mesa/src/gallium/drivers/radeonsi/si_debug.c

1128 lines
37 KiB
C

/*
* Copyright 2015 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "ac_debug.h"
#include "ac_rtld.h"
#include "driver_ddebug/dd_util.h"
#include "si_compute.h"
#include "si_pipe.h"
#include "sid.h"
#include "sid_tables.h"
#include "tgsi/tgsi_from_mesa.h"
#include "util/u_dump.h"
#include "util/u_log.h"
#include "util/u_memory.h"
#include "util/u_string.h"
static void si_dump_bo_list(struct si_context *sctx, const struct radeon_saved_cs *saved, FILE *f);
DEBUG_GET_ONCE_OPTION(replace_shaders, "RADEON_REPLACE_SHADERS", NULL)
/**
* Store a linearized copy of all chunks of \p cs together with the buffer
* list in \p saved.
*/
void si_save_cs(struct radeon_winsys *ws, struct radeon_cmdbuf *cs, struct radeon_saved_cs *saved,
bool get_buffer_list)
{
uint32_t *buf;
unsigned i;
/* Save the IB chunks. */
saved->num_dw = cs->prev_dw + cs->current.cdw;
saved->ib = MALLOC(4 * saved->num_dw);
if (!saved->ib)
goto oom;
buf = saved->ib;
for (i = 0; i < cs->num_prev; ++i) {
memcpy(buf, cs->prev[i].buf, cs->prev[i].cdw * 4);
buf += cs->prev[i].cdw;
}
memcpy(buf, cs->current.buf, cs->current.cdw * 4);
if (!get_buffer_list)
return;
/* Save the buffer list. */
saved->bo_count = ws->cs_get_buffer_list(cs, NULL);
saved->bo_list = CALLOC(saved->bo_count, sizeof(saved->bo_list[0]));
if (!saved->bo_list) {
FREE(saved->ib);
goto oom;
}
ws->cs_get_buffer_list(cs, saved->bo_list);
return;
oom:
fprintf(stderr, "%s: out of memory\n", __func__);
memset(saved, 0, sizeof(*saved));
}
void si_clear_saved_cs(struct radeon_saved_cs *saved)
{
FREE(saved->ib);
FREE(saved->bo_list);
memset(saved, 0, sizeof(*saved));
}
void si_destroy_saved_cs(struct si_saved_cs *scs)
{
si_clear_saved_cs(&scs->gfx);
si_resource_reference(&scs->trace_buf, NULL);
free(scs);
}
static void si_dump_shader(struct si_screen *sscreen, struct si_shader *shader, FILE *f)
{
if (shader->shader_log)
fwrite(shader->shader_log, shader->shader_log_size, 1, f);
else
si_shader_dump(sscreen, shader, NULL, f, false);
if (shader->bo && sscreen->options.dump_shader_binary) {
unsigned size = shader->bo->b.b.width0;
fprintf(f, "BO: VA=%" PRIx64 " Size=%u\n", shader->bo->gpu_address, size);
const char *mapped = sscreen->ws->buffer_map(sscreen->ws,
shader->bo->buf, NULL,
PIPE_MAP_UNSYNCHRONIZED | PIPE_MAP_READ | RADEON_MAP_TEMPORARY);
for (unsigned i = 0; i < size; i += 4) {
fprintf(f, " %4x: %08x\n", i, *(uint32_t *)(mapped + i));
}
sscreen->ws->buffer_unmap(sscreen->ws, shader->bo->buf);
fprintf(f, "\n");
}
}
struct si_log_chunk_shader {
/* The shader destroy code assumes a current context for unlinking of
* PM4 packets etc.
*
* While we should be able to destroy shaders without a context, doing
* so would happen only very rarely and be therefore likely to fail
* just when you're trying to debug something. Let's just remember the
* current context in the chunk.
