mesa/src/freedreno/ir3/ir3_nir.c

1029 lines
37 KiB
C

/*
* Copyright (C) 2015 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#include "util/debug.h"
#include "util/u_math.h"
#include "ir3_compiler.h"
#include "ir3_nir.h"
#include "ir3_shader.h"
static bool
ir3_nir_should_vectorize_mem(unsigned align_mul, unsigned align_offset,
unsigned bit_size, unsigned num_components,
nir_intrinsic_instr *low,
nir_intrinsic_instr *high, void *data)
{
unsigned byte_size = bit_size / 8;
if (low->intrinsic != nir_intrinsic_load_ubo) {
return bit_size <= 32 && align_mul >= byte_size &&
align_offset % byte_size == 0 &&
num_components <= 4;
}
assert(bit_size >= 8);
if (bit_size != 32)
return false;
int size = num_components * byte_size;
/* Don't care about alignment past vec4. */
assert(util_is_power_of_two_nonzero(align_mul));
align_mul = MIN2(align_mul, 16);
align_offset &= 15;
/* Our offset alignment should aways be at least 4 bytes */
if (align_mul < 4)
return false;
unsigned worst_start_offset = 16 - align_mul + align_offset;
if (worst_start_offset + size > 16)
return false;
return true;
}
#define OPT(nir, pass, ...) \
({ \
bool this_progress = false; \
NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__); \
this_progress; \
})
#define OPT_V(nir, pass, ...) NIR_PASS_V(nir, pass, ##__VA_ARGS__)
void
ir3_optimize_loop(struct ir3_compiler *compiler, nir_shader *s)
{
bool progress;
unsigned lower_flrp = (s->options->lower_flrp16 ? 16 : 0) |
(s->options->lower_flrp32 ? 32 : 0) |
(s->options->lower_flrp64 ? 64 : 0);
do {
progress = false;
OPT_V(s, nir_lower_vars_to_ssa);
progress |= OPT(s, nir_lower_alu_to_scalar, NULL, NULL);
progress |= OPT(s, nir_lower_phis_to_scalar, false);
progress |= OPT(s, nir_copy_prop);
progress |= OPT(s, nir_opt_deref);
progress |= OPT(s, nir_opt_dce);
progress |= OPT(s, nir_opt_cse);
progress |= OPT(s, nir_opt_find_array_copies);
progress |= OPT(s, nir_opt_copy_prop_vars);
progress |= OPT(s, nir_opt_dead_write_vars);
static int gcm = -1;
if (gcm == -1)
gcm = env_var_as_unsigned("GCM", 0);
if (gcm == 1)
progress |= OPT(s, nir_opt_gcm, true);
else if (gcm == 2)
progress |= OPT(s, nir_opt_gcm, false);
progress |= OPT(s, nir_opt_peephole_select, 16, true, true);
progress |= OPT(s, nir_opt_intrinsics);
/* NOTE: GS lowering inserts an output var with varying slot that
* is larger than VARYING_SLOT_MAX (ie. GS_VERTEX_FLAGS_IR3),
* which triggers asserts in nir_shader_gather_info(). To work
* around that skip lowering phi precision for GS.
*
* Calling nir_shader_gather_info() late also seems to cause
* problems for tess lowering, for now since we only enable
* fp16/int16 for frag and compute, skip phi precision lowering
* for other stages.
*/
if ((s->info.stage == MESA_SHADER_FRAGMENT) ||
(s->info.stage == MESA_SHADER_COMPUTE) ||
(s->info.stage == MESA_SHADER_KERNEL)) {
progress |= OPT(s, nir_opt_phi_precision);
}
progress |= OPT(s, nir_opt_algebraic);
progress |= OPT(s, nir_lower_alu);
progress |= OPT(s, nir_lower_pack);
progress |= OPT(s, nir_opt_constant_folding);
static const nir_opt_offsets_options offset_options = {
/* How large an offset we can encode in the instr's immediate field.
*/
.uniform_max = (1 << 9) - 1,
.shared_max = (1 << 13) - 1,
.buffer_max = ~0,
};
progress |= OPT(s, nir_opt_offsets, &offset_options);
nir_load_store_vectorize_options vectorize_opts = {
.modes = nir_var_mem_ubo | nir_var_mem_ssbo,
.callback = ir3_nir_should_vectorize_mem,
.robust_modes = compiler->robust_buffer_access2 ? nir_var_mem_ubo | nir_var_mem_ssbo: 0,
};
progress |= OPT(s, nir_opt_load_store_vectorize, &vectorize_opts);
if (lower_flrp != 0) {
if (OPT(s, nir_lower_flrp, lower_flrp, false /* always_precise */)) {
OPT(s, nir_opt_constant_folding);
progress = true;
}
/* Nothing should rematerialize any flrps, so we only
* need to do this lowering once.
