mesa/src/gallium/drivers/radeonsi/si_pipe.c

1491 lines
57 KiB
C

/*
* Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
* Copyright 2018 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_pipe.h"
#include "driver_ddebug/dd_util.h"
#include "radeon_uvd.h"
#include "si_compute.h"
#include "si_public.h"
#include "si_shader_internal.h"
#include "sid.h"
#include "ac_shadowed_regs.h"
#include "compiler/nir/nir.h"
#include "util/disk_cache.h"
#include "util/u_cpu_detect.h"
#include "util/u_log.h"
#include "util/u_memory.h"
#include "util/u_suballoc.h"
#include "util/u_tests.h"
#include "util/u_upload_mgr.h"
#include "util/xmlconfig.h"
#include "vl/vl_decoder.h"
#include <xf86drm.h>
static struct pipe_context *si_create_context(struct pipe_screen *screen, unsigned flags);
static const struct debug_named_value radeonsi_debug_options[] = {
/* Shader logging options: */
{"vs", DBG(VS), "Print vertex shaders"},
{"ps", DBG(PS), "Print pixel shaders"},
{"gs", DBG(GS), "Print geometry shaders"},
{"tcs", DBG(TCS), "Print tessellation control shaders"},
{"tes", DBG(TES), "Print tessellation evaluation shaders"},
{"cs", DBG(CS), "Print compute shaders"},
{"noir", DBG(NO_IR), "Don't print the LLVM IR"},
{"nonir", DBG(NO_NIR), "Don't print NIR when printing shaders"},
{"noasm", DBG(NO_ASM), "Don't print disassembled shaders"},
{"preoptir", DBG(PREOPT_IR), "Print the LLVM IR before initial optimizations"},
/* Shader compiler options the shader cache should be aware of: */
{"w32ge", DBG(W32_GE), "Use Wave32 for vertex, tessellation, and geometry shaders."},
{"w32ps", DBG(W32_PS), "Use Wave32 for pixel shaders."},
{"w32psdiscard", DBG(W32_PS_DISCARD), "Use Wave32 for pixel shaders even if they contain discard and LLVM is buggy."},
{"w32cs", DBG(W32_CS), "Use Wave32 for computes shaders."},
{"w64ge", DBG(W64_GE), "Use Wave64 for vertex, tessellation, and geometry shaders."},
{"w64ps", DBG(W64_PS), "Use Wave64 for pixel shaders."},
{"w64cs", DBG(W64_CS), "Use Wave64 for computes shaders."},
/* Shader compiler options (with no effect on the shader cache): */
{"checkir", DBG(CHECK_IR), "Enable additional sanity checks on shader IR"},
{"mono", DBG(MONOLITHIC_SHADERS), "Use old-style monolithic shaders compiled on demand"},
{"nooptvariant", DBG(NO_OPT_VARIANT), "Disable compiling optimized shader variants."},
/* Information logging options: */
{"info", DBG(INFO), "Print driver information"},
{"tex", DBG(TEX), "Print texture info"},
{"compute", DBG(COMPUTE), "Print compute info"},
{"vm", DBG(VM), "Print virtual addresses when creating resources"},
{"cache_stats", DBG(CACHE_STATS), "Print shader cache statistics."},
{"ib", DBG(IB), "Print command buffers."},
/* Driver options: */
{"nowc", DBG(NO_WC), "Disable GTT write combining"},
{"check_vm", DBG(CHECK_VM), "Check VM faults and dump debug info."},
{"reserve_vmid", DBG(RESERVE_VMID), "Force VMID reservation per context."},
{"shadowregs", DBG(SHADOW_REGS), "Enable CP register shadowing."},
{"nofastdlist", DBG(NO_FAST_DISPLAY_LIST), "Disable fast display lists"},
/* Multimedia options: */
{ "noefc", DBG(NO_EFC), "Disable hardware based encoder colour format conversion."},
/* 3D engine options: */
{"nogfx", DBG(NO_GFX), "Disable graphics. Only multimedia compute paths can be used."},
{"nongg", DBG(NO_NGG), "Disable NGG and use the legacy pipeline."},
{"nggc", DBG(ALWAYS_NGG_CULLING_ALL), "Always use NGG culling even when it can hurt."},
{"nonggc", DBG(NO_NGG_CULLING), "Disable NGG culling."},
