mesa/src/gallium/drivers/llvmpipe/lp_state_fs.c

1238 lines
40 KiB
C

/**************************************************************************
*
* Copyright 2009 VMware, Inc.
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Code generate the whole fragment pipeline.
*
* The fragment pipeline consists of the following stages:
* - early depth test
* - fragment shader
* - alpha test
* - depth/stencil test
* - blending
*
* This file has only the glue to assemble the fragment pipeline. The actual
* plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
* lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
* muster the LLVM JIT execution engine to create a function that follows an
* established binary interface and that can be called from C directly.
*
* A big source of complexity here is that we often want to run different
* stages with different precisions and data types and precisions. For example,
* the fragment shader needs typically to be done in floats, but the
* depth/stencil test and blending is better done in the type that most closely
* matches the depth/stencil and color buffer respectively.
*
* Since the width of a SIMD vector register stays the same regardless of the
* element type, different types imply different number of elements, so we must
* code generate more instances of the stages with larger types to be able to
* feed/consume the stages with smaller types.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
#include <limits.h>
#include "pipe/p_defines.h"
#include "util/u_inlines.h"
#include "util/u_memory.h"
#include "util/u_pointer.h"
#include "util/u_format.h"
#include "util/u_dump.h"
#include "util/u_string.h"
#include "util/u_simple_list.h"
#include "os/os_time.h"
#include "pipe/p_shader_tokens.h"
#include "draw/draw_context.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_scan.h"
#include "tgsi/tgsi_parse.h"
#include "gallivm/lp_bld_type.h"
#include "gallivm/lp_bld_const.h"
#include "gallivm/lp_bld_conv.h"
#include "gallivm/lp_bld_init.h"
#include "gallivm/lp_bld_intr.h"
#include "gallivm/lp_bld_logic.h"
#include "gallivm/lp_bld_tgsi.h"
#include "gallivm/lp_bld_swizzle.h"
#include "gallivm/lp_bld_flow.h"
#include "gallivm/lp_bld_debug.h"
#include "lp_bld_alpha.h"
#include "lp_bld_blend.h"
#include "lp_bld_depth.h"
#include "lp_bld_interp.h"
#include "lp_context.h"
#include "lp_debug.h"
#include "lp_perf.h"
#include "lp_screen.h"
#include "lp_setup.h"
#include "lp_state.h"
#include "lp_tex_sample.h"
#include "lp_flush.h"
#include "lp_state_fs.h"
#include <llvm-c/Analysis.h>
static unsigned fs_no = 0;
/**
* Generate the depth /stencil test code.
*/
static void
generate_depth_stencil(LLVMBuilderRef builder,
const struct lp_fragment_shader_variant_key *key,
struct lp_type src_type,
struct lp_build_mask_context *mask,
LLVMValueRef stencil_refs[2],
LLVMValueRef src,
LLVMValueRef dst_ptr,
LLVMValueRef facing,
LLVMValueRef counter)
{
const struct util_format_description *format_desc;
struct lp_type dst_type;
if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
return;
format_desc = util_format_description(key->zsbuf_format);
assert(format_desc);
/*
* Depths are expected to be between 0 and 1, even if they are stored in
* floats. Setting these bits here will ensure that the lp_build_conv() call
* below won't try to unnecessarily clamp the incoming values.
*/
if(src_type.floating) {
src_type.sign = FALSE;
src_type.norm = TRUE;
}
else {
assert(!src_type.sign);
assert(src_type.norm);
}
/* Pick the depth type. */
dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
/* FIXME: Cope with a depth test type with a different bit width. */
assert(dst_type.width == src_type.width);
assert(dst_type.length == src_type.length);
/* Convert fragment Z from float to integer */
lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
dst_ptr = LLVMBuildBitCast(builder,
dst_ptr,
LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
lp_build_depth_stencil_test(builder,
&key->depth,
key->stencil,
dst_type,
format_desc,
mask,
stencil_refs,
src,
dst_ptr,
facing,
counter);
}
/**
* Expand the relevent bits of mask_input to a 4-dword mask for the
* four pixels in a 2x2 quad. This will set the four elements of the
* quad mask vector to 0 or ~0.
