mesa/src/gallium/drivers/lima/ir/gp/scheduler.c

1729 lines
59 KiB
C

/*
* Copyright (c) 2017 Lima Project
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sub license,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*/
#include <limits.h>
#include "gpir.h"
/*
* GP scheduling algorithm (by Connor Abbott <cwabbott0@gmail.com>)
*
* The GP pipeline has three main stages:
*
* --------------------------------------------------------
* | |
* | Register/Attr/Temp Fetch |
* | |
* --------------------------------------------------------
* | | | | | | |
* | Mul0 | Mul1 | Add0 | Add1 | Cplx | Pass |
* | | | | | | |
* --------------------------------------------------------
* | | | |
* | Complex1 | Temp/Register/Varying | Pass |
* | Stage 2 | Store | Stage 2 |
* | | | |
* --------------------------------------------------------
*
* Because of this setup, storing a register has a latency of three cycles.
* Also, the register file is organized into 4-component vectors, and the
* load stage can only load two vectors at a time. Aside from these highly
* constrained register load/store units, there is an explicit bypass
* network, where each unit (mul0/mul1/etc.) can access the results of the
* any unit from the previous two cycles directly, except for the complex
* unit whose result can only be accessed for one cycle (since it's expected
* to be used directly by the complex2 instruction in the following cycle).
*
* Because of the very restricted register file, and because only rarely are
* all the units in use at the same time, it can be very beneficial to use
* the unused units to "thread" a value from source to destination by using
* moves in the otherwise-unused units, without involving the register file
* at all. It's very difficult to fully exploit this with a traditional
* scheduler, so we need to do something a little un-traditional. The 512
* instruction limit means that for more complex shaders, we need to do as
* well as possible or else the app won't even work.
*
* The scheduler works by considering the bypass network as a kind of
* register file. It's a quite unusual register file, since registers have to
* be assigned "on the fly" as we schedule operations, but with some care, we
* can use something conceptually similar to a linear-scan allocator to
* successfully schedule nodes to instructions without running into
* conflicts.
*
* Values in the IR are separated into normal values, or "value registers",
* which is what normal nodes like add, mul, etc. produce, and which only
* live inside one basic block, and registers, which can span multiple basic
* blocks but have to be accessed via special load_reg/store_reg nodes. RA
* assigns physical registers to both value registers and normal registers,
* treating load_reg/store_reg as a move instruction, but these are only used
* directly for normal registers -- the physreg assigned to a value register
* is "fake," and is only used inside the scheduler. Before scheduling we
* insert read-after-write dependencies, even for value registers, as if
* we're going to use those, but then we throw them away. For example, if we
* had something like:
*
* (*)r2 = add (*)r1, (*)r2
* (*)r1 = load_reg r0
*
* we'd insert a write-after-read dependency between the add and load_reg,
* even though the starred registers aren't actually used by the scheduler
* after this step. This step is crucial since it guarantees that during any
* point in the schedule, the number of live registers + live value registers
* will never exceed the capacity of the register file and the bypass network
* combined. This is because each live register/value register will have a
* different fake number, thanks to the fake dependencies inserted before
* scheduling. This allows us to not have to worry about spilling to
* temporaries, which is only done ahead of time.
*
* The scheduler is a bottom-up scheduler. It keeps track of each live value
* register, and decides on-the-fly which value registers to keep in the
* bypass network and which to "spill" to registers. Of particular importance
* is the "ready list," which consists of "input nodes" (nodes that produce a
* value that can be consumed via the bypass network), both "partially ready"
* (only some of the uses have been scheduled) and "fully ready" (all uses
* have been scheduled), as well as other non-input nodes like register
* stores. Each input node on the ready list represents a live value register
* before the current instruction. There must be at most 11 such input nodes
* at all times, since there are only 11 slots in the next two instructions
* which can reach the current instruction.
*
* An input node is a "max node" if it has a use two cycles ago, which must be
* connected to a definition this cycle. Otherwise it may be a "next max node"
* if it will be a max node on the next instruction (i.e. it has a use at most
* one cycle ago), or it may be neither if all of its uses are this cycle. As
* we keep adding instructions to the front, input nodes graduate from
* neither, to next max, to max, unless we decide to insert a move to keep it
* alive longer, at which point any uses after the current instruction are
* rewritten to be uses of the move so that the original node returns to
* neither. The scheduler decides which nodes to try freely, but we have to
* reserve slots for two different reasons: (1) out of the 5 non-complex
* slots, we reserve a slot for each max node, so that we can connect a
* definition to the use 2 cycles ago. (2) Out of all 6 slots, we reserve a
* slot for every next-max node above 5, so that for the next instruction
* there are no more than 5 max nodes. When a max or next-max node gets
* scheduled, the corresponding reservation is reduced by one. At the end, we
* insert moves for every slot that was reserved. The reservation is actually
* managed by nir_instr, and all we have to do is tell it how many to reserve
* at the beginning and then tell it which nodes are max/next-max nodes. When
* we start scheduling an instruction, there will be at most 5 max nodes
* thanks to the previous instruction's next-max reservation/move insertion.
* Since there are at most 11 total input nodes, if there are N max nodes,
* there are at most 11 - N next-max nodes, and therefore at most 11 - N - 5 =
* 6 - N slots need to be reserved for next-max nodes, and so at most
* 6 - N + N = 6 slots need to be reserved in total, exactly the total number
* of slots. So, thanks to the total input node restriction, we will never
* need to reserve too many slots.
*
* It sometimes happens that scheduling a given node will violate this total
* input node restriction, or that a reservation will mean that we can't
* schedule it. We first schedule a node "speculatively" to see if this is a
* problem. If some of the node's sources are loads, then we can schedule
* the node and its dependent loads in one swoop to avoid going over the
* pressure limit. If that fails, we can try to spill a ready or
* partially-ready input node to a register by rewriting all of its uses to
* refer to a register load. This removes it from the list of ready and
* partially ready input nodes as all of its uses are now unscheduled. If
* successful, we can then proceed with scheduling the original node. All of
* this happens "speculatively," meaning that afterwards the node is removed
* and the entire state of the scheduler is reverted to before it was tried, to
* ensure that we never get into an invalid state and run out of spots for
* moves. In try_nodes(), we try to schedule each node speculatively on the
* ready list, keeping only the nodes that could be successfully scheduled, so
* that when we finally decide which node to actually schedule, we know it
* will succeed. This is how we decide on the fly which values go in
* registers and which go in the bypass network. Note that "unspilling" a
* value is simply a matter of scheduling the store_reg instruction created
* when we spill.