*/
lower_flrp = 0;
}
progress |= OPT(s, nir_opt_dead_cf);
if (OPT(s, nir_opt_trivial_continues)) {
progress |= true;
/* If nir_opt_trivial_continues makes progress, then we need to clean
* things up if we want any hope of nir_opt_if or nir_opt_loop_unroll
* to make progress.
*/
OPT(s, nir_copy_prop);
OPT(s, nir_opt_dce);
}
progress |= OPT(s, nir_opt_if, false);
progress |= OPT(s, nir_opt_loop_unroll);
progress |= OPT(s, nir_lower_64bit_phis);
progress |= OPT(s, nir_opt_remove_phis);
progress |= OPT(s, nir_opt_undef);
} while (progress);
OPT(s, nir_lower_var_copies);
}
static bool
should_split_wrmask(const nir_instr *instr, const void *data)
{
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
switch (intr->intrinsic) {
case nir_intrinsic_store_ssbo:
case nir_intrinsic_store_shared:
case nir_intrinsic_store_global:
case nir_intrinsic_store_scratch:
return true;
default:
return false;
}
}
static bool
ir3_nir_lower_ssbo_size_filter(const nir_instr *instr, const void *data)
{
return instr->type == nir_instr_type_intrinsic &&
nir_instr_as_intrinsic(instr)->intrinsic ==
nir_intrinsic_get_ssbo_size;
}
static nir_ssa_def *
ir3_nir_lower_ssbo_size_instr(nir_builder *b, nir_instr *instr, void *data)
{
uint8_t ssbo_size_to_bytes_shift = *(uint8_t *) data;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
return nir_ishl(b, &intr->dest.ssa, nir_imm_int(b, ssbo_size_to_bytes_shift));
}
static bool
ir3_nir_lower_ssbo_size(nir_shader *s, uint8_t ssbo_size_to_bytes_shift)
{
return nir_shader_lower_instructions(s, ir3_nir_lower_ssbo_size_filter,
ir3_nir_lower_ssbo_size_instr,
&ssbo_size_to_bytes_shift);
}
void
ir3_nir_lower_io_to_temporaries(nir_shader *s)
{
/* Outputs consumed by the VPC, VS inputs, and FS outputs are all handled
* by the hardware pre-loading registers at the beginning and then reading
* them at the end, so we can't access them indirectly except through
* normal register-indirect accesses, and therefore ir3 doesn't support
* indirect accesses on those. Other i/o is lowered in ir3_nir_lower_tess,
* and indirects work just fine for those. GS outputs may be consumed by
* VPC, but have their own lowering in ir3_nir_lower_gs() which does
* something similar to nir_lower_io_to_temporaries so we shouldn't need
* to lower them.
*
* Note: this might be a little inefficient for VS or TES outputs which are
* when the next stage isn't an FS, but it probably don't make sense to
* depend on the next stage before variant creation.
*
* TODO: for gallium, mesa/st also does some redundant lowering, including
* running this pass for GS inputs/outputs which we don't want but not
* including TES outputs or FS inputs which we do need. We should probably
* stop doing that once we're sure all drivers are doing their own
* indirect i/o lowering.
*/
bool lower_input = s->info.stage == MESA_SHADER_VERTEX ||
s->info.stage == MESA_SHADER_FRAGMENT;
bool lower_output = s->info.stage != MESA_SHADER_TESS_CTRL &&
s->info.stage != MESA_SHADER_GEOMETRY;
if (lower_input || lower_output) {
NIR_PASS_V(s, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(s),
lower_output, lower_input);
/* nir_lower_io_to_temporaries() creates global variables and copy
* instructions which need to be cleaned up.
*/
NIR_PASS_V(s, nir_split_var_copies);
NIR_PASS_V(s, nir_lower_var_copies);
NIR_PASS_V(s, nir_lower_global_vars_to_local);
}
/* Regardless of the above, we need to lower indirect references to
* compact variables such as clip/cull distances because due to how
* TCS<->TES IO works we cannot handle indirect accesses that "straddle"
* vec4 components. nir_lower_indirect_derefs has a special case for
* compact variables, so it will actually lower them even though we pass
* in 0 modes.
*
* Using temporaries would be slightly better but
* nir_lower_io_to_temporaries currently doesn't support TCS i/o.
*/
NIR_PASS_V(s, nir_lower_indirect_derefs, 0, UINT32_MAX);
}
/**
* Inserts an add of 0.5 to floating point array index values in texture coordinates.