{"switch_on_eop", DBG(SWITCH_ON_EOP), "Program WD/IA to switch on end-of-packet."},
{"nooutoforder", DBG(NO_OUT_OF_ORDER), "Disable out-of-order rasterization"},
{"nodpbb", DBG(NO_DPBB), "Disable DPBB."},
{"dpbb", DBG(DPBB), "Enable DPBB."},
{"nohyperz", DBG(NO_HYPERZ), "Disable Hyper-Z"},
{"no2d", DBG(NO_2D_TILING), "Disable 2D tiling"},
{"notiling", DBG(NO_TILING), "Disable tiling"},
{"nodisplaytiling", DBG(NO_DISPLAY_TILING), "Disable display tiling"},
{"nodisplaydcc", DBG(NO_DISPLAY_DCC), "Disable display DCC"},
{"noexporteddcc", DBG(NO_EXPORTED_DCC), "Disable DCC for all exported buffers (via DMABUF, etc.)"},
{"nodcc", DBG(NO_DCC), "Disable DCC."},
{"nodccclear", DBG(NO_DCC_CLEAR), "Disable DCC fast clear."},
{"nodccstore", DBG(NO_DCC_STORE), "Disable DCC stores"},
{"dccstore", DBG(DCC_STORE), "Enable DCC stores"},
{"nodccmsaa", DBG(NO_DCC_MSAA), "Disable DCC for MSAA"},
{"nofmask", DBG(NO_FMASK), "Disable MSAA compression"},
{"nodma", DBG(NO_DMA), "Disable SDMA-copy for DRI_PRIME"},
{"tmz", DBG(TMZ), "Force allocation of scanout/depth/stencil buffer as encrypted"},
{"sqtt", DBG(SQTT), "Enable SQTT"},
DEBUG_NAMED_VALUE_END /* must be last */
};
static const struct debug_named_value test_options[] = {
/* Tests: */
{"imagecopy", DBG(TEST_IMAGE_COPY), "Invoke resource_copy_region tests with images and exit."},
{"testvmfaultcp", DBG(TEST_VMFAULT_CP), "Invoke a CP VM fault test and exit."},
{"testvmfaultshader", DBG(TEST_VMFAULT_SHADER), "Invoke a shader VM fault test and exit."},
{"testdmaperf", DBG(TEST_DMA_PERF), "Test DMA performance"},
{"testgds", DBG(TEST_GDS), "Test GDS."},
{"testgdsmm", DBG(TEST_GDS_MM), "Test GDS memory management."},
{"testgdsoamm", DBG(TEST_GDS_OA_MM), "Test GDS OA memory management."},
DEBUG_NAMED_VALUE_END /* must be last */
};
bool si_init_compiler(struct si_screen *sscreen, struct ac_llvm_compiler *compiler)
{
/* Only create the less-optimizing version of the compiler on APUs
* predating Ryzen (Raven). */
bool create_low_opt_compiler =
!sscreen->info.has_dedicated_vram && sscreen->info.gfx_level <= GFX8;
enum ac_target_machine_options tm_options =
(sscreen->debug_flags & DBG(CHECK_IR) ? AC_TM_CHECK_IR : 0) |
(create_low_opt_compiler ? AC_TM_CREATE_LOW_OPT : 0);
ac_init_llvm_once();
if (!ac_init_llvm_compiler(compiler, sscreen->info.family, tm_options))
return false;
compiler->passes = ac_create_llvm_passes(compiler->tm);
if (compiler->low_opt_tm)
compiler->low_opt_passes = ac_create_llvm_passes(compiler->low_opt_tm);
return true;
}
void si_init_aux_async_compute_ctx(struct si_screen *sscreen)
{
assert(!sscreen->async_compute_context);
sscreen->async_compute_context = si_create_context(
&sscreen->b,
SI_CONTEXT_FLAG_AUX |
(sscreen->options.aux_debug ? PIPE_CONTEXT_DEBUG : 0) |
PIPE_CONTEXT_COMPUTE_ONLY);
/* Limit the numbers of waves allocated for this context. */
if (sscreen->async_compute_context)
((struct si_context*)sscreen->async_compute_context)->cs_max_waves_per_sh = 2;
}
static void si_destroy_compiler(struct ac_llvm_compiler *compiler)
{
ac_destroy_llvm_compiler(compiler);
}
static void decref_implicit_resource(struct hash_entry *entry)
{
pipe_resource_reference((struct pipe_resource**)&entry->data, NULL);
}
/*
* pipe_context
*/
static void si_destroy_context(struct pipe_context *context)
{
struct si_context *sctx = (struct si_context *)context;
int i;
/* Unreference the framebuffer normally to disable related logic
* properly.