*/
struct si_context *ctx;
struct si_shader *shader;
/* For keep-alive reference counts */
struct si_shader_selector *sel;
struct si_compute *program;
};
static void si_log_chunk_shader_destroy(void *data)
{
struct si_log_chunk_shader *chunk = data;
si_shader_selector_reference(chunk->ctx, &chunk->sel, NULL);
si_compute_reference(&chunk->program, NULL);
FREE(chunk);
}
static void si_log_chunk_shader_print(void *data, FILE *f)
{
struct si_log_chunk_shader *chunk = data;
struct si_screen *sscreen = chunk->ctx->screen;
si_dump_shader(sscreen, chunk->shader, f);
}
static struct u_log_chunk_type si_log_chunk_type_shader = {
.destroy = si_log_chunk_shader_destroy,
.print = si_log_chunk_shader_print,
};
static void si_dump_gfx_shader(struct si_context *ctx, const struct si_shader_ctx_state *state,
struct u_log_context *log)
{
struct si_shader *current = state->current;
if (!state->cso || !current)
return;
struct si_log_chunk_shader *chunk = CALLOC_STRUCT(si_log_chunk_shader);
chunk->ctx = ctx;
chunk->shader = current;
si_shader_selector_reference(ctx, &chunk->sel, current->selector);
u_log_chunk(log, &si_log_chunk_type_shader, chunk);
}
static void si_dump_compute_shader(struct si_context *ctx, struct u_log_context *log)
{
const struct si_cs_shader_state *state = &ctx->cs_shader_state;
if (!state->program)
return;
struct si_log_chunk_shader *chunk = CALLOC_STRUCT(si_log_chunk_shader);
chunk->ctx = ctx;
chunk->shader = &state->program->shader;
si_compute_reference(&chunk->program, state->program);
u_log_chunk(log, &si_log_chunk_type_shader, chunk);
}
/**
* Shader compiles can be overridden with arbitrary ELF objects by setting
* the environment variable RADEON_REPLACE_SHADERS=num1:filename1[;num2:filename2]
*
* TODO: key this off some hash
*/
bool si_replace_shader(unsigned num, struct si_shader_binary *binary)
{
const char *p = debug_get_option_replace_shaders();
const char *semicolon;
char *copy = NULL;
FILE *f;
long filesize, nread;
bool replaced = false;
if (!p)
return false;
while (*p) {
unsigned long i;
char *endp;
i = strtoul(p, &endp, 0);
p = endp;
if (*p != ':') {
fprintf(stderr, "RADEON_REPLACE_SHADERS formatted badly.\n");
exit(1);
}
++p;
if (i == num)
break;
p = strchr(p, ';');
if (!p)
return false;
++p;
}
if (!*p)
return false;
semicolon = strchr(p, ';');
if (semicolon) {
p = copy = strndup(p, semicolon - p);
if (!copy) {
fprintf(stderr, "out of memory\n");
return false;
}
}
fprintf(stderr, "radeonsi: replace shader %u by %s\n", num, p);
f = fopen(p, "r");
if (!f) {
perror("radeonsi: failed to open file");
goto out_free;
}
if (fseek(f, 0, SEEK_END) != 0)
goto file_error;
filesize = ftell(f);
if (filesize < 0)
goto file_error;
if (fseek(f, 0, SEEK_SET) != 0)
goto file_error;
binary->elf_buffer = MALLOC(filesize);
if (!binary->elf_buffer) {
fprintf(stderr, "out of memory\n");
goto out_close;
}
nread = fread((void *)binary->elf_buffer, 1, filesize, f);
if (nread != filesize) {
FREE((void *)binary->elf_buffer);
binary->elf_buffer = NULL;
goto file_error;
}
binary->elf_size = nread;
replaced = true;
out_close:
fclose(f);
out_free:
free(copy);
return replaced;
file_error:
perror("radeonsi: reading shader");
goto out_close;
}
/* Parsed IBs are difficult to read without colors. Use "less -R file" to
* read them, or use "aha -b -f file" to convert them to html.
*/
#define COLOR_RESET "\033[0m"
#define COLOR_RED "\033[31m"
#define COLOR_GREEN "\033[1;32m"
#define COLOR_YELLOW "\033[1;33m"
#define COLOR_CYAN "\033[1;36m"
static void si_dump_mmapped_reg(struct si_context *sctx, FILE *f, unsigned offset)
{
struct radeon_winsys *ws = sctx->ws;
uint32_t value;
if (ws->read_registers(ws, offset, 1, &value))
ac_dump_reg(f, sctx->gfx_level, offset, value, ~0);
}
static void si_dump_debug_registers(struct si_context *sctx, FILE *f)
{
if (!sctx->screen->info.has_read_registers_query)
return;
fprintf(f, "Memory-mapped registers:\n");
si_dump_mmapped_reg(sctx, f, R_008010_GRBM_STATUS);
/* No other registers can be read on radeon. */
if (!sctx->screen->info.is_amdgpu) {
fprintf(f, "\n");
return;
}
si_dump_mmapped_reg(sctx, f, R_008008_GRBM_STATUS2);
si_dump_mmapped_reg(sctx, f, R_008014_GRBM_STATUS_SE0);
si_dump_mmapped_reg(sctx, f, R_008018_GRBM_STATUS_SE1);
si_dump_mmapped_reg(sctx, f, R_008038_GRBM_STATUS_SE2);
si_dump_mmapped_reg(sctx, f, R_00803C_GRBM_STATUS_SE3);
si_dump_mmapped_reg(sctx, f, R_00D034_SDMA0_STATUS_REG);
si_dump_mmapped_reg(sctx, f, R_00D834_SDMA1_STATUS_REG);
if (sctx->gfx_level <= GFX8) {
si_dump_mmapped_reg(sctx, f, R_000E50_SRBM_STATUS);