*
* \param quad which quad of the quad group to test, in [0,3]
* \param mask_input bitwise mask for the whole 4x4 stamp
*/
static LLVMValueRef
generate_quad_mask(LLVMBuilderRef builder,
struct lp_type fs_type,
unsigned quad,
LLVMValueRef mask_input) /* int32 */
{
struct lp_type mask_type;
LLVMTypeRef i32t = LLVMInt32Type();
LLVMValueRef bits[4];
LLVMValueRef mask;
int shift;
/*
* XXX: We'll need a different path for 16 x u8
*/
assert(fs_type.width == 32);
assert(fs_type.length == 4);
mask_type = lp_int_type(fs_type);
/*
* mask_input >>= (quad * 4)
*/
switch (quad) {
case 0:
shift = 0;
break;
case 1:
shift = 2;
break;
case 2:
shift = 8;
break;
case 3:
shift = 10;
break;
default:
assert(0);
shift = 0;
}
mask_input = LLVMBuildLShr(builder,
mask_input,
LLVMConstInt(i32t, shift, 0),
"");
/*
* mask = { mask_input & (1 << i), for i in [0,3] }
*/
mask = lp_build_broadcast(builder, lp_build_vec_type(mask_type), mask_input);
bits[0] = LLVMConstInt(i32t, 1 << 0, 0);
bits[1] = LLVMConstInt(i32t, 1 << 1, 0);
bits[2] = LLVMConstInt(i32t, 1 << 4, 0);
bits[3] = LLVMConstInt(i32t, 1 << 5, 0);
mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, 4), "");
/*
* mask = mask != 0 ? ~0 : 0
*/
mask = lp_build_compare(builder,
mask_type, PIPE_FUNC_NOTEQUAL,
mask,
lp_build_const_int_vec(mask_type, 0));
return mask;
}
/**
* Generate the fragment shader, depth/stencil test, and alpha tests.
* \param i which quad in the tile, in range [0,3]
* \param partial_mask if 1, do mask_input testing
*/
static void
generate_fs(struct llvmpipe_context *lp,
struct lp_fragment_shader *shader,
const struct lp_fragment_shader_variant_key *key,
LLVMBuilderRef builder,
struct lp_type type,
LLVMValueRef context_ptr,
unsigned i,
const struct lp_build_interp_soa_context *interp,
struct lp_build_sampler_soa *sampler,
LLVMValueRef *pmask,
LLVMValueRef (*color)[4],
LLVMValueRef depth_ptr,
LLVMValueRef facing,
unsigned partial_mask,
LLVMValueRef mask_input,
LLVMValueRef counter)
{
const struct tgsi_token *tokens = shader->base.tokens;
LLVMTypeRef vec_type;
LLVMValueRef consts_ptr;
LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
LLVMValueRef z = interp->pos[2];
LLVMValueRef stencil_refs[2];
struct lp_build_flow_context *flow;
struct lp_build_mask_context mask;
boolean early_depth_stencil_test;
unsigned attrib;
unsigned chan;
unsigned cbuf;
assert(i < 4);
stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
vec_type = lp_build_vec_type(type);
consts_ptr = lp_jit_context_constants(builder, context_ptr);
flow = lp_build_flow_create(builder);
memset(outputs, 0, sizeof outputs);
lp_build_flow_scope_begin(flow);
/* Declare the color and z variables */
for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
for(chan = 0; chan < NUM_CHANNELS; ++chan) {
color[cbuf][chan] = LLVMGetUndef(vec_type);
lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
}
}
lp_build_flow_scope_declare(flow, &z);
/* do triangle edge testing */
if (partial_mask) {
*pmask = generate_quad_mask(builder, type,
i, mask_input);
}
else {
*pmask = lp_build_const_int_vec(type, ~0);
}
/* 'mask' will control execution based on quad's pixel alive/killed state */
lp_build_mask_begin(&mask, flow, type, *pmask);
early_depth_stencil_test =
(key->depth.enabled || key->stencil[0].enabled) &&
!key->alpha.enabled &&
!shader->info.uses_kill &&
!shader->info.writes_z;
if (early_depth_stencil_test)
generate_depth_stencil(builder, key,