*/
static bool
ir3_nir_lower_array_sampler_cb(struct nir_builder *b, nir_instr *instr, void *_data)
{
if (instr->type != nir_instr_type_tex)
return false;
nir_tex_instr *tex = nir_instr_as_tex(instr);
if (!tex->is_array || tex->op == nir_texop_lod)
return false;
int coord_idx = nir_tex_instr_src_index(tex, nir_tex_src_coord);
if (coord_idx == -1 ||
nir_tex_instr_src_type(tex, coord_idx) != nir_type_float)
return false;
b->cursor = nir_before_instr(&tex->instr);
unsigned ncomp = tex->coord_components;
nir_ssa_def *src = nir_ssa_for_src(b, tex->src[coord_idx].src, ncomp);
assume(ncomp >= 1);
nir_ssa_def *ai = nir_channel(b, src, ncomp - 1);
ai = nir_fadd(b, ai, nir_imm_floatN_t(b, 0.5, src->bit_size));
nir_instr_rewrite_src(&tex->instr, &tex->src[coord_idx].src,
nir_src_for_ssa(nir_vector_insert_imm(b, src, ai, ncomp - 1)));
return true;
}
static bool
ir3_nir_lower_array_sampler(nir_shader *shader)
{
return nir_shader_instructions_pass(
shader, ir3_nir_lower_array_sampler_cb,
nir_metadata_block_index | nir_metadata_dominance, NULL);
}
void
ir3_finalize_nir(struct ir3_compiler *compiler, nir_shader *s)
{
struct nir_lower_tex_options tex_options = {
.lower_rect = 0,
.lower_tg4_offsets = true,
.lower_invalid_implicit_lod = true,
};
if (compiler->gen >= 4) {
/* a4xx seems to have *no* sam.p */
tex_options.lower_txp = ~0; /* lower all txp */
} else {
/* a3xx just needs to avoid sam.p for 3d tex */
tex_options.lower_txp = (1 << GLSL_SAMPLER_DIM_3D);
}
if (ir3_shader_debug & IR3_DBG_DISASM) {
mesa_logi("----------------------");
nir_log_shaderi(s);
mesa_logi("----------------------");
}
if (s->info.stage == MESA_SHADER_GEOMETRY)
NIR_PASS_V(s, ir3_nir_lower_gs);
NIR_PASS_V(s, nir_lower_amul, ir3_glsl_type_size);
OPT_V(s, nir_lower_regs_to_ssa);
OPT_V(s, nir_lower_wrmasks, should_split_wrmask, s);
OPT_V(s, nir_lower_tex, &tex_options);
OPT_V(s, nir_lower_load_const_to_scalar);
if (compiler->array_index_add_half)
OPT_V(s, ir3_nir_lower_array_sampler);
ir3_optimize_loop(compiler, s);
/* do idiv lowering after first opt loop to get a chance to propagate
* constants for divide by immed power-of-two:
*/
nir_lower_idiv_options idiv_options = {
.imprecise_32bit_lowering = true,
.allow_fp16 = true,
};
const bool idiv_progress = OPT(s, nir_lower_idiv, &idiv_options);
if (idiv_progress)
ir3_optimize_loop(compiler, s);
OPT_V(s, nir_remove_dead_variables, nir_var_function_temp, NULL);
if (ir3_shader_debug & IR3_DBG_DISASM) {
mesa_logi("----------------------");
nir_log_shaderi(s);
mesa_logi("----------------------");
}
/* st_program.c's parameter list optimization requires that future nir
* variants don't reallocate the uniform storage, so we have to remove
* uniforms that occupy storage. But we don't want to remove samplers,
* because they're needed for YUV variant lowering.
*/
nir_foreach_uniform_variable_safe (var, s) {
if (var->data.mode == nir_var_uniform &&
(glsl_type_get_image_count(var->type) ||
glsl_type_get_sampler_count(var->type)))
continue;
exec_node_remove(&var->node);
}
nir_validate_shader(s, "after uniform var removal");
nir_sweep(s);
}
static bool
lower_subgroup_id_filter(const nir_instr *instr, const void *unused)
{
(void)unused;
if (instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
return intr->intrinsic == nir_intrinsic_load_subgroup_invocation ||
intr->intrinsic == nir_intrinsic_load_subgroup_id ||
intr->intrinsic == nir_intrinsic_load_num_subgroups;
}
static nir_ssa_def *
lower_subgroup_id(nir_builder *b, nir_instr *instr, void *unused)
{
(void)unused;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic == nir_intrinsic_load_subgroup_invocation) {
return nir_iand(
b, nir_load_local_invocation_index(b),
nir_isub(b, nir_load_subgroup_size(b), nir_imm_int(b, 1)));
} else if (intr->intrinsic == nir_intrinsic_load_subgroup_id) {
return nir_ishr(b, nir_load_local_invocation_index(b),
nir_load_subgroup_id_shift_ir3(b));
} else {
assert(intr->intrinsic == nir_intrinsic_load_num_subgroups);
/* If the workgroup size is constant,
* nir_lower_compute_system_values() will replace local_size with a
* constant so this can mostly be constant folded away.