*/
struct pipe_framebuffer_state fb = {};
if (context->set_framebuffer_state)
context->set_framebuffer_state(context, &fb);
si_release_all_descriptors(sctx);
if (sctx->gfx_level >= GFX10 && sctx->has_graphics)
gfx10_destroy_query(sctx);
if (sctx->thread_trace)
si_destroy_thread_trace(sctx);
pipe_resource_reference(&sctx->esgs_ring, NULL);
pipe_resource_reference(&sctx->gsvs_ring, NULL);
pipe_resource_reference(&sctx->tess_rings, NULL);
pipe_resource_reference(&sctx->tess_rings_tmz, NULL);
pipe_resource_reference(&sctx->null_const_buf.buffer, NULL);
pipe_resource_reference(&sctx->sample_pos_buffer, NULL);
si_resource_reference(&sctx->border_color_buffer, NULL);
free(sctx->border_color_table);
si_resource_reference(&sctx->scratch_buffer, NULL);
si_resource_reference(&sctx->compute_scratch_buffer, NULL);
si_resource_reference(&sctx->wait_mem_scratch, NULL);
si_resource_reference(&sctx->wait_mem_scratch_tmz, NULL);
si_resource_reference(&sctx->small_prim_cull_info_buf, NULL);
si_resource_reference(&sctx->pipeline_stats_query_buf, NULL);
if (sctx->cs_preamble_state)
si_pm4_free_state(sctx, sctx->cs_preamble_state, ~0);
if (sctx->cs_preamble_state_tmz)
si_pm4_free_state(sctx, sctx->cs_preamble_state_tmz, ~0);
for (i = 0; i < ARRAY_SIZE(sctx->vgt_shader_config); i++)
si_pm4_free_state(sctx, sctx->vgt_shader_config[i], SI_STATE_IDX(vgt_shader_config));
if (sctx->fixed_func_tcs_shader_cache) {
hash_table_foreach(sctx->fixed_func_tcs_shader_cache, entry) {
sctx->b.delete_tcs_state(&sctx->b, entry->data);
}
_mesa_hash_table_destroy(sctx->fixed_func_tcs_shader_cache, NULL);
}
if (sctx->custom_dsa_flush)
sctx->b.delete_depth_stencil_alpha_state(&sctx->b, sctx->custom_dsa_flush);
if (sctx->custom_blend_resolve)
sctx->b.delete_blend_state(&sctx->b, sctx->custom_blend_resolve);
if (sctx->custom_blend_fmask_decompress)
sctx->b.delete_blend_state(&sctx->b, sctx->custom_blend_fmask_decompress);
if (sctx->custom_blend_eliminate_fastclear)
sctx->b.delete_blend_state(&sctx->b, sctx->custom_blend_eliminate_fastclear);
if (sctx->custom_blend_dcc_decompress)
sctx->b.delete_blend_state(&sctx->b, sctx->custom_blend_dcc_decompress);
if (sctx->vs_blit_pos)
sctx->b.delete_vs_state(&sctx->b, sctx->vs_blit_pos);
if (sctx->vs_blit_pos_layered)
sctx->b.delete_vs_state(&sctx->b, sctx->vs_blit_pos_layered);
if (sctx->vs_blit_color)
sctx->b.delete_vs_state(&sctx->b, sctx->vs_blit_color);
if (sctx->vs_blit_color_layered)
sctx->b.delete_vs_state(&sctx->b, sctx->vs_blit_color_layered);
if (sctx->vs_blit_texcoord)
sctx->b.delete_vs_state(&sctx->b, sctx->vs_blit_texcoord);
if (sctx->cs_clear_buffer)
sctx->b.delete_compute_state(&sctx->b, sctx->cs_clear_buffer);
if (sctx->cs_clear_buffer_rmw)
sctx->b.delete_compute_state(&sctx->b, sctx->cs_clear_buffer_rmw);