si_dump_mmapped_reg(sctx, f, R_000E4C_SRBM_STATUS2);
si_dump_mmapped_reg(sctx, f, R_000E54_SRBM_STATUS3);
}
si_dump_mmapped_reg(sctx, f, R_008680_CP_STAT);
si_dump_mmapped_reg(sctx, f, R_008674_CP_STALLED_STAT1);
si_dump_mmapped_reg(sctx, f, R_008678_CP_STALLED_STAT2);
si_dump_mmapped_reg(sctx, f, R_008670_CP_STALLED_STAT3);
si_dump_mmapped_reg(sctx, f, R_008210_CP_CPC_STATUS);
si_dump_mmapped_reg(sctx, f, R_008214_CP_CPC_BUSY_STAT);
si_dump_mmapped_reg(sctx, f, R_008218_CP_CPC_STALLED_STAT1);
si_dump_mmapped_reg(sctx, f, R_00821C_CP_CPF_STATUS);
si_dump_mmapped_reg(sctx, f, R_008220_CP_CPF_BUSY_STAT);
si_dump_mmapped_reg(sctx, f, R_008224_CP_CPF_STALLED_STAT1);
fprintf(f, "\n");
}
struct si_log_chunk_cs {
struct si_context *ctx;
struct si_saved_cs *cs;
bool dump_bo_list;
unsigned gfx_begin, gfx_end;
};
static void si_log_chunk_type_cs_destroy(void *data)
{
struct si_log_chunk_cs *chunk = data;
si_saved_cs_reference(&chunk->cs, NULL);
free(chunk);
}
static void si_parse_current_ib(FILE *f, struct radeon_cmdbuf *cs, unsigned begin, unsigned end,
int *last_trace_id, unsigned trace_id_count, const char *name,
enum amd_gfx_level gfx_level)
{
unsigned orig_end = end;
assert(begin <= end);
fprintf(f, "------------------ %s begin (dw = %u) ------------------\n", name, begin);
for (unsigned prev_idx = 0; prev_idx < cs->num_prev; ++prev_idx) {
struct radeon_cmdbuf_chunk *chunk = &cs->prev[prev_idx];
if (begin < chunk->cdw) {
ac_parse_ib_chunk(f, chunk->buf + begin, MIN2(end, chunk->cdw) - begin, last_trace_id,
trace_id_count, gfx_level, NULL, NULL);
}
if (end <= chunk->cdw)
return;
if (begin < chunk->cdw)
fprintf(f, "\n---------- Next %s Chunk ----------\n\n", name);
begin -= MIN2(begin, chunk->cdw);
end -= chunk->cdw;
}
assert(end <= cs->current.cdw);
ac_parse_ib_chunk(f, cs->current.buf + begin, end - begin, last_trace_id, trace_id_count,
gfx_level, NULL, NULL);
fprintf(f, "------------------- %s end (dw = %u) -------------------\n\n", name, orig_end);
}
void si_print_current_ib(struct si_context *sctx, FILE *f)
{
si_parse_current_ib(f, &sctx->gfx_cs, 0, sctx->gfx_cs.prev_dw + sctx->gfx_cs.current.cdw,
NULL, 0, "GFX", sctx->gfx_level);
}
static void si_log_chunk_type_cs_print(void *data, FILE *f)
{
struct si_log_chunk_cs *chunk = data;
struct si_context *ctx = chunk->ctx;
struct si_saved_cs *scs = chunk->cs;
int last_trace_id = -1;
/* We are expecting that the ddebug pipe has already
* waited for the context, so this buffer should be idle.
* If the GPU is hung, there is no point in waiting for it.
*/
uint32_t *map = ctx->ws->buffer_map(ctx->ws, scs->trace_buf->buf, NULL,
PIPE_MAP_UNSYNCHRONIZED | PIPE_MAP_READ);
if (map)
last_trace_id = map[0];
if (chunk->gfx_end != chunk->gfx_begin) {
if (chunk->gfx_begin == 0) {
if (ctx->cs_preamble_state)
ac_parse_ib(f, ctx->cs_preamble_state->pm4, ctx->cs_preamble_state->ndw, NULL, 0,
"IB2: Init config", ctx->gfx_level, NULL, NULL);
}
if (scs->flushed) {
ac_parse_ib(f, scs->gfx.ib + chunk->gfx_begin, chunk->gfx_end - chunk->gfx_begin,
&last_trace_id, map ? 1 : 0, "IB", ctx->gfx_level, NULL, NULL);
} else {
si_parse_current_ib(f, &ctx->gfx_cs, chunk->gfx_begin, chunk->gfx_end, &last_trace_id,
map ? 1 : 0, "IB", ctx->gfx_level);
}
}
if (chunk->dump_bo_list) {
fprintf(f, "Flushing. Time: ");
util_dump_ns(f, scs->time_flush);
fprintf(f, "\n\n");
si_dump_bo_list(ctx, &scs->gfx, f);
}
}
static const struct u_log_chunk_type si_log_chunk_type_cs = {
.destroy = si_log_chunk_type_cs_destroy,
.print = si_log_chunk_type_cs_print,
};
static void si_log_cs(struct si_context *ctx, struct u_log_context *log, bool dump_bo_list)
{
assert(ctx->current_saved_cs);
struct si_saved_cs *scs = ctx->current_saved_cs;
unsigned gfx_cur = ctx->gfx_cs.prev_dw + ctx->gfx_cs.current.cdw;
if (!dump_bo_list && gfx_cur == scs->gfx_last_dw)
return;
struct si_log_chunk_cs *chunk = calloc(1, sizeof(*chunk));
chunk->ctx = ctx;
si_saved_cs_reference(&chunk->cs, scs);
chunk->dump_bo_list = dump_bo_list;
chunk->gfx_begin = scs->gfx_last_dw;
chunk->gfx_end = gfx_cur;
scs->gfx_last_dw = gfx_cur;
u_log_chunk(log, &si_log_chunk_type_cs, chunk);
}
void si_auto_log_cs(void *data, struct u_log_context *log)
{
struct si_context *ctx = (struct si_context *)data;
si_log_cs(ctx, log, false);
}
void si_log_hw_flush(struct si_context *sctx)
{
if (!sctx->log)
return;
si_log_cs(sctx, sctx->log, true);
if (&sctx->b == sctx->screen->aux_context) {
/* The aux context isn't captured by the ddebug wrapper,
* so we dump it on a flush-by-flush basis here.