*/
nir_ssa_def *local_size = nir_load_workgroup_size(b);
nir_ssa_def *size =
nir_imul24(b, nir_channel(b, local_size, 0),
nir_imul24(b, nir_channel(b, local_size, 1),
nir_channel(b, local_size, 2)));
nir_ssa_def *one = nir_imm_int(b, 1);
return nir_iadd(b, one,
nir_ishr(b, nir_isub(b, size, one),
nir_load_subgroup_id_shift_ir3(b)));
}
}
static bool
ir3_nir_lower_subgroup_id_cs(nir_shader *shader)
{
return nir_shader_lower_instructions(shader, lower_subgroup_id_filter,
lower_subgroup_id, NULL);
}
/**
* Late passes that need to be done after pscreen->finalize_nir()
*/
void
ir3_nir_post_finalize(struct ir3_shader *shader)
{
struct nir_shader *s = shader->nir;
struct ir3_compiler *compiler = shader->compiler;
NIR_PASS_V(s, nir_lower_io, nir_var_shader_in | nir_var_shader_out,
ir3_glsl_type_size, (nir_lower_io_options)0);
if (s->info.stage == MESA_SHADER_FRAGMENT) {
/* NOTE: lower load_barycentric_at_sample first, since it
* produces load_barycentric_at_offset:
*/
NIR_PASS_V(s, ir3_nir_lower_load_barycentric_at_sample);
NIR_PASS_V(s, ir3_nir_lower_load_barycentric_at_offset);
NIR_PASS_V(s, ir3_nir_move_varying_inputs);
NIR_PASS_V(s, nir_lower_fb_read);
}
if (compiler->gen >= 6 && s->info.stage == MESA_SHADER_FRAGMENT &&
!(ir3_shader_debug & IR3_DBG_NOFP16)) {
NIR_PASS_V(s, nir_lower_mediump_io, nir_var_shader_out, 0, false);
}
if ((s->info.stage == MESA_SHADER_COMPUTE) ||
(s->info.stage == MESA_SHADER_KERNEL) ||
compiler->has_getfiberid) {
/* If the API-facing subgroup size is forced to a particular value, lower
* it here. Beyond this point nir_intrinsic_load_subgroup_size will return
* the "real" subgroup size.
*/
unsigned subgroup_size = 0, max_subgroup_size = 0;
switch (shader->api_wavesize) {
case IR3_SINGLE_ONLY:
subgroup_size = max_subgroup_size = compiler->threadsize_base;
break;
case IR3_DOUBLE_ONLY:
subgroup_size = max_subgroup_size = compiler->threadsize_base * 2;
break;
case IR3_SINGLE_OR_DOUBLE:
/* For vertex stages, we know the wavesize will never be doubled.
* Lower subgroup_size here, to avoid having to deal with it when
* translating from NIR. Otherwise use the "real" wavesize obtained as
* a driver param.
*/
if (s->info.stage != MESA_SHADER_COMPUTE &&
s->info.stage != MESA_SHADER_FRAGMENT) {
subgroup_size = max_subgroup_size = compiler->threadsize_base;
} else {
subgroup_size = 0;
max_subgroup_size = compiler->threadsize_base * 2;
}
break;
}
OPT(s, nir_lower_subgroups,
&(nir_lower_subgroups_options){
.subgroup_size = subgroup_size,
.ballot_bit_size = 32,
.ballot_components = max_subgroup_size / 32,
.lower_to_scalar = true,
.lower_vote_eq = true,
.lower_subgroup_masks = true,
.lower_read_invocation_to_cond = true,
.lower_shuffle = true,
.lower_relative_shuffle = true,
});
}
if ((s->info.stage == MESA_SHADER_COMPUTE) ||
(s->info.stage == MESA_SHADER_KERNEL)) {
bool progress = false;
NIR_PASS(progress, s, ir3_nir_lower_subgroup_id_cs);
/* ir3_nir_lower_subgroup_id_cs creates extra compute intrinsics which
* we need to lower again.