if (sctx->cs_copy_buffer)
sctx->b.delete_compute_state(&sctx->b, sctx->cs_copy_buffer);
for (unsigned i = 0; i < ARRAY_SIZE(sctx->cs_copy_image); i++) {
for (unsigned j = 0; j < ARRAY_SIZE(sctx->cs_copy_image[i]); j++) {
if (sctx->cs_copy_image[i][j])
sctx->b.delete_compute_state(&sctx->b, sctx->cs_copy_image[i][j]);
}
}
if (sctx->cs_clear_render_target)
sctx->b.delete_compute_state(&sctx->b, sctx->cs_clear_render_target);
if (sctx->cs_clear_render_target_1d_array)
sctx->b.delete_compute_state(&sctx->b, sctx->cs_clear_render_target_1d_array);
if (sctx->cs_clear_12bytes_buffer)
sctx->b.delete_compute_state(&sctx->b, sctx->cs_clear_12bytes_buffer);
if (sctx->cs_dcc_decompress)
sctx->b.delete_compute_state(&sctx->b, sctx->cs_dcc_decompress);
for (unsigned i = 0; i < ARRAY_SIZE(sctx->cs_dcc_retile); i++) {
if (sctx->cs_dcc_retile[i])
sctx->b.delete_compute_state(&sctx->b, sctx->cs_dcc_retile[i]);
}
if (sctx->no_velems_state)
sctx->b.delete_vertex_elements_state(&sctx->b, sctx->no_velems_state);
for (unsigned i = 0; i < ARRAY_SIZE(sctx->cs_fmask_expand); i++) {
for (unsigned j = 0; j < ARRAY_SIZE(sctx->cs_fmask_expand[i]); j++) {
if (sctx->cs_fmask_expand[i][j]) {
sctx->b.delete_compute_state(&sctx->b, sctx->cs_fmask_expand[i][j]);
}
}
}
for (unsigned i = 0; i < ARRAY_SIZE(sctx->cs_clear_dcc_msaa); i++) {
for (unsigned j = 0; j < ARRAY_SIZE(sctx->cs_clear_dcc_msaa[i]); j++) {
for (unsigned k = 0; k < ARRAY_SIZE(sctx->cs_clear_dcc_msaa[i][j]); k++) {
for (unsigned l = 0; l < ARRAY_SIZE(sctx->cs_clear_dcc_msaa[i][j][k]); l++) {
for (unsigned m = 0; m < ARRAY_SIZE(sctx->cs_clear_dcc_msaa[i][j][k][l]); m++) {
if (sctx->cs_clear_dcc_msaa[i][j][k][l][m])
sctx->b.delete_compute_state(&sctx->b, sctx->cs_clear_dcc_msaa[i][j][k][l][m]);
}
}
}
}
}
if (sctx->blitter)
util_blitter_destroy(sctx->blitter);
if (sctx->query_result_shader)
sctx->b.delete_compute_state(&sctx->b, sctx->query_result_shader);
if (sctx->sh_query_result_shader)
sctx->b.delete_compute_state(&sctx->b, sctx->sh_query_result_shader);
sctx->ws->cs_destroy(&sctx->gfx_cs);
if (sctx->ctx)
sctx->ws->ctx_destroy(sctx->ctx);
if (sctx->sdma_cs) {
sctx->ws->cs_destroy(sctx->sdma_cs);
free(sctx->sdma_cs);
}
if (sctx->dirty_implicit_resources)
_mesa_hash_table_destroy(sctx->dirty_implicit_resources,
decref_implicit_resource);
if (sctx->b.stream_uploader)
u_upload_destroy(sctx->b.stream_uploader);
if (sctx->b.const_uploader && sctx->b.const_uploader != sctx->b.stream_uploader)
u_upload_destroy(sctx->b.const_uploader);
if (sctx->cached_gtt_allocator)
u_upload_destroy(sctx->cached_gtt_allocator);
slab_destroy_child(&sctx->pool_transfers);
slab_destroy_child(&sctx->pool_transfers_unsync);
u_suballocator_destroy(&sctx->allocator_zeroed_memory);
