mesa/src/gallium/drivers/radeonsi/si_shader_llvm_gs.c

544 lines
21 KiB
C

/*
* Copyright 2020 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "ac_nir.h"
#include "si_pipe.h"
#include "si_shader_internal.h"
#include "si_query.h"
#include "sid.h"
#include "util/u_memory.h"
LLVMValueRef si_is_es_thread(struct si_shader_context *ctx)
{
/* Return true if the current thread should execute an ES thread. */
return LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, ac_get_thread_id(&ctx->ac),
si_unpack_param(ctx, ctx->args.merged_wave_info, 0, 8), "");
}
LLVMValueRef si_is_gs_thread(struct si_shader_context *ctx)
{
/* Return true if the current thread should execute a GS thread. */
return LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, ac_get_thread_id(&ctx->ac),
si_unpack_param(ctx, ctx->args.merged_wave_info, 8, 8), "");
}
/* Pass GS inputs from ES to GS on GFX9. */
static void si_set_es_return_value_for_gs(struct si_shader_context *ctx)
{
if (!ctx->shader->is_monolithic)
ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
LLVMValueRef ret = ctx->return_value;
ret = si_insert_input_ptr(ctx, ret, ctx->other_const_and_shader_buffers, 0);
ret = si_insert_input_ptr(ctx, ret, ctx->other_samplers_and_images, 1);
if (ctx->shader->key.ge.as_ngg)
ret = si_insert_input_ptr(ctx, ret, ctx->args.gs_tg_info, 2);
else
ret = si_insert_input_ret(ctx, ret, ctx->args.gs2vs_offset, 2);
ret = si_insert_input_ret(ctx, ret, ctx->args.merged_wave_info, 3);
if (ctx->screen->info.gfx_level >= GFX11)
ret = si_insert_input_ret(ctx, ret, ctx->args.gs_attr_offset, 5);
else
ret = si_insert_input_ret(ctx, ret, ctx->args.scratch_offset, 5);
ret = si_insert_input_ptr(ctx, ret, ctx->internal_bindings, 8 + SI_SGPR_INTERNAL_BINDINGS);
ret = si_insert_input_ptr(ctx, ret, ctx->bindless_samplers_and_images,
8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
if (ctx->screen->use_ngg) {
ret = si_insert_input_ptr(ctx, ret, ctx->vs_state_bits, 8 + SI_SGPR_VS_STATE_BITS);
ret = si_insert_input_ptr(ctx, ret, ctx->small_prim_cull_info, 8 + GFX9_SGPR_SMALL_PRIM_CULL_INFO);
if (ctx->screen->info.gfx_level >= GFX11)
ret = si_insert_input_ptr(ctx, ret, ctx->gs_attr_address, 8 + GFX9_SGPR_ATTRIBUTE_RING_ADDR);
}
unsigned vgpr = 8 + GFX9_GS_NUM_USER_SGPR;
ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_vtx_offset[0], vgpr++);
ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_vtx_offset[1], vgpr++);
ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_prim_id, vgpr++);
ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_invocation_id, vgpr++);
ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_vtx_offset[2], vgpr++);
ctx->return_value = ret;
}
void si_llvm_es_build_end(struct si_shader_context *ctx)
{
if (ctx->screen->info.gfx_level >= GFX9)
si_set_es_return_value_for_gs(ctx);
}
static LLVMValueRef si_get_gs_wave_id(struct si_shader_context *ctx)
{
if (ctx->screen->info.gfx_level >= GFX9)
return si_unpack_param(ctx, ctx->args.merged_wave_info, 16, 8);
else
return ac_get_arg(&ctx->ac, ctx->args.gs_wave_id);
}
static LLVMValueRef ngg_get_emulated_counters_buf(struct si_shader_context *ctx)
{
LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->internal_bindings);
return ac_build_load_to_sgpr(&ctx->ac, buf_ptr,
LLVMConstInt(ctx->ac.i32, SI_GS_QUERY_EMULATED_COUNTERS_BUF, false));
}
void si_llvm_gs_build_end(struct si_shader_context *ctx)
{
struct si_shader_info UNUSED *info = &ctx->shader->selector->info;
assert(info->num_outputs <= AC_LLVM_MAX_OUTPUTS);
if (ctx->screen->info.gfx_level >= GFX10)
ac_build_waitcnt(&ctx->ac, AC_WAIT_VSTORE);
if (ctx->screen->use_ngg) {
/* Implement PIPE_STAT_QUERY_GS_PRIMITIVES for non-ngg draws because we can't
* use pipeline statistics (they would be correct but when screen->use_ngg, we
* can't know when the query is started if the next draw(s) will use ngg or not).
