_DOMAIN_GDS | RADEON_DOMAIN_OA;
uint32_t bits = 0;
for (unsigned i = 0; i < dev->memory_properties.memoryTypeCount; ++i) {
if ((domains & relevant_domains) != (dev->memory_domains[i] & relevant_domains))
continue;
if ((flags & ~ignore_flags) != (dev->memory_flags[i] & ~ignore_flags))
continue;
bits |= 1u << i;
}
return bits;
}
static uint32_t
radv_compute_valid_memory_types(struct radv_physical_device *dev, enum radeon_bo_domain domains,
enum radeon_bo_flag flags)
{
enum radeon_bo_flag ignore_flags = ~(RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_GTT_WC);
uint32_t bits = radv_compute_valid_memory_types_attempt(dev, domains, flags, ignore_flags);
if (!bits) {
ignore_flags |= RADEON_FLAG_GTT_WC;
bits = radv_compute_valid_memory_types_attempt(dev, domains, flags, ignore_flags);
}
if (!bits) {
ignore_flags |= RADEON_FLAG_NO_CPU_ACCESS;
bits = radv_compute_valid_memory_types_attempt(dev, domains, flags, ignore_flags);
}
/* Avoid 32-bit memory types for shared memory. */
bits &= ~dev->memory_types_32bit;
return bits;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetMemoryFdPropertiesKHR(VkDevice _device, VkExternalMemoryHandleTypeFlagBits handleType,
int fd, VkMemoryFdPropertiesKHR *pMemoryFdProperties)
{
RADV_FROM_HANDLE(radv_device, device, _device);
switch (handleType) {
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT: {
enum radeon_bo_domain domains;
enum radeon_bo_flag flags;
if (!device->ws->buffer_get_flags_from_fd(device->ws, fd, &domains, &flags))
return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
pMemoryFdProperties->memoryTypeBits =
radv_compute_valid_memory_types(device->physical_device, domains, flags);
return VK_SUCCESS;
}
default:
/* The valid usage section for this function says:
*
* "handleType must not be one of the handle types defined as
* opaque."
*
* So opaque handle types fall into the default "unsupported" case.
*/
return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
}
}
VKAPI_ATTR void VKAPI_CALL
radv_GetDeviceGroupPeerMemoryFeatures(VkDevice device, uint32_t heapIndex,
uint32_t localDeviceIndex, uint32_t remoteDeviceIndex,
VkPeerMemoryFeatureFlags *pPeerMemoryFeatures)
{
assert(localDeviceIndex == remoteDeviceIndex);
*pPeerMemoryFeatures =
VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT | VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT | VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
}
static const VkTimeDomainEXT radv_time_domains[] = {
VK_TIME_DOMAIN_DEVICE_EXT,
VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
#ifdef CLOCK_MONOTONIC_RAW
VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
#endif
};
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(VkPhysicalDevice physicalDevice,
uint32_t *pTimeDomainCount,
VkTimeDomainEXT *pTimeDomains)
{
int d;
VK_OUTARRAY_MAKE_TYPED(VkTimeDomainEXT, out, pTimeDomains, pTimeDomainCount);
for (d = 0; d < ARRAY_SIZE(radv_time_domains); d++) {
vk_outarray_append_typed(VkTimeDomainEXT, &out, i)
{
*i = radv_time_domains[d];
}
}
return vk_outarray_status(&out);
}
#ifndef _WIN32
static uint64_t
radv_clock_gettime(clockid_t clock_id)
{
struct timespec current;
int ret;
ret = clock_gettime(clock_id, &current);
#ifdef CLOCK_MONOTONIC_RAW
if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
ret = clock_gettime(CLOCK_MONOTONIC, &current);
#endif
if (ret < 0)
return 0;
return (uint64_t)current.tv_sec * 1000000000ULL + current.tv_nsec;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetCalibratedTimestampsEXT(VkDevice _device, uint32_t timestampCount,
const VkCalibratedTimestampInfoEXT *pTimestampInfos,
uint64_t *pTimestamps, uint64_t *pMaxDeviation)
{
RADV_FROM_HANDLE(radv_device, device, _device);
uint32_t clock_crystal_freq = device->physical_device->rad_info.clock_crystal_freq;
int d;
uint64_t begin, end;
uint64_t max_clock_period = 0;
#ifdef CLOCK_MONOTONIC_RAW
begin = radv_clock_gettime(CLOCK_MONOTONIC_RAW);
#else
begin = radv_clock_gettime(CLOCK_MONOTONIC);
#endif
for (d = 0; d < timestampCount; d++) {
switch (pTimestampInfos[d].timeDomain) {
case VK_TIME_DOMAIN_DEVICE_EXT:
pTimestamps[d] = device->ws->query_value(device->ws, RADEON_TIMESTAMP);
uint64_t device_period = DIV_ROUND_UP(1000000, clock_crystal_freq);
max_clock_period = MAX2(max_clock_period, device_period);
break;
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
pTimestamps[d] = radv_clock_gettime(CLOCK_MONOTONIC);
max_clock_period = MAX2(max_clock_period, 1);
break;
#ifdef CLOCK_MONOTONIC_RAW
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