*
* The careful accounting of live value registers, reservations for moves, and
* speculative scheduling guarantee that we never run into a failure case
* while scheduling. However, we need to make sure that this scheduler will
* not get stuck in an infinite loop, i.e. that we'll always make forward
* progress by eventually scheduling a non-move node. If we run out of value
* registers, then we may have to spill a node to a register. If we
* were to schedule one of the fully-ready nodes, then we'd have 11 + N live
* value registers before the current instruction. But since there are at most
* 64+11 live registers and register values total thanks to the fake
* dependencies we inserted before scheduling, there are at most 64 - N live
* physical registers, and therefore there are at least N registers available
* for spilling. Not all these registers will be available immediately, since
* in order to spill a node to a given register we have to ensure that there
* are slots available to rewrite every use to a load instruction, and that
* may not be the case. There may also be intervening writes which prevent
* some registers from being used. However, these are all temporary problems,
* since as we create each instruction, we create additional register load
* slots that can be freely used for spilling, and we create more move nodes
* which means that the uses of the nodes we're trying to spill keep moving
* forward. This means that eventually, these problems will go away, at which
* point we'll be able to spill a node successfully, so eventually we'll be
* able to schedule the first node on the ready list.
*/
typedef struct {
/* This is the list of ready and partially-ready nodes. A partially-ready
* node must have at least one input dependency already scheduled.
*/
struct list_head ready_list;
/* The number of ready or partially-ready nodes with at least one input
* dependency already scheduled. In other words, the number of live value
* registers. This must be at most 11.
*/
int ready_list_slots;
/* The physical registers live into the current instruction. */
uint64_t live_physregs;
/* The current instruction. */
gpir_instr *instr;
/* The current basic block. */
gpir_block *block;
/* True if at least one node failed to schedule due to lack of available
* value registers.
*/
bool try_spill_all;
/* The number of max nodes needed to spill to successfully schedule the
* instruction.
*/
int max_node_spill_needed;
/* The number of max and next-max nodes needed to spill to successfully
* schedule the instruction.
*/
int total_spill_needed;
/* For each physical register, a linked list of loads associated with it in
* this block. When we spill a value to a given register, and there are
* existing loads associated with it that haven't been scheduled yet, we
* have to make sure that the corresponding unspill happens after the last
* original use has happened, i.e. is scheduled before.
*/
struct list_head physreg_reads[GPIR_PHYSICAL_REG_NUM];
} sched_ctx;
static int gpir_min_dist_alu(gpir_dep *dep)
{
switch (dep->pred->op) {
case gpir_op_load_uniform:
case gpir_op_load_temp:
case gpir_op_load_reg:
case gpir_op_load_attribute:
return 0;
case gpir_op_complex1:
return 2;
default:
return 1;
}
}
static int gpir_get_min_dist(gpir_dep *dep)
{
switch (dep->type) {
case GPIR_DEP_INPUT:
switch (dep->succ->op) {
case gpir_op_store_temp:
case gpir_op_store_reg:
case gpir_op_store_varying:
/* Stores must use an alu node as input. Also, complex1 takes two
* cycles, which means that its result cannot be stored to a register
* as part of the normal path, and therefore it must also have a move
* inserted.
*/
if (dep->pred->type == gpir_node_type_load ||
dep->pred->op == gpir_op_complex1)
return INT_MAX >> 2;
else
return 0;
default:
return gpir_min_dist_alu(dep);
}
case GPIR_DEP_OFFSET:
assert(dep->succ->op == gpir_op_store_temp);
return gpir_min_dist_alu(dep);
case GPIR_DEP_READ_AFTER_WRITE:
if (dep->succ->op == gpir_op_load_temp &&
dep->pred->op == gpir_op_store_temp) {
return 4;
} else if (dep->succ->op == gpir_op_load_reg &&
dep->pred->op == gpir_op_store_reg) {
return 3;
} else if ((dep->pred->op == gpir_op_store_temp_load_off0 ||
dep->pred->op == gpir_op_store_temp_load_off1 ||
dep->pred->op == gpir_op_store_temp_load_off2) &&
dep->succ->op == gpir_op_load_uniform) {
return 4;
} else {
/* Fake dependency */
return 0;
}
case GPIR_DEP_WRITE_AFTER_READ:
return 0;
}
return 0;
}
static int gpir_max_dist_alu(gpir_dep *dep)
{
switch (dep->pred->op) {
case gpir_op_load_uniform:
case gpir_op_load_temp:
return 0;
case gpir_op_load_attribute:
return 1;
case gpir_op_load_reg:
if (dep->pred->sched.pos < GPIR_INSTR_SLOT_REG0_LOAD0 ||
dep->pred->sched.pos > GPIR_INSTR_SLOT_REG0_LOAD3)
return 0;
else
return 1;
case gpir_op_exp2_impl:
case gpir_op_log2_impl:
case gpir_op_rcp_impl:
case gpir_op_rsqrt_impl:
case gpir_op_store_temp_load_off0:
case gpir_op_store_temp_load_off1:
case gpir_op_store_temp_load_off2:
return 1;
case gpir_op_mov:
if (dep->pred->sched.pos == GPIR_INSTR_SLOT_COMPLEX)
return 1;
else
return 2;
default:
return 2;
}
}
static int gpir_get_max_dist(gpir_dep *dep)
{
switch (dep->type) {
case GPIR_DEP_INPUT:
switch (dep->succ->op) {
case gpir_op_store_temp:
case gpir_op_store_reg:
case gpir_op_store_varying:
return 0;
default:
return gpir_max_dist_alu(dep);
}
case GPIR_DEP_OFFSET:
assert(dep->succ->op == gpir_op_store_temp);
return gpir_max_dist_alu(dep);
default:
return INT_MAX >> 2; /* Don't want to overflow... */
}
}
static void schedule_update_distance(gpir_node *node)
{
if (gpir_node_is_leaf(node)) {
node->sched.dist = 0;
return;
}
gpir_node_foreach_pred(node, dep) {
gpir_node *pred = dep->pred;
if (pred->sched.dist < 0)
schedule_update_distance(pred);
int dist = pred->sched.dist + gpir_min_dist_alu(dep);
if (node->sched.dist < dist)
node->sched.dist = dist;
}
}
static bool gpir_is_input_node(gpir_node *node)
{
gpir_node_foreach_succ(node, dep) {
if (dep->type == GPIR_DEP_INPUT)
return true;
}
return false;
}
/* Get the number of slots required for a node on the ready list.
*/
static int gpir_get_slots_required(gpir_node *node)
{
if (!gpir_is_input_node(node))
return 0;
/* Note that we assume every node only consumes one slot, even dual-slot
* instructions. While dual-slot instructions may consume more than one
* slot, we can always safely insert a move if it turns out that there
* isn't enough space for them. There's the risk that we get stuck in an
* infinite loop if all the fully ready nodes are dual-slot nodes, but we
* rely on spilling to registers to save us here.