type, &mask,
stencil_refs, z, depth_ptr, facing, counter);
lp_build_tgsi_soa(builder, tokens, type, &mask,
consts_ptr, interp->pos, interp->inputs,
outputs, sampler, &shader->info);
/* loop over fragment shader outputs/results */
for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
for(chan = 0; chan < NUM_CHANNELS; ++chan) {
if(outputs[attrib][chan]) {
LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
switch (shader->info.output_semantic_name[attrib]) {
case TGSI_SEMANTIC_COLOR:
{
unsigned cbuf = shader->info.output_semantic_index[attrib];
lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
/* Alpha test */
/* XXX: should only test the final assignment to alpha */
if (cbuf == 0 && chan == 3 && key->alpha.enabled) {
LLVMValueRef alpha = out;
LLVMValueRef alpha_ref_value;
alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
lp_build_alpha_test(builder, key->alpha.func, type,
&mask, alpha, alpha_ref_value);
}
color[cbuf][chan] = out;
break;
}
case TGSI_SEMANTIC_POSITION:
if(chan == 2)
z = out;
break;
}
}
}
}
if (!early_depth_stencil_test)
generate_depth_stencil(builder, key,
type, &mask,
stencil_refs, z, depth_ptr, facing, counter);
lp_build_mask_end(&mask);
lp_build_flow_scope_end(flow);
lp_build_flow_destroy(flow);
*pmask = mask.value;
}
/**
* Generate color blending and color output.
* \param rt the render target index (to index blend, colormask state)
* \param type the pixel color type
* \param context_ptr pointer to the runtime JIT context
* \param mask execution mask (active fragment/pixel mask)
* \param src colors from the fragment shader
* \param dst_ptr the destination color buffer pointer
*/
static void
generate_blend(const struct pipe_blend_state *blend,
unsigned rt,
LLVMBuilderRef builder,
struct lp_type type,
LLVMValueRef context_ptr,
LLVMValueRef mask,
LLVMValueRef *src,
LLVMValueRef dst_ptr)
{
struct lp_build_context bld;
struct lp_build_flow_context *flow;
struct lp_build_mask_context mask_ctx;
LLVMTypeRef vec_type;
LLVMValueRef const_ptr;
LLVMValueRef con[4];
LLVMValueRef dst[4];
LLVMValueRef res[4];
unsigned chan;
lp_build_context_init(&bld, builder, type);
flow = lp_build_flow_create(builder);
/* we'll use this mask context to skip blending if all pixels are dead */
lp_build_mask_begin(&mask_ctx, flow, type, mask);
vec_type = lp_build_vec_type(type);
const_ptr = lp_jit_context_blend_color(builder, context_ptr);
const_ptr = LLVMBuildBitCast(builder, const_ptr,
LLVMPointerType(vec_type, 0), "");
/* load constant blend color and colors from the dest color buffer */
for(chan = 0; chan < 4; ++chan) {
LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
lp_build_name(con[chan], "con.%c", "rgba"[chan]);
lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
}
/* do blend */
lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
/* store results to color buffer */
for(chan = 0; chan < 4; ++chan) {
if(blend->rt[rt].colormask & (1 << chan)) {
LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
lp_build_name(res[chan], "res.%c", "rgba"[chan]);
res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
}
}
lp_build_mask_end(&mask_ctx);
lp_build_flow_destroy(flow);
}
/**
* Generate the runtime callable function for the whole fragment pipeline.
* Note that the function which we generate operates on a block of 16
* pixels at at time. The block contains 2x2 quads. Each quad contains
* 2x2 pixels.