*/
LLVMValueRef tmp = GET_FIELD(ctx, GS_STATE_PIPELINE_STATS_EMU);
tmp = LLVMBuildTrunc(ctx->ac.builder, tmp, ctx->ac.i1, "");
ac_build_ifcc(&ctx->ac, tmp, 5229); /* if (GS_PIPELINE_STATS_EMU) */
{
LLVMValueRef prim = ctx->ac.i32_0;
switch (ctx->shader->selector->info.base.gs.output_primitive) {
case SHADER_PRIM_POINTS:
prim = ctx->gs_emitted_vertices;
break;
case SHADER_PRIM_LINE_STRIP:
prim = LLVMBuildSub(ctx->ac.builder, ctx->gs_emitted_vertices, ctx->ac.i32_1, "");
prim = ac_build_imax(&ctx->ac, prim, ctx->ac.i32_0);
break;
case SHADER_PRIM_TRIANGLE_STRIP:
prim = LLVMBuildSub(ctx->ac.builder, ctx->gs_emitted_vertices, LLVMConstInt(ctx->ac.i32, 2, 0), "");
prim = ac_build_imax(&ctx->ac, prim, ctx->ac.i32_0);
break;
}
LLVMValueRef args[] = {
prim,
ngg_get_emulated_counters_buf(ctx),
LLVMConstInt(ctx->ac.i32,
si_query_pipestat_end_dw_offset(ctx->screen, PIPE_STAT_QUERY_GS_PRIMITIVES) * 4,
false),
ctx->ac.i32_0, /* soffset */
ctx->ac.i32_0, /* cachepolicy */
};
ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32", ctx->ac.i32, args, 5, 0);
args[0] = ctx->ac.i32_1;
args[2] = LLVMConstInt(ctx->ac.i32,
si_query_pipestat_end_dw_offset(ctx->screen, PIPE_STAT_QUERY_GS_INVOCATIONS) * 4,
false);
ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32", ctx->ac.i32, args, 5, 0);
}
ac_build_endif(&ctx->ac, 5229);
}
ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE, si_get_gs_wave_id(ctx));
if (ctx->screen->info.gfx_level >= GFX9)
ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
}
/* Emit one vertex from the geometry shader */
static void si_llvm_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addrs)
{
struct si_shader_context *ctx = si_shader_context_from_abi(abi);
if (ctx->shader->key.ge.as_ngg) {
gfx10_ngg_gs_emit_vertex(ctx, stream, addrs);
return;
}
struct si_shader_info *info = &ctx->shader->selector->info;
struct si_shader *shader = ctx->shader;
LLVMValueRef soffset = ac_get_arg(&ctx->ac, ctx->args.gs2vs_offset);
LLVMValueRef gs_next_vertex;
LLVMValueRef can_emit;
unsigned chan, offset;
int i;
/* Write vertex attribute values to GSVS ring */
gs_next_vertex = LLVMBuildLoad2(ctx->ac.builder, ctx->ac.i32, ctx->gs_next_vertex[stream], "");
/* If this thread has already emitted the declared maximum number of
* vertices, skip the write: excessive vertex emissions are not
* supposed to have any effect.
*
* If the shader has no writes to memory, kill it instead. This skips
* further memory loads and may allow LLVM to skip to the end
* altogether.