*/
return 1;
}
static void ASSERTED verify_ready_list(sched_ctx *ctx)
{
list_for_each_entry(gpir_node, node, &ctx->ready_list, list) {
if (!gpir_is_input_node(node)) {
assert(node->sched.ready);
}
if (node->sched.ready) {
/* Every successor must have been scheduled */
gpir_node_foreach_succ(node, dep) {
assert(dep->succ->sched.instr);
}
} else {
/* There must be at least one successor that's not scheduled. */
bool unscheduled = false;
gpir_node_foreach_succ(node, dep) {
unscheduled |= !(dep->succ->sched.instr);
}
assert(unscheduled);
}
}
}
static void schedule_insert_ready_list(sched_ctx *ctx,
gpir_node *insert_node)
{
/* if this node is fully ready or partially ready
* fully ready: all successors have been scheduled
* partially ready: part of input successors have been scheduled
*
* either fully ready or partially ready node need be inserted to
* the ready list, but we only schedule a move node for partially
* ready node.
*/
bool ready = true, insert = false;
gpir_node_foreach_succ(insert_node, dep) {
gpir_node *succ = dep->succ;
if (succ->sched.instr) {
if (dep->type == GPIR_DEP_INPUT)
insert = true;
}
else
ready = false;
}
insert_node->sched.ready = ready;
/* for root node */
insert |= ready;
if (!insert || insert_node->sched.inserted)
return;
struct list_head *insert_pos = &ctx->ready_list;
list_for_each_entry(gpir_node, node, &ctx->ready_list, list) {
if ((insert_node->sched.dist > node->sched.dist ||
gpir_op_infos[insert_node->op].schedule_first) &&
!gpir_op_infos[node->op].schedule_first) {
insert_pos = &node->list;
break;
}
}
list_addtail(&insert_node->list, insert_pos);
insert_node->sched.inserted = true;
ctx->ready_list_slots += gpir_get_slots_required(insert_node);
}
static int gpir_get_max_start(gpir_node *node)
{
int max_start = 0;
/* find the max start instr constrainted by all successors */
gpir_node_foreach_succ(node, dep) {
gpir_node *succ = dep->succ;
if (!succ->sched.instr)
continue;
int start = succ->sched.instr->index + gpir_get_min_dist(dep);
if (start > max_start)
max_start = start;
}
return max_start;
}
static int gpir_get_min_end(gpir_node *node)
{
int min_end = INT_MAX;
/* find the min end instr constrainted by all successors */
gpir_node_foreach_succ(node, dep) {
gpir_node *succ = dep->succ;
if (!succ->sched.instr)
continue;
int end = succ->sched.instr->index + gpir_get_max_dist(dep);
if (end < min_end)
min_end = end;
}
return min_end;
}
static gpir_node *gpir_sched_instr_has_load(gpir_instr *instr, gpir_node *node)
{
gpir_load_node *load = gpir_node_to_load(node);
for (int i = GPIR_INSTR_SLOT_REG0_LOAD0; i <= GPIR_INSTR_SLOT_MEM_LOAD3; i++) {
if (!instr->slots[i])
continue;
gpir_load_node *iload = gpir_node_to_load(instr->slots[i]);
if (load->node.op == iload->node.op &&
load->index == iload->index &&
load->component == iload->component)
return &iload->node;
}
return NULL;
}
/* Simply place the node into the given instruction without trying to deal
* with liveness or the ready list. This will only fail if the instruction
* cannot be placed due to a lack of available slots. In addition to normal
* node placement, this is also used for placing loads when spilling to
* registers.
*/
static bool _try_place_node(sched_ctx *ctx, gpir_instr *instr, gpir_node *node)
{
if (node->type == gpir_node_type_load) {
gpir_node *load = gpir_sched_instr_has_load(instr, node);
if (load) {
/* This node may have a store as a successor, in which case we have to
* fail it exactly like below in order to later create a move node in
* between.
*/
if (instr->index < gpir_get_max_start(node))
return false;
gpir_debug("same load %d in instr %d for node %d\n",
load->index, instr->index, node->index);
/* not really merge two node, just fake scheduled same place */
node->sched.instr = load->sched.instr;
node->sched.pos = load->sched.pos;
return true;
}
}
if (node->op == gpir_op_store_reg) {
/* This register may be loaded in the next basic block, in which case
* there still needs to be a 2 instruction gap. We do what the blob
* seems to do and simply disable stores in the last two instructions of
* the basic block.
*
* TODO: We may be able to do better than this, but we have to check
* first if storing a register works across branches.
*/
if (instr->index < 2)
return false;
}
node->sched.instr = instr;
int max_node_spill_needed = INT_MAX;
int total_spill_needed = INT_MAX;
int *slots = gpir_op_infos[node->op].slots;
for (int i = 0; slots[i] != GPIR_INSTR_SLOT_END; i++) {
node->sched.pos = slots[i];
if (instr->index >= gpir_get_max_start(node) &&
instr->index <= gpir_get_min_end(node) &&
gpir_instr_try_insert_node(instr, node))
return true;
if (ctx->instr->non_cplx_slot_difference ||
ctx->instr->slot_difference) {
/* If one of these fields is non-zero, then we could insert the node
* here after spilling. To get an accurate count of how many nodes we
* need to spill, we need to choose one of the positions where there
* were nonzero slot differences, preferably one with the smallest
* difference (so we don't have to spill as much).
*/
if (ctx->instr->non_cplx_slot_difference < max_node_spill_needed ||
ctx->instr->slot_difference < total_spill_needed) {
max_node_spill_needed = ctx->instr->non_cplx_slot_difference;
total_spill_needed = ctx->instr->slot_difference;
}
}
}
if (max_node_spill_needed != INT_MAX) {
/* Indicate how many spill nodes are needed. */
ctx->max_node_spill_needed = MAX2(ctx->max_node_spill_needed,
max_node_spill_needed);
ctx->total_spill_needed = MAX2(ctx->total_spill_needed,
total_spill_needed);
}
node->sched.instr = NULL;
node->sched.pos = -1;
return false;
}
/* Try to place just the node given, updating the ready list. If "speculative"
* is true, then this is part of the pre-commit phase. If false, then we have
* committed to placing this node, so update liveness and ready list
* information.
*/
static bool schedule_try_place_node(sched_ctx *ctx, gpir_node *node,
bool speculative)
{
if (!_try_place_node(ctx, ctx->instr, node)) {
if (!speculative)
gpir_debug("failed to place %d\n", node->index);
return false;
}
ctx->ready_list_slots -= gpir_get_slots_required(node);
if (!speculative) {
gpir_debug("placed node %d\n", node->index);
/* We assume here that writes are placed before reads. If this changes,
* then this needs to be updated.
