mesa/src/freedreno/vulkan/tu_cmd_buffer.c

5202 lines
190 KiB
C

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "tu_private.h"
#include "adreno_pm4.xml.h"
#include "adreno_common.xml.h"
#include "vk_format.h"
#include "vk_util.h"
#include "tu_cs.h"
#include "tu_tracepoints.h"
void
tu6_emit_event_write(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
enum vgt_event_type event)
{
bool need_seqno = false;
switch (event) {
case CACHE_FLUSH_TS:
case WT_DONE_TS:
case RB_DONE_TS:
case PC_CCU_FLUSH_DEPTH_TS:
case PC_CCU_FLUSH_COLOR_TS:
case PC_CCU_RESOLVE_TS:
need_seqno = true;
break;
default:
break;
}
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
if (need_seqno) {
tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy));
tu_cs_emit(cs, 0);
}
}
/* Emits the tessfactor address to the top-level CS if it hasn't been already.
* Updating this register requires a WFI if outstanding drawing is using it, but
* tu6_init_hardware() will have WFIed before we started and no other draws
* could be using the tessfactor address yet since we only emit one per cmdbuf.
*/
static void
tu6_lazy_emit_tessfactor_addr(struct tu_cmd_buffer *cmd)
{
if (cmd->state.tessfactor_addr_set)
return;
tu_cs_emit_regs(&cmd->cs, A6XX_PC_TESSFACTOR_ADDR(.qword = cmd->device->tess_bo->iova));
cmd->state.tessfactor_addr_set = true;
}
static void
tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
struct tu_cs *cs,
enum tu_cmd_flush_bits flushes)
{
if (unlikely(cmd_buffer->device->physical_device->instance->debug_flags & TU_DEBUG_FLUSHALL))
flushes |= TU_CMD_FLAG_ALL_FLUSH | TU_CMD_FLAG_ALL_INVALIDATE;
if (unlikely(cmd_buffer->device->physical_device->instance->debug_flags & TU_DEBUG_SYNCDRAW))
flushes |= TU_CMD_FLAG_WAIT_MEM_WRITES |
TU_CMD_FLAG_WAIT_FOR_IDLE |
TU_CMD_FLAG_WAIT_FOR_ME;
/* Experiments show that invalidating CCU while it still has data in it
* doesn't work, so make sure to always flush before invalidating in case
* any data remains that hasn't yet been made available through a barrier.
* However it does seem to work for UCHE.
*/
if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
if (flushes & TU_CMD_FLAG_WAIT_MEM_WRITES)
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
if ((flushes & TU_CMD_FLAG_WAIT_FOR_IDLE) ||
(cmd_buffer->device->physical_device->info->a6xx.has_ccu_flush_bug &&
(flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR | TU_CMD_FLAG_CCU_FLUSH_DEPTH))))
tu_cs_emit_wfi(cs);
if (flushes & TU_CMD_FLAG_WAIT_FOR_ME)
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
}
/* "Normal" cache flushes, that don't require any special handling */
static void
tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
struct tu_cs *cs)
{
tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
cmd_buffer->state.cache.flush_bits = 0;
}
/* Renderpass cache flushes */
void
tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
struct tu_cs *cs)
{
if (!cmd_buffer->state.renderpass_cache.flush_bits &&
likely(!cmd_buffer->device->physical_device->instance->debug_flags))
return;
tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
cmd_buffer->state.renderpass_cache.flush_bits = 0;
}
/* Cache flushes for things that use the color/depth read/write path (i.e.
* blits and draws). This deals with changing CCU state as well as the usual
* cache flushing.
*/
void
tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
struct tu_cs *cs,
enum tu_cmd_ccu_state ccu_state)
{
enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
assert(ccu_state != TU_CMD_CCU_UNKNOWN);
/* It's unsafe to flush inside condition because we clear flush_bits */
assert(!cs->cond_stack_depth);
/* Changing CCU state must involve invalidating the CCU. In sysmem mode,
* the CCU may also contain data that we haven't flushed out yet, so we
* also need to flush. Also, in order to program RB_CCU_CNTL, we need to
* emit a WFI as it isn't pipelined.
*/
if (ccu_state != cmd_buffer->state.ccu_state) {
if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
flushes |=
TU_CMD_FLAG_CCU_FLUSH_COLOR |
TU_CMD_FLAG_CCU_FLUSH_DEPTH;
cmd_buffer->state.cache.pending_flush_bits &= ~(
TU_CMD_FLAG_CCU_FLUSH_COLOR |
TU_CMD_FLAG_CCU_FLUSH_DEPTH);
}
flushes |=
TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
TU_CMD_FLAG_WAIT_FOR_IDLE;
cmd_buffer->state.cache.pending_flush_bits &= ~(
TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
TU_CMD_FLAG_WAIT_FOR_IDLE);
}
tu6_emit_flushes(cmd_buffer, cs, flushes);
cmd_buffer->state.cache.flush_bits = 0;
if (ccu_state != cmd_buffer->state.ccu_state) {
struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
tu_cs_emit_regs(cs,
A6XX_RB_CCU_CNTL(.color_offset =
ccu_state == TU_CMD_CCU_GMEM ?
phys_dev->ccu_offset_gmem :
phys_dev->ccu_offset_bypass,
.gmem = ccu_state == TU_CMD_CCU_GMEM));
cmd_buffer->state.ccu_state = ccu_state;
}
}
static void
tu6_emit_zs(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
struct tu_cs *cs)
{
const uint32_t a = subpass->depth_stencil_attachment.attachment;
if (a == VK_ATTACHMENT_UNUSED) {
tu_cs_emit_regs(cs,
A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
A6XX_RB_DEPTH_BUFFER_PITCH(0),
A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
A6XX_RB_DEPTH_BUFFER_BASE(0),
A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
tu_cs_emit_regs(cs,
A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
return;
}
const struct tu_image_view *iview = cmd->state.attachments[a];
const struct tu_render_pass_attachment *attachment =
&cmd->state.pass->attachments[a];
enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT)
tu_cs_image_depth_ref(cs, iview, 0);
else
tu_cs_image_ref(cs, &iview->view, 0);
tu_cs_emit(cs, attachment->gmem_offset);
tu_cs_emit_regs(cs,
A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE, 3);
tu_cs_image_flag_ref(cs, &iview->view, 0);
if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT ||
attachment->format == VK_FORMAT_S8_UINT) {
tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
tu_cs_image_stencil_ref(cs, iview, 0);
tu_cs_emit(cs, attachment->gmem_offset_stencil);
} else {
tu_cs_image_ref(cs, &iview->view, 0);
tu_cs_emit(cs, attachment->gmem_offset);
}
} else {
tu_cs_emit_regs(cs,
A6XX_RB_STENCIL_INFO(0));
}
}
static void
tu6_emit_mrt(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
struct tu_cs *cs)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
enum a6xx_format mrt0_format = 0;
for (uint32_t i = 0; i < subpass->color_count; ++i) {
uint32_t a = subpass->color_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED) {
/* From the VkPipelineRenderingCreateInfo definition:
*
* Valid formats indicate that an attachment can be used - but it
* is still valid to set the attachment to NULL when beginning
* rendering.
*
* This means that with dynamic rendering, pipelines may write to
* some attachments that are UNUSED here. Setting the format to 0
* here should prevent them from writing to anything.
*/
tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
for (unsigned i = 0; i < 6; i++)
tu_cs_emit(cs, 0);
continue;
}
const struct tu_image_view *iview = cmd->state.attachments[a];
tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
tu_cs_emit(cs, iview->view.RB_MRT_BUF_INFO);
tu_cs_image_ref(cs, &iview->view, 0);
tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
tu_cs_emit_regs(cs,
A6XX_SP_FS_MRT_REG(i, .dword = iview->view.SP_FS_MRT_REG));
tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR(i), 3);
tu_cs_image_flag_ref(cs, &iview->view, 0);
if (i == 0)
mrt0_format = iview->view.SP_FS_MRT_REG & 0xff;
}
tu_cs_emit_regs(cs, A6XX_GRAS_LRZ_MRT_BUF_INFO_0(.color_format = mrt0_format));
tu_cs_emit_regs(cs,
A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
tu_cs_emit_regs(cs,
A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
unsigned layers = MAX2(fb->layers, util_logbase2(subpass->multiview_mask) + 1);
tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(layers - 1));
}
void
tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples,
enum a5xx_line_mode line_mode)
{
const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
bool msaa_disable = (samples == MSAA_ONE) || (line_mode == BRESENHAM);
tu_cs_emit_regs(cs,
A6XX_SP_TP_RAS_MSAA_CNTL(samples),
A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
.msaa_disable = msaa_disable));
tu_cs_emit_regs(cs,
A6XX_GRAS_RAS_MSAA_CNTL(samples),
A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
.msaa_disable = msaa_disable));
tu_cs_emit_regs(cs,
A6XX_RB_RAS_MSAA_CNTL(samples),
A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
.msaa_disable = msaa_disable));
tu_cs_emit_regs(cs,
A6XX_RB_MSAA_CNTL(samples));
}
static void
tu6_emit_bin_size(struct tu_cs *cs,
uint32_t bin_w, uint32_t bin_h, uint32_t flags)
{
tu_cs_emit_regs(cs,
A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
.binh = bin_h,
.dword = flags));
tu_cs_emit_regs(cs,
A6XX_RB_BIN_CONTROL(.binw = bin_w,
.binh = bin_h,
.dword = flags));
/* no flag for RB_BIN_CONTROL2... */
tu_cs_emit_regs(cs,
A6XX_RB_BIN_CONTROL2(.binw = bin_w,
.binh = bin_h));
}
static void
tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
struct tu_cs *cs,
bool binning)
{
/* doesn't RB_RENDER_CNTL set differently for binning pass: */
bool no_track = !cmd->device->physical_device->info->a6xx.has_cp_reg_write;
uint32_t cntl = 0;
cntl |= A6XX_RB_RENDER_CNTL_CCUSINGLECACHELINESIZE(2);
if (binning) {
if (no_track)
return;
cntl |= A6XX_RB_RENDER_CNTL_BINNING;
} else {
uint32_t mrts_ubwc_enable = 0;
for (uint32_t i = 0; i < subpass->color_count; ++i) {
uint32_t a = subpass->color_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
const struct tu_image_view *iview = cmd->state.attachments[a];
if (iview->view.ubwc_enabled)
mrts_ubwc_enable |= 1 << i;
}
cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
const uint32_t a = subpass->depth_stencil_attachment.attachment;
if (a != VK_ATTACHMENT_UNUSED) {
const struct tu_image_view *iview = cmd->state.attachments[a];
if (iview->view.ubwc_enabled)
cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
}
if (no_track) {
tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CNTL, 1);
tu_cs_emit(cs, cntl);
return;
}
/* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
* in order to set it correctly for the different subpasses. However,
* that means the packets we're emitting also happen during binning. So
* we need to guard the write on !BINNING at CP execution time.
*/
tu_cs_reserve(cs, 3 + 4);
tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
}
tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
tu_cs_emit(cs, cntl);
}
static void
tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
{
struct tu_physical_device *phys_dev = cmd->device->physical_device;
const VkRect2D *render_area = &cmd->state.render_area;
/* Avoid assertion fails with an empty render area at (0, 0) where the
* subtraction below wraps around. Empty render areas should be forced to
* the sysmem path by use_sysmem_rendering(). It's not even clear whether
* an empty scissor here works, and the blob seems to force sysmem too as
* it sets something wrong (non-empty) for the scissor.
*/
if (render_area->extent.width == 0 ||
render_area->extent.height == 0)
return;
uint32_t x1 = render_area->offset.x;
uint32_t y1 = render_area->offset.y;
uint32_t x2 = x1 + render_area->extent.width - 1;
uint32_t y2 = y1 + render_area->extent.height - 1;
if (align) {
x1 = x1 & ~(phys_dev->info->gmem_align_w - 1);
y1 = y1 & ~(phys_dev->info->gmem_align_h - 1);
x2 = ALIGN_POT(x2 + 1, phys_dev->info->gmem_align_w) - 1;
y2 = ALIGN_POT(y2 + 1, phys_dev->info->gmem_align_h) - 1;
}
tu_cs_emit_regs(cs,
A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
}
void
tu6_emit_window_scissor(struct tu_cs *cs,
uint32_t x1,
uint32_t y1,
uint32_t x2,
uint32_t y2)
{
tu_cs_emit_regs(cs,
A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
tu_cs_emit_regs(cs,
A6XX_GRAS_2D_RESOLVE_CNTL_1(.x = x1, .y = y1),
A6XX_GRAS_2D_RESOLVE_CNTL_2(.x = x2, .y = y2));
}
void
tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
{
tu_cs_emit_regs(cs,
A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
tu_cs_emit_regs(cs,
A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
tu_cs_emit_regs(cs,
A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
tu_cs_emit_regs(cs,
A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
}
void
tu6_apply_depth_bounds_workaround(struct tu_device *device,
uint32_t *rb_depth_cntl)
{
if (!device->physical_device->info->a6xx.depth_bounds_require_depth_test_quirk)
return;
/* On some GPUs it is necessary to enable z test for depth bounds test when
* UBWC is enabled. Otherwise, the GPU would hang. FUNC_ALWAYS is required to
* pass z test. Relevant tests:
* dEQP-VK.pipeline.extended_dynamic_state.two_draws_dynamic.depth_bounds_test_disable
* dEQP-VK.dynamic_state.ds_state.depth_bounds_1
*/
*rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE |
A6XX_RB_DEPTH_CNTL_ZFUNC(FUNC_ALWAYS);
}
static void
tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
{
uint32_t enable_mask;
switch (id) {
case TU_DRAW_STATE_PROGRAM:
case TU_DRAW_STATE_VI:
/* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
* when resources would actually be used in the binning shader.
* Presumably the overhead of prefetching the resources isn't
* worth it.
*/
case TU_DRAW_STATE_DESC_SETS_LOAD:
enable_mask = CP_SET_DRAW_STATE__0_GMEM |
CP_SET_DRAW_STATE__0_SYSMEM;
break;
case TU_DRAW_STATE_PROGRAM_BINNING:
case TU_DRAW_STATE_VI_BINNING:
enable_mask = CP_SET_DRAW_STATE__0_BINNING;
break;
case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
case TU_DRAW_STATE_PRIM_MODE_GMEM:
enable_mask = CP_SET_DRAW_STATE__0_GMEM;
break;
case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
case TU_DRAW_STATE_PRIM_MODE_SYSMEM:
enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
break;
default:
enable_mask = CP_SET_DRAW_STATE__0_GMEM |
CP_SET_DRAW_STATE__0_SYSMEM |
CP_SET_DRAW_STATE__0_BINNING;
break;
}
STATIC_ASSERT(TU_DRAW_STATE_COUNT <= 32);
/* We need to reload the descriptors every time the descriptor sets
* change. However, the commands we send only depend on the pipeline
* because the whole point is to cache descriptors which are used by the
* pipeline. There's a problem here, in that the firmware has an
* "optimization" which skips executing groups that are set to the same
* value as the last draw. This means that if the descriptor sets change
* but not the pipeline, we'd try to re-execute the same buffer which
* the firmware would ignore and we wouldn't pre-load the new
* descriptors. Set the DIRTY bit to avoid this optimization
*/
if (id == TU_DRAW_STATE_DESC_SETS_LOAD)
enable_mask |= CP_SET_DRAW_STATE__0_DIRTY;
tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
enable_mask |
CP_SET_DRAW_STATE__0_GROUP_ID(id) |
COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
tu_cs_emit_qw(cs, state.iova);
}
static bool
use_hw_binning(struct tu_cmd_buffer *cmd)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
/* XFB commands are emitted for BINNING || SYSMEM, which makes it
* incompatible with non-hw binning GMEM rendering. this is required because
* some of the XFB commands need to only be executed once.
* use_sysmem_rendering() should have made sure we only ended up here if no
* XFB was used.
*/
if (cmd->state.rp.xfb_used) {
assert(fb->binning_possible);
return true;
}
/* VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT emulates GL_PRIMITIVES_GENERATED,
* which wasn't designed to care about tilers and expects the result not to
* be multiplied by tile count.
* See https://gitlab.khronos.org/vulkan/vulkan/-/issues/3131
*/
if (cmd->state.rp.has_prim_generated_query_in_rp ||
cmd->state.prim_generated_query_running_before_rp) {
assert(fb->binning_possible);
return true;
}
return fb->binning;
}
static bool
use_sysmem_rendering(struct tu_cmd_buffer *cmd,
struct tu_renderpass_result **autotune_result)
{
if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
return true;
/* can't fit attachments into gmem */
if (!cmd->state.pass->gmem_pixels)
return true;
if (cmd->state.framebuffer->layers > 1)
return true;
/* Use sysmem for empty render areas */
if (cmd->state.render_area.extent.width == 0 ||
cmd->state.render_area.extent.height == 0)
return true;
if (cmd->state.rp.has_tess)
return true;
if (cmd->state.rp.disable_gmem)
return true;
/* XFB is incompatible with non-hw binning GMEM rendering, see use_hw_binning */
if (cmd->state.rp.xfb_used && !cmd->state.framebuffer->binning_possible)
return true;
/* QUERY_TYPE_PRIMITIVES_GENERATED is incompatible with non-hw binning
* GMEM rendering, see use_hw_binning.
*/
if ((cmd->state.rp.has_prim_generated_query_in_rp ||
cmd->state.prim_generated_query_running_before_rp) &&
!cmd->state.framebuffer->binning_possible)
return true;
if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_GMEM))
return false;
bool use_sysmem = tu_autotune_use_bypass(&cmd->device->autotune,
cmd, autotune_result);
if (*autotune_result) {
list_addtail(&(*autotune_result)->node, &cmd->renderpass_autotune_results);
}
return use_sysmem;
}
/* Optimization: there is no reason to load gmem if there is no
* geometry to process. COND_REG_EXEC predicate is set here,
* but the actual skip happens in tu6_emit_tile_load() and tile_store_cs,
* for each blit separately.