*/
static void
generate_fragment(struct llvmpipe_context *lp,
struct lp_fragment_shader *shader,
struct lp_fragment_shader_variant *variant,
unsigned partial_mask)
{
struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
const struct lp_fragment_shader_variant_key *key = &variant->key;
char func_name[256];
struct lp_type fs_type;
struct lp_type blend_type;
LLVMTypeRef fs_elem_type;
LLVMTypeRef fs_int_vec_type;
LLVMTypeRef blend_vec_type;
LLVMTypeRef arg_types[11];
LLVMTypeRef func_type;
LLVMValueRef context_ptr;
LLVMValueRef x;
LLVMValueRef y;
LLVMValueRef a0_ptr;
LLVMValueRef dadx_ptr;
LLVMValueRef dady_ptr;
LLVMValueRef color_ptr_ptr;
LLVMValueRef depth_ptr;
LLVMValueRef mask_input;
LLVMValueRef counter = NULL;
LLVMBasicBlockRef block;
LLVMBuilderRef builder;
struct lp_build_sampler_soa *sampler;
struct lp_build_interp_soa_context interp;
LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
LLVMValueRef blend_mask;
LLVMValueRef function;
LLVMValueRef facing;
unsigned num_fs;
unsigned i;
unsigned chan;
unsigned cbuf;
/* TODO: actually pick these based on the fs and color buffer
* characteristics. */
memset(&fs_type, 0, sizeof fs_type);
fs_type.floating = TRUE; /* floating point values */
fs_type.sign = TRUE; /* values are signed */
fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
fs_type.width = 32; /* 32-bit float */
fs_type.length = 4; /* 4 elements per vector */
num_fs = 4; /* number of quads per block */
memset(&blend_type, 0, sizeof blend_type);
blend_type.floating = FALSE; /* values are integers */
blend_type.sign = FALSE; /* values are unsigned */
blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
blend_type.width = 8; /* 8-bit ubyte values */
blend_type.length = 16; /* 16 elements per vector */
/*
* Generate the function prototype. Any change here must be reflected in
* lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
*/
fs_elem_type = lp_build_elem_type(fs_type);
fs_int_vec_type = lp_build_int_vec_type(fs_type);
blend_vec_type = lp_build_vec_type(blend_type);
util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
shader->no, variant->no, partial_mask ? "partial" : "whole");
arg_types[0] = screen->context_ptr_type; /* context */
arg_types[1] = LLVMInt32Type(); /* x */
arg_types[2] = LLVMInt32Type(); /* y */
arg_types[3] = LLVMFloatType(); /* facing */
arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
arg_types[9] = LLVMInt32Type(); /* mask_input */
arg_types[10] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
function = LLVMAddFunction(screen->module, func_name, func_type);
LLVMSetFunctionCallConv(function, LLVMCCallConv);
variant->function[partial_mask] = function;
/* XXX: need to propagate noalias down into color param now we are
* passing a pointer-to-pointer?
*/
for(i = 0; i < Elements(arg_types); ++i)
if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
context_ptr = LLVMGetParam(function, 0);
x = LLVMGetParam(function, 1);
y = LLVMGetParam(function, 2);
facing = LLVMGetParam(function, 3);
a0_ptr = LLVMGetParam(function, 4);
dadx_ptr = LLVMGetParam(function, 5);
dady_ptr = LLVMGetParam(function, 6);
color_ptr_ptr = LLVMGetParam(function, 7);
depth_ptr = LLVMGetParam(function, 8);
mask_input = LLVMGetParam(function, 9);
lp_build_name(context_ptr, "context");
lp_build_name(x, "x");
lp_build_name(y, "y");
lp_build_name(a0_ptr, "a0");
lp_build_name(dadx_ptr, "dadx");
lp_build_name(dady_ptr, "dady");
lp_build_name(color_ptr_ptr, "color_ptr_ptr");
lp_build_name(depth_ptr, "depth");
lp_build_name(mask_input, "mask_input");
if (key->occlusion_count) {
counter = LLVMGetParam(function, 10);
lp_build_name(counter, "counter");
}
/*
* Function body
*/
block = LLVMAppendBasicBlock(function, "entry");
builder = LLVMCreateBuilder();
LLVMPositionBuilderAtEnd(builder, block);
/*
* The shader input interpolation info is not explicitely baked in the
* shader key, but everything it derives from (TGSI, and flatshade) is
* already included in the shader key.