*/
can_emit =
LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
LLVMConstInt(ctx->ac.i32, shader->selector->info.base.gs.vertices_out, 0), "");
bool use_kill = !info->base.writes_memory;
if (use_kill) {
ac_build_kill_if_false(&ctx->ac, can_emit);
} else {
ac_build_ifcc(&ctx->ac, can_emit, 6505);
}
offset = 0;
for (i = 0; i < info->num_outputs; i++) {
for (chan = 0; chan < 4; chan++) {
if (!(info->output_usagemask[i] & (1 << chan)) ||
((info->output_streams[i] >> (2 * chan)) & 3) != stream)
continue;
LLVMValueRef out_val = LLVMBuildLoad2(ctx->ac.builder, ctx->ac.f32, addrs[4 * i + chan], "");
LLVMValueRef voffset =
LLVMConstInt(ctx->ac.i32, offset * shader->selector->info.base.gs.vertices_out, 0);
offset++;
voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
voffset = LLVMBuildMul(ctx->ac.builder, voffset, LLVMConstInt(ctx->ac.i32, 4, 0), "");
out_val = ac_to_integer(&ctx->ac, out_val);
ac_build_buffer_store_dword(&ctx->ac, ctx->gsvs_ring[stream], out_val, NULL,
voffset, soffset, ac_glc | ac_slc | ac_swizzled);
}
}
gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex, ctx->ac.i32_1, "");
LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
/* Signal vertex emission if vertex data was written. */
if (offset) {
ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
si_get_gs_wave_id(ctx));
ctx->gs_emitted_vertices = LLVMBuildAdd(ctx->ac.builder, ctx->gs_emitted_vertices,
ctx->ac.i32_1, "vert");
}
if (!use_kill)
ac_build_endif(&ctx->ac, 6505);
}
/* Cut one primitive from the geometry shader */
static void si_llvm_emit_primitive(struct ac_shader_abi *abi, unsigned stream)
{
struct si_shader_context *ctx = si_shader_context_from_abi(abi);
if (ctx->shader->key.ge.as_ngg) {
LLVMBuildStore(ctx->ac.builder, ctx->ac.i32_0, ctx->gs_curprim_verts[stream]);
return;
}
/* Signal primitive cut */
ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8),
si_get_gs_wave_id(ctx));
}
void si_preload_esgs_ring(struct si_shader_context *ctx)
{
LLVMBuilderRef builder = ctx->ac.builder;
if (ctx->screen->info.gfx_level <= GFX8) {
LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, SI_RING_ESGS, 0);
LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->internal_bindings);
ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
if (ctx->stage != MESA_SHADER_GEOMETRY) {
LLVMValueRef desc1 = LLVMBuildExtractElement(builder, ctx->esgs_ring, ctx->ac.i32_1, "");
LLVMValueRef desc3 = LLVMBuildExtractElement(builder, ctx->esgs_ring,
LLVMConstInt(ctx->ac.i32, 3, 0), "");
desc1 = LLVMBuildOr(builder, desc1, LLVMConstInt(ctx->ac.i32,
S_008F04_SWIZZLE_ENABLE_GFX6(1), 0), "");
desc3 = LLVMBuildOr(builder, desc3, LLVMConstInt(ctx->ac.i32,
S_008F0C_ELEMENT_SIZE(1) |
S_008F0C_INDEX_STRIDE(3) |
S_008F0C_ADD_TID_ENABLE(1), 0), "");
/* If MUBUF && ADD_TID_ENABLE, DATA_FORMAT means STRIDE[14:17] on gfx8-9, so set 0. */
if (ctx->screen->info.gfx_level == GFX8) {
desc3 = LLVMBuildAnd(builder, desc3,
LLVMConstInt(ctx->ac.i32, C_008F0C_DATA_FORMAT, 0), "");
}
ctx->esgs_ring = LLVMBuildInsertElement(builder, ctx->esgs_ring, desc1, ctx->ac.i32_1, "");
ctx->esgs_ring = LLVMBuildInsertElement(builder, ctx->esgs_ring, desc3,
LLVMConstInt(ctx->ac.i32, 3, 0), "");
}
} else {
if (USE_LDS_SYMBOLS) {
/* Declare the ESGS ring as an explicit LDS symbol. */
si_llvm_declare_esgs_ring(ctx);
ctx->ac.lds = ctx->esgs_ring;
} else {
ac_declare_lds_as_pointer(&ctx->ac);
ctx->esgs_ring = ctx->ac.lds;
}
}
}
void si_preload_gs_rings(struct si_shader_context *ctx)
{
if (ctx->ac.gfx_level >= GFX11)
return;
const struct si_shader_selector *sel = ctx->shader->selector;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, SI_RING_GSVS, 0);
LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->internal_bindings);
LLVMValueRef base_ring = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
/* The conceptual layout of the GSVS ring is
* v0c0 .. vLv0 v0c1 .. vLc1 ..
* but the real memory layout is swizzled across
* threads:
* t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
* t16v0c0 ..
* Override the buffer descriptor accordingly.