*/
static void
tu6_emit_cond_for_load_stores(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
uint32_t pipe, uint32_t slot, bool wfm)
{
if (cmd->state.framebuffer->binning_possible) {
tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
tu_cs_emit(cs, A6XX_CP_REG_TEST_0_REG(REG_A6XX_VSC_STATE_REG(pipe)) |
A6XX_CP_REG_TEST_0_BIT(slot) |
COND(wfm, A6XX_CP_REG_TEST_0_WAIT_FOR_ME));
} else {
/* COND_REG_EXECs are not emitted in non-binning case */
}
}
static void
tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
const uint32_t x1 = fb->tile0.width * tx;
const uint32_t y1 = fb->tile0.height * ty;
const uint32_t x2 = MIN2(x1 + fb->tile0.width - 1, MAX_VIEWPORT_SIZE - 1);
const uint32_t y2 = MIN2(y1 + fb->tile0.height - 1, MAX_VIEWPORT_SIZE - 1);
tu6_emit_window_scissor(cs, x1, y1, x2, y2);
tu6_emit_window_offset(cs, x1, y1);
bool hw_binning = use_hw_binning(cmd);
if (hw_binning) {
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, 4);
tu_cs_emit(cs, fb->pipe_sizes[pipe] |
CP_SET_BIN_DATA5_0_VSC_N(slot));
tu_cs_emit(cs, pipe * cmd->vsc_draw_strm_pitch);
tu_cs_emit(cs, pipe * 4);
tu_cs_emit(cs, pipe * cmd->vsc_prim_strm_pitch);
}
tu6_emit_cond_for_load_stores(cmd, cs, pipe, slot, hw_binning);
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, !hw_binning);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
}
static void
tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
uint32_t layer_mask,
uint32_t a,
uint32_t gmem_a)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
const struct tu_image_view *dst = cmd->state.attachments[a];
const struct tu_image_view *src = cmd->state.attachments[gmem_a];
tu_resolve_sysmem(cmd, cs, src, dst, layer_mask, fb->layers, &cmd->state.render_area);
}
static void
tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
const struct tu_subpass *subpass)
{
if (subpass->resolve_attachments) {
/* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
* Commands":
*
* End-of-subpass multisample resolves are treated as color
* attachment writes for the purposes of synchronization.
* This applies to resolve operations for both color and
* depth/stencil attachments. That is, they are considered to
* execute in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT
* pipeline stage and their writes are synchronized with
* VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
* rendering within a subpass and any resolve operations at the end
* of the subpass occurs automatically, without need for explicit
* dependencies or pipeline barriers. However, if the resolve
* attachment is also used in a different subpass, an explicit
* dependency is needed.
*
* We use the CP_BLIT path for sysmem resolves, which is really a
* transfer command, so we have to manually flush similar to the gmem
* resolve case. However, a flush afterwards isn't needed because of the
* last sentence and the fact that we're in sysmem mode.
*/
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
if (subpass->resolve_depth_stencil)
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_DEPTH_TS);
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
/* Wait for the flushes to land before using the 2D engine */
tu_cs_emit_wfi(cs);
for (unsigned i = 0; i < subpass->resolve_count; i++) {
uint32_t a = subpass->resolve_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
tu6_emit_sysmem_resolve(cmd, cs, subpass->multiview_mask, a, gmem_a);
}
}
}
static void
tu6_emit_tile_load(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
tu6_emit_blit_scissor(cmd, cs, true);
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
tu_load_gmem_attachment(cmd, cs, i, cmd->state.framebuffer->binning, false);
}
static void
tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
const struct tu_render_pass *pass = cmd->state.pass;
const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x0);
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
tu6_emit_blit_scissor(cmd, cs, true);
for (uint32_t a = 0; a < pass->attachment_count; ++a) {
if (pass->attachments[a].gmem_offset >= 0)
tu_store_gmem_attachment(cmd, cs, a, a, cmd->state.framebuffer->binning_possible);
}
if (subpass->resolve_attachments) {
for (unsigned i = 0; i < subpass->resolve_count; i++) {
uint32_t a = subpass->resolve_attachments[i].attachment;
if (a != VK_ATTACHMENT_UNUSED) {
uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
tu_store_gmem_attachment(cmd, cs, a, gmem_a, false);
}
}
}
}
void
tu_disable_draw_states(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
CP_SET_DRAW_STATE__0_GROUP_ID(0));
tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
}
static void
tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
struct tu_device *dev = cmd->device;
const struct tu_physical_device *phys_dev = dev->physical_device;
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(
.vs_state = true,
.hs_state = true,
.ds_state = true,
.gs_state = true,
.fs_state = true,
.cs_state = true,
.gfx_ibo = true,
.cs_ibo = true,
.gfx_shared_const = true,
.cs_shared_const = true,
.gfx_bindless = 0x1f,
.cs_bindless = 0x1f));
tu_cs_emit_wfi(cs);
cmd->state.cache.pending_flush_bits &=
~(TU_CMD_FLAG_WAIT_FOR_IDLE | TU_CMD_FLAG_CACHE_INVALIDATE);
tu_cs_emit_regs(cs,
A6XX_RB_CCU_CNTL(.color_offset = phys_dev->ccu_offset_bypass));
cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_FLOAT_CNTL, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_PERFCTR_ENABLE, 0x3f);
tu_cs_emit_write_reg(cs, REG_A6XX_TPL1_UNKNOWN_B605, 0x44);
tu_cs_emit_write_reg(cs, REG_A6XX_TPL1_DBG_ECO_CNTL,
phys_dev->info->a6xx.magic.TPL1_DBG_ECO_CNTL);
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_DBG_ECO_CNTL, 0x880);
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_CHICKEN_BITS, 0x00000410);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
tu_cs_emit_regs(cs, A6XX_HLSQ_SHARED_CONSTS(.enable = false));
tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
tu_cs_emit_regs(cs, A6XX_SP_MODE_CONTROL(.constant_demotion_enable = true,
.isammode = ISAMMODE_GL,
.shared_consts_enable = false));
/* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */
tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
tu_cs_emit_regs(cs, A6XX_VPC_POINT_COORD_INVERT(false));
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_SU_CONSERVATIVE_RAS_CNTL, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_MODE_CNTL,
0x000000a0 |
A6XX_SP_TP_MODE_CNTL_ISAMMODE(ISAMMODE_GL));
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
tu_cs_emit_regs(cs, A6XX_RB_ALPHA_CONTROL()); /* always disable alpha test */
tu_cs_emit_regs(cs, A6XX_RB_DITHER_CNTL()); /* always disable dithering */
tu_disable_draw_states(cmd, cs);
tu_cs_emit_regs(cs,
A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = dev->global_bo,
.bo_offset = gb_offset(bcolor_builtin)));
tu_cs_emit_regs(cs,
A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = dev->global_bo,
.bo_offset = gb_offset(bcolor_builtin)));
/* VSC buffers:
* use vsc pitches from the largest values used so far with this device
* if there hasn't been overflow, there will already be a scratch bo
* allocated for these sizes
*
* if overflow is detected, the stream size is increased by 2x
*/
mtx_lock(&dev->mutex);
struct tu6_global *global = dev->global_bo->map;
uint32_t vsc_draw_overflow = global->vsc_draw_overflow;
uint32_t vsc_prim_overflow = global->vsc_prim_overflow;
if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch)
dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch)
dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch;
cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch;
mtx_unlock(&dev->mutex);
struct tu_bo *vsc_bo;
uint32_t size0 = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES +
cmd->vsc_draw_strm_pitch * MAX_VSC_PIPES;
tu_get_scratch_bo(dev, size0 + MAX_VSC_PIPES * 4, &vsc_bo);
tu_cs_emit_regs(cs,
A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = vsc_bo, .bo_offset = size0));
tu_cs_emit_regs(cs,
A6XX_VSC_PRIM_STRM_ADDRESS(.bo = vsc_bo));
tu_cs_emit_regs(cs,
A6XX_VSC_DRAW_STRM_ADDRESS(.bo = vsc_bo,
.bo_offset = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES));
tu_cs_sanity_check(cs);
}
static void
update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
tu_cs_emit_regs(cs,
A6XX_VSC_BIN_SIZE(.width = fb->tile0.width,
.height = fb->tile0.height));
tu_cs_emit_regs(cs,
A6XX_VSC_BIN_COUNT(.nx = fb->tile_count.width,
.ny = fb->tile_count.height));
tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
tu_cs_emit_array(cs, fb->pipe_config, 32);
tu_cs_emit_regs(cs,
A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - VSC_PAD));
tu_cs_emit_regs(cs,
A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - VSC_PAD));
}
static void
emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
const uint32_t used_pipe_count =
fb->pipe_count.width * fb->pipe_count.height;
for (int i = 0; i < used_pipe_count; i++) {
tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
CP_COND_WRITE5_0_WRITE_MEMORY);
tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD));
tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow));
tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch));
tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
CP_COND_WRITE5_0_WRITE_MEMORY);
tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD));
tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow));
tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch));
}
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
}
static void
tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
struct tu_physical_device *phys_dev = cmd->device->physical_device;
const struct tu_framebuffer *fb = cmd->state.framebuffer;
tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, 0x1);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x1);
tu_cs_emit_wfi(cs);
tu_cs_emit_regs(cs,
A6XX_VFD_MODE_CNTL(.render_mode = BINNING_PASS));
update_vsc_pipe(cmd, cs);
tu_cs_emit_regs(cs,
A6XX_PC_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
tu_cs_emit_regs(cs,
A6XX_VFD_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
tu_cs_emit(cs, UNK_2C);
tu_cs_emit_regs(cs,
A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
tu_cs_emit_regs(cs,
A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
trace_start_binning_ib(&cmd->trace, cs);
/* emit IB to binning drawcmds: */
tu_cs_emit_call(cs, &cmd->draw_cs);
trace_end_binning_ib(&cmd->trace, cs);
/* switching from binning pass to GMEM pass will cause a switch from
* PROGRAM_BINNING to PROGRAM, which invalidates const state (XS_CONST states)
* so make sure these states are re-emitted
* (eventually these states shouldn't exist at all with shader prologue)
* only VS and GS are invalidated, as FS isn't emitted in binning pass,
* and we don't use HW binning when tesselation is used
*/
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
CP_SET_DRAW_STATE__0_DISABLE |
CP_SET_DRAW_STATE__0_GROUP_ID(TU_DRAW_STATE_CONST));
tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
tu_cs_emit(cs, UNK_2D);
/* This flush is probably required because the VSC, which produces the
* visibility stream, is a client of UCHE, whereas the CP needs to read the
* visibility stream (without caching) to do draw skipping. The
* WFI+WAIT_FOR_ME combination guarantees that the binning commands
* submitted are finished before reading the VSC regs (in
* emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
* part of draws).
*/
tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
tu_cs_emit_wfi(cs);
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
emit_vsc_overflow_test(cmd, cs);
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, 0x0);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
}
static struct tu_draw_state
tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
bool gmem)
{
/* note: we can probably emit input attachments just once for the whole
* renderpass, this would avoid emitting both sysmem/gmem versions
*
* emit two texture descriptors for each input, as a workaround for
* d24s8/d32s8, which can be sampled as both float (depth) and integer (stencil)
* tu_shader lowers uint input attachment loads to use the 2nd descriptor
* in the pair
* TODO: a smarter workaround
*/
if (!subpass->input_count)
return (struct tu_draw_state) {};
struct tu_cs_memory texture;
VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
A6XX_TEX_CONST_DWORDS, &texture);
if (result != VK_SUCCESS) {
cmd->record_result = result;
return (struct tu_draw_state) {};
}
for (unsigned i = 0; i < subpass->input_count * 2; i++) {
uint32_t a = subpass->input_attachments[i / 2].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
const struct tu_image_view *iview = cmd->state.attachments[a];
const struct tu_render_pass_attachment *att =
&cmd->state.pass->attachments[a];
uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
uint32_t gmem_offset = att->gmem_offset;
uint32_t cpp = att->cpp;
memcpy(dst, iview->view.descriptor, A6XX_TEX_CONST_DWORDS * 4);
/* Cube descriptors require a different sampling instruction in shader,
* however we don't know whether image is a cube or not until the start
* of a renderpass. We have to patch the descriptor to make it compatible
* with how it is sampled in shader.
*/
enum a6xx_tex_type tex_type = (dst[2] & A6XX_TEX_CONST_2_TYPE__MASK) >>
A6XX_TEX_CONST_2_TYPE__SHIFT;
if (tex_type == A6XX_TEX_CUBE) {
dst[2] &= ~A6XX_TEX_CONST_2_TYPE__MASK;
dst[2] |= A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D);
uint32_t depth = (dst[5] & A6XX_TEX_CONST_5_DEPTH__MASK) >>
A6XX_TEX_CONST_5_DEPTH__SHIFT;
dst[5] &= ~A6XX_TEX_CONST_5_DEPTH__MASK;
dst[5] |= A6XX_TEX_CONST_5_DEPTH(depth * 6);
}
if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
/* note this works because spec says fb and input attachments
* must use identity swizzle
*
* Also we clear swap to WZYX. This is because the view might have
* picked XYZW to work better with border colors.
*/
dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
A6XX_TEX_CONST_0_SWAP__MASK |
A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
if (!cmd->device->physical_device->info->a6xx.has_z24uint_s8uint) {
dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_8_8_8_UINT) |
A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_W) |
A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
} else {
dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_Z24_UINT_S8_UINT) |
A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
}
}
if (i % 2 == 1 && att->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
dst[0] &= ~A6XX_TEX_CONST_0_FMT__MASK;
dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_UINT);
dst[2] &= ~(A6XX_TEX_CONST_2_PITCHALIGN__MASK | A6XX_TEX_CONST_2_PITCH__MASK);
dst[2] |= A6XX_TEX_CONST_2_PITCH(iview->stencil_PITCH << 6);
dst[3] = 0;
dst[4] = iview->stencil_base_addr;
dst[5] = (dst[5] & 0xffff) | iview->stencil_base_addr >> 32;
cpp = att->samples;
gmem_offset = att->gmem_offset_stencil;
}
if (!gmem || !subpass->input_attachments[i / 2].patch_input_gmem)
continue;
/* patched for gmem */
dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
dst[2] =
A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
A6XX_TEX_CONST_2_PITCH(cmd->state.framebuffer->tile0.width * cpp);
dst[3] = 0;
dst[4] = cmd->device->physical_device->gmem_base + gmem_offset;
dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
dst[i] = 0;
}
struct tu_cs cs;
struct tu_draw_state ds = tu_cs_draw_state(&cmd->sub_cs, &cs, 9);
tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
tu_cs_emit_qw(&cs, texture.iova);
tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_CONST(.qword = texture.iova));
tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
assert(cs.cur == cs.end); /* validate draw state size */
return ds;
}
static void
tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
{
struct tu_cs *cs = &cmd->draw_cs;
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
tu_emit_input_attachments(cmd, subpass, true));
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
tu_emit_input_attachments(cmd, subpass, false));
}
static void
tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
const VkClearValue *clear_values)
{
struct tu_cs *cs = &cmd->draw_cs;
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
tu6_emit_tile_load(cmd, cs);
tu6_emit_blit_scissor(cmd, cs, false);
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
tu_clear_gmem_attachment(cmd, cs, i, &clear_values[i]);
tu_cond_exec_end(cs);
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
tu_clear_sysmem_attachment(cmd, cs, i, &clear_values[i]);
tu_cond_exec_end(cs);
}
static void
tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
struct tu_renderpass_result *autotune_result)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
tu_lrz_sysmem_begin(cmd, cs);
assert(fb->width > 0 && fb->height > 0);
tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
tu6_emit_window_offset(cs, 0, 0);
tu6_emit_bin_size(cs, 0, 0,
A6XX_RB_BIN_CONTROL_BUFFERS_LOCATION(BUFFERS_IN_SYSMEM) |
A6XX_RB_BIN_CONTROL_FORCE_LRZ_WRITE_DIS);
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x0);
tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, 0x1);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
tu_autotune_begin_renderpass(cmd, cs, autotune_result);
tu_cs_sanity_check(cs);
}
static void
tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
struct tu_renderpass_result *autotune_result)
{
tu_autotune_end_renderpass(cmd, cs, autotune_result);
/* Do any resolves of the last subpass. These are handled in the
* tile_store_cs in the gmem path.
*/
tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x0);
tu_lrz_sysmem_end(cmd, cs);
tu_cs_sanity_check(cs);
}
static void
tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
struct tu_renderpass_result *autotune_result)
{
struct tu_physical_device *phys_dev = cmd->device->physical_device;
tu_lrz_tiling_begin(cmd, cs);
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x0);
tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
const struct tu_framebuffer *fb = cmd->state.framebuffer;
if (use_hw_binning(cmd)) {
tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
A6XX_RB_BIN_CONTROL_RENDER_MODE(BINNING_PASS) |
A6XX_RB_BIN_CONTROL_LRZ_FEEDBACK_ZMODE_MASK(0x6));
tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
tu6_emit_binning_pass(cmd, cs);
tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
A6XX_RB_BIN_CONTROL_FORCE_LRZ_WRITE_DIS |
A6XX_RB_BIN_CONTROL_LRZ_FEEDBACK_ZMODE_MASK(0x6));
tu_cs_emit_regs(cs,
A6XX_VFD_MODE_CNTL(0));
tu_cs_emit_regs(cs,
A6XX_PC_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
tu_cs_emit_regs(cs,
A6XX_VFD_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x1);
} else {
tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
A6XX_RB_BIN_CONTROL_LRZ_FEEDBACK_ZMODE_MASK(0x6));
if (fb->binning_possible) {
/* Mark all tiles as visible for tu6_emit_cond_for_load_stores(), since
* the actual binner didn't run.
*/
int pipe_count = fb->pipe_count.width * fb->pipe_count.height;
tu_cs_emit_pkt4(cs, REG_A6XX_VSC_STATE_REG(0), pipe_count);
for (int i = 0; i < pipe_count; i++)
tu_cs_emit(cs, ~0);
}
}
tu_autotune_begin_renderpass(cmd, cs, autotune_result);
tu_cs_sanity_check(cs);
}
static void
tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot)
{
tu6_emit_tile_select(cmd, &cmd->cs, tx, ty, pipe, slot);
trace_start_draw_ib_gmem(&cmd->trace, &cmd->cs);
/* Primitives that passed all tests are still counted in in each
* tile even with HW binning beforehand. Do not permit it.