*/
lp_build_interp_soa_init(&interp,
lp->num_inputs,
lp->inputs,
builder, fs_type,
a0_ptr, dadx_ptr, dady_ptr,
x, y);
/* code generated texture sampling */
sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
/* loop over quads in the block */
for(i = 0; i < num_fs; ++i) {
LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
LLVMValueRef depth_ptr_i;
if(i != 0)
lp_build_interp_soa_update(&interp, i);
depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
generate_fs(lp, shader, key,
builder,
fs_type,
context_ptr,
i,
&interp,
sampler,
&fs_mask[i], /* output */
out_color,
depth_ptr_i,
facing,
partial_mask,
mask_input,
counter);
for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
for(chan = 0; chan < NUM_CHANNELS; ++chan)
fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
}
sampler->destroy(sampler);
/* Loop over color outputs / color buffers to do blending.
*/
for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
LLVMValueRef color_ptr;
LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
LLVMValueRef blend_in_color[NUM_CHANNELS];
unsigned rt;
/*
* Convert the fs's output color and mask to fit to the blending type.
*/
for(chan = 0; chan < NUM_CHANNELS; ++chan) {
lp_build_conv(builder, fs_type, blend_type,
fs_out_color[cbuf][chan], num_fs,
&blend_in_color[chan], 1);
lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
}
if (partial_mask || !variant->opaque) {
lp_build_conv_mask(builder, fs_type, blend_type,
fs_mask, num_fs,
&blend_mask, 1);
} else {
blend_mask = lp_build_const_int_vec(blend_type, ~0);
}
color_ptr = LLVMBuildLoad(builder,
LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
"");
lp_build_name(color_ptr, "color_ptr%d", cbuf);
/* which blend/colormask state to use */
rt = key->blend.independent_blend_enable ? cbuf : 0;
/*
* Blending.
*/
generate_blend(&key->blend,
rt,
builder,
blend_type,
context_ptr,
blend_mask,
blend_in_color,
color_ptr);
}
#ifdef PIPE_ARCH_X86
/* Avoid corrupting the FPU stack on 32bit OSes. */
lp_build_intrinsic(builder, "llvm.x86.mmx.emms", LLVMVoidType(), NULL, 0);
#endif
LLVMBuildRetVoid(builder);
LLVMDisposeBuilder(builder);
/* Verify the LLVM IR. If invalid, dump and abort */
#ifdef DEBUG
if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
if (1)
lp_debug_dump_value(function);
abort();
}
#endif
/* Apply optimizations to LLVM IR */
LLVMRunFunctionPassManager(screen->pass, function);
if (gallivm_debug & GALLIVM_DEBUG_IR) {
/* Print the LLVM IR to stderr */
lp_debug_dump_value(function);
debug_printf("\n");
}
/*
* Translate the LLVM IR into machine code.