*/
FILE *f = dd_get_debug_file(false);
if (!f) {
fprintf(stderr, "radeonsi: error opening aux context dump file.\n");
} else {
dd_write_header(f, &sctx->screen->b, 0);
fprintf(f, "Aux context dump:\n\n");
u_log_new_page_print(sctx->log, f);
fclose(f);
}
}
}
static const char *priority_to_string(unsigned priority)
{
#define ITEM(x) if (priority == RADEON_PRIO_##x) return #x
ITEM(FENCE_TRACE);
ITEM(SO_FILLED_SIZE);
ITEM(QUERY);
ITEM(IB);
ITEM(DRAW_INDIRECT);
ITEM(INDEX_BUFFER);
ITEM(CP_DMA);
ITEM(BORDER_COLORS);
ITEM(CONST_BUFFER);
ITEM(DESCRIPTORS);
ITEM(SAMPLER_BUFFER);
ITEM(VERTEX_BUFFER);
ITEM(SHADER_RW_BUFFER);
ITEM(SAMPLER_TEXTURE);
ITEM(SHADER_RW_IMAGE);
ITEM(SAMPLER_TEXTURE_MSAA);
ITEM(COLOR_BUFFER);
ITEM(DEPTH_BUFFER);
ITEM(COLOR_BUFFER_MSAA);
ITEM(DEPTH_BUFFER_MSAA);
ITEM(SEPARATE_META);
ITEM(SHADER_BINARY);
ITEM(SHADER_RINGS);
ITEM(SCRATCH_BUFFER);
#undef ITEM
return "";
}
static int bo_list_compare_va(const struct radeon_bo_list_item *a,
const struct radeon_bo_list_item *b)
{
return a->vm_address < b->vm_address ? -1 : a->vm_address > b->vm_address ? 1 : 0;
}
static void si_dump_bo_list(struct si_context *sctx, const struct radeon_saved_cs *saved, FILE *f)
{
unsigned i, j;
if (!saved->bo_list)
return;
/* Sort the list according to VM adddresses first. */
qsort(saved->bo_list, saved->bo_count, sizeof(saved->bo_list[0]), (void *)bo_list_compare_va);
fprintf(f, "Buffer list (in units of pages = 4kB):\n" COLOR_YELLOW
" Size VM start page "
"VM end page Usage" COLOR_RESET "\n");
for (i = 0; i < saved->bo_count; i++) {
/* Note: Buffer sizes are expected to be aligned to 4k by the winsys. */
const unsigned page_size = sctx->screen->info.gart_page_size;
uint64_t va = saved->bo_list[i].vm_address;
uint64_t size = saved->bo_list[i].bo_size;
bool hit = false;
/* If there's unused virtual memory between 2 buffers, print it. */
if (i) {
uint64_t previous_va_end =
saved->bo_list[i - 1].vm_address + saved->bo_list[i - 1].bo_size;
if (va > previous_va_end) {
fprintf(f, " %10" PRIu64 " -- hole --\n", (va - previous_va_end) / page_size);
}
}
/* Print the buffer. */
fprintf(f, " %10" PRIu64 " 0x%013" PRIX64 " 0x%013" PRIX64 " ",
size / page_size, va / page_size, (va + size) / page_size);
/* Print the usage. */
for (j = 0; j < 32; j++) {
if (!(saved->bo_list[i].priority_usage & (1u << j)))
continue;
fprintf(f, "%s%s", !hit ? "" : ", ", priority_to_string(1u << j));
hit = true;
}
fprintf(f, "\n");
}
fprintf(f, "\nNote: The holes represent memory not used by the IB.\n"
" Other buffers can still be allocated there.\n\n");
}
static void si_dump_framebuffer(struct si_context *sctx, struct u_log_context *log)
{
struct pipe_framebuffer_state *state = &sctx->framebuffer.state;
struct si_texture *tex;
int i;
for (i = 0; i < state->nr_cbufs; i++) {
if (!state->cbufs[i])
continue;
tex = (struct si_texture *)state->cbufs[i]->texture;
u_log_printf(log, COLOR_YELLOW "Color buffer %i:" COLOR_RESET "\n", i);
si_print_texture_info(sctx->screen, tex, log);
u_log_printf(log, "\n");
}
if (state->zsbuf) {
tex = (struct si_texture *)state->zsbuf->texture;
u_log_printf(log, COLOR_YELLOW "Depth-stencil buffer:" COLOR_RESET "\n");
si_print_texture_info(sctx->screen, tex, log);
u_log_printf(log, "\n");
}
}
typedef unsigned (*slot_remap_func)(unsigned);
struct si_log_chunk_desc_list {
/** Pointer to memory map of buffer where the list is uploader */
uint32_t *gpu_list;
/** Reference of buffer where the list is uploaded, so that gpu_list
* is kept live. */
struct si_resource *buf;
const char *shader_name;
const char *elem_name;
slot_remap_func slot_remap;
enum amd_gfx_level gfx_level;
unsigned element_dw_size;
unsigned num_elements;
uint32_t list[0];
};