*/
if (cmd->state.prim_generated_query_running_before_rp)
tu6_emit_event_write(cmd, cs, STOP_PRIMITIVE_CTRS);
tu_cs_emit_call(cs, &cmd->draw_cs);
if (cmd->state.prim_generated_query_running_before_rp)
tu6_emit_event_write(cmd, cs, START_PRIMITIVE_CTRS);
if (use_hw_binning(cmd)) {
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
}
/* Predicate is changed in draw_cs so we have to re-emit it */
if (cmd->state.rp.draw_cs_writes_to_cond_pred)
tu6_emit_cond_for_load_stores(cmd, cs, pipe, slot, false);
tu_cs_emit_call(cs, &cmd->tile_store_cs);
if (!u_trace_iterator_equal(cmd->trace_renderpass_start, cmd->trace_renderpass_end)) {
tu_cs_emit_wfi(cs);
tu_cs_emit_pkt7(&cmd->cs, CP_WAIT_FOR_ME, 0);
u_trace_clone_append(cmd->trace_renderpass_start,
cmd->trace_renderpass_end,
&cmd->trace,
cs, tu_copy_timestamp_buffer);
}
tu_cs_sanity_check(cs);
trace_end_draw_ib_gmem(&cmd->trace, &cmd->cs);
}
static void
tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
struct tu_renderpass_result *autotune_result)
{
tu_autotune_end_renderpass(cmd, cs, autotune_result);
tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
tu_lrz_tiling_end(cmd, cs);
tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
tu_cs_sanity_check(cs);
}
static void
tu_cmd_render_tiles(struct tu_cmd_buffer *cmd,
struct tu_renderpass_result *autotune_result)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
/* Create gmem stores now (at EndRenderPass time)) because they needed to
* know whether to allow their conditional execution, which was tied to a
* state that was known only at the end of the renderpass. They will be
* called from tu6_render_tile().
*/
tu_cs_begin(&cmd->tile_store_cs);
tu6_emit_tile_store(cmd, &cmd->tile_store_cs);
tu_cs_end(&cmd->tile_store_cs);
tu6_tile_render_begin(cmd, &cmd->cs, autotune_result);
/* Note: we reverse the order of walking the pipes and tiles on every
* other row, to improve texture cache locality compared to raster order.
*/
for (uint32_t py = 0; py < fb->pipe_count.height; py++) {
uint32_t pipe_row = py * fb->pipe_count.width;
for (uint32_t pipe_row_i = 0; pipe_row_i < fb->pipe_count.width; pipe_row_i++) {
uint32_t px;
if (py & 1)
px = fb->pipe_count.width - 1 - pipe_row_i;
else
px = pipe_row_i;
uint32_t pipe = pipe_row + px;
uint32_t tx1 = px * fb->pipe0.width;
uint32_t ty1 = py * fb->pipe0.height;
uint32_t tx2 = MIN2(tx1 + fb->pipe0.width, fb->tile_count.width);
uint32_t ty2 = MIN2(ty1 + fb->pipe0.height, fb->tile_count.height);
uint32_t tile_row_stride = tx2 - tx1;
uint32_t slot_row = 0;
for (uint32_t ty = ty1; ty < ty2; ty++) {
for (uint32_t tile_row_i = 0; tile_row_i < tile_row_stride; tile_row_i++) {
uint32_t tx;
if (ty & 1)
tx = tile_row_stride - 1 - tile_row_i;
else
tx = tile_row_i;
uint32_t slot = slot_row + tx;
tu6_render_tile(cmd, &cmd->cs, tx1 + tx, ty, pipe, slot);
}
slot_row += tile_row_stride;
}
}
}
tu6_tile_render_end(cmd, &cmd->cs, autotune_result);
trace_end_render_pass(&cmd->trace, &cmd->cs, fb);
if (!u_trace_iterator_equal(cmd->trace_renderpass_start, cmd->trace_renderpass_end))
u_trace_disable_event_range(cmd->trace_renderpass_start,
cmd->trace_renderpass_end);
/* Reset the gmem store CS entry lists so that the next render pass
* does its own stores.
*/
tu_cs_discard_entries(&cmd->tile_store_cs);
}
static void
tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd,
struct tu_renderpass_result *autotune_result)
{
tu6_sysmem_render_begin(cmd, &cmd->cs, autotune_result);
trace_start_draw_ib_sysmem(&cmd->trace, &cmd->cs);
tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
trace_end_draw_ib_sysmem(&cmd->trace, &cmd->cs);
tu6_sysmem_render_end(cmd, &cmd->cs, autotune_result);
trace_end_render_pass(&cmd->trace, &cmd->cs, cmd->state.framebuffer);
}
static VkResult
tu_create_cmd_buffer(struct tu_device *device,
struct tu_cmd_pool *pool,
VkCommandBufferLevel level,
VkCommandBuffer *pCommandBuffer)
{
struct tu_cmd_buffer *cmd_buffer;
cmd_buffer = vk_zalloc2(&device->vk.alloc, NULL, sizeof(*cmd_buffer), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (cmd_buffer == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
VkResult result = vk_command_buffer_init(&cmd_buffer->vk, &pool->vk, level);
if (result != VK_SUCCESS) {
vk_free2(&device->vk.alloc, NULL, cmd_buffer);
return result;
}
cmd_buffer->device = device;
cmd_buffer->pool = pool;
if (pool) {
list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
cmd_buffer->queue_family_index = pool->vk.queue_family_index;
} else {
/* Init the pool_link so we can safely call list_del when we destroy
* the command buffer
*/
list_inithead(&cmd_buffer->pool_link);
cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
}
u_trace_init(&cmd_buffer->trace, &device->trace_context);
list_inithead(&cmd_buffer->renderpass_autotune_results);
tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
tu_cs_init(&cmd_buffer->tile_store_cs, device, TU_CS_MODE_GROW, 2048);
tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
*pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
return VK_SUCCESS;
}
static void
tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
{
list_del(&cmd_buffer->pool_link);
tu_cs_finish(&cmd_buffer->cs);
tu_cs_finish(&cmd_buffer->draw_cs);
tu_cs_finish(&cmd_buffer->tile_store_cs);
tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
tu_cs_finish(&cmd_buffer->sub_cs);
u_trace_fini(&cmd_buffer->trace);
tu_autotune_free_results(cmd_buffer->device, &cmd_buffer->renderpass_autotune_results);
for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
if (cmd_buffer->descriptors[i].push_set.layout)
tu_descriptor_set_layout_unref(cmd_buffer->device,
cmd_buffer->descriptors[i].push_set.layout);
}
vk_command_buffer_finish(&cmd_buffer->vk);
vk_free2(&cmd_buffer->device->vk.alloc, &cmd_buffer->pool->vk.alloc,
cmd_buffer);
}
static VkResult
tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
{
vk_command_buffer_reset(&cmd_buffer->vk);
cmd_buffer->record_result = VK_SUCCESS;
tu_cs_reset(&cmd_buffer->cs);
tu_cs_reset(&cmd_buffer->draw_cs);
tu_cs_reset(&cmd_buffer->tile_store_cs);
tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
tu_cs_reset(&cmd_buffer->sub_cs);
tu_autotune_free_results(cmd_buffer->device, &cmd_buffer->renderpass_autotune_results);
for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
if (cmd_buffer->descriptors[i].push_set.layout)
tu_descriptor_set_layout_unref(cmd_buffer->device,
cmd_buffer->descriptors[i].push_set.layout);
memset(&cmd_buffer->descriptors[i].push_set, 0, sizeof(cmd_buffer->descriptors[i].push_set));
cmd_buffer->descriptors[i].push_set.base.type = VK_OBJECT_TYPE_DESCRIPTOR_SET;
}
u_trace_fini(&cmd_buffer->trace);
u_trace_init(&cmd_buffer->trace, &cmd_buffer->device->trace_context);
cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
return cmd_buffer->record_result;
}
VKAPI_ATTR VkResult VKAPI_CALL
tu_AllocateCommandBuffers(VkDevice _device,
const VkCommandBufferAllocateInfo *pAllocateInfo,
VkCommandBuffer *pCommandBuffers)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
VkResult result = VK_SUCCESS;
uint32_t i;
for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
if (!list_is_empty(&pool->free_cmd_buffers)) {
struct tu_cmd_buffer *cmd_buffer = list_first_entry(
&pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
list_del(&cmd_buffer->pool_link);
list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
result = tu_reset_cmd_buffer(cmd_buffer);
vk_command_buffer_finish(&cmd_buffer->vk);
VkResult init_result =
vk_command_buffer_init(&cmd_buffer->vk, &pool->vk, pAllocateInfo->level);
if (init_result != VK_SUCCESS)
result = init_result;
pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
} else {
result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
&pCommandBuffers[i]);
}
if (result != VK_SUCCESS)
break;
}
if (result != VK_SUCCESS) {
tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
pCommandBuffers);
/* From the Vulkan 1.0.66 spec:
*
* "vkAllocateCommandBuffers can be used to create multiple
* command buffers. If the creation of any of those command
* buffers fails, the implementation must destroy all
* successfully created command buffer objects from this
* command, set all entries of the pCommandBuffers array to
* NULL and return the error."
*/
memset(pCommandBuffers, 0,
sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
}
return result;
}
VKAPI_ATTR void VKAPI_CALL
tu_FreeCommandBuffers(VkDevice device,
VkCommandPool commandPool,
uint32_t commandBufferCount,
const VkCommandBuffer *pCommandBuffers)
{
for (uint32_t i = 0; i < commandBufferCount; i++) {
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
if (cmd_buffer) {
if (cmd_buffer->pool) {
list_del(&cmd_buffer->pool_link);
list_addtail(&cmd_buffer->pool_link,
&cmd_buffer->pool->free_cmd_buffers);
} else
tu_cmd_buffer_destroy(cmd_buffer);
}
}
}
VKAPI_ATTR VkResult VKAPI_CALL
tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
VkCommandBufferResetFlags flags)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
return tu_reset_cmd_buffer(cmd_buffer);
}
/* Initialize the cache, assuming all necessary flushes have happened but *not*
* invalidations.
*/
static void
tu_cache_init(struct tu_cache_state *cache)
{
cache->flush_bits = 0;
cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
}
VKAPI_ATTR VkResult VKAPI_CALL
tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo *pBeginInfo)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
VkResult result = VK_SUCCESS;
if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
/* If the command buffer has already been resetted with
* vkResetCommandBuffer, no need to do it again.
*/
result = tu_reset_cmd_buffer(cmd_buffer);
if (result != VK_SUCCESS)
return result;
}
memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
cmd_buffer->state.index_size = 0xff; /* dirty restart index */
cmd_buffer->state.line_mode = RECTANGULAR;
tu_cache_init(&cmd_buffer->state.cache);
tu_cache_init(&cmd_buffer->state.renderpass_cache);
cmd_buffer->usage_flags = pBeginInfo->flags;
tu_cs_begin(&cmd_buffer->cs);
tu_cs_begin(&cmd_buffer->draw_cs);
tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
/* setup initial configuration into command buffer */
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
switch (cmd_buffer->queue_family_index) {
case TU_QUEUE_GENERAL:
tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
break;
default:
break;
}
} else if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
assert(pBeginInfo->pInheritanceInfo);
cmd_buffer->inherited_pipeline_statistics =
pBeginInfo->pInheritanceInfo->pipelineStatistics;
vk_foreach_struct_const(ext, pBeginInfo->pInheritanceInfo) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT: {
const VkCommandBufferInheritanceConditionalRenderingInfoEXT *cond_rend = (void *) ext;
cmd_buffer->state.predication_active = cond_rend->conditionalRenderingEnable;
break;
default:
break;
}
}
}
if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
if (pBeginInfo->pInheritanceInfo->renderPass) {
cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
cmd_buffer->state.subpass =
&cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
} else {
const VkCommandBufferInheritanceRenderingInfo *rendering_info =
vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext,
COMMAND_BUFFER_INHERITANCE_RENDERING_INFO);
tu_setup_dynamic_inheritance(cmd_buffer, rendering_info);
cmd_buffer->state.pass = &cmd_buffer->dynamic_pass;
cmd_buffer->state.subpass = &cmd_buffer->dynamic_subpass;
}
tu_lrz_begin_secondary_cmdbuf(cmd_buffer);
} else {
/* When executing in the middle of another command buffer, the CCU
* state is unknown.
*/
cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
}
}
cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdBindVertexBuffers2EXT(VkCommandBuffer commandBuffer,
uint32_t firstBinding,
uint32_t bindingCount,
const VkBuffer* pBuffers,
const VkDeviceSize* pOffsets,
const VkDeviceSize* pSizes,
const VkDeviceSize* pStrides)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs;
/* TODO: track a "max_vb" value for the cmdbuf to save a bit of memory */
cmd->state.vertex_buffers.iova = tu_cs_draw_state(&cmd->sub_cs, &cs, 4 * MAX_VBS).iova;
for (uint32_t i = 0; i < bindingCount; i++) {
if (pBuffers[i] == VK_NULL_HANDLE) {
cmd->state.vb[firstBinding + i].base = 0;
cmd->state.vb[firstBinding + i].size = 0;
} else {
struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
cmd->state.vb[firstBinding + i].base = buf->iova + pOffsets[i];
cmd->state.vb[firstBinding + i].size = pSizes ? pSizes[i] : (buf->size - pOffsets[i]);
}
if (pStrides)
cmd->state.vb[firstBinding + i].stride = pStrides[i];
}
for (uint32_t i = 0; i < MAX_VBS; i++) {
tu_cs_emit_regs(&cs,
A6XX_VFD_FETCH_BASE(i, .qword = cmd->state.vb[i].base),
A6XX_VFD_FETCH_SIZE(i, cmd->state.vb[i].size));
}
cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
if (pStrides) {
cmd->state.dynamic_state[TU_DYNAMIC_STATE_VB_STRIDE].iova =
tu_cs_draw_state(&cmd->sub_cs, &cs, 2 * MAX_VBS).iova;
for (uint32_t i = 0; i < MAX_VBS; i++)
tu_cs_emit_regs(&cs, A6XX_VFD_FETCH_STRIDE(i, cmd->state.vb[i].stride));
cmd->state.dirty |= TU_CMD_DIRTY_VB_STRIDE;
}
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
VkBuffer buffer,
VkDeviceSize offset,
VkIndexType indexType)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_buffer, buf, buffer);
uint32_t index_size, index_shift, restart_index;
switch (indexType) {
case VK_INDEX_TYPE_UINT16:
index_size = INDEX4_SIZE_16_BIT;
index_shift = 1;
restart_index = 0xffff;
break;
case VK_INDEX_TYPE_UINT32:
index_size = INDEX4_SIZE_32_BIT;
index_shift = 2;
restart_index = 0xffffffff;
break;
case VK_INDEX_TYPE_UINT8_EXT:
index_size = INDEX4_SIZE_8_BIT;
index_shift = 0;
restart_index = 0xff;
break;
default:
unreachable("invalid VkIndexType");
}
/* initialize/update the restart index */
if (cmd->state.index_size != index_size)
tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
assert(buf->size >= offset);
cmd->state.index_va = buf->iova + offset;
cmd->state.max_index_count = (buf->size - offset) >> index_shift;
cmd->state.index_size = index_size;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout _layout,
uint32_t firstSet,
uint32_t descriptorSetCount,
const VkDescriptorSet *pDescriptorSets,
uint32_t dynamicOffsetCount,
const uint32_t *pDynamicOffsets)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
unsigned dyn_idx = 0;
struct tu_descriptor_state *descriptors_state =
tu_get_descriptors_state(cmd, pipelineBindPoint);
for (unsigned i = 0; i < descriptorSetCount; ++i) {
unsigned idx = i + firstSet;
TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
descriptors_state->sets[idx] = set;
if (!set->layout->dynamic_offset_size)
continue;
uint32_t *src = set->dynamic_descriptors;
uint32_t *dst = descriptors_state->dynamic_descriptors +
layout->set[idx].dynamic_offset_start / 4;
for (unsigned j = 0; j < set->layout->binding_count; j++) {
struct tu_descriptor_set_binding_layout *binding =
&set->layout->binding[j];
if (binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
binding->type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
for (unsigned k = 0; k < binding->array_size; k++, dyn_idx++) {
assert(dyn_idx < dynamicOffsetCount);
uint32_t offset = pDynamicOffsets[dyn_idx];
memcpy(dst, src, binding->size);
if (binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) {
/* Note: we can assume here that the addition won't roll
* over and change the SIZE field.