*/
if (progress)
NIR_PASS_V(s, nir_lower_compute_system_values, NULL);
}
/* we cannot ensure that ir3_finalize_nir() is only called once, so
* we also need to do any run-once workarounds here:
*/
OPT_V(s, ir3_nir_apply_trig_workarounds);
const nir_lower_image_options lower_image_opts = {
.lower_cube_size = true,
};
NIR_PASS_V(s, nir_lower_image, &lower_image_opts);
const nir_lower_idiv_options lower_idiv_options = {
.imprecise_32bit_lowering = true,
.allow_fp16 = true,
};
NIR_PASS_V(s, nir_lower_idiv, &lower_idiv_options); /* idiv generated by cube lowering */
/* The resinfo opcode returns the size in dwords on a4xx */
if (compiler->gen == 4)
OPT_V(s, ir3_nir_lower_ssbo_size, 2);
/* The resinfo opcode we have for getting the SSBO size on a6xx returns a
* byte length divided by IBO_0_FMT, while the NIR intrinsic coming in is a
* number of bytes. Switch things so the NIR intrinsic in our backend means
* dwords.
*/
if (compiler->gen >= 6)
OPT_V(s, ir3_nir_lower_ssbo_size, compiler->storage_16bit ? 1 : 2);
ir3_optimize_loop(compiler, s);
}
static bool
ir3_nir_lower_view_layer_id(nir_shader *nir, bool layer_zero, bool view_zero)
{
unsigned layer_id_loc = ~0, view_id_loc = ~0;
nir_foreach_shader_in_variable (var, nir) {
if (var->data.location == VARYING_SLOT_LAYER)
layer_id_loc = var->data.driver_location;
if (var->data.location == VARYING_SLOT_VIEWPORT)
view_id_loc = var->data.driver_location;
}
assert(!layer_zero || layer_id_loc != ~0);
assert(!view_zero || view_id_loc != ~0);
bool progress = false;
nir_builder b;
nir_foreach_function (func, nir) {
nir_builder_init(&b, func->impl);
nir_foreach_block (block, func->impl) {
nir_foreach_instr_safe (instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic != nir_intrinsic_load_input)
continue;
unsigned base = nir_intrinsic_base(intrin);
if (base != layer_id_loc && base != view_id_loc)
continue;
b.cursor = nir_before_instr(&intrin->instr);
nir_ssa_def *zero = nir_imm_int(&b, 0);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, zero);
nir_instr_remove(&intrin->instr);
progress = true;
}
}
if (progress) {
nir_metadata_preserve(
func->impl, nir_metadata_block_index | nir_metadata_dominance);
} else {
nir_metadata_preserve(func->impl, nir_metadata_all);
}
}
return progress;
}
static bool
lower_ucp_vs(struct ir3_shader_variant *so)
{
if (!so->key.ucp_enables)
return false;
gl_shader_stage last_geom_stage = MESA_SHADER_VERTEX;
if (so->key.tessellation) {
last_geom_stage = MESA_SHADER_TESS_EVAL;
} else if (so->key.has_gs) {
last_geom_stage = MESA_SHADER_GEOMETRY;
} else {
last_geom_stage = MESA_SHADER_VERTEX;
}
return so->type == last_geom_stage;
}
void
ir3_nir_lower_variant(struct ir3_shader_variant *so, nir_shader *s)
{
if (ir3_shader_debug & IR3_DBG_DISASM) {
mesa_logi("----------------------");
nir_log_shaderi(s);
mesa_logi("----------------------");
}
bool progress = false;
if (so->key.has_gs || so->key.tessellation) {
switch (so->type) {
case MESA_SHADER_VERTEX:
NIR_PASS_V(s, ir3_nir_lower_to_explicit_output, so,
so->key.tessellation);
progress = true;
break;
case MESA_SHADER_TESS_CTRL:
NIR_PASS_V(s, ir3_nir_lower_tess_ctrl, so, so->key.tessellation);
NIR_PASS_V(s, ir3_nir_lower_to_explicit_input, so);
progress = true;
break;
case MESA_SHADER_TESS_EVAL:
NIR_PASS_V(s, ir3_nir_lower_tess_eval, so, so->key.tessellation);
if (so->key.has_gs)
NIR_PASS_V(s, ir3_nir_lower_to_explicit_output, so,
so->key.tessellation);
progress = true;
break;
case MESA_SHADER_GEOMETRY:
NIR_PASS_V(s, ir3_nir_lower_to_explicit_input, so);
progress = true;
break;
default:
break;
}
}
/* Note that it is intentional to use the VS lowering pass for GS, since we
* lower GS into something that looks more like a VS in ir3_nir_lower_gs():
*/
if (lower_ucp_vs(so)) {
progress |= OPT(s, nir_lower_clip_vs, so->key.ucp_enables, false, true, NULL);
} else if (s->info.stage == MESA_SHADER_FRAGMENT) {
bool layer_zero =
so->key.layer_zero && (s->info.inputs_read & VARYING_BIT_LAYER);
bool view_zero =
so->key.view_zero && (s->info.inputs_read & VARYING_BIT_VIEWPORT);
if (so->key.ucp_enables && !so->compiler->has_clip_cull)
progress |= OPT(s, nir_lower_clip_fs, so->key.ucp_enables, true);
if (layer_zero || view_zero)
progress |= OPT(s, ir3_nir_lower_view_layer_id, layer_zero, view_zero);
}
/* Move large constant variables to the constants attached to the NIR
* shader, which we will upload in the immediates range. This generates
* amuls, so we need to clean those up after.