*/
if (node->op == gpir_op_store_reg) {
gpir_store_node *store = gpir_node_to_store(node);
ctx->live_physregs &=
~(1ull << (4 * store->index + store->component));
if (store->child->sched.physreg_store == store)
store->child->sched.physreg_store = NULL;
}
if (node->op == gpir_op_load_reg) {
gpir_load_node *load = gpir_node_to_load(node);
ctx->live_physregs |=
(1ull << (4 * load->index + load->component));
}
list_del(&node->list);
list_add(&node->list, &ctx->block->node_list);
gpir_node_foreach_pred(node, dep) {
gpir_node *pred = dep->pred;
schedule_insert_ready_list(ctx, pred);
}
} else {
gpir_node_foreach_pred(node, dep) {
gpir_node *pred = dep->pred;
if (!pred->sched.inserted && dep->type == GPIR_DEP_INPUT)
ctx->ready_list_slots += gpir_get_slots_required(pred);
}
}
return true;
}
/* Create a new node with "node" as the child, replace all uses of "node" with
* this new node, and replace "node" with it in the ready list.
*/
static gpir_node *create_replacement(sched_ctx *ctx, gpir_node *node,
gpir_op op)
{
gpir_alu_node *new_node = gpir_node_create(node->block, op);
if (unlikely(!new_node))
return NULL;
new_node->children[0] = node;
new_node->num_child = 1;
new_node->node.sched.instr = NULL;
new_node->node.sched.pos = -1;
new_node->node.sched.dist = node->sched.dist;
new_node->node.sched.max_node = node->sched.max_node;
new_node->node.sched.next_max_node = node->sched.next_max_node;
new_node->node.sched.complex_allowed = node->sched.complex_allowed;
ctx->ready_list_slots--;
list_del(&node->list);
node->sched.max_node = false;
node->sched.next_max_node = false;
node->sched.ready = false;
node->sched.inserted = false;
gpir_node_replace_succ(&new_node->node, node);
gpir_node_add_dep(&new_node->node, node, GPIR_DEP_INPUT);
schedule_insert_ready_list(ctx, &new_node->node);
return &new_node->node;
}
static gpir_node *create_move(sched_ctx *ctx, gpir_node *node)
{
gpir_node *move = create_replacement(ctx, node, gpir_op_mov);
gpir_debug("create move %d for %d\n", move->index, node->index);
return move;
}
static gpir_node *create_postlog2(sched_ctx *ctx, gpir_node *node)
{
assert(node->op == gpir_op_complex1);
gpir_node *postlog2 = create_replacement(ctx, node, gpir_op_postlog2);
gpir_debug("create postlog2 %d for %d\n", postlog2->index, node->index);
return postlog2;
}
/* Once we schedule the successor, would the predecessor be fully ready? */
static bool pred_almost_ready(gpir_dep *dep)
{
bool fully_ready = true;
gpir_node_foreach_succ(dep->pred, other_dep) {
gpir_node *succ = other_dep->succ;
if (!succ->sched.instr && dep->succ != other_dep->succ) {
fully_ready = false;
break;
}
}
return fully_ready;
}
/* Recursively try to schedule a node and all its dependent nodes that can fit
* in the same instruction. There is a simple heuristic scoring system to try
* to group together nodes that load different components of the same input,
* to avoid bottlenecking for operations like matrix multiplies that are
* mostly input-bound.
*/
static int _schedule_try_node(sched_ctx *ctx, gpir_node *node, bool speculative)
{
if (!schedule_try_place_node(ctx, node, speculative))
return INT_MIN;
int score = 0;
gpir_node_foreach_pred(node, dep) {
if (dep->type != GPIR_DEP_INPUT)
continue;
int pred_score = INT_MIN;
if (pred_almost_ready(dep)) {
if (dep->pred->type == gpir_node_type_load ||
node->type == gpir_node_type_store) {
pred_score = _schedule_try_node(ctx, dep->pred, speculative);
}
}
if (dep->pred->type == gpir_node_type_load ||
node->type == gpir_node_type_store) {
if (pred_score == INT_MIN) {
if (node->op == gpir_op_mov) {
/* The only moves on the ready list are for loads that we
* couldn't schedule immediately, as created below. If we
* couldn't schedule the load, there's no point scheduling
* the move. The normal move threading logic will ensure
* that another move is created if we're about to go too far
* from the uses of this move.
*/
assert(speculative);
return INT_MIN;
} else if (!speculative && dep->pred->type == gpir_node_type_load) {
/* We couldn't schedule the load right away, so it will have
* to happen in some earlier instruction and then be moved
* into a value register and threaded to the use by "node".
* We create the move right away, so that later we'll fail
* to schedule it if there isn't a slot for a move
* available.
*/
create_move(ctx, dep->pred);
}
/* Penalize nodes whose dependent ops we couldn't schedule.
*/
score--;
} else {
score += pred_score;
continue;
}
}
}
return score;
}
/* If we speculatively tried a node, undo everything.
*/
static void schedule_undo_node(sched_ctx *ctx, gpir_node *node)
{
gpir_instr_remove_node(ctx->instr, node);
gpir_node_foreach_pred(node, dep) {
gpir_node *pred = dep->pred;
if (pred->sched.instr) {
schedule_undo_node(ctx, pred);
}
}
}
/* Try to schedule a node. We also try to schedule any predecessors that can
* be part of the same instruction. If "speculative" is true, then we don't
* actually change any state, only returning the score were the node to be
* scheduled, with INT_MIN meaning "cannot be scheduled at all".
*/
static int schedule_try_node(sched_ctx *ctx, gpir_node *node, bool speculative)
{
int prev_slots = ctx->ready_list_slots;
int score = _schedule_try_node(ctx, node, speculative);
if (ctx->ready_list_slots > GPIR_VALUE_REG_NUM) {
assert(speculative);
ctx->total_spill_needed = MAX2(ctx->total_spill_needed,
ctx->ready_list_slots - GPIR_VALUE_REG_NUM);
score = INT_MIN;
}
if (speculative) {
ctx->ready_list_slots = prev_slots;
if (node->sched.instr)
schedule_undo_node(ctx, node);
}
return score;
}
/* This is called when we want to spill "node" by inserting loads at its uses.
* It returns all the possible registers we can use so that all the loads will
* successfully be inserted. Also return the first instruction we'll need to
* insert a load for.
*/
static uint64_t get_available_regs(sched_ctx *ctx, gpir_node *node,
int *min_index)
{
uint64_t available = ~0ull;
gpir_node_foreach_succ(node, dep) {
if (dep->type != GPIR_DEP_INPUT)
continue;
gpir_node *use = dep->succ;
gpir_instr *instr = use->sched.instr;
if (!instr) {
/* This use isn't scheduled, so no need to spill it. */
continue;
}
if (use->type == gpir_node_type_store) {
/* We're trying to spill something that was recently stored... just
* bail out.
*/
return 0;
}
if (use->op == gpir_op_mov && instr == ctx->instr) {
/* We try to spill the sources of this move, so we can free up space
* in the current instruction.