*/
uint64_t va = src[0] | ((uint64_t)src[1] << 32);
va += offset;
dst[0] = va;
dst[1] = va >> 32;
} else {
uint32_t *dst_desc = dst;
for (unsigned i = 0;
i < binding->size / (4 * A6XX_TEX_CONST_DWORDS);
i++, dst_desc += A6XX_TEX_CONST_DWORDS) {
/* Note: A6XX_TEX_CONST_5_DEPTH is always 0 */
uint64_t va = dst_desc[4] | ((uint64_t)dst_desc[5] << 32);
va += offset;
dst_desc[4] = va;
dst_desc[5] = va >> 32;
}
}
dst += binding->size / 4;
src += binding->size / 4;
}
}
}
}
assert(dyn_idx == dynamicOffsetCount);
uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_invalidate_value;
uint64_t addr[MAX_SETS + 1] = {};
struct tu_cs *cs, state_cs;
for (uint32_t i = 0; i < MAX_SETS; i++) {
struct tu_descriptor_set *set = descriptors_state->sets[i];
if (set)
addr[i] = set->va | 3;
}
if (layout->dynamic_offset_size) {
/* allocate and fill out dynamic descriptor set */
struct tu_cs_memory dynamic_desc_set;
VkResult result = tu_cs_alloc(&cmd->sub_cs,
layout->dynamic_offset_size / (4 * A6XX_TEX_CONST_DWORDS),
A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
if (result != VK_SUCCESS) {
cmd->record_result = result;
return;
}
memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
layout->dynamic_offset_size);
addr[MAX_SETS] = dynamic_desc_set.iova | 3;
}
if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_GFX_BINDLESS(0x1f);
cmd->state.desc_sets = tu_cs_draw_state(&cmd->sub_cs, &state_cs, 24);
cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD;
cs = &state_cs;
} else {
assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_CS_BINDLESS(0x1f);
cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
cs = &cmd->cs;
}
tu_cs_emit_pkt4(cs, sp_bindless_base_reg, 10);
tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg, 10);
tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(.dword = hlsq_invalidate_value));
if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
assert(cs->cur == cs->end); /* validate draw state size */
/* note: this also avoids emitting draw states before renderpass clears,
* which may use the 3D clear path (for MSAA cases)
*/
if (!(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
}
}
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdPushDescriptorSetKHR(VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout _layout,
uint32_t _set,
uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_pipeline_layout, pipe_layout, _layout);
struct tu_descriptor_set_layout *layout = pipe_layout->set[_set].layout;
struct tu_descriptor_set *set =
&tu_get_descriptors_state(cmd, pipelineBindPoint)->push_set;
struct tu_cs_memory set_mem;
VkResult result = tu_cs_alloc(&cmd->sub_cs,
DIV_ROUND_UP(layout->size, A6XX_TEX_CONST_DWORDS * 4),
A6XX_TEX_CONST_DWORDS, &set_mem);
if (result != VK_SUCCESS) {
cmd->record_result = result;
return;
}
/* preserve previous content if the layout is the same: */
if (set->layout == layout)
memcpy(set_mem.map, set->mapped_ptr, layout->size);
if (set->layout != layout) {
if (set->layout)
tu_descriptor_set_layout_unref(cmd->device, set->layout);
tu_descriptor_set_layout_ref(layout);
set->layout = layout;
}
set->mapped_ptr = set_mem.map;
set->va = set_mem.iova;
tu_update_descriptor_sets(cmd->device, tu_descriptor_set_to_handle(set),
descriptorWriteCount, pDescriptorWrites, 0, NULL);
tu_CmdBindDescriptorSets(commandBuffer, pipelineBindPoint, _layout, _set,
1, (VkDescriptorSet[]) { tu_descriptor_set_to_handle(set) },
0, NULL);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdPushDescriptorSetWithTemplateKHR(VkCommandBuffer commandBuffer,
VkDescriptorUpdateTemplate descriptorUpdateTemplate,
VkPipelineLayout _layout,
uint32_t _set,
const void* pData)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_pipeline_layout, pipe_layout, _layout);
TU_FROM_HANDLE(tu_descriptor_update_template, templ, descriptorUpdateTemplate);
struct tu_descriptor_set_layout *layout = pipe_layout->set[_set].layout;
struct tu_descriptor_set *set =
&tu_get_descriptors_state(cmd, templ->bind_point)->push_set;
struct tu_cs_memory set_mem;
VkResult result = tu_cs_alloc(&cmd->sub_cs,
DIV_ROUND_UP(layout->size, A6XX_TEX_CONST_DWORDS * 4),
A6XX_TEX_CONST_DWORDS, &set_mem);
if (result != VK_SUCCESS) {
cmd->record_result = result;
return;
}
/* preserve previous content if the layout is the same: */
if (set->layout == layout)
memcpy(set_mem.map, set->mapped_ptr, layout->size);
if (set->layout != layout) {
if (set->layout)
tu_descriptor_set_layout_unref(cmd->device, set->layout);
tu_descriptor_set_layout_ref(layout);
set->layout = layout;
}
set->mapped_ptr = set_mem.map;
set->va = set_mem.iova;
tu_update_descriptor_set_with_template(cmd->device, set, descriptorUpdateTemplate, pData);
tu_CmdBindDescriptorSets(commandBuffer, templ->bind_point, _layout, _set,
1, (VkDescriptorSet[]) { tu_descriptor_set_to_handle(set) },
0, NULL);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
uint32_t firstBinding,
uint32_t bindingCount,
const VkBuffer *pBuffers,
const VkDeviceSize *pOffsets,
const VkDeviceSize *pSizes)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->draw_cs;
/* using COND_REG_EXEC for xfb commands matches the blob behavior
* presumably there isn't any benefit using a draw state when the
* condition is (SYSMEM | BINNING)
*/
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
CP_COND_REG_EXEC_0_SYSMEM |
CP_COND_REG_EXEC_0_BINNING);
for (uint32_t i = 0; i < bindingCount; i++) {
TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
uint64_t iova = buf->iova + pOffsets[i];
uint32_t size = buf->bo->size - (iova - buf->bo->iova);
uint32_t idx = i + firstBinding;
if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
size = pSizes[i];
/* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
uint32_t offset = iova & 0x1f;
iova &= ~(uint64_t) 0x1f;
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
tu_cs_emit_qw(cs, iova);
tu_cs_emit(cs, size + offset);
cmd->state.streamout_offset[idx] = offset;
}
tu_cond_exec_end(cs);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
uint32_t firstCounterBuffer,
uint32_t counterBufferCount,
const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->draw_cs;
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
CP_COND_REG_EXEC_0_SYSMEM |
CP_COND_REG_EXEC_0_BINNING);
tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
/* TODO: only update offset for active buffers */
for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
for (uint32_t i = 0; i < (pCounterBuffers ? counterBufferCount : 0); i++) {
uint32_t idx = firstCounterBuffer + i;
uint32_t offset = cmd->state.streamout_offset[idx];
uint64_t counter_buffer_offset = pCounterBufferOffsets ? pCounterBufferOffsets[i] : 0u;
if (!pCounterBuffers[i])
continue;
TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
CP_MEM_TO_REG_0_UNK31 |
CP_MEM_TO_REG_0_CNT(1));
tu_cs_emit_qw(cs, buf->iova + counter_buffer_offset);
if (offset) {
tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
CP_REG_RMW_0_SRC1_ADD);
tu_cs_emit(cs, 0xffffffff);
tu_cs_emit(cs, offset);
}
}
tu_cond_exec_end(cs);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
uint32_t firstCounterBuffer,
uint32_t counterBufferCount,
const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->draw_cs;
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
CP_COND_REG_EXEC_0_SYSMEM |
CP_COND_REG_EXEC_0_BINNING);
tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
/* TODO: only flush buffers that need to be flushed */
for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
/* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
tu_cs_emit_qw(cs, global_iova(cmd, flush_base[i]));
tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
}
for (uint32_t i = 0; i < (pCounterBuffers ? counterBufferCount : 0); i++) {
uint32_t idx = firstCounterBuffer + i;
uint32_t offset = cmd->state.streamout_offset[idx];
uint64_t counter_buffer_offset = pCounterBufferOffsets ? pCounterBufferOffsets[i] : 0u;
if (!pCounterBuffers[i])
continue;
TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
/* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
CP_MEM_TO_REG_0_SHIFT_BY_2 |
0x40000 | /* ??? */
CP_MEM_TO_REG_0_UNK31 |
CP_MEM_TO_REG_0_CNT(1));
tu_cs_emit_qw(cs, global_iova(cmd, flush_base[idx]));
if (offset) {
tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
CP_REG_RMW_0_SRC1_ADD);
tu_cs_emit(cs, 0xffffffff);
tu_cs_emit(cs, -offset);
}
tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
CP_REG_TO_MEM_0_CNT(1));
tu_cs_emit_qw(cs, buf->iova + counter_buffer_offset);
}
tu_cond_exec_end(cs);
cmd->state.rp.xfb_used = true;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdPushConstants(VkCommandBuffer commandBuffer,
VkPipelineLayout layout,
VkShaderStageFlags stageFlags,
uint32_t offset,
uint32_t size,
const void *pValues)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
memcpy((void*) cmd->push_constants + offset, pValues, size);
cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
}
/* Flush everything which has been made available but we haven't actually
* flushed yet.
*/
static void
tu_flush_all_pending(struct tu_cache_state *cache)
{
cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
}
VKAPI_ATTR VkResult VKAPI_CALL
tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
/* We currently flush CCU at the end of the command buffer, like
* what the blob does. There's implicit synchronization around every
* vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
* know yet if this command buffer will be the last in the submit so we
* have to defensively flush everything else.
*
* TODO: We could definitely do better than this, since these flushes
* aren't required by Vulkan, but we'd need kernel support to do that.
* Ideally, we'd like the kernel to flush everything afterwards, so that we
* wouldn't have to do any flushes here, and when submitting multiple
* command buffers there wouldn't be any unnecessary flushes in between.
*/
if (cmd_buffer->state.pass) {
tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
} else {
tu_flush_all_pending(&cmd_buffer->state.cache);
cmd_buffer->state.cache.flush_bits |=
TU_CMD_FLAG_CCU_FLUSH_COLOR |
TU_CMD_FLAG_CCU_FLUSH_DEPTH;
tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
}
tu_cs_end(&cmd_buffer->cs);
tu_cs_end(&cmd_buffer->draw_cs);
tu_cs_end(&cmd_buffer->draw_epilogue_cs);
cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
return cmd_buffer->record_result;
}
static struct tu_cs
tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
{
struct tu_cs cs;
assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
cmd->state.dynamic_state[id] = tu_cs_draw_state(&cmd->sub_cs, &cs, size);
/* note: this also avoids emitting draw states before renderpass clears,
* which may use the 3D clear path (for MSAA cases)
*/
if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)
return cs;
tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
return cs;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipeline _pipeline)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
cmd->state.compute_pipeline = pipeline;
tu_cs_emit_state_ib(&cmd->cs, pipeline->program.state);
return;
}
assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
cmd->state.pipeline = pipeline;
cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS |
TU_CMD_DIRTY_LRZ | TU_CMD_DIRTY_VS_PARAMS;
struct tu_cs *cs = &cmd->draw_cs;
/* note: this also avoids emitting draw states before renderpass clears,
* which may use the 3D clear path (for MSAA cases)
*/
if (!(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (8 + util_bitcount(mask)));
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_CONFIG, pipeline->program.config_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_SYSMEM, pipeline->prim_order_state_sysmem);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_GMEM, pipeline->prim_order_state_gmem);
u_foreach_bit(i, mask)
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
}
if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
cmd->state.rp.has_tess = true;
/* maximum number of patches that can fit in tess factor/param buffers */
uint32_t subdraw_size = MIN2(TU_TESS_FACTOR_SIZE / ir3_tess_factor_stride(pipeline->tess.patch_type),
TU_TESS_PARAM_SIZE / pipeline->tess.param_stride);
/* convert from # of patches to draw count */
subdraw_size *= (pipeline->ia.primtype - DI_PT_PATCHES0);
/* TODO: Move this packet to pipeline state, since it's constant based on the pipeline. */
tu_cs_emit_pkt7(cs, CP_SET_SUBDRAW_SIZE, 1);
tu_cs_emit(cs, subdraw_size);
}
if (cmd->state.line_mode != pipeline->line_mode) {
cmd->state.line_mode = pipeline->line_mode;
/* We have to disable MSAA when bresenham lines are used, this is
* a hardware limitation and spec allows it:
*
* When Bresenham lines are being rasterized, sample locations may
* all be treated as being at the pixel center (this may affect
* attribute and depth interpolation).
*/
if (cmd->state.subpass && cmd->state.subpass->samples) {
tu6_emit_msaa(cs, cmd->state.subpass->samples, cmd->state.line_mode);
}
}
if ((pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_VIEWPORT)) &&
(pipeline->z_negative_one_to_one != cmd->state.z_negative_one_to_one)) {
cmd->state.z_negative_one_to_one = pipeline->z_negative_one_to_one;
cmd->state.dirty |= TU_CMD_DIRTY_VIEWPORTS;
}
/* the vertex_buffers draw state always contains all the currently
* bound vertex buffers. update its size to only emit the vbs which
* are actually used by the pipeline
* note there is a HW optimization which makes it so the draw state
* is not re-executed completely when only the size changes
*/
if (cmd->state.vertex_buffers.size != pipeline->num_vbs * 4) {
cmd->state.vertex_buffers.size = pipeline->num_vbs * 4;
cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
}
if ((pipeline->dynamic_state_mask & BIT(TU_DYNAMIC_STATE_VB_STRIDE)) &&
cmd->state.dynamic_state[TU_DYNAMIC_STATE_VB_STRIDE].size != pipeline->num_vbs * 2) {
cmd->state.dynamic_state[TU_DYNAMIC_STATE_VB_STRIDE].size = pipeline->num_vbs * 2;
cmd->state.dirty |= TU_CMD_DIRTY_VB_STRIDE;
}
#define UPDATE_REG(X, Y) { \
/* note: would be better to have pipeline bits already masked */ \
uint32_t pipeline_bits = pipeline->X & pipeline->X##_mask; \
if ((cmd->state.X & pipeline->X##_mask) != pipeline_bits) { \
cmd->state.X &= ~pipeline->X##_mask; \
cmd->state.X |= pipeline_bits; \
cmd->state.dirty |= TU_CMD_DIRTY_##Y; \
} \
if (!(pipeline->dynamic_state_mask & BIT(TU_DYNAMIC_STATE_##Y))) \
cmd->state.dirty &= ~TU_CMD_DIRTY_##Y; \
}
/* these registers can have bits set from both pipeline and dynamic state
* this updates the bits set by the pipeline
* if the pipeline doesn't use a dynamic state for the register, then
* the relevant dirty bit is cleared to avoid overriding the non-dynamic
* state with a dynamic state the next draw.
*/
UPDATE_REG(gras_su_cntl, GRAS_SU_CNTL);
UPDATE_REG(rb_depth_cntl, RB_DEPTH_CNTL);
UPDATE_REG(rb_stencil_cntl, RB_STENCIL_CNTL);
UPDATE_REG(pc_raster_cntl, RASTERIZER_DISCARD);
UPDATE_REG(vpc_unknown_9107, RASTERIZER_DISCARD);
UPDATE_REG(sp_blend_cntl, BLEND);
UPDATE_REG(rb_blend_cntl, BLEND);
for (unsigned i = 0; i < pipeline->num_rts; i++) {
if ((cmd->state.rb_mrt_control[i] & pipeline->rb_mrt_control_mask) !=
pipeline->rb_mrt_control[i]) {
cmd->state.rb_mrt_control[i] &= ~pipeline->rb_mrt_control_mask;
cmd->state.rb_mrt_control[i] |= pipeline->rb_mrt_control[i];
cmd->state.dirty |= TU_CMD_DIRTY_BLEND;
}
if (cmd->state.rb_mrt_blend_control[i] != pipeline->rb_mrt_blend_control[i]) {
cmd->state.rb_mrt_blend_control[i] = pipeline->rb_mrt_blend_control[i];
cmd->state.dirty |= TU_CMD_DIRTY_BLEND;
}
}
#undef UPDATE_REG
if (cmd->state.pipeline_color_write_enable != pipeline->color_write_enable) {
cmd->state.pipeline_color_write_enable = pipeline->color_write_enable;
cmd->state.dirty |= TU_CMD_DIRTY_BLEND;
}
if (cmd->state.pipeline_blend_enable != pipeline->blend_enable) {
cmd->state.pipeline_blend_enable = pipeline->blend_enable;
cmd->state.dirty |= TU_CMD_DIRTY_BLEND;
}
if (cmd->state.logic_op_enabled != pipeline->logic_op_enabled) {
cmd->state.logic_op_enabled = pipeline->logic_op_enabled;
cmd->state.dirty |= TU_CMD_DIRTY_BLEND;
}
if (!(pipeline->dynamic_state_mask & BIT(TU_DYNAMIC_STATE_LOGIC_OP)) &&
cmd->state.rop_reads_dst != pipeline->rop_reads_dst) {
cmd->state.rop_reads_dst = pipeline->rop_reads_dst;
cmd->state.dirty |= TU_CMD_DIRTY_BLEND;
}
if (cmd->state.dynamic_state[TU_DYNAMIC_STATE_BLEND].size != pipeline->num_rts * 3 + 4) {
cmd->state.dirty |= TU_CMD_DIRTY_BLEND;
}
if (!(pipeline->dynamic_state_mask & BIT(TU_DYNAMIC_STATE_BLEND))) {
cmd->state.dirty &= ~TU_CMD_DIRTY_BLEND;
}
if (pipeline->rb_depth_cntl_disable)
cmd->state.dirty |= TU_CMD_DIRTY_RB_DEPTH_CNTL;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetViewport(VkCommandBuffer commandBuffer,
uint32_t firstViewport,
uint32_t viewportCount,
const VkViewport *pViewports)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
memcpy(&cmd->state.viewport[firstViewport], pViewports, viewportCount * sizeof(*pViewports));
cmd->state.max_viewport = MAX2(cmd->state.max_viewport, firstViewport + viewportCount);
/* With VK_EXT_depth_clip_control we have to take into account
* negativeOneToOne property of the pipeline, so the viewport calculations
* are deferred until it is known.