*/
LLVMTypeRef v2i64 = LLVMVectorType(ctx->ac.i64, 2);
uint64_t stream_offset = 0;
for (unsigned stream = 0; stream < 4; ++stream) {
unsigned num_components;
unsigned stride;
unsigned num_records;
LLVMValueRef ring, tmp;
num_components = sel->info.num_stream_output_components[stream];
if (!num_components)
continue;
stride = 4 * num_components * sel->info.base.gs.vertices_out;
/* Limit on the stride field for <= GFX7. */
assert(stride < (1 << 14));
num_records = ctx->ac.wave_size;
ring = LLVMBuildBitCast(builder, base_ring, v2i64, "");
tmp = LLVMBuildExtractElement(builder, ring, ctx->ac.i32_0, "");
tmp = LLVMBuildAdd(builder, tmp, LLVMConstInt(ctx->ac.i64, stream_offset, 0), "");
stream_offset += stride * ctx->ac.wave_size;
ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->ac.i32_0, "");
ring = LLVMBuildBitCast(builder, ring, ctx->ac.v4i32, "");
tmp = LLVMBuildExtractElement(builder, ring, ctx->ac.i32_1, "");
tmp = LLVMBuildOr(
builder, tmp,
LLVMConstInt(ctx->ac.i32, S_008F04_STRIDE(stride) | S_008F04_SWIZZLE_ENABLE_GFX6(1), 0), "");
ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->ac.i32_1, "");
ring = LLVMBuildInsertElement(builder, ring, LLVMConstInt(ctx->ac.i32, num_records, 0),
LLVMConstInt(ctx->ac.i32, 2, 0), "");
uint32_t rsrc3 =
S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_INDEX_STRIDE(1) | /* index_stride = 16 (elements) */
S_008F0C_ADD_TID_ENABLE(1);
if (ctx->ac.gfx_level >= GFX10) {
rsrc3 |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
} else {
/* If MUBUF && ADD_TID_ENABLE, DATA_FORMAT means STRIDE[14:17] on gfx8-9, so set 0. */
unsigned data_format = ctx->ac.gfx_level == GFX8 || ctx->ac.gfx_level == GFX9 ?
0 : V_008F0C_BUF_DATA_FORMAT_32;
rsrc3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(data_format) |
S_008F0C_ELEMENT_SIZE(1); /* element_size = 4 (bytes) */
}
ring = LLVMBuildInsertElement(builder, ring, LLVMConstInt(ctx->ac.i32, rsrc3, false),
LLVMConstInt(ctx->ac.i32, 3, 0), "");
ctx->gsvs_ring[stream] = ring;
}
}
/* Generate code for the hardware VS shader stage to go with a geometry shader */
struct si_shader *si_generate_gs_copy_shader(struct si_screen *sscreen,
struct ac_llvm_compiler *compiler,
struct si_shader_selector *gs_selector,
const struct pipe_stream_output_info *so,
struct util_debug_callback *debug)
{
struct si_shader_context ctx;
struct si_shader *shader;
LLVMBuilderRef builder;
struct si_shader_output_values outputs[SI_MAX_VS_OUTPUTS];
struct si_shader_info *gsinfo = &gs_selector->info;
int i;
shader = CALLOC_STRUCT(si_shader);
if (!shader)
return NULL;
/* We can leave the fence as permanently signaled because the GS copy
* shader only becomes visible globally after it has been compiled. */
util_queue_fence_init(&shader->ready);
shader->selector = gs_selector;
shader->is_gs_copy_shader = true;
shader->wave_size = si_determine_wave_size(sscreen, shader);
STATIC_ASSERT(sizeof(shader->info.vs_output_param_offset[0]) == 1);
memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_DEFAULT_VAL_0000,
sizeof(shader->info.vs_output_param_offset));
for (unsigned i = 0; i < gsinfo->num_outputs; i++) {
unsigned semantic = gsinfo->output_semantic[i];
/* Skip if no channel writes to stream 0. */
if (!nir_slot_is_varying(semantic) ||
(gsinfo->output_streams[i] & 0x03 &&
gsinfo->output_streams[i] & 0x0c &&
gsinfo->output_streams[i] & 0x30 &&
gsinfo->output_streams[i] & 0xc0))
continue;