static void si_log_chunk_desc_list_destroy(void *data)
{
struct si_log_chunk_desc_list *chunk = data;
si_resource_reference(&chunk->buf, NULL);
FREE(chunk);
}
static void si_log_chunk_desc_list_print(void *data, FILE *f)
{
struct si_log_chunk_desc_list *chunk = data;
unsigned sq_img_rsrc_word0 =
chunk->gfx_level >= GFX10 ? R_00A000_SQ_IMG_RSRC_WORD0 : R_008F10_SQ_IMG_RSRC_WORD0;
for (unsigned i = 0; i < chunk->num_elements; i++) {
unsigned cpu_dw_offset = i * chunk->element_dw_size;
unsigned gpu_dw_offset = chunk->slot_remap(i) * chunk->element_dw_size;
const char *list_note = chunk->gpu_list ? "GPU list" : "CPU list";
uint32_t *cpu_list = chunk->list + cpu_dw_offset;
uint32_t *gpu_list = chunk->gpu_list ? chunk->gpu_list + gpu_dw_offset : cpu_list;
fprintf(f, COLOR_GREEN "%s%s slot %u (%s):" COLOR_RESET "\n", chunk->shader_name,
chunk->elem_name, i, list_note);
switch (chunk->element_dw_size) {
case 4:
for (unsigned j = 0; j < 4; j++)
ac_dump_reg(f, chunk->gfx_level, R_008F00_SQ_BUF_RSRC_WORD0 + j * 4, gpu_list[j],
0xffffffff);
break;
case 8:
for (unsigned j = 0; j < 8; j++)
ac_dump_reg(f, chunk->gfx_level, sq_img_rsrc_word0 + j * 4, gpu_list[j], 0xffffffff);
fprintf(f, COLOR_CYAN " Buffer:" COLOR_RESET "\n");
for (unsigned j = 0; j < 4; j++)
ac_dump_reg(f, chunk->gfx_level, R_008F00_SQ_BUF_RSRC_WORD0 + j * 4, gpu_list[4 + j],
0xffffffff);
break;
case 16:
for (unsigned j = 0; j < 8; j++)
ac_dump_reg(f, chunk->gfx_level, sq_img_rsrc_word0 + j * 4, gpu_list[j], 0xffffffff);
fprintf(f, COLOR_CYAN " Buffer:" COLOR_RESET "\n");
for (unsigned j = 0; j < 4; j++)
ac_dump_reg(f, chunk->gfx_level, R_008F00_SQ_BUF_RSRC_WORD0 + j * 4, gpu_list[4 + j],
0xffffffff);
fprintf(f, COLOR_CYAN " FMASK:" COLOR_RESET "\n");
for (unsigned j = 0; j < 8; j++)
ac_dump_reg(f, chunk->gfx_level, sq_img_rsrc_word0 + j * 4, gpu_list[8 + j],
0xffffffff);
fprintf(f, COLOR_CYAN " Sampler state:" COLOR_RESET "\n");
for (unsigned j = 0; j < 4; j++)
ac_dump_reg(f, chunk->gfx_level, R_008F30_SQ_IMG_SAMP_WORD0 + j * 4, gpu_list[12 + j],
0xffffffff);
break;
}
if (memcmp(gpu_list, cpu_list, chunk->element_dw_size * 4) != 0) {
fprintf(f, COLOR_RED "!!!!! This slot was corrupted in GPU memory !!!!!" COLOR_RESET "\n");
}
fprintf(f, "\n");
}
}
static const struct u_log_chunk_type si_log_chunk_type_descriptor_list = {
.destroy = si_log_chunk_desc_list_destroy,
.print = si_log_chunk_desc_list_print,
};
static void si_dump_descriptor_list(struct si_screen *screen, struct si_descriptors *desc,
const char *shader_name, const char *elem_name,
unsigned element_dw_size, unsigned num_elements,
slot_remap_func slot_remap, struct u_log_context *log)
{
if (!desc->list)
return;
/* In some cases, the caller doesn't know how many elements are really
* uploaded. Reduce num_elements to fit in the range of active slots. */
unsigned active_range_dw_begin = desc->first_active_slot * desc->element_dw_size;
unsigned active_range_dw_end =
active_range_dw_begin + desc->num_active_slots * desc->element_dw_size;
while (num_elements > 0) {
int i = slot_remap(num_elements - 1);
unsigned dw_begin = i * element_dw_size;
unsigned dw_end = dw_begin + element_dw_size;
if (dw_begin >= active_range_dw_begin && dw_end <= active_range_dw_end)
break;
num_elements--;
}
struct si_log_chunk_desc_list *chunk =
CALLOC_VARIANT_LENGTH_STRUCT(si_log_chunk_desc_list, 4 * element_dw_size * num_elements);
chunk->shader_name = shader_name;
chunk->elem_name = elem_name;
chunk->element_dw_size = element_dw_size;
chunk->num_elements = num_elements;
chunk->slot_remap = slot_remap;
chunk->gfx_level = screen->info.gfx_level;
si_resource_reference(&chunk->buf, desc->buffer);
chunk->gpu_list = desc->gpu_list;
for (unsigned i = 0; i < num_elements; ++i) {