*/
cmd->state.dirty |= TU_CMD_DIRTY_VIEWPORTS;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetScissor(VkCommandBuffer commandBuffer,
uint32_t firstScissor,
uint32_t scissorCount,
const VkRect2D *pScissors)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs;
memcpy(&cmd->state.scissor[firstScissor], pScissors, scissorCount * sizeof(*pScissors));
cmd->state.max_scissor = MAX2(cmd->state.max_scissor, firstScissor + scissorCount);
cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 1 + 2 * cmd->state.max_scissor);
tu6_emit_scissor(&cs, cmd->state.scissor, cmd->state.max_scissor);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
cmd->state.gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
cmd->state.dirty |= TU_CMD_DIRTY_GRAS_SU_CNTL;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
float depthBiasConstantFactor,
float depthBiasClamp,
float depthBiasSlopeFactor)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
const float blendConstants[4])
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
float minDepthBounds,
float maxDepthBounds)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3);
tu_cs_emit_regs(&cs,
A6XX_RB_Z_BOUNDS_MIN(minDepthBounds),
A6XX_RB_Z_BOUNDS_MAX(maxDepthBounds));
}
void
update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
{
if (face & VK_STENCIL_FACE_FRONT_BIT)
*value = (*value & 0xff00) | (mask & 0xff);
if (face & VK_STENCIL_FACE_BACK_BIT)
*value = (*value & 0xff) | (mask & 0xff) << 8;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t compareMask)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t writeMask)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t reference)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
assert(pSampleLocationsInfo);
tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetCullModeEXT(VkCommandBuffer commandBuffer, VkCullModeFlags cullMode)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.gras_su_cntl &=
~(A6XX_GRAS_SU_CNTL_CULL_FRONT | A6XX_GRAS_SU_CNTL_CULL_BACK);
if (cullMode & VK_CULL_MODE_FRONT_BIT)
cmd->state.gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
if (cullMode & VK_CULL_MODE_BACK_BIT)
cmd->state.gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
cmd->state.dirty |= TU_CMD_DIRTY_GRAS_SU_CNTL;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetFrontFaceEXT(VkCommandBuffer commandBuffer, VkFrontFace frontFace)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_FRONT_CW;
if (frontFace == VK_FRONT_FACE_CLOCKWISE)
cmd->state.gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
cmd->state.dirty |= TU_CMD_DIRTY_GRAS_SU_CNTL;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetPrimitiveTopologyEXT(VkCommandBuffer commandBuffer,
VkPrimitiveTopology primitiveTopology)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.primtype = tu6_primtype(primitiveTopology);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetViewportWithCountEXT(VkCommandBuffer commandBuffer,
uint32_t viewportCount,
const VkViewport* pViewports)
{
tu_CmdSetViewport(commandBuffer, 0, viewportCount, pViewports);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetScissorWithCountEXT(VkCommandBuffer commandBuffer,
uint32_t scissorCount,
const VkRect2D* pScissors)
{
tu_CmdSetScissor(commandBuffer, 0, scissorCount, pScissors);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetDepthTestEnableEXT(VkCommandBuffer commandBuffer,
VkBool32 depthTestEnable)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.rb_depth_cntl &= ~A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
if (depthTestEnable)
cmd->state.rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
cmd->state.dirty |= TU_CMD_DIRTY_RB_DEPTH_CNTL;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetDepthWriteEnableEXT(VkCommandBuffer commandBuffer,
VkBool32 depthWriteEnable)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.rb_depth_cntl &= ~A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
if (depthWriteEnable)
cmd->state.rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
cmd->state.dirty |= TU_CMD_DIRTY_RB_DEPTH_CNTL;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetDepthCompareOpEXT(VkCommandBuffer commandBuffer,
VkCompareOp depthCompareOp)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.rb_depth_cntl &= ~A6XX_RB_DEPTH_CNTL_ZFUNC__MASK;
cmd->state.rb_depth_cntl |=
A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(depthCompareOp));
cmd->state.dirty |= TU_CMD_DIRTY_RB_DEPTH_CNTL;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetDepthBoundsTestEnableEXT(VkCommandBuffer commandBuffer,
VkBool32 depthBoundsTestEnable)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.rb_depth_cntl &= ~A6XX_RB_DEPTH_CNTL_Z_BOUNDS_ENABLE;
if (depthBoundsTestEnable)
cmd->state.rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_BOUNDS_ENABLE;
cmd->state.dirty |= TU_CMD_DIRTY_RB_DEPTH_CNTL;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetStencilTestEnableEXT(VkCommandBuffer commandBuffer,
VkBool32 stencilTestEnable)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.rb_stencil_cntl &= ~(
A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
A6XX_RB_STENCIL_CONTROL_STENCIL_READ);
if (stencilTestEnable) {
cmd->state.rb_stencil_cntl |=
A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
A6XX_RB_STENCIL_CONTROL_STENCIL_READ;
}
cmd->state.dirty |= TU_CMD_DIRTY_RB_STENCIL_CNTL;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetStencilOpEXT(VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
VkStencilOp failOp,
VkStencilOp passOp,
VkStencilOp depthFailOp,
VkCompareOp compareOp)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
if (faceMask & VK_STENCIL_FACE_FRONT_BIT) {
cmd->state.rb_stencil_cntl &= ~(
A6XX_RB_STENCIL_CONTROL_FUNC__MASK |
A6XX_RB_STENCIL_CONTROL_FAIL__MASK |
A6XX_RB_STENCIL_CONTROL_ZPASS__MASK |
A6XX_RB_STENCIL_CONTROL_ZFAIL__MASK);
cmd->state.rb_stencil_cntl |=
A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(compareOp)) |
A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(failOp)) |
A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(passOp)) |
A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(depthFailOp));
}
if (faceMask & VK_STENCIL_FACE_BACK_BIT) {
cmd->state.rb_stencil_cntl &= ~(
A6XX_RB_STENCIL_CONTROL_FUNC_BF__MASK |
A6XX_RB_STENCIL_CONTROL_FAIL_BF__MASK |
A6XX_RB_STENCIL_CONTROL_ZPASS_BF__MASK |
A6XX_RB_STENCIL_CONTROL_ZFAIL_BF__MASK);
cmd->state.rb_stencil_cntl |=
A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(compareOp)) |
A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(failOp)) |
A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(passOp)) |
A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(depthFailOp));
}
cmd->state.dirty |= TU_CMD_DIRTY_RB_STENCIL_CNTL;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetDepthBiasEnableEXT(VkCommandBuffer commandBuffer,
VkBool32 depthBiasEnable)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_POLY_OFFSET;
if (depthBiasEnable)
cmd->state.gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
cmd->state.dirty |= TU_CMD_DIRTY_GRAS_SU_CNTL;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetPrimitiveRestartEnableEXT(VkCommandBuffer commandBuffer,
VkBool32 primitiveRestartEnable)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.primitive_restart_enable = primitiveRestartEnable;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetRasterizerDiscardEnableEXT(VkCommandBuffer commandBuffer,
VkBool32 rasterizerDiscardEnable)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.pc_raster_cntl &= ~A6XX_PC_RASTER_CNTL_DISCARD;
cmd->state.vpc_unknown_9107 &= ~A6XX_VPC_UNKNOWN_9107_RASTER_DISCARD;
if (rasterizerDiscardEnable) {
cmd->state.pc_raster_cntl |= A6XX_PC_RASTER_CNTL_DISCARD;
cmd->state.vpc_unknown_9107 |= A6XX_VPC_UNKNOWN_9107_RASTER_DISCARD;
}
cmd->state.dirty |= TU_CMD_DIRTY_RASTERIZER_DISCARD;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetLogicOpEXT(VkCommandBuffer commandBuffer,
VkLogicOp logicOp)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.rb_mrt_control_rop =
tu6_rb_mrt_control_rop(logicOp, &cmd->state.rop_reads_dst);
cmd->state.dirty |= TU_CMD_DIRTY_BLEND;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetPatchControlPointsEXT(VkCommandBuffer commandBuffer,
uint32_t patchControlPoints)
{
tu_stub();
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetLineStippleEXT(VkCommandBuffer commandBuffer,
uint32_t lineStippleFactor,
uint16_t lineStipplePattern)
{
tu_stub();
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetColorWriteEnableEXT(VkCommandBuffer commandBuffer, uint32_t attachmentCount,
const VkBool32 *pColorWriteEnables)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
uint32_t color_write_enable = 0;
for (unsigned i = 0; i < attachmentCount; i++) {
if (pColorWriteEnables[i])
color_write_enable |= BIT(i);
}
cmd->state.color_write_enable = color_write_enable;
cmd->state.dirty |= TU_CMD_DIRTY_BLEND;
}
static void
tu_flush_for_access(struct tu_cache_state *cache,
enum tu_cmd_access_mask src_mask,
enum tu_cmd_access_mask dst_mask)
{
enum tu_cmd_flush_bits flush_bits = 0;
if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
}
if (src_mask & TU_ACCESS_CP_WRITE) {
/* Flush the CP write queue.
*/
cache->pending_flush_bits |=
TU_CMD_FLAG_WAIT_MEM_WRITES |
TU_CMD_FLAG_ALL_INVALIDATE;
}
#define SRC_FLUSH(domain, flush, invalidate) \
if (src_mask & TU_ACCESS_##domain##_WRITE) { \
cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
(TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
}
SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
#undef SRC_FLUSH
#define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
flush_bits |= TU_CMD_FLAG_##flush; \
cache->pending_flush_bits |= \
(TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
}
SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
#undef SRC_INCOHERENT_FLUSH
/* Treat host & sysmem write accesses the same, since the kernel implicitly
* drains the queue before signalling completion to the host.
*/
if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
}
#define DST_FLUSH(domain, flush, invalidate) \
if (dst_mask & (TU_ACCESS_##domain##_READ | \
TU_ACCESS_##domain##_WRITE)) { \
flush_bits |= cache->pending_flush_bits & \
(TU_CMD_FLAG_##invalidate | \
(TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
}
DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
#undef DST_FLUSH
#define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
if (dst_mask & (TU_ACCESS_##domain##_INCOHERENT_READ | \
TU_ACCESS_##domain##_INCOHERENT_WRITE)) { \
flush_bits |= TU_CMD_FLAG_##invalidate | \
(cache->pending_flush_bits & \
(TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
}
DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
#undef DST_INCOHERENT_FLUSH
cache->flush_bits |= flush_bits;
cache->pending_flush_bits &= ~flush_bits;
}
/* When translating Vulkan access flags to which cache is accessed
* (CCU/UCHE/sysmem), we should take into account both the access flags and
* the stage so that accesses with MEMORY_READ_BIT/MEMORY_WRITE_BIT + a
* specific stage return something sensible. The specification for
* VK_KHR_synchronization2 says that we should do this:
*
* Additionally, scoping the pipeline stages into the barrier structs
* allows the use of the MEMORY_READ and MEMORY_WRITE flags without
* sacrificing precision. The per-stage access flags should be used to
* disambiguate specific accesses in a given stage or set of stages - for
* instance, between uniform reads and sampling operations.
*
* Note that while in all known cases the stage is actually enough, we should
* still narrow things down based on the access flags to handle "old-style"
* barriers that may specify a wider range of stages but more precise access
* flags. These helpers allow us to do both.
*/
static bool
filter_read_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
{
return (flags & (tu_flags | VK_ACCESS_2_MEMORY_READ_BIT)) &&
(stages & (tu_stages | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT));
}
static bool
filter_write_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
{
return (flags & (tu_flags | VK_ACCESS_2_MEMORY_WRITE_BIT)) &&
(stages & (tu_stages | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT));
}
static bool
gfx_read_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
{
return filter_read_access(flags, stages, tu_flags,
tu_stages | VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT);
}
static bool
gfx_write_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
{
return filter_write_access(flags, stages, tu_flags,
tu_stages | VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT);
}
static enum tu_cmd_access_mask
vk2tu_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages, bool image_only, bool gmem)
{
enum tu_cmd_access_mask mask = 0;
if (gfx_read_access(flags, stages,
VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT |
VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT |
VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT |
VK_ACCESS_2_HOST_READ_BIT,
VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT |
VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT |
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
VK_PIPELINE_STAGE_2_HOST_BIT))
mask |= TU_ACCESS_SYSMEM_READ;
if (gfx_write_access(flags, stages,
VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT,
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT))
mask |= TU_ACCESS_CP_WRITE;
if (gfx_write_access(flags, stages,
VK_ACCESS_2_HOST_WRITE_BIT,
VK_PIPELINE_STAGE_2_HOST_BIT))
mask |= TU_ACCESS_SYSMEM_WRITE;
#define SHADER_STAGES \
(VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT | \
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT | \
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT | \
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT | \
VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT | \
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT | \
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT)
if (gfx_read_access(flags, stages,
VK_ACCESS_2_INDEX_READ_BIT |
VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT |
VK_ACCESS_2_UNIFORM_READ_BIT |
VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT |
VK_ACCESS_2_SHADER_READ_BIT,
VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT |
VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT |
VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT |
SHADER_STAGES))
mask |= TU_ACCESS_UCHE_READ;
if (gfx_write_access(flags, stages,
VK_ACCESS_2_SHADER_WRITE_BIT |
VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT,
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
SHADER_STAGES))
mask |= TU_ACCESS_UCHE_WRITE;
/* When using GMEM, the CCU is always flushed automatically to GMEM, and
* then GMEM is flushed to sysmem. Furthermore, we already had to flush any
* previous writes in sysmem mode when transitioning to GMEM. Therefore we
* can ignore CCU and pretend that color attachments and transfers use
* sysmem directly.
*/
if (gfx_read_access(flags, stages,
VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_2_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT,
VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT)) {
if (gmem)
mask |= TU_ACCESS_SYSMEM_READ;
else
mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
}
if (gfx_read_access(flags, stages,
VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT,
VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT)) {
if (gmem)
mask |= TU_ACCESS_SYSMEM_READ;
else
mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
}
if (gfx_write_access(flags, stages,
VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT,
VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT)) {
if (gmem) {
mask |= TU_ACCESS_SYSMEM_WRITE;
} else {
mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
}
}
if (gfx_write_access(flags, stages,
VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT)) {
if (gmem) {
mask |= TU_ACCESS_SYSMEM_WRITE;
} else {
mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
}
}
if (filter_write_access(flags, stages,
VK_ACCESS_2_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_2_COPY_BIT |
VK_PIPELINE_STAGE_2_BLIT_BIT |
VK_PIPELINE_STAGE_2_CLEAR_BIT |
VK_PIPELINE_STAGE_2_RESOLVE_BIT |
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT)) {
if (gmem) {
mask |= TU_ACCESS_SYSMEM_WRITE;
} else if (image_only) {
/* Because we always split up blits/copies of images involving
* multiple layers, we always access each layer in the same way, with
* the same base address, same format, etc. This means we can avoid
* flushing between multiple writes to the same image. This elides
* flushes between e.g. multiple blits to the same image.
*/
mask |= TU_ACCESS_CCU_COLOR_WRITE;
} else {
mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
}
}
if (filter_read_access(flags, stages,
VK_ACCESS_2_TRANSFER_READ_BIT,
VK_PIPELINE_STAGE_2_COPY_BIT |
VK_PIPELINE_STAGE_2_BLIT_BIT |
VK_PIPELINE_STAGE_2_RESOLVE_BIT |
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT)) {
mask |= TU_ACCESS_UCHE_READ;
}
return mask;
}
/* These helpers deal with legacy BOTTOM_OF_PIPE/TOP_OF_PIPE stages.
*/
static VkPipelineStageFlags2
sanitize_src_stage(VkPipelineStageFlags2 stage_mask)
{
/* From the Vulkan spec:
*
* VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT is ... equivalent to
* VK_PIPELINE_STAGE_2_NONE in the first scope.
*
* VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT is equivalent to
* VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT with VkAccessFlags2 set to 0
* when specified in the first synchronization scope, ...
*/
if (stage_mask & VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT)
return VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
return stage_mask & ~VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT;
}
static VkPipelineStageFlags2
sanitize_dst_stage(VkPipelineStageFlags2 stage_mask)
{
/* From the Vulkan spec:
*
* VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT is equivalent to
* VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT with VkAccessFlags2 set to 0
* when specified in the second synchronization scope, ...
*
* VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT is ... equivalent to
* VK_PIPELINE_STAGE_2_NONE in the second scope.
*
*/
if (stage_mask & VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT)
return VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
return stage_mask & ~VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT;
}
static enum tu_stage
vk2tu_single_stage(VkPipelineStageFlags2 vk_stage, bool dst)
{
if (vk_stage == VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT)
return TU_STAGE_CP;
if (vk_stage == VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT)
return TU_STAGE_FE;
if (vk_stage == VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT)
return TU_STAGE_SP_VS;
if (vk_stage == VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT)
return TU_STAGE_SP_PS;
if (vk_stage == VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT || /* Yes, really */
/* See comment in TU_STAGE_GRAS about early fragment tests */
vk_stage == VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT)
return TU_STAGE_PS;
if (vk_stage == VK_PIPELINE_STAGE_2_COPY_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_BLIT_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_RESOLVE_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_CLEAR_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT)
/* Blits read in SP_PS and write in PS, in both 2d and 3d cases */
return dst ? TU_STAGE_SP_PS : TU_STAGE_PS;
if (vk_stage == VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)
/* Be conservative */
return dst ? TU_STAGE_CP : TU_STAGE_PS;
if (vk_stage == VK_PIPELINE_STAGE_2_HOST_BIT)
return dst ? TU_STAGE_PS : TU_STAGE_CP;
unreachable("unknown pipeline stage");
}
static enum tu_stage
vk2tu_src_stage(VkPipelineStageFlags vk_stages)
{
enum tu_stage stage = TU_STAGE_CP;
u_foreach_bit (bit, vk_stages) {
enum tu_stage new_stage = vk2tu_single_stage(1ull << bit, false);
stage = MAX2(stage, new_stage);
}
return stage;
}
static enum tu_stage
vk2tu_dst_stage(VkPipelineStageFlags vk_stages)
{
enum tu_stage stage = TU_STAGE_PS;
u_foreach_bit (bit, vk_stages) {
enum tu_stage new_stage = vk2tu_single_stage(1ull << bit, true);
stage = MIN2(stage, new_stage);
}
return stage;
}
static void
tu_flush_for_stage(struct tu_cache_state *cache,
enum tu_stage src_stage, enum tu_stage dst_stage)
{
/* As far as we know, flushes take place in the last stage so if there are
* any pending flushes then we have to move down the source stage, because
* the data only becomes available when the flush finishes. In particular
* this can matter when the CP writes something and we need to invalidate
* UCHE to read it.
*/
if (cache->flush_bits & (TU_CMD_FLAG_ALL_FLUSH | TU_CMD_FLAG_ALL_INVALIDATE))
src_stage = TU_STAGE_PS;
/* Note: if the destination stage is the CP, then the CP also has to wait
* for any WFI's to finish. This is already done for draw calls, including
* before indirect param reads, for the most part, so we just need to WFI.
*
* However, some indirect draw opcodes, depending on firmware, don't have
* implicit CP_WAIT_FOR_ME so we have to handle it manually.
*
* Transform feedback counters are read via CP_MEM_TO_REG, which implicitly
* does CP_WAIT_FOR_ME, but we still need a WFI if the GPU writes it.
*
* Currently we read the draw predicate using CP_MEM_TO_MEM, which
* also implicitly does CP_WAIT_FOR_ME. However CP_DRAW_PRED_SET does *not*
* implicitly do CP_WAIT_FOR_ME, it seems to only wait for counters to
* complete since it's written for DX11 where you can only predicate on the
* result of a query object. So if we implement 64-bit comparisons in the
* future, or if CP_DRAW_PRED_SET grows the capability to do 32-bit
* comparisons, then this will have to be dealt with.
*/
if (src_stage > dst_stage) {
cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
if (dst_stage == TU_STAGE_CP)
cache->pending_flush_bits |= TU_CMD_FLAG_WAIT_FOR_ME;
}
}
static void
tu_render_pass_state_merge(struct tu_render_pass_state *dst,
const struct tu_render_pass_state *src)
{
dst->xfb_used |= src->xfb_used;
dst->has_tess |= src->has_tess;
dst->has_prim_generated_query_in_rp |= src->has_prim_generated_query_in_rp;
dst->disable_gmem |= src->disable_gmem;
dst->draw_cs_writes_to_cond_pred |= src->draw_cs_writes_to_cond_pred;
dst->drawcall_count += src->drawcall_count;
dst->drawcall_bandwidth_per_sample_sum +=
src->drawcall_bandwidth_per_sample_sum;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
uint32_t commandBufferCount,
const VkCommandBuffer *pCmdBuffers)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
VkResult result;
assert(commandBufferCount > 0);
/* Emit any pending flushes. */
if (cmd->state.pass) {
tu_flush_all_pending(&cmd->state.renderpass_cache);
tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
} else {
tu_flush_all_pending(&cmd->state.cache);
tu_emit_cache_flush(cmd, &cmd->cs);
}
for (uint32_t i = 0; i < commandBufferCount; i++) {
TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
if (secondary->usage_flags &
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
assert(tu_cs_is_empty(&secondary->cs));
result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
if (result != VK_SUCCESS) {
cmd->record_result = result;
break;
}
result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
&secondary->draw_epilogue_cs);
if (result != VK_SUCCESS) {
cmd->record_result = result;
break;
}
/* If LRZ was made invalid in secondary - we should disable
* LRZ retroactively for the whole renderpass.