*
* Passing no size_align, we would get packed values, which if we end up
* having to load with LDC would result in extra reads to unpack from
* straddling loads. Align everything to vec4 to avoid that, though we
* could theoretically do better.
*/
OPT_V(s, nir_opt_large_constants, glsl_get_vec4_size_align_bytes,
32 /* bytes */);
OPT_V(s, ir3_nir_lower_load_constant, so);
/* Lower large temporaries to scratch, which in Qualcomm terms is private
* memory, to avoid excess register pressure. This should happen after
* nir_opt_large_constants, because loading from a UBO is much, much less
* expensive.
*/
if (so->compiler->has_pvtmem) {
progress |= OPT(s, nir_lower_vars_to_scratch, nir_var_function_temp,
16 * 16 /* bytes */, glsl_get_natural_size_align_bytes);
}
/* Lower scratch writemasks */
progress |= OPT(s, nir_lower_wrmasks, should_split_wrmask, s);
progress |= OPT(s, ir3_nir_lower_wide_load_store);
progress |= OPT(s, ir3_nir_lower_64b_global);
progress |= OPT(s, ir3_nir_lower_64b_intrinsics);
progress |= OPT(s, ir3_nir_lower_64b_undef);
progress |= OPT(s, nir_lower_int64);
/* Cleanup code leftover from lowering passes before opt_preamble */
if (progress) {
progress |= OPT(s, nir_opt_constant_folding);
}
/* Do the preamble before analysing UBO ranges, because it's usually
* higher-value and because it can result in eliminating some indirect UBO
* accesses where otherwise we'd have to push the whole range. However we
* have to lower the preamble after UBO lowering so that UBO lowering can
* insert instructions in the preamble to push UBOs.
*/
if (so->compiler->has_preamble &&
!(ir3_shader_debug & IR3_DBG_NOPREAMBLE))
progress |= OPT(s, ir3_nir_opt_preamble, so);
if (!so->binning_pass)
OPT_V(s, ir3_nir_analyze_ubo_ranges, so);
progress |= OPT(s, ir3_nir_lower_ubo_loads, so);
progress |= OPT(s, ir3_nir_lower_preamble, so);
OPT_V(s, nir_lower_amul, ir3_glsl_type_size);
/* UBO offset lowering has to come after we've decided what will
* be left as load_ubo
*/
if (so->compiler->gen >= 6)
progress |= OPT(s, nir_lower_ubo_vec4);
OPT_V(s, ir3_nir_lower_io_offsets);
if (progress)
ir3_optimize_loop(so->compiler, s);
/* Fixup indirect load_uniform's which end up with a const base offset
* which is too large to encode. Do this late(ish) so we actually
* can differentiate indirect vs non-indirect.
*/
if (OPT(s, ir3_nir_fixup_load_uniform))
ir3_optimize_loop(so->compiler, s);
/* Do late algebraic optimization to turn add(a, neg(b)) back into
* subs, then the mandatory cleanup after algebraic. Note that it may
* produce fnegs, and if so then we need to keep running to squash
* fneg(fneg(a)).
*/
bool more_late_algebraic = true;
while (more_late_algebraic) {
more_late_algebraic = OPT(s, nir_opt_algebraic_late);
if (!more_late_algebraic && so->compiler->gen >= 5) {
/* Lowers texture operations that have only f2f16 or u2u16 called on
* them to have a 16-bit destination. Also, lower 16-bit texture
* coordinates that had been upconverted to 32-bits just for the
* sampler to just be 16-bit texture sources.