*/
{
void *f = LLVMGetPointerToGlobal(screen->engine, function);
variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);
if (gallivm_debug & GALLIVM_DEBUG_ASM) {
lp_disassemble(f);
}
lp_func_delete_body(function);
}
}
static void
dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
{
unsigned i;
debug_printf("fs variant %p:\n", (void *) key);
for (i = 0; i < key->nr_cbufs; ++i) {
debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
}
if (key->depth.enabled) {
debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
debug_printf("depth.writemask = %u\n", key->depth.writemask);
}
for (i = 0; i < 2; ++i) {
if (key->stencil[i].enabled) {
debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
}
}
if (key->alpha.enabled) {
debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
}
if (key->blend.logicop_enable) {
debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
}
else if (key->blend.rt[0].blend_enable) {
debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
}
debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
for (i = 0; i < key->nr_samplers; ++i) {
debug_printf("sampler[%u] = \n", i);
debug_printf(" .format = %s\n",
util_format_name(key->sampler[i].format));
debug_printf(" .target = %s\n",
util_dump_tex_target(key->sampler[i].target, TRUE));
debug_printf(" .pot = %u %u %u\n",
key->sampler[i].pot_width,
key->sampler[i].pot_height,
key->sampler[i].pot_depth);
debug_printf(" .wrap = %s %s %s\n",
util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
debug_printf(" .min_img_filter = %s\n",
util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
debug_printf(" .min_mip_filter = %s\n",
util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
debug_printf(" .mag_img_filter = %s\n",
util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
}
}
void
lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
{
debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
variant->shader->no, variant->no);
tgsi_dump(variant->shader->base.tokens, 0);
dump_fs_variant_key(&variant->key);
debug_printf("variant->opaque = %u\n", variant->opaque);
debug_printf("\n");
}
static struct lp_fragment_shader_variant *
generate_variant(struct llvmpipe_context *lp,
struct lp_fragment_shader *shader,
const struct lp_fragment_shader_variant_key *key)
{
struct lp_fragment_shader_variant *variant;
boolean fullcolormask;
variant = CALLOC_STRUCT(lp_fragment_shader_variant);
if(!variant)
return NULL;
variant->shader = shader;
variant->list_item_global.base = variant;
variant->list_item_local.base = variant;
variant->no = shader->variants_created++;
memcpy(&variant->key, key, shader->variant_key_size);
/*
* Determine whether we are touching all channels in the color buffer.
*/
fullcolormask = FALSE;
if (key->nr_cbufs == 1) {
const struct util_format_description *format_desc;
format_desc = util_format_description(key->cbuf_format[0]);
if ((~key->blend.rt[0].colormask &
util_format_colormask(format_desc)) == 0) {
fullcolormask = TRUE;
}
}
variant->opaque =
!key->blend.logicop_enable &&
!key->blend.rt[0].blend_enable &&
fullcolormask &&
!key->stencil[0].enabled &&
!key->alpha.enabled &&
!key->depth.enabled &&
!shader->info.uses_kill
? TRUE : FALSE;
if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
lp_debug_fs_variant(variant);
}
generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
if (variant->opaque) {
/* Specialized shader, which doesn't need to read the color buffer. */
generate_fragment(lp, shader, variant, RAST_WHOLE);
} else {
variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
}
return variant;
}
static void *
llvmpipe_create_fs_state(struct pipe_context *pipe,
const struct pipe_shader_state *templ)
{
struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
struct lp_fragment_shader *shader;
int nr_samplers;
shader = CALLOC_STRUCT(lp_fragment_shader);
if (!shader)
return NULL;
shader->no = fs_no++;
make_empty_list(&shader->variants);
/* get/save the summary info for this shader */
tgsi_scan_shader(templ->tokens, &shader->info);
/* we need to keep a local copy of the tokens */
shader->base.tokens = tgsi_dup_tokens(templ->tokens);
shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