*/
if (!secondary->state.lrz.valid)
cmd->state.lrz.valid = false;
tu_render_pass_state_merge(&cmd->state.rp, &secondary->state.rp);
} else {
assert(tu_cs_is_empty(&secondary->draw_cs));
assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
tu_cs_add_entries(&cmd->cs, &secondary->cs);
}
cmd->state.index_size = secondary->state.index_size; /* for restart index update */
}
cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
if (!cmd->state.lrz.gpu_dir_tracking && cmd->state.pass) {
/* After a secondary command buffer is executed, LRZ is not valid
* until it is cleared again.
*/
cmd->state.lrz.valid = false;
}
/* After executing secondary command buffers, there may have been arbitrary
* flushes executed, so when we encounter a pipeline barrier with a
* srcMask, we have to assume that we need to invalidate. Therefore we need
* to re-initialize the cache with all pending invalidate bits set.
*/
if (cmd->state.pass) {
tu_cache_init(&cmd->state.renderpass_cache);
} else {
tu_cache_init(&cmd->state.cache);
}
}
VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateCommandPool(VkDevice _device,
const VkCommandPoolCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkCommandPool *pCmdPool)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_cmd_pool *pool;
pool = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*pool), 8,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (pool == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
VkResult result = vk_command_pool_init(&pool->vk, &device->vk,
pCreateInfo, pAllocator);
if (result != VK_SUCCESS) {
vk_free2(&device->vk.alloc, pAllocator, pool);
return result;
}
list_inithead(&pool->cmd_buffers);
list_inithead(&pool->free_cmd_buffers);
*pCmdPool = tu_cmd_pool_to_handle(pool);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
tu_DestroyCommandPool(VkDevice _device,
VkCommandPool commandPool,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
if (!pool)
return;
list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
&pool->cmd_buffers, pool_link)
{
tu_cmd_buffer_destroy(cmd_buffer);
}
list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
&pool->free_cmd_buffers, pool_link)
{
tu_cmd_buffer_destroy(cmd_buffer);
}
vk_command_pool_finish(&pool->vk);
vk_free2(&device->vk.alloc, pAllocator, pool);
}
VKAPI_ATTR VkResult VKAPI_CALL
tu_ResetCommandPool(VkDevice device,
VkCommandPool commandPool,
VkCommandPoolResetFlags flags)
{
TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
VkResult result;
list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
pool_link)
{
result = tu_reset_cmd_buffer(cmd_buffer);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
tu_TrimCommandPool(VkDevice device,
VkCommandPool commandPool,
VkCommandPoolTrimFlags flags)
{
TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
if (!pool)
return;
list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
&pool->free_cmd_buffers, pool_link)
{
tu_cmd_buffer_destroy(cmd_buffer);
}
}
static void
tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
const struct tu_subpass_barrier *barrier,
bool external)
{
/* Note: we don't know until the end of the subpass whether we'll use
* sysmem, so assume sysmem here to be safe.
*/
struct tu_cache_state *cache =
external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
VkPipelineStageFlags2 src_stage_vk =
sanitize_src_stage(barrier->src_stage_mask);
VkPipelineStageFlags2 dst_stage_vk =
sanitize_dst_stage(barrier->dst_stage_mask);
enum tu_cmd_access_mask src_flags =
vk2tu_access(barrier->src_access_mask, src_stage_vk, false, false);
enum tu_cmd_access_mask dst_flags =
vk2tu_access(barrier->dst_access_mask, dst_stage_vk, false, false);
if (barrier->incoherent_ccu_color)
src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
if (barrier->incoherent_ccu_depth)
src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
tu_flush_for_access(cache, src_flags, dst_flags);
enum tu_stage src_stage = vk2tu_src_stage(src_stage_vk);
enum tu_stage dst_stage = vk2tu_dst_stage(dst_stage_vk);
tu_flush_for_stage(cache, src_stage, dst_stage);
}
/* emit mrt/zs/msaa/ubwc state for the subpass that is starting (either at
* vkCmdBeginRenderPass2() or vkCmdNextSubpass2())
*/
static void
tu_emit_subpass_begin(struct tu_cmd_buffer *cmd)
{
tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
if (cmd->state.subpass->samples)
tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples, cmd->state.line_mode);
tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
tu_set_input_attachments(cmd, cmd->state.subpass);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
const struct VkRenderPassAttachmentBeginInfo *pAttachmentInfo =
vk_find_struct_const(pRenderPassBegin->pNext,
RENDER_PASS_ATTACHMENT_BEGIN_INFO);
cmd->state.pass = pass;
cmd->state.subpass = pass->subpasses;
cmd->state.framebuffer = fb;
cmd->state.render_area = pRenderPassBegin->renderArea;
cmd->state.attachments =
vk_alloc(&cmd->pool->vk.alloc, pass->attachment_count *
sizeof(cmd->state.attachments[0]), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!cmd->state.attachments) {
cmd->record_result = VK_ERROR_OUT_OF_HOST_MEMORY;
return;
}
for (unsigned i = 0; i < pass->attachment_count; i++) {
cmd->state.attachments[i] = pAttachmentInfo ?
tu_image_view_from_handle(pAttachmentInfo->pAttachments[i]) :
cmd->state.framebuffer->attachments[i].attachment;
}
trace_start_render_pass(&cmd->trace, &cmd->cs);
/* Note: because this is external, any flushes will happen before draw_cs
* gets called. However deferred flushes could have to happen later as part
* of the subpass.
*/
tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
cmd->state.renderpass_cache.pending_flush_bits =
cmd->state.cache.pending_flush_bits;
cmd->state.renderpass_cache.flush_bits = 0;
if (pass->subpasses[0].feedback_invalidate)
cmd->state.renderpass_cache.flush_bits |= TU_CMD_FLAG_CACHE_INVALIDATE;
tu_lrz_begin_renderpass(cmd, pRenderPassBegin->pClearValues);
cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
tu_emit_renderpass_begin(cmd, pRenderPassBegin->pClearValues);
tu_emit_subpass_begin(cmd);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginRendering(VkCommandBuffer commandBuffer,
const VkRenderingInfo *pRenderingInfo)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
VkClearValue clear_values[2 * (MAX_RTS + 1)];
tu_setup_dynamic_render_pass(cmd, pRenderingInfo);
tu_setup_dynamic_framebuffer(cmd, pRenderingInfo);
cmd->state.pass = &cmd->dynamic_pass;
cmd->state.subpass = &cmd->dynamic_subpass;
cmd->state.framebuffer = &cmd->dynamic_framebuffer;
cmd->state.render_area = pRenderingInfo->renderArea;
cmd->state.attachments = cmd->dynamic_attachments;
for (unsigned i = 0; i < pRenderingInfo->colorAttachmentCount; i++) {
uint32_t a = cmd->dynamic_subpass.color_attachments[i].attachment;
if (!pRenderingInfo->pColorAttachments[i].imageView)
continue;
TU_FROM_HANDLE(tu_image_view, view,
pRenderingInfo->pColorAttachments[i].imageView);
cmd->state.attachments[a] = view;
clear_values[a] = pRenderingInfo->pColorAttachments[i].clearValue;
a = cmd->dynamic_subpass.resolve_attachments[i].attachment;
if (a != VK_ATTACHMENT_UNUSED) {
TU_FROM_HANDLE(tu_image_view, resolve_view,
pRenderingInfo->pColorAttachments[i].resolveImageView);
cmd->state.attachments[a] = resolve_view;
}
}
uint32_t a = cmd->dynamic_subpass.depth_stencil_attachment.attachment;
if (pRenderingInfo->pDepthAttachment || pRenderingInfo->pStencilAttachment) {
const struct VkRenderingAttachmentInfo *common_info =
(pRenderingInfo->pDepthAttachment &&
pRenderingInfo->pDepthAttachment->imageView != VK_NULL_HANDLE) ?
pRenderingInfo->pDepthAttachment :
pRenderingInfo->pStencilAttachment;
if (common_info && common_info->imageView != VK_NULL_HANDLE) {
TU_FROM_HANDLE(tu_image_view, view, common_info->imageView);
cmd->state.attachments[a] = view;
if (pRenderingInfo->pDepthAttachment) {
clear_values[a].depthStencil.depth =
pRenderingInfo->pDepthAttachment->clearValue.depthStencil.depth;
}
if (pRenderingInfo->pStencilAttachment) {
clear_values[a].depthStencil.stencil =
pRenderingInfo->pStencilAttachment->clearValue.depthStencil.stencil;
}
if (cmd->dynamic_subpass.resolve_count >
cmd->dynamic_subpass.color_count) {
TU_FROM_HANDLE(tu_image_view, resolve_view,
common_info->resolveImageView);
a = cmd->dynamic_subpass.resolve_attachments[cmd->dynamic_subpass.color_count].attachment;
cmd->state.attachments[a] = resolve_view;
}
}
}
cmd->state.renderpass_cache.pending_flush_bits =
cmd->state.cache.pending_flush_bits;
cmd->state.renderpass_cache.flush_bits = 0;
trace_start_render_pass(&cmd->trace, &cmd->cs);
cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
tu_emit_renderpass_begin(cmd, clear_values);
tu_emit_subpass_begin(cmd);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
const struct tu_render_pass *pass = cmd->state.pass;
struct tu_cs *cs = &cmd->draw_cs;
const struct tu_subpass *last_subpass = cmd->state.subpass;
const struct tu_subpass *subpass = cmd->state.subpass++;
/* Track LRZ valid state
*
* TODO: Improve this tracking for keeping the state of the past depth/stencil images,
* so if they become active again, we reuse its old state.
*/
if (last_subpass->depth_stencil_attachment.attachment != subpass->depth_stencil_attachment.attachment) {
cmd->state.lrz.valid = false;
cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
}
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
if (subpass->resolve_attachments) {
tu6_emit_blit_scissor(cmd, cs, true);
for (unsigned i = 0; i < subpass->resolve_count; i++) {
uint32_t a = subpass->resolve_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
tu_store_gmem_attachment(cmd, cs, a, gmem_a, false);
if (pass->attachments[a].gmem_offset < 0)
continue;
/* check if the resolved attachment is needed by later subpasses,
* if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
*/
perf_debug(cmd->device, "TODO: missing GMEM->GMEM resolve path\n");
tu_load_gmem_attachment(cmd, cs, a, false, true);
}
}
tu_cond_exec_end(cs);
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
tu6_emit_sysmem_resolves(cmd, cs, subpass);
tu_cond_exec_end(cs);
/* Handle dependencies for the next subpass */
tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
if (cmd->state.subpass->feedback_invalidate)
cmd->state.renderpass_cache.flush_bits |= TU_CMD_FLAG_CACHE_INVALIDATE;
tu_emit_subpass_begin(cmd);
}
static uint32_t
tu6_user_consts_size(const struct tu_pipeline *pipeline,
gl_shader_stage type)
{
const struct tu_program_descriptor_linkage *link =
&pipeline->program.link[type];
uint32_t dwords = 0;
if (link->push_consts.dwords > 0) {
unsigned num_units = link->push_consts.dwords;
dwords += 4 + num_units;
}
return dwords;
}
static void
tu6_emit_user_consts(struct tu_cs *cs,
const struct tu_pipeline *pipeline,
gl_shader_stage type,
uint32_t *push_constants)
{
const struct tu_program_descriptor_linkage *link =
&pipeline->program.link[type];
if (link->push_consts.dwords > 0) {
unsigned num_units = link->push_consts.dwords;
unsigned offset = link->push_consts.lo;
/* DST_OFF and NUM_UNIT requires vec4 units */
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset / 4) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT(num_units / 4));
tu_cs_emit(cs, 0);
tu_cs_emit(cs, 0);
for (unsigned i = 0; i < num_units; i++)
tu_cs_emit(cs, push_constants[i + offset]);
}
}
static void
tu6_emit_shared_consts(struct tu_cs *cs,
const struct tu_pipeline *pipeline,
uint32_t *push_constants,
bool compute)
{
if (pipeline->shared_consts.dwords > 0) {
/* Offset and num_units for shared consts are in units of dwords. */
unsigned num_units = pipeline->shared_consts.dwords;
unsigned offset = pipeline->shared_consts.lo;
enum a6xx_state_type st = compute ? ST6_UBO : ST6_CONSTANTS;
uint32_t cp_load_state = compute ? CP_LOAD_STATE6_FRAG : CP_LOAD_STATE6;
tu_cs_emit_pkt7(cs, cp_load_state, 3 + num_units);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
CP_LOAD_STATE6_0_STATE_TYPE(st) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_IBO) |
CP_LOAD_STATE6_0_NUM_UNIT(num_units));
tu_cs_emit(cs, 0);
tu_cs_emit(cs, 0);
for (unsigned i = 0; i < num_units; i++)
tu_cs_emit(cs, push_constants[i + offset]);
}
}
static uint32_t
tu6_const_size(struct tu_cmd_buffer *cmd,
const struct tu_pipeline *pipeline,
bool compute)
{
uint32_t dwords = 0;
if (pipeline->shared_consts.dwords > 0) {
dwords = pipeline->shared_consts.dwords + 4;
} else {
if (compute) {
dwords = tu6_user_consts_size(pipeline, MESA_SHADER_COMPUTE);
} else {
for (uint32_t type = MESA_SHADER_VERTEX; type <= MESA_SHADER_FRAGMENT; type++)
dwords += tu6_user_consts_size(pipeline, type);
}
}
return dwords;
}
static struct tu_draw_state
tu6_emit_consts(struct tu_cmd_buffer *cmd,
const struct tu_pipeline *pipeline,
bool compute)
{
uint32_t dwords = 0;
dwords = tu6_const_size(cmd, pipeline, compute);
if (dwords == 0)
return (struct tu_draw_state) {};
struct tu_cs cs;
tu_cs_begin_sub_stream(&cmd->sub_cs, dwords, &cs);
if (pipeline->shared_consts.dwords > 0) {
tu6_emit_shared_consts(&cs, pipeline, cmd->push_constants, compute);
} else {
if (compute) {
tu6_emit_user_consts(&cs, pipeline, MESA_SHADER_COMPUTE, cmd->push_constants);
} else {
for (uint32_t type = MESA_SHADER_VERTEX; type <= MESA_SHADER_FRAGMENT; type++)
tu6_emit_user_consts(&cs, pipeline, type, cmd->push_constants);
}
}
return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
}
static bool
tu6_writes_depth(struct tu_cmd_buffer *cmd, bool depth_test_enable)
{
bool depth_write_enable =
cmd->state.rb_depth_cntl & A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
VkCompareOp depth_compare_op =
(cmd->state.rb_depth_cntl & A6XX_RB_DEPTH_CNTL_ZFUNC__MASK) >> A6XX_RB_DEPTH_CNTL_ZFUNC__SHIFT;
bool depth_compare_op_writes = depth_compare_op != VK_COMPARE_OP_NEVER;
return depth_test_enable && depth_write_enable && depth_compare_op_writes;
}
static bool
tu6_writes_stencil(struct tu_cmd_buffer *cmd)
{
bool stencil_test_enable =
cmd->state.rb_stencil_cntl & A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE;
bool stencil_front_writemask =
(cmd->state.pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) ?
(cmd->state.dynamic_stencil_wrmask & 0xff) :
(cmd->state.pipeline->stencil_wrmask & 0xff);
bool stencil_back_writemask =
(cmd->state.pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) ?
((cmd->state.dynamic_stencil_wrmask & 0xff00) >> 8) :
(cmd->state.pipeline->stencil_wrmask & 0xff00) >> 8;
VkStencilOp front_fail_op =
(cmd->state.rb_stencil_cntl & A6XX_RB_STENCIL_CONTROL_FAIL__MASK) >> A6XX_RB_STENCIL_CONTROL_FAIL__SHIFT;
VkStencilOp front_pass_op =
(cmd->state.rb_stencil_cntl & A6XX_RB_STENCIL_CONTROL_ZPASS__MASK) >> A6XX_RB_STENCIL_CONTROL_ZPASS__SHIFT;
VkStencilOp front_depth_fail_op =
(cmd->state.rb_stencil_cntl & A6XX_RB_STENCIL_CONTROL_ZFAIL__MASK) >> A6XX_RB_STENCIL_CONTROL_ZFAIL__SHIFT;
VkStencilOp back_fail_op =
(cmd->state.rb_stencil_cntl & A6XX_RB_STENCIL_CONTROL_FAIL_BF__MASK) >> A6XX_RB_STENCIL_CONTROL_FAIL_BF__SHIFT;
VkStencilOp back_pass_op =
(cmd->state.rb_stencil_cntl & A6XX_RB_STENCIL_CONTROL_ZPASS_BF__MASK) >> A6XX_RB_STENCIL_CONTROL_ZPASS_BF__SHIFT;
VkStencilOp back_depth_fail_op =
(cmd->state.rb_stencil_cntl & A6XX_RB_STENCIL_CONTROL_ZFAIL_BF__MASK) >> A6XX_RB_STENCIL_CONTROL_ZFAIL_BF__SHIFT;
bool stencil_front_op_writes =
front_pass_op != VK_STENCIL_OP_KEEP &&
front_fail_op != VK_STENCIL_OP_KEEP &&
front_depth_fail_op != VK_STENCIL_OP_KEEP;
bool stencil_back_op_writes =
back_pass_op != VK_STENCIL_OP_KEEP &&
back_fail_op != VK_STENCIL_OP_KEEP &&
back_depth_fail_op != VK_STENCIL_OP_KEEP;
return stencil_test_enable &&
((stencil_front_writemask && stencil_front_op_writes) ||
(stencil_back_writemask && stencil_back_op_writes));
}
static void
tu6_build_depth_plane_z_mode(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
enum a6xx_ztest_mode zmode = A6XX_EARLY_Z;
bool depth_test_enable = cmd->state.rb_depth_cntl & A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
bool depth_write = tu6_writes_depth(cmd, depth_test_enable);
bool stencil_write = tu6_writes_stencil(cmd);
if ((cmd->state.pipeline->lrz.fs_has_kill ||
cmd->state.pipeline->subpass_feedback_loop_ds) &&
(depth_write || stencil_write)) {
zmode = (cmd->state.lrz.valid && cmd->state.lrz.enabled)
? A6XX_EARLY_LRZ_LATE_Z
: A6XX_LATE_Z;
}
if (cmd->state.pipeline->lrz.force_late_z || !depth_test_enable)
zmode = A6XX_LATE_Z;
/* User defined early tests take precedence above all else */
if (cmd->state.pipeline->lrz.early_fragment_tests)
zmode = A6XX_EARLY_Z;
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
tu_cs_emit(cs, A6XX_GRAS_SU_DEPTH_PLANE_CNTL_Z_MODE(zmode));
tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
tu_cs_emit(cs, A6XX_RB_DEPTH_PLANE_CNTL_Z_MODE(zmode));
}
static void
tu6_emit_blend(struct tu_cs *cs, struct tu_cmd_buffer *cmd)
{
struct tu_pipeline *pipeline = cmd->state.pipeline;
uint32_t color_write_enable = cmd->state.pipeline_color_write_enable;
if (pipeline->dynamic_state_mask &
BIT(TU_DYNAMIC_STATE_COLOR_WRITE_ENABLE))
color_write_enable &= cmd->state.color_write_enable;
for (unsigned i = 0; i < pipeline->num_rts; i++) {
tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
if (color_write_enable & BIT(i)) {
tu_cs_emit(cs, cmd->state.rb_mrt_control[i] |
((cmd->state.logic_op_enabled ?