*
* TODO: should we go back further? It might let us schedule the
* write earlier in some cases, but then we might fail to spill.
*/
available &= get_available_regs(ctx, use, min_index);
} else {
if (instr->index < *min_index)
*min_index = instr->index;
uint64_t use_available = 0;
if (instr->reg0_use_count == 0)
use_available = ~0ull;
else if (!instr->reg0_is_attr)
use_available = 0xfull << (4 * instr->reg0_index);
if (instr->reg1_use_count == 0)
use_available = ~0ull;
else
use_available |= 0xfull << (4 * instr->reg1_index);
available &= use_available;
}
}
return available;
}
/* Using "min_index" returned by get_available_regs(), figure out which
* registers are killed by a write after or during the current instruction and
* hence we can't use for spilling. Writes that haven't been scheduled yet
* should be reflected in live_physregs.
*/
static uint64_t get_killed_regs(sched_ctx *ctx, int min_index)
{
uint64_t killed = 0;
list_for_each_entry(gpir_instr, instr, &ctx->block->instr_list, list) {
if (instr->index <= min_index)
break;
for (int slot = GPIR_INSTR_SLOT_STORE0; slot <= GPIR_INSTR_SLOT_STORE3;
slot++) {
if (!instr->slots[slot])
continue;
gpir_store_node *store = gpir_node_to_store(instr->slots[slot]);
if (store->node.op != gpir_op_store_reg)
continue;
killed |= 1ull << (4 * store->index + store->component);
}
}
return killed;
}
/* Actually spill a node so that it is no longer in the ready list. Note that
* this must exactly follow the logic of get_available_regs() or else the
* loads could fail to schedule.
*/
static void spill_node(sched_ctx *ctx, gpir_node *node, gpir_store_node *store)
{
gpir_node_foreach_succ_safe(node, dep) {
if (dep->type != GPIR_DEP_INPUT)
continue;
gpir_node *use = dep->succ;
gpir_instr *instr = use->sched.instr;
if (!instr)
continue;
if (use->op == gpir_op_mov && instr == ctx->instr) {
spill_node(ctx, use, store);
} else {
gpir_load_node *load = gpir_node_create(ctx->block, gpir_op_load_reg);
load->index = store->index;
load->component = store->component;
list_add(&load->node.list, &ctx->block->node_list);
gpir_node_replace_child(dep->succ, dep->pred, &load->node);
gpir_node_replace_pred(dep, &load->node);
gpir_node_add_dep(&load->node, &store->node, GPIR_DEP_READ_AFTER_WRITE);
gpir_debug("spilling use %d of node %d to load node %d\n",
use->index, node->index, load->node.index);
ASSERTED bool result = _try_place_node(ctx, use->sched.instr, &load->node);
assert(result);
}
}
if (node->op == gpir_op_mov) {
/* We replaced all the uses of the move, so it's dead now. */
gpir_instr_remove_node(node->sched.instr, node);
gpir_node_delete(node);
} else {
/* We deleted all the uses of the node except the store, so it's not
* live anymore.
*/
list_del(&node->list);
node->sched.inserted = false;
ctx->ready_list_slots--;
if (node->sched.max_node) {
node->sched.max_node = false;
ctx->instr->alu_num_slot_needed_by_max--;
}
if (node->sched.next_max_node) {
node->sched.next_max_node = false;
ctx->instr->alu_num_unscheduled_next_max--;
}
}
}
static bool used_by_store(gpir_node *node, gpir_instr *instr)
{
gpir_node_foreach_succ(node, dep) {
if (dep->type != GPIR_DEP_INPUT)
continue;
if (dep->succ->type == gpir_node_type_store &&
dep->succ->sched.instr == instr)
return true;
}
return false;
}
static gpir_node *consuming_postlog2(gpir_node *node)
{
if (node->op != gpir_op_complex1)
return NULL;
gpir_node_foreach_succ(node, dep) {
if (dep->type != GPIR_DEP_INPUT)
continue;
if (dep->succ->op == gpir_op_postlog2)
return dep->succ;
else
return NULL;
}
return NULL;
}
static bool try_spill_node(sched_ctx *ctx, gpir_node *node)
{
assert(node->op != gpir_op_mov);
if (used_by_store(node, ctx->instr))
return false;
gpir_debug("trying to spill %d\n", node->index);
int min_instr = INT_MAX;
uint64_t available = get_available_regs(ctx, node, &min_instr);
available &= ~get_killed_regs(ctx, min_instr);
if (node->sched.physreg_store) {
gpir_store_node *store = node->sched.physreg_store;
if (!(available & (1ull << (4 * store->index + store->component))))
return false;
} else {
available &= ~ctx->live_physregs;
if (available == 0)
return false;
/* Don't spill complex1 if it's used postlog2, turn the postlog2 into a
* move, replace the complex1 with postlog2 and spill that instead. The
* store needs a move anyways so the postlog2 is usually free.
*/
gpir_node *postlog2 = consuming_postlog2(node);
if (postlog2) {
postlog2->op = gpir_op_mov;
node = create_postlog2(ctx, node);
}
/* TODO: use a better heuristic for choosing an available register? */
int physreg = ffsll(available) - 1;
ctx->live_physregs |= (1ull << physreg);
gpir_store_node *store = gpir_node_create(ctx->block, gpir_op_store_reg);
store->index = physreg / 4;
store->component = physreg % 4;
store->child = node;
store->node.sched.max_node = false;
store->node.sched.next_max_node = false;
store->node.sched.complex_allowed = false;
store->node.sched.pos = -1;
store->node.sched.instr = NULL;
store->node.sched.inserted = false;
store->node.sched.dist = node->sched.dist;
if (node->op == gpir_op_complex1) {
/* Complex1 cannot be directly stored, and has a latency of 2 */
store->node.sched.dist += 2;
}
node->sched.physreg_store = store;
gpir_node_add_dep(&store->node, node, GPIR_DEP_INPUT);
list_for_each_entry(gpir_load_node, load,
&ctx->physreg_reads[physreg], reg_link) {
gpir_node_add_dep(&store->node, &load->node, GPIR_DEP_WRITE_AFTER_READ);
if (load->node.sched.ready) {
list_del(&load->node.list);
load->node.sched.ready = false;
}
}
node->sched.ready = false;
schedule_insert_ready_list(ctx, &store->node);
}
gpir_debug("spilling %d to $%d.%c, store %d\n", node->index,
node->sched.physreg_store->index,
"xyzw"[node->sched.physreg_store->component],
node->sched.physreg_store->node.index);
spill_node(ctx, node, node->sched.physreg_store);
return true;
}
static bool try_spill_nodes(sched_ctx *ctx, gpir_node *orig_node)
{
/* First, try to spill max nodes. */
list_for_each_entry_safe_rev(gpir_node, node, &ctx->ready_list, list) {
if (ctx->max_node_spill_needed <= 0)
break;
/* orig_node is the node we're trying to schedule, so spilling it makes
* no sense. Also don't try to spill any nodes in front of it, since
* they might be scheduled instead.