shader->info.vs_output_param_offset[semantic] = shader->info.nr_param_exports++;
shader->info.vs_output_param_mask |= BITFIELD64_BIT(i);
}
si_llvm_context_init(&ctx, sscreen, compiler, shader->wave_size);
ctx.shader = shader;
ctx.stage = MESA_SHADER_VERTEX;
ctx.so = *so;
builder = ctx.ac.builder;
/* Build the main function. */
si_llvm_create_main_func(&ctx, false);
LLVMValueRef buf_ptr = ac_get_arg(&ctx.ac, ctx.internal_bindings);
ctx.gsvs_ring[0] =
ac_build_load_to_sgpr(&ctx.ac, buf_ptr, LLVMConstInt(ctx.ac.i32, SI_RING_GSVS, 0));
LLVMValueRef voffset =
LLVMBuildMul(ctx.ac.builder, ctx.abi.vertex_id, LLVMConstInt(ctx.ac.i32, 4, 0), "");
/* Fetch the vertex stream ID.*/
LLVMValueRef stream_id;
if (!sscreen->use_ngg_streamout && ctx.so.num_outputs)
stream_id = si_unpack_param(&ctx, ctx.args.streamout_config, 24, 2);
else
stream_id = ctx.ac.i32_0;
/* Fill in output information. */
for (i = 0; i < gsinfo->num_outputs; ++i) {
outputs[i].semantic = gsinfo->output_semantic[i];
outputs[i].vertex_streams = gsinfo->output_streams[i];
}
LLVMBasicBlockRef end_bb;
LLVMValueRef switch_inst;
end_bb = LLVMAppendBasicBlockInContext(ctx.ac.context, ctx.main_fn, "end");
switch_inst = LLVMBuildSwitch(builder, stream_id, end_bb, 4);
for (int stream = 0; stream < 4; stream++) {
LLVMBasicBlockRef bb;
unsigned offset;
if (!gsinfo->num_stream_output_components[stream])
continue;
if (stream > 0 && !ctx.so.num_outputs)
continue;
bb = LLVMInsertBasicBlockInContext(ctx.ac.context, end_bb, "out");
LLVMAddCase(switch_inst, LLVMConstInt(ctx.ac.i32, stream, 0), bb);
LLVMPositionBuilderAtEnd(builder, bb);
/* Fetch vertex data from GSVS ring */
offset = 0;
for (i = 0; i < gsinfo->num_outputs; ++i) {
for (unsigned chan = 0; chan < 4; chan++) {
if (!(gsinfo->output_usagemask[i] & (1 << chan)) ||
((outputs[i].vertex_streams >> (chan * 2)) & 0x3) != stream) {
outputs[i].values[chan] = LLVMGetUndef(ctx.ac.f32);
continue;
}
LLVMValueRef soffset =
LLVMConstInt(ctx.ac.i32, offset * gs_selector->info.base.gs.vertices_out * 16 * 4, 0);
offset++;
outputs[i].values[chan] =
ac_build_buffer_load(&ctx.ac, ctx.gsvs_ring[0], 1, ctx.ac.i32_0, voffset, soffset,
ctx.ac.f32, ac_glc | ac_slc, true, false);
}
}
/* Streamout and exports. */
if (!sscreen->use_ngg_streamout && ctx.so.num_outputs) {
si_llvm_emit_streamout(&ctx, outputs, gsinfo->num_outputs, stream);
}
if (stream == 0)
si_llvm_build_vs_exports(&ctx, NULL, outputs, gsinfo->num_outputs);
LLVMBuildBr(builder, end_bb);
}
LLVMPositionBuilderAtEnd(builder, end_bb);
LLVMBuildRetVoid(ctx.ac.builder);
ctx.stage = MESA_SHADER_GEOMETRY; /* override for shader dumping */
si_llvm_optimize_module(&ctx);
bool ok = false;
if (si_compile_llvm(sscreen, &ctx.shader->binary, &ctx.shader->config, ctx.compiler, &ctx.ac,
debug, MESA_SHADER_GEOMETRY, "GS Copy Shader", false)) {
assert(!ctx.shader->config.scratch_bytes_per_wave);
if (!ctx.shader->config.scratch_bytes_per_wave)
ok = si_shader_binary_upload(sscreen, ctx.shader, 0);
if (si_can_dump_shader(sscreen, MESA_SHADER_GEOMETRY))
fprintf(stderr, "GS Copy Shader:\n");
si_shader_dump(sscreen, ctx.shader, debug, stderr, true);
}
si_llvm_dispose(&ctx);
if (!ok) {
FREE(shader);
shader = NULL;
} else {
si_fix_resource_usage(sscreen, shader);
}
return shader;
}
void si_llvm_init_gs_callbacks(struct si_shader_context *ctx)
{
ctx->abi.emit_vertex = si_llvm_emit_vertex;
ctx->abi.emit_primitive = si_llvm_emit_primitive;
}