*/
struct nir_fold_tex_srcs_options fold_srcs_options = {
.sampler_dims = ~0,
.src_types = (1 << nir_tex_src_coord) |
(1 << nir_tex_src_lod) |
(1 << nir_tex_src_bias) |
(1 << nir_tex_src_offset) |
(1 << nir_tex_src_comparator) |
(1 << nir_tex_src_min_lod) |
(1 << nir_tex_src_ms_index) |
(1 << nir_tex_src_ddx) |
(1 << nir_tex_src_ddy),
};
struct nir_fold_16bit_tex_image_options fold_16bit_options = {
.rounding_mode = nir_rounding_mode_rtz,
.fold_tex_dest = true,
/* blob dumps have no half regs on pixel 2's ldib or stib, so only enable for a6xx+. */
.fold_image_load_store_data = so->compiler->gen >= 6,
.fold_srcs_options_count = 1,
.fold_srcs_options = &fold_srcs_options,
};
OPT(s, nir_fold_16bit_tex_image, &fold_16bit_options);
}
OPT_V(s, nir_opt_constant_folding);
OPT_V(s, nir_copy_prop);
OPT_V(s, nir_opt_dce);
OPT_V(s, nir_opt_cse);
}
OPT_V(s, nir_opt_sink, nir_move_const_undef);
if (ir3_shader_debug & IR3_DBG_DISASM) {
mesa_logi("----------------------");
nir_log_shaderi(s);
mesa_logi("----------------------");
}
nir_sweep(s);
/* Binning pass variants re-use the const_state of the corresponding
* draw pass shader, so that same const emit can be re-used for both
* passes:
*/
if (!so->binning_pass)
ir3_setup_const_state(s, so, ir3_const_state(so));
}
static void
ir3_nir_scan_driver_consts(struct ir3_compiler *compiler, nir_shader *shader, struct ir3_const_state *layout)
{
nir_foreach_function (function, shader) {
if (!function->impl)
continue;
nir_foreach_block (block, function->impl) {
nir_foreach_instr (instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
unsigned idx;
switch (intr->intrinsic) {
case nir_intrinsic_image_atomic_add:
case nir_intrinsic_image_atomic_imin:
case nir_intrinsic_image_atomic_umin:
case nir_intrinsic_image_atomic_imax:
case nir_intrinsic_image_atomic_umax:
case nir_intrinsic_image_atomic_and:
case nir_intrinsic_image_atomic_or:
case nir_intrinsic_image_atomic_xor:
case nir_intrinsic_image_atomic_exchange:
case nir_intrinsic_image_atomic_comp_swap:
case nir_intrinsic_image_load:
case nir_intrinsic_image_store:
case nir_intrinsic_image_size:
/* a4xx gets these supplied by the hw directly (maybe CP?) */
if (compiler->gen == 5 &&
!(intr->intrinsic == nir_intrinsic_image_load &&
!(nir_intrinsic_access(intr) & ACCESS_COHERENT))) {
idx = nir_src_as_uint(intr->src[0]);
if (layout->image_dims.mask & (1 << idx))
break;
layout->image_dims.mask |= (1 << idx);
layout->image_dims.off[idx] = layout->image_dims.count;
layout->image_dims.count += 3; /* three const per */
}
break;
case nir_intrinsic_load_base_vertex:
case nir_intrinsic_load_first_vertex:
layout->num_driver_params =
MAX2(layout->num_driver_params, IR3_DP_VTXID_BASE + 1);
break;
case nir_intrinsic_load_base_instance:
layout->num_driver_params =
MAX2(layout->num_driver_params, IR3_DP_INSTID_BASE + 1);
break;
case nir_intrinsic_load_user_clip_plane:
idx = nir_intrinsic_ucp_id(intr);
layout->num_driver_params = MAX2(layout->num_driver_params,
IR3_DP_UCP0_X + (idx + 1) * 4);
break;
case nir_intrinsic_load_num_workgroups:
layout->num_driver_params =
MAX2(layout->num_driver_params, IR3_DP_NUM_WORK_GROUPS_Z + 1);
break;
case nir_intrinsic_load_workgroup_id:
if (!compiler->has_shared_regfile) {
layout->num_driver_params =
MAX2(layout->num_driver_params, IR3_DP_WORKGROUP_ID_Z + 1);
}
break;
case nir_intrinsic_load_workgroup_size:
layout->num_driver_params = MAX2(layout->num_driver_params,
IR3_DP_LOCAL_GROUP_SIZE_Z + 1);
break;
case nir_intrinsic_load_base_workgroup_id:
layout->num_driver_params =
MAX2(layout->num_driver_params, IR3_DP_BASE_GROUP_Z + 1);
break;
case nir_intrinsic_load_subgroup_size: {
assert(shader->info.stage == MESA_SHADER_COMPUTE ||
shader->info.stage == MESA_SHADER_FRAGMENT);
enum ir3_driver_param size = shader->info.stage == MESA_SHADER_COMPUTE ?