memcpy(&chunk->list[i * element_dw_size], &desc->list[slot_remap(i) * element_dw_size],
4 * element_dw_size);
}
u_log_chunk(log, &si_log_chunk_type_descriptor_list, chunk);
}
static unsigned si_identity(unsigned slot)
{
return slot;
}
static void si_dump_descriptors(struct si_context *sctx, gl_shader_stage stage,
const struct si_shader_info *info, struct u_log_context *log)
{
enum pipe_shader_type processor = pipe_shader_type_from_mesa(stage);
struct si_descriptors *descs =
&sctx->descriptors[SI_DESCS_FIRST_SHADER + processor * SI_NUM_SHADER_DESCS];
static const char *shader_name[] = {"VS", "PS", "GS", "TCS", "TES", "CS"};
const char *name = shader_name[processor];
unsigned enabled_constbuf, enabled_shaderbuf, enabled_samplers;
unsigned enabled_images;
if (info) {
enabled_constbuf = u_bit_consecutive(0, info->base.num_ubos);
enabled_shaderbuf = u_bit_consecutive(0, info->base.num_ssbos);
enabled_samplers = info->base.textures_used[0];
enabled_images = u_bit_consecutive(0, info->base.num_images);
} else {
enabled_constbuf =
sctx->const_and_shader_buffers[processor].enabled_mask >> SI_NUM_SHADER_BUFFERS;
enabled_shaderbuf = 0;
for (int i = 0; i < SI_NUM_SHADER_BUFFERS; i++) {
enabled_shaderbuf |=
(sctx->const_and_shader_buffers[processor].enabled_mask &
1llu << (SI_NUM_SHADER_BUFFERS - i - 1)) << i;
}
enabled_samplers = sctx->samplers[processor].enabled_mask;
enabled_images = sctx->images[processor].enabled_mask;
}
if (stage == MESA_SHADER_VERTEX && sctx->vb_descriptors_buffer &&
sctx->vb_descriptors_gpu_list) {
assert(info); /* only CS may not have an info struct */
struct si_descriptors desc = {};
desc.buffer = sctx->vb_descriptors_buffer;
desc.list = sctx->vb_descriptors_gpu_list;
desc.gpu_list = sctx->vb_descriptors_gpu_list;
desc.element_dw_size = 4;
desc.num_active_slots = sctx->vertex_elements->vb_desc_list_alloc_size / 16;
si_dump_descriptor_list(sctx->screen, &desc, name, " - Vertex buffer", 4, info->num_inputs,
si_identity, log);
}
si_dump_descriptor_list(sctx->screen, &descs[SI_SHADER_DESCS_CONST_AND_SHADER_BUFFERS], name,
" - Constant buffer", 4, util_last_bit(enabled_constbuf),
si_get_constbuf_slot, log);
si_dump_descriptor_list(sctx->screen, &descs[SI_SHADER_DESCS_CONST_AND_SHADER_BUFFERS], name,
" - Shader buffer", 4, util_last_bit(enabled_shaderbuf),
si_get_shaderbuf_slot, log);
si_dump_descriptor_list(sctx->screen, &descs[SI_SHADER_DESCS_SAMPLERS_AND_IMAGES], name,
" - Sampler", 16, util_last_bit(enabled_samplers), si_get_sampler_slot,
log);
si_dump_descriptor_list(sctx->screen, &descs[SI_SHADER_DESCS_SAMPLERS_AND_IMAGES], name,
" - Image", 8, util_last_bit(enabled_images), si_get_image_slot, log);
}
static void si_dump_gfx_descriptors(struct si_context *sctx,
const struct si_shader_ctx_state *state,
struct u_log_context *log)
{
if (!state->cso || !state->current)
return;
si_dump_descriptors(sctx, state->cso->stage, &state->cso->info, log);
}
static void si_dump_compute_descriptors(struct si_context *sctx, struct u_log_context *log)
{
if (!sctx->cs_shader_state.program)
return;
si_dump_descriptors(sctx, MESA_SHADER_COMPUTE, NULL, log);
}
struct si_shader_inst {
const char *text; /* start of disassembly for this instruction */
unsigned textlen;
unsigned size; /* instruction size = 4 or 8 */
uint64_t addr; /* instruction address */
};
/**
* Open the given \p binary as \p rtld_binary and split the contained
* disassembly string into instructions and add them to the array
* pointed to by \p instructions, which must be sufficiently large.
*
* Labels are considered to be part of the following instruction.
*
* The caller must keep \p rtld_binary alive as long as \p instructions are
* used and then close it afterwards.