if (shader->draw_data == NULL) {
FREE((void *) shader->base.tokens);
FREE(shader);
return NULL;
}
nr_samplers = shader->info.file_max[TGSI_FILE_SAMPLER] + 1;
shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
sampler[nr_samplers]);
if (LP_DEBUG & DEBUG_TGSI) {
unsigned attrib;
debug_printf("llvmpipe: Create fragment shader #%u %p:\n", shader->no, (void *) shader);
tgsi_dump(templ->tokens, 0);
debug_printf("usage masks:\n");
for (attrib = 0; attrib < shader->info.num_inputs; ++attrib) {
unsigned usage_mask = shader->info.input_usage_mask[attrib];
debug_printf(" IN[%u].%s%s%s%s\n",
attrib,
usage_mask & TGSI_WRITEMASK_X ? "x" : "",
usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
usage_mask & TGSI_WRITEMASK_W ? "w" : "");
}
debug_printf("\n");
}
return shader;
}
static void
llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
{
struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
if (llvmpipe->fs == fs)
return;
draw_flush(llvmpipe->draw);
draw_bind_fragment_shader(llvmpipe->draw,
(llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
llvmpipe->fs = fs;
llvmpipe->dirty |= LP_NEW_FS;
}
static void
remove_shader_variant(struct llvmpipe_context *lp,
struct lp_fragment_shader_variant *variant)
{
struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
unsigned i;
if (gallivm_debug & GALLIVM_DEBUG_IR) {
debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached #%u v total cached #%u\n",
variant->shader->no, variant->no, variant->shader->variants_created,
variant->shader->variants_cached, lp->nr_fs_variants);
}
for (i = 0; i < Elements(variant->function); i++) {
if (variant->function[i]) {
if (variant->jit_function[i])
LLVMFreeMachineCodeForFunction(screen->engine,
variant->function[i]);
LLVMDeleteFunction(variant->function[i]);
}
}
remove_from_list(&variant->list_item_local);
variant->shader->variants_cached--;
remove_from_list(&variant->list_item_global);
lp->nr_fs_variants--;
FREE(variant);
}
static void
llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
{
struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
struct lp_fragment_shader *shader = fs;
struct lp_fs_variant_list_item *li;
assert(fs != llvmpipe->fs);
(void) llvmpipe;
/*
* XXX: we need to flush the context until we have some sort of reference
* counting in fragment shaders as they may still be binned
* Flushing alone might not sufficient we need to wait on it too.
*/
llvmpipe_finish(pipe, __FUNCTION__);
li = first_elem(&shader->variants);
while(!at_end(&shader->variants, li)) {
struct lp_fs_variant_list_item *next = next_elem(li);
remove_shader_variant(llvmpipe, li->base);
li = next;
}
draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
assert(shader->variants_cached == 0);
FREE((void *) shader->base.tokens);
FREE(shader);
}
static void
llvmpipe_set_constant_buffer(struct pipe_context *pipe,
uint shader, uint index,
struct pipe_resource *constants)
{
struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
unsigned size = constants ? constants->width0 : 0;
const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
assert(shader < PIPE_SHADER_TYPES);
assert(index < PIPE_MAX_CONSTANT_BUFFERS);
if(llvmpipe->constants[shader][index] == constants)
return;
draw_flush(llvmpipe->draw);
/* note: reference counting */
pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
if(shader == PIPE_SHADER_VERTEX ||
shader == PIPE_SHADER_GEOMETRY) {
draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
index, data, size);
}
llvmpipe->dirty |= LP_NEW_CONSTANTS;
}
/**
* Return the blend factor equivalent to a destination alpha of one.
*/
static INLINE unsigned
force_dst_alpha_one(unsigned factor)
{
switch(factor) {
case PIPE_BLENDFACTOR_DST_ALPHA:
return PIPE_BLENDFACTOR_ONE;
case PIPE_BLENDFACTOR_INV_DST_ALPHA:
return PIPE_BLENDFACTOR_ZERO;
case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
return PIPE_BLENDFACTOR_ZERO;
}
return factor;
}
/**
* We need to generate several variants of the fragment pipeline to match
* all the combinations of the contributing state atoms.
*
* TODO: there is actually no reason to tie this to context state -- the
* generated code could be cached globally in the screen.