IR3_DP_CS_SUBGROUP_SIZE : IR3_DP_FS_SUBGROUP_SIZE;
layout->num_driver_params =
MAX2(layout->num_driver_params, size + 1);
break;
}
case nir_intrinsic_load_subgroup_id_shift_ir3:
layout->num_driver_params =
MAX2(layout->num_driver_params, IR3_DP_SUBGROUP_ID_SHIFT + 1);
break;
case nir_intrinsic_load_draw_id:
layout->num_driver_params =
MAX2(layout->num_driver_params, IR3_DP_DRAWID + 1);
break;
default:
break;
}
}
}
}
/* TODO: Provide a spot somewhere to safely upload unwanted values, and a way
* to determine if they're wanted or not. For now we always make the whole
* driver param range available, since the driver will always instruct the
* hardware to upload these.
*/
if (!compiler->has_shared_regfile &&
shader->info.stage == MESA_SHADER_COMPUTE) {
layout->num_driver_params =
MAX2(layout->num_driver_params, IR3_DP_WORKGROUP_ID_Z + 1);
}
}
/* Sets up the variant-dependent constant state for the ir3_shader. Note
* that it is also used from ir3_nir_analyze_ubo_ranges() to figure out the
* maximum number of driver params that would eventually be used, to leave
* space for this function to allocate the driver params.
*/
void
ir3_setup_const_state(nir_shader *nir, struct ir3_shader_variant *v,
struct ir3_const_state *const_state)
{
struct ir3_compiler *compiler = v->compiler;
memset(&const_state->offsets, ~0, sizeof(const_state->offsets));
ir3_nir_scan_driver_consts(compiler, nir, const_state);
if ((compiler->gen < 5) && (v->stream_output.num_outputs > 0)) {
const_state->num_driver_params =
MAX2(const_state->num_driver_params, IR3_DP_VTXCNT_MAX + 1);
}
const_state->num_ubos = nir->info.num_ubos;
assert((const_state->ubo_state.size % 16) == 0);
unsigned constoff = v->num_reserved_user_consts +
const_state->ubo_state.size / 16 +
const_state->preamble_size;
unsigned ptrsz = ir3_pointer_size(compiler);
if (const_state->num_ubos > 0) {
const_state->offsets.ubo = constoff;
constoff += align(const_state->num_ubos * ptrsz, 4) / 4;
}
if (const_state->image_dims.count > 0) {
unsigned cnt = const_state->image_dims.count;
const_state->offsets.image_dims = constoff;
constoff += align(cnt, 4) / 4;
}
if (v->type == MESA_SHADER_KERNEL) {
const_state->offsets.kernel_params = constoff;
constoff += align(v->cs.req_input_mem, 4) / 4;
}
if (const_state->num_driver_params > 0) {
/* num_driver_params in dwords. we only need to align to vec4s for the
* common case of immediate constant uploads, but for indirect dispatch
* the constants may also be indirect and so we have to align the area in
* const space to that requirement.
*/
const_state->num_driver_params = align(const_state->num_driver_params, 4);
unsigned upload_unit = 1;
if (v->type == MESA_SHADER_COMPUTE ||
(const_state->num_driver_params >= IR3_DP_VTXID_BASE)) {
upload_unit = compiler->const_upload_unit;
}
/* offset cannot be 0 for vs params loaded by CP_DRAW_INDIRECT_MULTI */
if (v->type == MESA_SHADER_VERTEX && compiler->gen >= 6)
constoff = MAX2(constoff, 1);
constoff = align(constoff, upload_unit);
const_state->offsets.driver_param = constoff;
constoff += align(const_state->num_driver_params / 4, upload_unit);
}
if ((v->type == MESA_SHADER_VERTEX) && (compiler->gen < 5) &&
v->stream_output.num_outputs > 0) {
const_state->offsets.tfbo = constoff;
constoff += align(IR3_MAX_SO_BUFFERS * ptrsz, 4) / 4;
}
switch (v->type) {
case MESA_SHADER_VERTEX:
const_state->offsets.primitive_param = constoff;
constoff += 1;
break;
case MESA_SHADER_TESS_CTRL:
case MESA_SHADER_TESS_EVAL:
const_state->offsets.primitive_param = constoff;
constoff += 2;
const_state->offsets.primitive_map = constoff;
constoff += DIV_ROUND_UP(v->input_size, 4);
break;
case MESA_SHADER_GEOMETRY:
const_state->offsets.primitive_param = constoff;
constoff += 1;
const_state->offsets.primitive_map = constoff;
constoff += DIV_ROUND_UP(v->input_size, 4);
break;
default:
break;
}
const_state->offsets.immediate = constoff;
assert(constoff <= ir3_max_const(v));
}