*/
static void si_add_split_disasm(struct si_screen *screen, struct ac_rtld_binary *rtld_binary,
struct si_shader_binary *binary, uint64_t *addr, unsigned *num,
struct si_shader_inst *instructions,
gl_shader_stage stage, unsigned wave_size)
{
if (!ac_rtld_open(rtld_binary, (struct ac_rtld_open_info){
.info = &screen->info,
.shader_type = stage,
.wave_size = wave_size,
.num_parts = 1,
.elf_ptrs = &binary->elf_buffer,
.elf_sizes = &binary->elf_size}))
return;
const char *disasm;
size_t nbytes;
if (!ac_rtld_get_section_by_name(rtld_binary, ".AMDGPU.disasm", &disasm, &nbytes))
return;
const char *end = disasm + nbytes;
while (disasm < end) {
const char *semicolon = memchr(disasm, ';', end - disasm);
if (!semicolon)
break;
struct si_shader_inst *inst = &instructions[(*num)++];
const char *inst_end = memchr(semicolon + 1, '\n', end - semicolon - 1);
if (!inst_end)
inst_end = end;
inst->text = disasm;
inst->textlen = inst_end - disasm;
inst->addr = *addr;
/* More than 16 chars after ";" means the instruction is 8 bytes long. */
inst->size = inst_end - semicolon > 16 ? 8 : 4;
*addr += inst->size;
if (inst_end == end)
break;
disasm = inst_end + 1;
}
}
/* If the shader is being executed, print its asm instructions, and annotate
* those that are being executed right now with information about waves that
* execute them. This is most useful during a GPU hang.
*/
static void si_print_annotated_shader(struct si_shader *shader, struct ac_wave_info *waves,
unsigned num_waves, FILE *f)
{
if (!shader)
return;
struct si_screen *screen = shader->selector->screen;
gl_shader_stage stage = shader->selector->stage;
uint64_t start_addr = shader->bo->gpu_address;
uint64_t end_addr = start_addr + shader->bo->b.b.width0;
unsigned i;
/* See if any wave executes the shader. */
for (i = 0; i < num_waves; i++) {
if (start_addr <= waves[i].pc && waves[i].pc <= end_addr)
break;
}
if (i == num_waves)
return; /* the shader is not being executed */
/* Remember the first found wave. The waves are sorted according to PC. */
waves = &waves[i];
num_waves -= i;
/* Get the list of instructions.
* Buffer size / 4 is the upper bound of the instruction count.
*/
unsigned num_inst = 0;
uint64_t inst_addr = start_addr;
struct ac_rtld_binary rtld_binaries[5] = {};
struct si_shader_inst *instructions =
calloc(shader->bo->b.b.width0 / 4, sizeof(struct si_shader_inst));
if (shader->prolog) {
si_add_split_disasm(screen, &rtld_binaries[0], &shader->prolog->binary, &inst_addr, &num_inst,
instructions, stage, shader->wave_size);
}
if (shader->previous_stage) {
si_add_split_disasm(screen, &rtld_binaries[1], &shader->previous_stage->binary, &inst_addr,
&num_inst, instructions, stage, shader->wave_size);
}
si_add_split_disasm(screen, &rtld_binaries[3], &shader->binary, &inst_addr, &num_inst,
instructions, stage, shader->wave_size);
if (shader->epilog) {
si_add_split_disasm(screen, &rtld_binaries[4], &shader->epilog->binary, &inst_addr, &num_inst,
instructions, stage, shader->wave_size);
}
fprintf(f, COLOR_YELLOW "%s - annotated disassembly:" COLOR_RESET "\n",
si_get_shader_name(shader));
/* Print instructions with annotations. */
for (i = 0; i < num_inst; i++) {
struct si_shader_inst *inst = &instructions[i];
fprintf(f, "%.*s [PC=0x%" PRIx64 ", size=%u]\n", inst->textlen, inst->text, inst->addr,
inst->size);
/* Print which waves execute the instruction right now. */
while (num_waves && inst->addr == waves->pc) {
fprintf(f,
" " COLOR_GREEN "^ SE%u SH%u CU%u "
"SIMD%u WAVE%u EXEC=%016" PRIx64 " ",
waves->se, waves->sh, waves->cu, waves->simd, waves->wave, waves->exec);
if (inst->size == 4) {
fprintf(f, "INST32=%08X" COLOR_RESET "\n", waves->inst_dw0);
} else {
fprintf(f, "INST64=%08X %08X" COLOR_RESET "\n", waves->inst_dw0, waves->inst_dw1);
}
waves->matched = true;
waves = &waves[1];
num_waves--;
}
}
fprintf(f, "\n\n");
free(instructions);
for (unsigned i = 0; i < ARRAY_SIZE(rtld_binaries); ++i)
ac_rtld_close(&rtld_binaries[i]);
}
static void si_dump_annotated_shaders(struct si_context *sctx, FILE *f)
{
struct ac_wave_info waves[AC_MAX_WAVES_PER_CHIP];
unsigned num_waves = ac_get_wave_info(sctx->gfx_level, waves);
fprintf(f, COLOR_CYAN "The number of active waves = %u" COLOR_RESET "\n\n", num_waves);