*/
if (node == orig_node)
break;
if (node->op == gpir_op_mov) {
/* Don't try to spill loads, since that only adds another load and
* store which is likely pointless.
*/
continue;
}
if (!gpir_is_input_node(node) || !node->sched.max_node)
continue;
if (try_spill_node(ctx, node)) {
ctx->max_node_spill_needed--;
ctx->total_spill_needed--;
}
}
/* Now, try to spill the remaining nodes. */
list_for_each_entry_safe_rev(gpir_node, node, &ctx->ready_list, list) {
if (ctx->total_spill_needed <= 0)
break;
if (node == orig_node)
break;
if (node->op == gpir_op_mov)
continue;
if (!gpir_is_input_node(node) ||
!(node->sched.max_node || node->sched.next_max_node))
continue;
if (try_spill_node(ctx, node))
ctx->total_spill_needed--;
}
return ctx->total_spill_needed <= 0 && ctx->max_node_spill_needed <= 0;
}
static int ASSERTED gpir_get_curr_ready_list_slots(sched_ctx *ctx)
{
int total = 0;
list_for_each_entry(gpir_node, node, &ctx->ready_list, list) {
total += gpir_get_slots_required(node);
}
return total;
}
/* What gpir_get_min_end() would return if node were replaced with a move
* instruction not in the complex slot. Normally this is 2 + min_end, except
* for some store instructions which must have the move node in the same
* instruction.
*/
static int gpir_get_min_end_as_move(gpir_node *node)
{
int min = INT_MAX;
gpir_node_foreach_succ(node, dep) {
gpir_node *succ = dep->succ;
if (succ->sched.instr && dep->type == GPIR_DEP_INPUT) {
switch (succ->op) {
case gpir_op_store_temp:
case gpir_op_store_reg:
case gpir_op_store_varying:
continue;
default:
break;
}
if (min > succ->sched.instr->index + 2)
min = succ->sched.instr->index + 2;
}
}
return min;
}
/* The second source for add0, add1, mul0, and mul1 units cannot be complex.
* The hardware overwrites the add second sources with 0 and mul second
* sources with 1. This can be a problem if we need to insert more next-max
* moves but we only have values that can't use the complex unit for moves.
*
* Fortunately, we only need to insert a next-max move if there are more than
* 5 next-max nodes, but there are only 4 sources in the previous instruction
* that make values not complex-capable, which means there can be at most 4
* non-complex-capable values. Hence there will always be at least two values
* that can be rewritten to use a move in the complex slot. However, we have
* to be careful not to waste those values by putting both of them in a
* non-complex slot. This is handled for us by gpir_instr, which will reject
* such instructions. We just need to tell it which nodes can use complex, and
* it will do the accounting to figure out what is safe.
*/
static bool can_use_complex(gpir_node *node)
{
gpir_node_foreach_succ(node, dep) {
if (dep->type != GPIR_DEP_INPUT)
continue;
gpir_node *succ = dep->succ;
if (succ->type != gpir_node_type_alu ||
!succ->sched.instr)
continue;
/* Note: this must be consistent with gpir_codegen_{mul,add}_slot{0,1}
*/
gpir_alu_node *alu = gpir_node_to_alu(succ);
switch (alu->node.op) {
case gpir_op_complex1:
/* complex1 puts its third source in the fourth slot */
if (alu->children[1] == node || alu->children[2] == node)
return false;
break;
case gpir_op_complex2:
/* complex2 has its source duplicated, since it actually takes two
* sources but we only ever use it with both sources the same. Hence
* its source can never be the complex slot.
*/
return false;
case gpir_op_select:
/* Select has its sources rearranged */
if (alu->children[0] == node)
return false;
break;
default:
assert(alu->num_child <= 2);
if (alu->num_child == 2 && alu->children[1] == node)
return false;
break;
}
}
return true;
}
/* Initialize node->sched.max_node and node->sched.next_max_node for every
* input node on the ready list. We should only need to do this once per
* instruction, at the beginning, since we never add max nodes to the ready
* list.
*/
static void sched_find_max_nodes(sched_ctx *ctx)
{
ctx->instr->alu_num_unscheduled_next_max = 0;
ctx->instr->alu_num_slot_needed_by_max = 0;
list_for_each_entry(gpir_node, node, &ctx->ready_list, list) {
if (!gpir_is_input_node(node))
continue;
int min_end_move = gpir_get_min_end_as_move(node);
node->sched.max_node = (min_end_move == ctx->instr->index);
node->sched.next_max_node = (min_end_move == ctx->instr->index + 1);
if (node->sched.next_max_node)
node->sched.complex_allowed = can_use_complex(node);
if (node->sched.max_node)
ctx->instr->alu_num_slot_needed_by_max++;
if (node->sched.next_max_node)
ctx->instr->alu_num_unscheduled_next_max++;
}
}
/* Verify the invariants described in gpir.h, as well as making sure the
* counts are correct.
*/
static void ASSERTED verify_max_nodes(sched_ctx *ctx)
{
int alu_num_slot_needed_by_max = 0;
int alu_num_unscheduled_next_max = 0;
int alu_num_slot_needed_by_store = 0;
int alu_num_slot_needed_by_non_cplx_store = 0;
ASSERTED int alu_max_allowed_next_max = 5;
list_for_each_entry(gpir_node, node, &ctx->ready_list, list) {
if (!gpir_is_input_node(node))
continue;
if (node->sched.max_node)
alu_num_slot_needed_by_max++;
if (node->sched.next_max_node)
alu_num_unscheduled_next_max++;
if (used_by_store(node, ctx->instr)) {
alu_num_slot_needed_by_store++;
if (node->sched.next_max_node && !node->sched.complex_allowed)
alu_num_slot_needed_by_non_cplx_store++;
}
}
if (ctx->instr->slots[GPIR_INSTR_SLOT_MUL0] &&
ctx->instr->slots[GPIR_INSTR_SLOT_MUL0]->op == gpir_op_complex1)
alu_max_allowed_next_max = 4;
assert(ctx->instr->alu_num_slot_needed_by_max == alu_num_slot_needed_by_max);
assert(ctx->instr->alu_num_unscheduled_next_max == alu_num_unscheduled_next_max);
assert(ctx->instr->alu_max_allowed_next_max == alu_max_allowed_next_max);
assert(ctx->instr->alu_num_slot_needed_by_store == alu_num_slot_needed_by_store);
assert(ctx->instr->alu_num_slot_needed_by_non_cplx_store ==
alu_num_slot_needed_by_non_cplx_store);
assert(ctx->instr->alu_num_slot_free >= alu_num_slot_needed_by_store + alu_num_slot_needed_by_max + MAX2(alu_num_unscheduled_next_max - alu_max_allowed_next_max, 0));
assert(ctx->instr->alu_non_cplx_slot_free >= alu_num_slot_needed_by_max + alu_num_slot_needed_by_non_cplx_store);
}
static bool try_node(sched_ctx *ctx)
{
gpir_node *best_node = NULL;
int best_score = INT_MIN;
/* Spilling will delete arbitrary nodes after the current one in the ready
* list, which means that we always need to look up the next node in the
* list at the end of each iteration. While list_for_each_entry() works for
* this purpose, its sanity checking assumes that you don't want to modify
* the list at all. We know better here, so we have to open-code
* list_for_each_entry() without the check in order to not assert.