*/
static void
make_variant_key(struct llvmpipe_context *lp,
struct lp_fragment_shader *shader,
struct lp_fragment_shader_variant_key *key)
{
unsigned i;
memset(key, 0, shader->variant_key_size);
if (lp->framebuffer.zsbuf) {
if (lp->depth_stencil->depth.enabled) {
key->zsbuf_format = lp->framebuffer.zsbuf->format;
memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
}
if (lp->depth_stencil->stencil[0].enabled) {
key->zsbuf_format = lp->framebuffer.zsbuf->format;
memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
}
}
key->alpha.enabled = lp->depth_stencil->alpha.enabled;
if(key->alpha.enabled)
key->alpha.func = lp->depth_stencil->alpha.func;
/* alpha.ref_value is passed in jit_context */
key->flatshade = lp->rasterizer->flatshade;
if (lp->active_query_count) {
key->occlusion_count = TRUE;
}
if (lp->framebuffer.nr_cbufs) {
memcpy(&key->blend, lp->blend, sizeof key->blend);
}
key->nr_cbufs = lp->framebuffer.nr_cbufs;
for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
enum pipe_format format = lp->framebuffer.cbufs[i]->format;
struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
const struct util_format_description *format_desc;
key->cbuf_format[i] = format;
format_desc = util_format_description(format);
assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
blend_rt->colormask = lp->blend->rt[i].colormask;
/*
* Mask out color channels not present in the color buffer.
*/
blend_rt->colormask &= util_format_colormask(format_desc);
/*
* Our swizzled render tiles always have an alpha channel, but the linear
* render target format often does not, so force here the dst alpha to be
* one.
*
* This is not a mere optimization. Wrong results will be produced if the
* dst alpha is used, the dst format does not have alpha, and the previous
* rendering was not flushed from the swizzled to linear buffer. For
* example, NonPowTwo DCT.
*
* TODO: This should be generalized to all channels for better
* performance, but only alpha causes correctness issues.
*
* Also, force rgb/alpha func/factors match, to make AoS blending easier.
*/
if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor);
blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor);
blend_rt->alpha_func = blend_rt->rgb_func;
blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
}
}
/* This value will be the same for all the variants of a given shader:
*/
key->nr_samplers = shader->info.file_max[TGSI_FILE_SAMPLER] + 1;
for(i = 0; i < key->nr_samplers; ++i) {
if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
lp_sampler_static_state(&key->sampler[i],
lp->fragment_sampler_views[i],
lp->sampler[i]);
}
}
}
/**
* Update fragment state. This is called just prior to drawing
* something when some fragment-related state has changed.
*/
void
llvmpipe_update_fs(struct llvmpipe_context *lp)
{
struct lp_fragment_shader *shader = lp->fs;
struct lp_fragment_shader_variant_key key;
struct lp_fragment_shader_variant *variant = NULL;
struct lp_fs_variant_list_item *li;
make_variant_key(lp, shader, &key);
li = first_elem(&shader->variants);
while(!at_end(&shader->variants, li)) {
if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
variant = li->base;
break;
}
li = next_elem(li);
}
if (variant) {
move_to_head(&lp->fs_variants_list, &variant->list_item_global);
}
else {
int64_t t0, t1;
int64_t dt;
unsigned i;
if (lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS) {
struct pipe_context *pipe = &lp->pipe;
/*
* XXX: we need to flush the context until we have some sort of reference
* counting in fragment shaders as they may still be binned
* Flushing alone might not be sufficient we need to wait on it too.
*/
llvmpipe_finish(pipe, __FUNCTION__);
for (i = 0; i < LP_MAX_SHADER_VARIANTS / 4; i++) {
struct lp_fs_variant_list_item *item = last_elem(&lp->fs_variants_list);
remove_shader_variant(lp, item->base);
}
}
t0 = os_time_get();
variant = generate_variant(lp, shader, &key);
t1 = os_time_get();
dt = t1 - t0;
LP_COUNT_ADD(llvm_compile_time, dt);
LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
if (variant) {
insert_at_head(&shader->variants, &variant->list_item_local);
insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
lp->nr_fs_variants++;
shader->variants_cached++;
}
}
lp_setup_set_fs_variant(lp->setup, variant);
}
void
llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
{
llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
}