pTimestamps[d] = begin;
break;
#endif
default:
pTimestamps[d] = 0;
break;
}
}
#ifdef CLOCK_MONOTONIC_RAW
end = radv_clock_gettime(CLOCK_MONOTONIC_RAW);
#else
end = radv_clock_gettime(CLOCK_MONOTONIC);
#endif
/*
* The maximum deviation is the sum of the interval over which we
* perform the sampling and the maximum period of any sampled
* clock. That's because the maximum skew between any two sampled
* clock edges is when the sampled clock with the largest period is
* sampled at the end of that period but right at the beginning of the
* sampling interval and some other clock is sampled right at the
* begining of its sampling period and right at the end of the
* sampling interval. Let's assume the GPU has the longest clock
* period and that the application is sampling GPU and monotonic:
*
* s e
* w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
* Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
*
* g
* 0 1 2 3
* GPU -----_____-----_____-----_____-----_____
*
* m
* x y z 0 1 2 3 4 5 6 7 8 9 a b c
* Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
*
* Interval <----------------->
* Deviation <-------------------------->
*
* s = read(raw) 2
* g = read(GPU) 1
* m = read(monotonic) 2
* e = read(raw) b
*
* We round the sample interval up by one tick to cover sampling error
* in the interval clock
*/
uint64_t sample_interval = end - begin + 1;
*pMaxDeviation = sample_interval + max_clock_period;
return VK_SUCCESS;
}
#endif
VKAPI_ATTR void VKAPI_CALL
radv_GetPhysicalDeviceMultisamplePropertiesEXT(VkPhysicalDevice physicalDevice,
VkSampleCountFlagBits samples,
VkMultisamplePropertiesEXT *pMultisampleProperties)
{
VkSampleCountFlagBits supported_samples = VK_SAMPLE_COUNT_2_BIT | VK_SAMPLE_COUNT_4_BIT |
VK_SAMPLE_COUNT_8_BIT;
if (samples & supported_samples) {
pMultisampleProperties->maxSampleLocationGridSize = (VkExtent2D){2, 2};
} else {
pMultisampleProperties->maxSampleLocationGridSize = (VkExtent2D){0, 0};
}
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetPhysicalDeviceFragmentShadingRatesKHR(
VkPhysicalDevice physicalDevice, uint32_t *pFragmentShadingRateCount,
VkPhysicalDeviceFragmentShadingRateKHR *pFragmentShadingRates)
{
VK_OUTARRAY_MAKE_TYPED(VkPhysicalDeviceFragmentShadingRateKHR, out, pFragmentShadingRates,
pFragmentShadingRateCount);
#define append_rate(w, h, s) \
{ \
VkPhysicalDeviceFragmentShadingRateKHR rate = { \
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR, \
.sampleCounts = s, \
.fragmentSize = {.width = w, .height = h}, \
}; \
vk_outarray_append_typed(VkPhysicalDeviceFragmentShadingRateKHR, &out, r) *r = rate; \
}
for (uint32_t x = 2; x >= 1; x--) {
for (uint32_t y = 2; y >= 1; y--) {
VkSampleCountFlagBits samples;
if (x == 1 && y == 1) {
samples = ~0;
} else {
samples = VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_2_BIT |
VK_SAMPLE_COUNT_4_BIT | VK_SAMPLE_COUNT_8_BIT;
}
append_rate(x, y, samples);
}
}
#undef append_rate
return vk_outarray_status(&out);
}
static bool
radv_thread_trace_set_pstate(struct radv_device *device, bool enable)
{
struct radeon_winsys *ws = device->ws;
enum radeon_ctx_pstate pstate = enable ? RADEON_CTX_PSTATE_PEAK : RADEON_CTX_PSTATE_NONE;
if (device->physical_device->rad_info.has_stable_pstate) {
/* pstate is per-device; setting it for one ctx is sufficient.
* We pick the first initialized one below. */
for (unsigned i = 0; i < RADV_NUM_HW_CTX; i++)
if (device->hw_ctx[i])
return ws->ctx_set_pstate(device->hw_ctx[i], pstate) >= 0;
}
return true;
}
bool
radv_device_acquire_performance_counters(struct radv_device *device)
{
bool result = true;
simple_mtx_lock(&device->pstate_mtx);
if (device->pstate_cnt == 0) {
result = radv_thread_trace_set_pstate(device, true);
if (result)
++device->pstate_cnt;
}
simple_mtx_unlock(&device->pstate_mtx);
return result;
}
void
radv_device_release_performance_counters(struct radv_device *device)
{
simple_mtx_lock(&device->pstate_mtx);
if (--device->pstate_cnt == 0)
radv_thread_trace_set_pstate(device, false);
simple_mtx_unlock(&device->pstate_mtx);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_AcquireProfilingLockKHR(VkDevice _device, const VkAcquireProfilingLockInfoKHR *pInfo)
{
RADV_FROM_HANDLE(radv_device, device, _device);
bool result = radv_device_acquire_performance_counters(device);
return result ? VK_SUCCESS : VK_ERROR_UNKNOWN;
}
VKAPI_ATTR void VKAPI_CALL
radv_ReleaseProfilingLockKHR(VkDevice _device)
{
RADV_FROM_HANDLE(radv_device, device, _device);
radv_device_release_performance_counters(device);
}