si_print_annotated_shader(sctx->shader.vs.current, waves, num_waves, f);
si_print_annotated_shader(sctx->shader.tcs.current, waves, num_waves, f);
si_print_annotated_shader(sctx->shader.tes.current, waves, num_waves, f);
si_print_annotated_shader(sctx->shader.gs.current, waves, num_waves, f);
si_print_annotated_shader(sctx->shader.ps.current, waves, num_waves, f);
/* Print waves executing shaders that are not currently bound. */
unsigned i;
bool found = false;
for (i = 0; i < num_waves; i++) {
if (waves[i].matched)
continue;
if (!found) {
fprintf(f, COLOR_CYAN "Waves not executing currently-bound shaders:" COLOR_RESET "\n");
found = true;
}
fprintf(f,
" SE%u SH%u CU%u SIMD%u WAVE%u EXEC=%016" PRIx64 " INST=%08X %08X PC=%" PRIx64
"\n",
waves[i].se, waves[i].sh, waves[i].cu, waves[i].simd, waves[i].wave, waves[i].exec,
waves[i].inst_dw0, waves[i].inst_dw1, waves[i].pc);
}
if (found)
fprintf(f, "\n\n");
}
static void si_dump_command(const char *title, const char *command, FILE *f)
{
char line[2000];
FILE *p = popen(command, "r");
if (!p)
return;
fprintf(f, COLOR_YELLOW "%s: " COLOR_RESET "\n", title);
while (fgets(line, sizeof(line), p))
fputs(line, f);
fprintf(f, "\n\n");
pclose(p);
}
static void si_dump_debug_state(struct pipe_context *ctx, FILE *f, unsigned flags)
{
struct si_context *sctx = (struct si_context *)ctx;
if (sctx->log)
u_log_flush(sctx->log);
if (flags & PIPE_DUMP_DEVICE_STATUS_REGISTERS) {
si_dump_debug_registers(sctx, f);
si_dump_annotated_shaders(sctx, f);
si_dump_command("Active waves (raw data)", "umr -O halt_waves -wa | column -t", f);
si_dump_command("Wave information", "umr -O halt_waves,bits -wa", f);
}
}
void si_log_draw_state(struct si_context *sctx, struct u_log_context *log)
{
if (!log)
return;
si_dump_framebuffer(sctx, log);
si_dump_gfx_shader(sctx, &sctx->shader.vs, log);
si_dump_gfx_shader(sctx, &sctx->shader.tcs, log);
si_dump_gfx_shader(sctx, &sctx->shader.tes, log);
si_dump_gfx_shader(sctx, &sctx->shader.gs, log);
si_dump_gfx_shader(sctx, &sctx->shader.ps, log);
si_dump_descriptor_list(sctx->screen, &sctx->descriptors[SI_DESCS_INTERNAL], "", "RW buffers",
4, sctx->descriptors[SI_DESCS_INTERNAL].num_active_slots, si_identity,
log);
si_dump_gfx_descriptors(sctx, &sctx->shader.vs, log);
si_dump_gfx_descriptors(sctx, &sctx->shader.tcs, log);
si_dump_gfx_descriptors(sctx, &sctx->shader.tes, log);
si_dump_gfx_descriptors(sctx, &sctx->shader.gs, log);
si_dump_gfx_descriptors(sctx, &sctx->shader.ps, log);
}
void si_log_compute_state(struct si_context *sctx, struct u_log_context *log)
{
if (!log)
return;
si_dump_compute_shader(sctx, log);
si_dump_compute_descriptors(sctx, log);
}
void si_check_vm_faults(struct si_context *sctx, struct radeon_saved_cs *saved, enum amd_ip_type ring)
{
struct pipe_screen *screen = sctx->b.screen;
FILE *f;
uint64_t addr;
char cmd_line[4096];
if (!ac_vm_fault_occured(sctx->gfx_level, &sctx->dmesg_timestamp, &addr))
return;
f = dd_get_debug_file(false);
if (!f)
return;
fprintf(f, "VM fault report.\n\n");
if (os_get_command_line(cmd_line, sizeof(cmd_line)))
fprintf(f, "Command: %s\n", cmd_line);
fprintf(f, "Driver vendor: %s\n", screen->get_vendor(screen));
fprintf(f, "Device vendor: %s\n", screen->get_device_vendor(screen));
fprintf(f, "Device name: %s\n\n", screen->get_name(screen));
fprintf(f, "Failing VM page: 0x%08" PRIx64 "\n\n", addr);
if (sctx->apitrace_call_number)
fprintf(f, "Last apitrace call: %u\n\n", sctx->apitrace_call_number);
switch (ring) {
case AMD_IP_GFX: {
struct u_log_context log;
u_log_context_init(&log);
si_log_draw_state(sctx, &log);
si_log_compute_state(sctx, &log);
si_log_cs(sctx, &log, true);
u_log_new_page_print(&log, f);
u_log_context_destroy(&log);
break;
}
default:
break;
}
fclose(f);
fprintf(stderr, "Detected a VM fault, exiting...\n");
exit(0);
}
void si_init_debug_functions(struct si_context *sctx)
{
sctx->b.dump_debug_state = si_dump_debug_state;
/* Set the initial dmesg timestamp for this context, so that
* only new messages will be checked for VM faults.
*/
if (sctx->screen->debug_flags & DBG(CHECK_VM))
ac_vm_fault_occured(sctx->gfx_level, &sctx->dmesg_timestamp, NULL);
}