cmd->state.rb_mrt_control_rop : 0) &
~pipeline->rb_mrt_control_mask));
tu_cs_emit(cs, cmd->state.rb_mrt_blend_control[i]);
} else {
tu_cs_emit(cs, 0);
tu_cs_emit(cs, 0);
}
}
uint32_t blend_enable_mask =
(cmd->state.logic_op_enabled && cmd->state.rop_reads_dst) ?
color_write_enable : (cmd->state.pipeline_blend_enable &
cmd->state.color_write_enable);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_BLEND_CNTL, 1);
tu_cs_emit(cs, cmd->state.sp_blend_cntl |
(A6XX_SP_BLEND_CNTL_ENABLE_BLEND(blend_enable_mask) &
~pipeline->sp_blend_cntl_mask));
tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_CNTL, 1);
tu_cs_emit(cs, cmd->state.rb_blend_cntl |
(A6XX_RB_BLEND_CNTL_ENABLE_BLEND(blend_enable_mask) &
~pipeline->rb_blend_cntl_mask));
}
static VkResult
tu6_draw_common(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
bool indexed,
/* note: draw_count is 0 for indirect */
uint32_t draw_count)
{
const struct tu_pipeline *pipeline = cmd->state.pipeline;
/* Fill draw stats for autotuner */
cmd->state.rp.drawcall_count++;
cmd->state.rp.drawcall_bandwidth_per_sample_sum +=
cmd->state.pipeline->color_bandwidth_per_sample;
/* add depth memory bandwidth cost */
const uint32_t depth_bandwidth = cmd->state.pipeline->depth_cpp_per_sample;
if (cmd->state.rb_depth_cntl & A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE)
cmd->state.rp.drawcall_bandwidth_per_sample_sum += depth_bandwidth;
if (cmd->state.rb_depth_cntl & A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE)
cmd->state.rp.drawcall_bandwidth_per_sample_sum += depth_bandwidth;
/* add stencil memory bandwidth cost */
const uint32_t stencil_bandwidth =
cmd->state.pipeline->stencil_cpp_per_sample;
if (cmd->state.rb_stencil_cntl & A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE)
cmd->state.rp.drawcall_bandwidth_per_sample_sum += stencil_bandwidth * 2;
tu_emit_cache_flush_renderpass(cmd, cs);
bool primitive_restart_enabled = pipeline->ia.primitive_restart;
if (pipeline->dynamic_state_mask & BIT(TU_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE))
primitive_restart_enabled = cmd->state.primitive_restart_enable;
tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(
.primitive_restart =
primitive_restart_enabled && indexed,
.provoking_vtx_last = pipeline->provoking_vertex_last,
.tess_upper_left_domain_origin =
pipeline->tess.upper_left_domain_origin));
/* Early exit if there is nothing to emit, saves CPU cycles */
if (!(cmd->state.dirty & ~TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD))
return VK_SUCCESS;
bool dirty_lrz =
cmd->state.dirty & (TU_CMD_DIRTY_LRZ | TU_CMD_DIRTY_RB_DEPTH_CNTL |
TU_CMD_DIRTY_RB_STENCIL_CNTL | TU_CMD_DIRTY_BLEND);
if (dirty_lrz) {
struct tu_cs cs;
uint32_t size = cmd->device->physical_device->info->a6xx.lrz_track_quirk ? 10 : 8;
cmd->state.lrz_and_depth_plane_state =
tu_cs_draw_state(&cmd->sub_cs, &cs, size);
tu6_emit_lrz(cmd, &cs);
tu6_build_depth_plane_z_mode(cmd, &cs);
}
if (cmd->state.dirty & TU_CMD_DIRTY_RASTERIZER_DISCARD) {
struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_RASTERIZER_DISCARD, 4);
tu_cs_emit_regs(&cs, A6XX_PC_RASTER_CNTL(.dword = cmd->state.pc_raster_cntl));
tu_cs_emit_regs(&cs, A6XX_VPC_UNKNOWN_9107(.dword = cmd->state.vpc_unknown_9107));
}
if (cmd->state.dirty & TU_CMD_DIRTY_GRAS_SU_CNTL) {
struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_GRAS_SU_CNTL, 2);
tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.gras_su_cntl));
}
if (cmd->state.dirty & TU_CMD_DIRTY_RB_DEPTH_CNTL) {
struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_RB_DEPTH_CNTL, 2);
uint32_t rb_depth_cntl = cmd->state.rb_depth_cntl;
if ((rb_depth_cntl & A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE) ||
(rb_depth_cntl & A6XX_RB_DEPTH_CNTL_Z_BOUNDS_ENABLE))
rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_READ_ENABLE;
if ((rb_depth_cntl & A6XX_RB_DEPTH_CNTL_Z_BOUNDS_ENABLE) &&
!(rb_depth_cntl & A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE))
tu6_apply_depth_bounds_workaround(cmd->device, &rb_depth_cntl);
if (pipeline->rb_depth_cntl_disable)
rb_depth_cntl = 0;
tu_cs_emit_regs(&cs, A6XX_RB_DEPTH_CNTL(.dword = rb_depth_cntl));
}
if (cmd->state.dirty & TU_CMD_DIRTY_RB_STENCIL_CNTL) {
struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_RB_STENCIL_CNTL, 2);
tu_cs_emit_regs(&cs, A6XX_RB_STENCIL_CONTROL(.dword = cmd->state.rb_stencil_cntl));
}
if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS)
cmd->state.shader_const = tu6_emit_consts(cmd, pipeline, false);
if (cmd->state.dirty & TU_CMD_DIRTY_VIEWPORTS) {
struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 8 + 10 * cmd->state.max_viewport);
tu6_emit_viewport(&cs, cmd->state.viewport, cmd->state.max_viewport,
pipeline->z_negative_one_to_one);
}
if (cmd->state.dirty & TU_CMD_DIRTY_BLEND) {
struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_BLEND,
4 + 3 * cmd->state.pipeline->num_rts);
tu6_emit_blend(&cs, cmd);
}
/* for the first draw in a renderpass, re-emit all the draw states
*
* and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
* used, then draw states must be re-emitted. note however this only happens
* in the sysmem path, so this can be skipped this for the gmem path (TODO)
*
* the two input attachment states are excluded because secondary command
* buffer doesn't have a state ib to restore it, and not re-emitting them
* is OK since CmdClearAttachments won't disable/overwrite them
*/
if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_CONFIG, pipeline->program.config_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_SYSMEM, pipeline->prim_order_state_sysmem);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_GMEM, pipeline->prim_order_state_gmem);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_CONST, cmd->state.shader_const);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_LRZ_AND_DEPTH_PLANE, cmd->state.lrz_and_depth_plane_state);
for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
((pipeline->dynamic_state_mask & BIT(i)) ?
cmd->state.dynamic_state[i] :
pipeline->dynamic_state[i]));
}
} else {
/* emit draw states that were just updated
* note we eventually don't want to have to emit anything here
*/
bool emit_binding_stride = false, emit_blend = false;
uint32_t draw_state_count =
((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 1 : 0) +
((cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD) ? 1 : 0) +
((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
((cmd->state.dirty & TU_CMD_DIRTY_VS_PARAMS) ? 1 : 0) +
(dirty_lrz ? 1 : 0);
if ((cmd->state.dirty & TU_CMD_DIRTY_VB_STRIDE) &&
(pipeline->dynamic_state_mask & BIT(TU_DYNAMIC_STATE_VB_STRIDE))) {
emit_binding_stride = true;
draw_state_count += 1;
}
if ((cmd->state.dirty & TU_CMD_DIRTY_BLEND) &&
(pipeline->dynamic_state_mask & BIT(TU_DYNAMIC_STATE_BLEND))) {
emit_blend = true;
draw_state_count += 1;
}
if (draw_state_count > 0)
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS)
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_CONST, cmd->state.shader_const);
if (cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD)
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
if (emit_binding_stride) {
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + TU_DYNAMIC_STATE_VB_STRIDE,
cmd->state.dynamic_state[TU_DYNAMIC_STATE_VB_STRIDE]);
}
if (emit_blend) {
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + TU_DYNAMIC_STATE_BLEND,
cmd->state.dynamic_state[TU_DYNAMIC_STATE_BLEND]);
}
if (cmd->state.dirty & TU_CMD_DIRTY_VS_PARAMS)
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
if (dirty_lrz) {
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_LRZ_AND_DEPTH_PLANE, cmd->state.lrz_and_depth_plane_state);
}
}
tu_cs_sanity_check(cs);
/* There are too many graphics dirty bits to list here, so just list the
* bits to preserve instead. The only things not emitted here are
* compute-related state.
*/
cmd->state.dirty &= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
return VK_SUCCESS;
}
static uint32_t
tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
{
const struct tu_pipeline *pipeline = cmd->state.pipeline;
enum pc_di_primtype primtype = pipeline->ia.primtype;
if (pipeline->dynamic_state_mask & BIT(TU_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY)) {
if (primtype < DI_PT_PATCHES0) {
/* If tesselation used, only VK_PRIMITIVE_TOPOLOGY_PATCH_LIST can be
* set via vkCmdSetPrimitiveTopology, but primtype is already
* calculated at the pipeline creation based on control points
* for each patch.
*
* Just use the primtype as is for the case.
*/
primtype = cmd->state.primtype;
}
}
uint32_t initiator =
CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(cmd->state.index_size) |
CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
switch (pipeline->tess.patch_type) {
case IR3_TESS_TRIANGLES:
initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
break;
case IR3_TESS_ISOLINES:
initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
break;
case IR3_TESS_NONE:
initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS);
break;
case IR3_TESS_QUADS:
initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
break;
}
return initiator;
}
static uint32_t
vs_params_offset(struct tu_cmd_buffer *cmd)
{
const struct tu_program_descriptor_linkage *link =
&cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
const struct ir3_const_state *const_state = &link->const_state;
if (const_state->offsets.driver_param >= link->constlen)
return 0;
/* this layout is required by CP_DRAW_INDIRECT_MULTI */
STATIC_ASSERT(IR3_DP_DRAWID == 0);
STATIC_ASSERT(IR3_DP_VTXID_BASE == 1);
STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
/* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
assert(const_state->offsets.driver_param != 0);
return const_state->offsets.driver_param;
}
static void
tu6_emit_empty_vs_params(struct tu_cmd_buffer *cmd)
{
if (cmd->state.vs_params.iova) {
cmd->state.vs_params = (struct tu_draw_state) {};
cmd->state.dirty |= TU_CMD_DIRTY_VS_PARAMS;
}
}
static void
tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
uint32_t vertex_offset,
uint32_t first_instance)
{
/* Beside re-emitting params when they are changed, we should re-emit
* them after constants are invalidated via HLSQ_INVALIDATE_CMD.
*/
if (!(cmd->state.dirty & (TU_CMD_DIRTY_DRAW_STATE | TU_CMD_DIRTY_VS_PARAMS)) &&
vertex_offset == cmd->state.last_vs_params.vertex_offset &&
first_instance == cmd->state.last_vs_params.first_instance) {
return;
}
uint32_t offset = vs_params_offset(cmd);
struct tu_cs cs;
VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 8 : 0), &cs);
if (result != VK_SUCCESS) {
cmd->record_result = result;
return;
}
tu_cs_emit_regs(&cs,
A6XX_VFD_INDEX_OFFSET(vertex_offset),
A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
if (offset) {
tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
CP_LOAD_STATE6_0_NUM_UNIT(1));
tu_cs_emit(&cs, 0);
tu_cs_emit(&cs, 0);
tu_cs_emit(&cs, 0);
tu_cs_emit(&cs, vertex_offset);
tu_cs_emit(&cs, first_instance);
tu_cs_emit(&cs, 0);
}
cmd->state.last_vs_params.vertex_offset = vertex_offset;
cmd->state.last_vs_params.first_instance = first_instance;
struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
cmd->state.vs_params = (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
cmd->state.dirty |= TU_CMD_DIRTY_VS_PARAMS;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdDraw(VkCommandBuffer commandBuffer,
uint32_t vertexCount,
uint32_t instanceCount,
uint32_t firstVertex,
uint32_t firstInstance)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->draw_cs;
tu6_emit_vs_params(cmd, firstVertex, firstInstance);
tu6_draw_common(cmd, cs, false, vertexCount);
tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
tu_cs_emit(cs, instanceCount);
tu_cs_emit(cs, vertexCount);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
uint32_t indexCount,
uint32_t instanceCount,
uint32_t firstIndex,
int32_t vertexOffset,
uint32_t firstInstance)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->draw_cs;
tu6_emit_vs_params(cmd, vertexOffset, firstInstance);
tu6_draw_common(cmd, cs, true, indexCount);
tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
tu_cs_emit(cs, instanceCount);
tu_cs_emit(cs, indexCount);
tu_cs_emit(cs, firstIndex);
tu_cs_emit_qw(cs, cmd->state.index_va);
tu_cs_emit(cs, cmd->state.max_index_count);
}
/* Various firmware bugs/inconsistencies mean that some indirect draw opcodes
* do not wait for WFI's to complete before executing. Add a WAIT_FOR_ME if
* pending for these opcodes. This may result in a few extra WAIT_FOR_ME's
* with these opcodes, but the alternative would add unnecessary WAIT_FOR_ME's
* before draw opcodes that don't need it.
*/
static void
draw_wfm(struct tu_cmd_buffer *cmd)
{
cmd->state.renderpass_cache.flush_bits |=
cmd->state.renderpass_cache.pending_flush_bits & TU_CMD_FLAG_WAIT_FOR_ME;
cmd->state.renderpass_cache.pending_flush_bits &= ~TU_CMD_FLAG_WAIT_FOR_ME;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_buffer, buf, _buffer);
struct tu_cs *cs = &cmd->draw_cs;
tu6_emit_empty_vs_params(cmd);
if (cmd->device->physical_device->info->a6xx.indirect_draw_wfm_quirk)
draw_wfm(cmd);
tu6_draw_common(cmd, cs, false, 0);
tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
tu_cs_emit(cs, drawCount);
tu_cs_emit_qw(cs, buf->iova + offset);
tu_cs_emit(cs, stride);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_buffer, buf, _buffer);
struct tu_cs *cs = &cmd->draw_cs;
tu6_emit_empty_vs_params(cmd);
if (cmd->device->physical_device->info->a6xx.indirect_draw_wfm_quirk)
draw_wfm(cmd);
tu6_draw_common(cmd, cs, true, 0);
tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
tu_cs_emit(cs, drawCount);
tu_cs_emit_qw(cs, cmd->state.index_va);
tu_cs_emit(cs, cmd->state.max_index_count);
tu_cs_emit_qw(cs, buf->iova + offset);
tu_cs_emit(cs, stride);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
VkBuffer countBuffer,
VkDeviceSize countBufferOffset,
uint32_t drawCount,
uint32_t stride)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_buffer, buf, _buffer);
TU_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
struct tu_cs *cs = &cmd->draw_cs;
tu6_emit_empty_vs_params(cmd);
/* It turns out that the firmware we have for a650 only partially fixed the
* problem with CP_DRAW_INDIRECT_MULTI not waiting for WFI's to complete
* before reading indirect parameters. It waits for WFI's before reading
* the draw parameters, but after reading the indirect count :(.
*/
draw_wfm(cmd);
tu6_draw_common(cmd, cs, false, 0);
tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 8);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT) |
A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
tu_cs_emit(cs, drawCount);
tu_cs_emit_qw(cs, buf->iova + offset);
tu_cs_emit_qw(cs, count_buf->iova + countBufferOffset);
tu_cs_emit(cs, stride);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
VkBuffer countBuffer,
VkDeviceSize countBufferOffset,
uint32_t drawCount,
uint32_t stride)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_buffer, buf, _buffer);
TU_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
struct tu_cs *cs = &cmd->draw_cs;
tu6_emit_empty_vs_params(cmd);
draw_wfm(cmd);
tu6_draw_common(cmd, cs, true, 0);
tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 11);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT_INDEXED) |
A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
tu_cs_emit(cs, drawCount);
tu_cs_emit_qw(cs, cmd->state.index_va);
tu_cs_emit(cs, cmd->state.max_index_count);
tu_cs_emit_qw(cs, buf->iova + offset);
tu_cs_emit_qw(cs, count_buf->iova + countBufferOffset);
tu_cs_emit(cs, stride);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
uint32_t instanceCount,
uint32_t firstInstance,
VkBuffer _counterBuffer,
VkDeviceSize counterBufferOffset,
uint32_t counterOffset,
uint32_t vertexStride)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
struct tu_cs *cs = &cmd->draw_cs;
/* All known firmware versions do not wait for WFI's with CP_DRAW_AUTO.
* Plus, for the common case where the counter buffer is written by
* vkCmdEndTransformFeedback, we need to wait for the CP_WAIT_MEM_WRITES to
* complete which means we need a WAIT_FOR_ME anyway.
*/
draw_wfm(cmd);
tu6_emit_vs_params(cmd, 0, firstInstance);
tu6_draw_common(cmd, cs, false, 0);
tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
tu_cs_emit(cs, instanceCount);
tu_cs_emit_qw(cs, buf->iova + counterBufferOffset);
tu_cs_emit(cs, counterOffset);
tu_cs_emit(cs, vertexStride);
}
struct tu_dispatch_info
{
/**
* Determine the layout of the grid (in block units) to be used.
*/
uint32_t blocks[3];
/**
* A starting offset for the grid. If unaligned is set, the offset
* must still be aligned.
*/
uint32_t offsets[3];
/**
* Whether it's an unaligned compute dispatch.
*/
bool unaligned;
/**
* Indirect compute parameters resource.