*/
for (gpir_node *node = list_entry(ctx->ready_list.next, gpir_node, list);
&node->list != &ctx->ready_list;
node = list_entry(node->list.next, gpir_node, list)) {
if (best_score != INT_MIN) {
if (node->sched.dist < best_node->sched.dist)
break;
}
if (node->sched.ready) {
ctx->total_spill_needed = 0;
ctx->max_node_spill_needed = 0;
int score = schedule_try_node(ctx, node, true);
if (score == INT_MIN && !best_node &&
ctx->total_spill_needed > 0 &&
try_spill_nodes(ctx, node)) {
score = schedule_try_node(ctx, node, true);
}
/* schedule_first nodes must be scheduled if possible */
if (gpir_op_infos[node->op].schedule_first && score != INT_MIN) {
best_node = node;
best_score = score;
break;
}
if (score > best_score) {
best_score = score;
best_node = node;
}
}
}
if (best_node) {
gpir_debug("scheduling %d (score = %d)%s\n", best_node->index,
best_score, best_node->sched.max_node ? " (max)" : "");
ASSERTED int score = schedule_try_node(ctx, best_node, false);
assert(score != INT_MIN);
return true;
}
return false;
}
static void place_move(sched_ctx *ctx, gpir_node *node)
{
/* For complex1 that is consumed by a postlog2, we cannot allow any moves
* in between. Convert the postlog2 to a move and insert a new postlog2,
* and try to schedule it again in try_node().
*/
gpir_node *postlog2 = consuming_postlog2(node);
if (postlog2) {
postlog2->op = gpir_op_mov;
create_postlog2(ctx, node);
return;
}
gpir_node *move = create_move(ctx, node);
gpir_node_foreach_succ_safe(move, dep) {
gpir_node *succ = dep->succ;
if (!succ->sched.instr ||
ctx->instr->index < succ->sched.instr->index + gpir_get_min_dist(dep)) {
gpir_node_replace_pred(dep, node);
if (dep->type == GPIR_DEP_INPUT)
gpir_node_replace_child(succ, move, node);
}
}
ASSERTED int score = schedule_try_node(ctx, move, false);
assert(score != INT_MIN);
}
/* For next-max nodes, not every node can be offloaded to a move in the
* complex slot. If we run out of non-complex slots, then such nodes cannot
* have moves placed for them. There should always be sufficient
* complex-capable nodes so that this isn't a problem. We also disallow moves
* for schedule_first nodes here.
*/
static bool can_place_move(sched_ctx *ctx, gpir_node *node)
{
if (gpir_op_infos[node->op].schedule_first)
return false;
if (!node->sched.next_max_node)
return true;
if (node->sched.complex_allowed)
return true;
return ctx->instr->alu_non_cplx_slot_free > 0;
}
static bool sched_move(sched_ctx *ctx)
{
list_for_each_entry(gpir_node, node, &ctx->ready_list, list) {
if (node->sched.max_node) {
place_move(ctx, node);
return true;
}
}
if (ctx->instr->alu_num_slot_needed_by_store > 0) {
list_for_each_entry(gpir_node, node, &ctx->ready_list, list) {
if (used_by_store(node, ctx->instr)) {
place_move(ctx, node);
/* If we have a store of a load, then we need to make sure that we
* immediately schedule the dependent load, or create a move
* instruction for it, like we would with a normal instruction.
* The rest of the code isn't set up to handle load nodes in the
* ready list -- see the comments in _schedule_try_node().
*/
if (node->type == gpir_node_type_load) {
if (!schedule_try_place_node(ctx, node, false)) {
create_move(ctx, node);
}
}
return true;
}
}
}
/* complex1 is a bit a special case, since it has a latency of 2 cycles.
* Once it is fully ready, we need to group all its uses in the same
* instruction, and then we need to avoid creating any moves in the next
* cycle in order to get it scheduled. Failing to do any of these things
* could result in a cycle penalty, or even worse, an infinite loop of
* inserting moves. If it is a next-max node and ready, then it has a use
* in the previous cycle. If it has a use in the current cycle as well,
* then we want to insert a move node to make it ready in two cycles -- if
* we don't, then there will be at least a one cycle penalty. Otherwise, it
* will be ready next cycle, and we shouldn't insert a move node, or else
* we'll also have a one cycle penalty.
*/
if (ctx->instr->alu_num_slot_free > 0) {
list_for_each_entry(gpir_node, node, &ctx->ready_list, list) {
if (!can_place_move(ctx, node))
continue;
if (node->sched.next_max_node && node->op == gpir_op_complex1 &&
node->sched.ready) {
bool skip = true;
gpir_node_foreach_succ(node, dep) {
if (dep->type != GPIR_DEP_INPUT)
continue;
gpir_node *succ = dep->succ;
if (!succ->sched.instr ||
succ->sched.instr->index != ctx->instr->index - 1) {
skip = false;
break;
}
}
if (skip)
continue;
place_move(ctx, node);
return true;
}
}
}
/* Once we've made all the required moves, we're free to use any extra
* slots to schedule more moves for next max nodes. Besides sometimes being
* necessary, this can free up extra space in the next instruction. We walk
* from back to front so that we pick nodes less likely to be scheduled
* next first -- an extra move would be unnecessary there. But make sure
* not to handle the complex1 case handled above.
*/
if (ctx->instr->alu_num_slot_free > 0) {
list_for_each_entry_rev(gpir_node, node, &ctx->ready_list, list) {
if (!can_place_move(ctx, node))
continue;
if (node->sched.next_max_node &&
!(node->op == gpir_op_complex1 && node->sched.ready)) {
place_move(ctx, node);
return true;
}
}
}
/* We may have skipped complex1 above, but if we run out of space, we still
* need to insert the move.