*/
struct tu_buffer *indirect;
uint64_t indirect_offset;
};
static void
tu_emit_compute_driver_params(struct tu_cmd_buffer *cmd,
struct tu_cs *cs, struct tu_pipeline *pipeline,
const struct tu_dispatch_info *info)
{
gl_shader_stage type = MESA_SHADER_COMPUTE;
const struct tu_program_descriptor_linkage *link =
&pipeline->program.link[type];
const struct ir3_const_state *const_state = &link->const_state;
uint32_t offset = const_state->offsets.driver_param;
unsigned subgroup_size = pipeline->compute.subgroup_size;
unsigned subgroup_shift = util_logbase2(subgroup_size);
if (link->constlen <= offset)
return;
uint32_t num_consts = MIN2(const_state->num_driver_params,
(link->constlen - offset) * 4);
if (!info->indirect) {
uint32_t driver_params[12] = {
[IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
[IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
[IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
[IR3_DP_BASE_GROUP_X] = info->offsets[0],
[IR3_DP_BASE_GROUP_Y] = info->offsets[1],
[IR3_DP_BASE_GROUP_Z] = info->offsets[2],
[IR3_DP_CS_SUBGROUP_SIZE] = subgroup_size,
[IR3_DP_SUBGROUP_ID_SHIFT] = subgroup_shift,
};
assert(num_consts <= ARRAY_SIZE(driver_params));
/* push constants */
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
tu_cs_emit(cs, 0);
tu_cs_emit(cs, 0);
uint32_t i;
for (i = 0; i < num_consts; i++)
tu_cs_emit(cs, driver_params[i]);
} else if (!(info->indirect_offset & 0xf)) {
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT(1));
tu_cs_emit_qw(cs, info->indirect->iova + info->indirect_offset);
} else {
/* Vulkan guarantees only 4 byte alignment for indirect_offset.
* However, CP_LOAD_STATE.EXT_SRC_ADDR needs 16 byte alignment.
*/
uint64_t indirect_iova = info->indirect->iova + info->indirect_offset;
for (uint32_t i = 0; i < 3; i++) {
tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
tu_cs_emit(cs, 0);
tu_cs_emit_qw(cs, global_iova(cmd, cs_indirect_xyz[i]));
tu_cs_emit_qw(cs, indirect_iova + i * 4);
}
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT(1));
tu_cs_emit_qw(cs, global_iova(cmd, cs_indirect_xyz[0]));
}
/* Fill out IR3_DP_CS_SUBGROUP_SIZE and IR3_DP_SUBGROUP_ID_SHIFT for
* indirect dispatch.
*/
if (info->indirect && num_consts > IR3_DP_BASE_GROUP_X) {
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 7);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset + (IR3_DP_BASE_GROUP_X / 4)) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT((num_consts - IR3_DP_BASE_GROUP_X) / 4));
tu_cs_emit_qw(cs, 0);
tu_cs_emit(cs, 0); /* BASE_GROUP_X */
tu_cs_emit(cs, 0); /* BASE_GROUP_Y */
tu_cs_emit(cs, 0); /* BASE_GROUP_Z */
tu_cs_emit(cs, subgroup_size);
if (num_consts > IR3_DP_LOCAL_GROUP_SIZE_X) {
assert(num_consts == align(IR3_DP_SUBGROUP_ID_SHIFT, 4));
tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_X */
tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_Y */
tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_Z */
tu_cs_emit(cs, subgroup_shift);
}
}
}
static void
tu_dispatch(struct tu_cmd_buffer *cmd,
const struct tu_dispatch_info *info)
{
if (!info->indirect &&
(info->blocks[0] == 0 || info->blocks[1] == 0 || info->blocks[2] == 0))
return;
struct tu_cs *cs = &cmd->cs;
struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
/* TODO: We could probably flush less if we add a compute_flush_bits
* bitfield.
*/
tu_emit_cache_flush(cmd, cs);
/* note: no reason to have this in a separate IB */
tu_cs_emit_state_ib(cs, tu6_emit_consts(cmd, pipeline, true));
tu_emit_compute_driver_params(cmd, cs, pipeline, info);
if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD)
tu_cs_emit_state_ib(cs, pipeline->load_state);
cmd->state.dirty &= ~TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
const uint32_t *local_size = pipeline->compute.local_size;
const uint32_t *num_groups = info->blocks;
tu_cs_emit_regs(cs,
A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
.localsizex = local_size[0] - 1,
.localsizey = local_size[1] - 1,
.localsizez = local_size[2] - 1),
A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
tu_cs_emit_regs(cs,
A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
trace_start_compute(&cmd->trace, cs);
if (info->indirect) {
uint64_t iova = info->indirect->iova + info->indirect_offset;
tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
tu_cs_emit(cs, 0x00000000);
tu_cs_emit_qw(cs, iova);
tu_cs_emit(cs,
A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
} else {
tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
tu_cs_emit(cs, 0x00000000);
tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
}
trace_end_compute(&cmd->trace, cs,
info->indirect != NULL,
local_size[0], local_size[1], local_size[2],
info->blocks[0], info->blocks[1], info->blocks[2]);
tu_cs_emit_wfi(cs);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
uint32_t base_x,
uint32_t base_y,
uint32_t base_z,
uint32_t x,
uint32_t y,
uint32_t z)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
struct tu_dispatch_info info = {};
info.blocks[0] = x;
info.blocks[1] = y;
info.blocks[2] = z;
info.offsets[0] = base_x;
info.offsets[1] = base_y;
info.offsets[2] = base_z;
tu_dispatch(cmd_buffer, &info);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdDispatch(VkCommandBuffer commandBuffer,
uint32_t x,
uint32_t y,
uint32_t z)
{
tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
struct tu_dispatch_info info = {};
info.indirect = buffer;
info.indirect_offset = offset;
tu_dispatch(cmd_buffer, &info);
}
static void
tu_end_rendering(struct tu_cmd_buffer *cmd_buffer)
{
tu_cs_end(&cmd_buffer->draw_cs);
tu_cs_end(&cmd_buffer->draw_epilogue_cs);
cmd_buffer->trace_renderpass_end = u_trace_end_iterator(&cmd_buffer->trace);
if (cmd_buffer->state.rp.has_tess)
tu6_lazy_emit_tessfactor_addr(cmd_buffer);
struct tu_renderpass_result *autotune_result = NULL;
if (use_sysmem_rendering(cmd_buffer, &autotune_result))
tu_cmd_render_sysmem(cmd_buffer, autotune_result);
else
tu_cmd_render_tiles(cmd_buffer, autotune_result);
/* Outside of renderpasses we assume all draw states are disabled. We do
* this outside the draw CS for the normal case where 3d gmem stores aren't
* used.
*/
tu_disable_draw_states(cmd_buffer, &cmd_buffer->cs);
/* discard draw_cs and draw_epilogue_cs entries now that the tiles are
rendered */
tu_cs_discard_entries(&cmd_buffer->draw_cs);
tu_cs_begin(&cmd_buffer->draw_cs);
tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
cmd_buffer->state.pass = NULL;
cmd_buffer->state.subpass = NULL;
cmd_buffer->state.framebuffer = NULL;
cmd_buffer->state.attachments = NULL;
memset(&cmd_buffer->state.rp, 0, sizeof(cmd_buffer->state.rp));
/* LRZ is not valid next time we use it */
cmd_buffer->state.lrz.valid = false;
cmd_buffer->state.dirty |= TU_CMD_DIRTY_LRZ;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
const VkSubpassEndInfo *pSubpassEndInfo)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
tu_end_rendering(cmd_buffer);
cmd_buffer->state.cache.pending_flush_bits |=
cmd_buffer->state.renderpass_cache.pending_flush_bits;
tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
vk_free(&cmd_buffer->pool->vk.alloc, cmd_buffer->state.attachments);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdEndRendering(VkCommandBuffer commandBuffer)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
tu_end_rendering(cmd_buffer);
}
static void
tu_barrier(struct tu_cmd_buffer *cmd,
const VkDependencyInfo *dep_info)
{
VkPipelineStageFlags2 srcStage = 0;
VkPipelineStageFlags2 dstStage = 0;
enum tu_cmd_access_mask src_flags = 0;
enum tu_cmd_access_mask dst_flags = 0;
/* Inside a renderpass, we don't know yet whether we'll be using sysmem
* so we have to use the sysmem flushes.
*/
bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
!cmd->state.pass;
for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) {
VkPipelineStageFlags2 sanitized_src_stage =
sanitize_src_stage(dep_info->pMemoryBarriers[i].srcStageMask);
VkPipelineStageFlags2 sanitized_dst_stage =
sanitize_dst_stage(dep_info->pMemoryBarriers[i].dstStageMask);
src_flags |= vk2tu_access(dep_info->pMemoryBarriers[i].srcAccessMask,
sanitized_src_stage, false, gmem);
dst_flags |= vk2tu_access(dep_info->pMemoryBarriers[i].dstAccessMask,
sanitized_dst_stage, false, gmem);
srcStage |= sanitized_src_stage;
dstStage |= sanitized_dst_stage;
}
for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) {
VkPipelineStageFlags2 sanitized_src_stage =
sanitize_src_stage(dep_info->pBufferMemoryBarriers[i].srcStageMask);
VkPipelineStageFlags2 sanitized_dst_stage =
sanitize_dst_stage(dep_info->pBufferMemoryBarriers[i].dstStageMask);
src_flags |= vk2tu_access(dep_info->pBufferMemoryBarriers[i].srcAccessMask,
sanitized_src_stage, false, gmem);
dst_flags |= vk2tu_access(dep_info->pBufferMemoryBarriers[i].dstAccessMask,
sanitized_dst_stage, false, gmem);
srcStage |= sanitized_src_stage;
dstStage |= sanitized_dst_stage;
}
for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
VkImageLayout old_layout = dep_info->pImageMemoryBarriers[i].oldLayout;
if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED) {
/* The underlying memory for this image may have been used earlier
* within the same queue submission for a different image, which
* means that there may be old, stale cache entries which are in the
* "wrong" location, which could cause problems later after writing
* to the image. We don't want these entries being flushed later and
* overwriting the actual image, so we need to flush the CCU.
*/
src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
}
VkPipelineStageFlags2 sanitized_src_stage =
sanitize_src_stage(dep_info->pImageMemoryBarriers[i].srcStageMask);
VkPipelineStageFlags2 sanitized_dst_stage =
sanitize_dst_stage(dep_info->pImageMemoryBarriers[i].dstStageMask);
src_flags |= vk2tu_access(dep_info->pImageMemoryBarriers[i].srcAccessMask,
sanitized_src_stage, true, gmem);
dst_flags |= vk2tu_access(dep_info->pImageMemoryBarriers[i].dstAccessMask,
sanitized_dst_stage, true, gmem);
srcStage |= sanitized_src_stage;
dstStage |= sanitized_dst_stage;
}
if (cmd->state.pass) {
const VkPipelineStageFlags framebuffer_space_stages =
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
/* We cannot have non-by-region "fb-space to fb-space" barriers.
*
* From the Vulkan 1.2.185 spec, section 7.6.1 "Subpass Self-dependency":
*
* If the source and destination stage masks both include
* framebuffer-space stages, then dependencyFlags must include
* VK_DEPENDENCY_BY_REGION_BIT.
* [...]
* Each of the synchronization scopes and access scopes of a
* vkCmdPipelineBarrier2 or vkCmdPipelineBarrier command inside
* a render pass instance must be a subset of the scopes of one of
* the self-dependencies for the current subpass.
*
* If the self-dependency has VK_DEPENDENCY_BY_REGION_BIT or
* VK_DEPENDENCY_VIEW_LOCAL_BIT set, then so must the pipeline barrier.
*
* By-region barriers are ok for gmem. All other barriers would involve
* vtx stages which are NOT ok for gmem rendering.
* See dep_invalid_for_gmem().
*/
if ((srcStage & ~framebuffer_space_stages) ||
(dstStage & ~framebuffer_space_stages)) {
cmd->state.rp.disable_gmem = true;
}
}
struct tu_cache_state *cache =
cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
tu_flush_for_access(cache, src_flags, dst_flags);
enum tu_stage src_stage = vk2tu_src_stage(srcStage);
enum tu_stage dst_stage = vk2tu_dst_stage(dstStage);
tu_flush_for_stage(cache, src_stage, dst_stage);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdPipelineBarrier2(VkCommandBuffer commandBuffer,
const VkDependencyInfo *pDependencyInfo)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
tu_barrier(cmd_buffer, pDependencyInfo);
}
static void
write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
VkPipelineStageFlags2 stageMask, unsigned value)
{
struct tu_cs *cs = &cmd->cs;
/* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
assert(!cmd->state.pass);
tu_emit_cache_flush(cmd, cs);
/* Flags that only require a top-of-pipe event. DrawIndirect parameters are
* read by the CP, so the draw indirect stage counts as top-of-pipe too.
*/
VkPipelineStageFlags2 top_of_pipe_flags =
VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT |
VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT;
if (!(stageMask & ~top_of_pipe_flags)) {
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
tu_cs_emit_qw(cs, event->bo->iova); /* ADDR_LO/HI */
tu_cs_emit(cs, value);
} else {
/* Use a RB_DONE_TS event to wait for everything to complete. */
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
tu_cs_emit_qw(cs, event->bo->iova);
tu_cs_emit(cs, value);
}
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetEvent2(VkCommandBuffer commandBuffer,
VkEvent _event,
const VkDependencyInfo *pDependencyInfo)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_event, event, _event);
VkPipelineStageFlags2 src_stage_mask = 0;
for (uint32_t i = 0; i < pDependencyInfo->memoryBarrierCount; i++)
src_stage_mask |= pDependencyInfo->pMemoryBarriers[i].srcStageMask;
for (uint32_t i = 0; i < pDependencyInfo->bufferMemoryBarrierCount; i++)
src_stage_mask |= pDependencyInfo->pBufferMemoryBarriers[i].srcStageMask;
for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; i++)
src_stage_mask |= pDependencyInfo->pImageMemoryBarriers[i].srcStageMask;
write_event(cmd, event, src_stage_mask, 1);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdResetEvent2(VkCommandBuffer commandBuffer,
VkEvent _event,
VkPipelineStageFlags2 stageMask)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_event, event, _event);
write_event(cmd, event, stageMask, 0);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdWaitEvents2(VkCommandBuffer commandBuffer,
uint32_t eventCount,
const VkEvent *pEvents,
const VkDependencyInfo* pDependencyInfos)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
for (uint32_t i = 0; i < eventCount; i++) {
TU_FROM_HANDLE(tu_event, event, pEvents[i]);
tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
CP_WAIT_REG_MEM_0_POLL_MEMORY);
tu_cs_emit_qw(cs, event->bo->iova); /* POLL_ADDR_LO/HI */
tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
}
tu_barrier(cmd, pDependencyInfos);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
{
/* No-op */
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer,
const VkConditionalRenderingBeginInfoEXT *pConditionalRenderingBegin)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.predication_active = true;
struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
tu_cs_emit_pkt7(cs, CP_DRAW_PRED_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 1);
/* Wait for any writes to the predicate to land */
if (cmd->state.pass)
tu_emit_cache_flush_renderpass(cmd, cs);
else
tu_emit_cache_flush(cmd, cs);
TU_FROM_HANDLE(tu_buffer, buf, pConditionalRenderingBegin->buffer);
uint64_t iova = buf->iova + pConditionalRenderingBegin->offset;
/* qcom doesn't support 32-bit reference values, only 64-bit, but Vulkan
* mandates 32-bit comparisons. Our workaround is to copy the the reference
* value to the low 32-bits of a location where the high 32 bits are known
* to be 0 and then compare that.
*/
tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
tu_cs_emit(cs, 0);
tu_cs_emit_qw(cs, global_iova(cmd, predicate));
tu_cs_emit_qw(cs, iova);
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
bool inv = pConditionalRenderingBegin->flags & VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
tu_cs_emit_pkt7(cs, CP_DRAW_PRED_SET, 3);
tu_cs_emit(cs, CP_DRAW_PRED_SET_0_SRC(PRED_SRC_MEM) |
CP_DRAW_PRED_SET_0_TEST(inv ? EQ_0_PASS : NE_0_PASS));
tu_cs_emit_qw(cs, global_iova(cmd, predicate));
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.predication_active = false;
struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
tu_cs_emit_pkt7(cs, CP_DRAW_PRED_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0);
}
void
tu_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer,
VkPipelineStageFlagBits2 pipelineStage,
VkBuffer dstBuffer,
VkDeviceSize dstOffset,
uint32_t marker)
{
/* Almost the same as write_event, but also allowed in renderpass */
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_buffer, buffer, dstBuffer);
uint64_t va = buffer->bo->iova + dstOffset;
struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
struct tu_cache_state *cache =
cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
/* From the Vulkan 1.2.203 spec:
*
* The access scope for buffer marker writes falls under
* the VK_ACCESS_TRANSFER_WRITE_BIT, and the pipeline stages for
* identifying the synchronization scope must include both pipelineStage
* and VK_PIPELINE_STAGE_TRANSFER_BIT.
*
* Transfer operations use CCU however here we write via CP.
* Flush CCU in order to make the results of previous transfer
* operation visible to CP.
*/
tu_flush_for_access(cache, 0, TU_ACCESS_SYSMEM_WRITE);
/* Flags that only require a top-of-pipe event. DrawIndirect parameters are
* read by the CP, so the draw indirect stage counts as top-of-pipe too.
*/
VkPipelineStageFlags2 top_of_pipe_flags =
VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT |
VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT;
bool is_top_of_pipe = !(pipelineStage & ~top_of_pipe_flags);
/* We have to WFI only if we flushed CCU here and are using CP_MEM_WRITE.
* Otherwise:
* - We do CP_EVENT_WRITE(RB_DONE_TS) which should wait for flushes;
* - There was a barrier to synchronize other writes with WriteBufferMarkerAMD
* and they had to include our pipelineStage which forces the WFI.
*/
if (cache->flush_bits != 0 && is_top_of_pipe) {
cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
}
if (cmd->state.pass) {
tu_emit_cache_flush_renderpass(cmd, cs);
} else {
tu_emit_cache_flush(cmd, cs);
}
if (is_top_of_pipe) {
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
tu_cs_emit_qw(cs, va); /* ADDR_LO/HI */
tu_cs_emit(cs, marker);
} else {
/* Use a RB_DONE_TS event to wait for everything to complete. */
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
tu_cs_emit_qw(cs, va);
tu_cs_emit(cs, marker);
}
/* Make sure the result of this write is visible to others. */
tu_flush_for_access(cache, TU_ACCESS_CP_WRITE, 0);
}