*/
if (ctx->instr->alu_num_unscheduled_next_max >
ctx->instr->alu_max_allowed_next_max) {
list_for_each_entry(gpir_node, node, &ctx->ready_list, list) {
if (!can_place_move(ctx, node))
continue;
if (node->sched.next_max_node) {
place_move(ctx, node);
return true;
}
}
}
return false;
}
static bool gpir_sched_instr_pass(sched_ctx *ctx)
{
if (try_node(ctx))
return true;
if (sched_move(ctx))
return true;
return false;
}
static void schedule_print_pre_one_instr(sched_ctx *ctx)
{
if (!(lima_debug & LIMA_DEBUG_GP))
return;
printf("instr %d for ready list:", ctx->instr->index);
list_for_each_entry(gpir_node, node, &ctx->ready_list, list) {
printf(" %d/%c (%d, %d, %s)", node->index, node->sched.ready ? 'r' : 'p',
node->sched.dist, gpir_get_slots_required(node),
node->sched.max_node ? "max" : (node->sched.next_max_node ? "next" : "none"));
}
printf("\nlive physregs: ");
for (unsigned i = 0; i < 16; i++) {
if (ctx->live_physregs & (0xfull << (4 * i))) {
printf("$%d.", i);
for (unsigned j = 0; j < 4; j++) {
if (ctx->live_physregs & (1ull << (4 * i + j)))
printf("%c", "xyzw"[j]);
}
printf(" ");
}
}
printf("\n");
}
static void schedule_print_post_one_instr(gpir_instr *instr)
{
if (!(lima_debug & LIMA_DEBUG_GP))
return;
printf("post schedule instr");
for (int i = 0; i < GPIR_INSTR_SLOT_NUM; i++) {
if (instr->slots[i])
printf(" %d/%d", i, instr->slots[i]->index);
}
printf("\n");
}
static bool schedule_one_instr(sched_ctx *ctx)
{
gpir_instr *instr = gpir_instr_create(ctx->block);
if (unlikely(!instr))
return false;
ctx->instr = instr;
sched_find_max_nodes(ctx);
schedule_print_pre_one_instr(ctx);
while (gpir_sched_instr_pass(ctx)) {
assert(ctx->ready_list_slots == gpir_get_curr_ready_list_slots(ctx));
#ifndef NDEBUG
verify_max_nodes(ctx);
verify_ready_list(ctx);
#endif
}
schedule_print_post_one_instr(instr);
return true;
}
static bool schedule_block(gpir_block *block)
{
/* calculate distance */
list_for_each_entry(gpir_node, node, &block->node_list, list) {
if (gpir_node_is_root(node))
schedule_update_distance(node);
}
sched_ctx ctx;
list_inithead(&ctx.ready_list);
ctx.block = block;
ctx.ready_list_slots = 0;
ctx.live_physregs = block->live_out_phys;
for (unsigned i = 0; i < GPIR_PHYSICAL_REG_NUM; i++) {
list_inithead(&ctx.physreg_reads[i]);
}
/* construct the ready list from root nodes */
list_for_each_entry_safe(gpir_node, node, &block->node_list, list) {
/* Add to physreg_reads */
if (node->op == gpir_op_load_reg) {
gpir_load_node *load = gpir_node_to_load(node);
unsigned index = 4 * load->index + load->component;
list_addtail(&load->reg_link, &ctx.physreg_reads[index]);
}
if (gpir_node_is_root(node))
schedule_insert_ready_list(&ctx, node);
}
list_inithead(&block->node_list);
while (!list_is_empty(&ctx.ready_list)) {
if (!schedule_one_instr(&ctx))
return false;
}
return true;
}
static void schedule_build_dependency(gpir_block *block)
{
/* merge dummy_f/m to the node created from */
list_for_each_entry_safe(gpir_node, node, &block->node_list, list) {
if (node->op == gpir_op_dummy_m) {
gpir_alu_node *alu = gpir_node_to_alu(node);
gpir_node *origin = alu->children[0];
gpir_node *dummy_f = alu->children[1];
gpir_node_foreach_succ(node, dep) {
gpir_node *succ = dep->succ;
/* origin and node may have same succ (by VREG/INPUT or
* VREG/VREG dep), so use gpir_node_add_dep() instead of
* gpir_node_replace_pred() */
gpir_node_add_dep(succ, origin, dep->type);
gpir_node_replace_child(succ, node, origin);
}
gpir_node_delete(dummy_f);
gpir_node_delete(node);
}
}
}
static void print_statistic(gpir_compiler *comp, int save_index)
{
int num_nodes[gpir_op_num] = {0};
int num_created_nodes[gpir_op_num] = {0};
list_for_each_entry(gpir_block, block, &comp->block_list, list) {
list_for_each_entry(gpir_node, node, &block->node_list, list) {
num_nodes[node->op]++;
if (node->index >= save_index)
num_created_nodes[node->op]++;
}
}
printf("====== gpir scheduler statistic ======\n");
printf("---- how many nodes are scheduled ----\n");
int n = 0, l = 0;
for (int i = 0; i < gpir_op_num; i++) {
if (num_nodes[i]) {
printf("%10s:%-6d", gpir_op_infos[i].name, num_nodes[i]);
n += num_nodes[i];
if (!(++l % 4))
printf("\n");
}
}
if (l % 4)
printf("\n");
printf("\ntotal: %d\n", n);
printf("---- how many nodes are created ----\n");
n = l = 0;
for (int i = 0; i < gpir_op_num; i++) {
if (num_created_nodes[i]) {
printf("%10s:%-6d", gpir_op_infos[i].name, num_created_nodes[i]);
n += num_created_nodes[i];
if (!(++l % 4))
printf("\n");
}
}
if (l % 4)
printf("\n");
printf("\ntotal: %d\n", n);
printf("------------------------------------\n");
}
bool gpir_schedule_prog(gpir_compiler *comp)
{
int save_index = comp->cur_index;
/* init schedule info */
int index = 0;
list_for_each_entry(gpir_block, block, &comp->block_list, list) {
block->sched.instr_index = 0;
list_for_each_entry(gpir_node, node, &block->node_list, list) {
node->sched.instr = NULL;
node->sched.pos = -1;
node->sched.index = index++;
node->sched.dist = -1;
/* TODO when we support multiple basic blocks, we need a way to keep
* track of this for physregs allocated before the scheduler.
*/
node->sched.physreg_store = NULL;
node->sched.ready = false;
node->sched.inserted = false;
node->sched.complex_allowed = false;
node->sched.max_node = false;
node->sched.next_max_node = false;
}
}
/* build dependency */
list_for_each_entry(gpir_block, block, &comp->block_list, list) {
schedule_build_dependency(block);
}
//gpir_debug("after scheduler build reg dependency\n");
//gpir_node_print_prog_dep(comp);
list_for_each_entry(gpir_block, block, &comp->block_list, list) {
if (!schedule_block(block)) {
gpir_error("fail schedule block\n");
return false;
}
}
if (lima_debug & LIMA_DEBUG_GP) {
print_statistic(comp, save_index);
gpir_instr_print_prog(comp);
}
return true;
}