sctx->ws->fence_reference(&sctx->last_gfx_fence, NULL);
si_resource_reference(&sctx->eop_bug_scratch, NULL);
si_resource_reference(&sctx->eop_bug_scratch_tmz, NULL);
si_resource_reference(&sctx->shadowed_regs, NULL);
si_destroy_compiler(&sctx->compiler);
si_saved_cs_reference(&sctx->current_saved_cs, NULL);
_mesa_hash_table_destroy(sctx->tex_handles, NULL);
_mesa_hash_table_destroy(sctx->img_handles, NULL);
util_dynarray_fini(&sctx->resident_tex_handles);
util_dynarray_fini(&sctx->resident_img_handles);
util_dynarray_fini(&sctx->resident_tex_needs_color_decompress);
util_dynarray_fini(&sctx->resident_img_needs_color_decompress);
util_dynarray_fini(&sctx->resident_tex_needs_depth_decompress);
if (!(sctx->context_flags & SI_CONTEXT_FLAG_AUX))
p_atomic_dec(&context->screen->num_contexts);
FREE(sctx);
}
static enum pipe_reset_status si_get_reset_status(struct pipe_context *ctx)
{
struct si_context *sctx = (struct si_context *)ctx;
if (sctx->context_flags & SI_CONTEXT_FLAG_AUX)
return PIPE_NO_RESET;
bool needs_reset;
enum pipe_reset_status status = sctx->ws->ctx_query_reset_status(sctx->ctx, false, &needs_reset);
if (status != PIPE_NO_RESET && needs_reset && !(sctx->context_flags & SI_CONTEXT_FLAG_AUX)) {
/* Call the gallium frontend to set a no-op API dispatch. */
if (sctx->device_reset_callback.reset) {
sctx->device_reset_callback.reset(sctx->device_reset_callback.data, status);
}
}
return status;
}
static void si_set_device_reset_callback(struct pipe_context *ctx,
const struct pipe_device_reset_callback *cb)
{
struct si_context *sctx = (struct si_context *)ctx;
if (cb)
sctx->device_reset_callback = *cb;
else
memset(&sctx->device_reset_callback, 0, sizeof(sctx->device_reset_callback));
}
/* Apitrace profiling:
* 1) qapitrace : Tools -> Profile: Measure CPU & GPU times
* 2) In the middle panel, zoom in (mouse wheel) on some bad draw call
* and remember its number.
* 3) In Mesa, enable queries and performance counters around that draw
* call and print the results.
* 4) glretrace --benchmark --markers ..
*/
static void si_emit_string_marker(struct pipe_context *ctx, const char *string, int len)
{
struct si_context *sctx = (struct si_context *)ctx;
dd_parse_apitrace_marker(string, len, &sctx->apitrace_call_number);
if (sctx->thread_trace_enabled)
si_write_user_event(sctx, &sctx->gfx_cs, UserEventTrigger, string, len);
if (sctx->log)
u_log_printf(sctx->log, "\nString marker: %*s\n", len, string);
}
static void si_set_debug_callback(struct pipe_context *ctx, const struct util_debug_callback *cb)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_screen *screen = sctx->screen;
util_queue_finish(&screen->shader_compiler_queue);
util_queue_finish(&screen->shader_compiler_queue_low_priority);
if (cb)
sctx->debug = *cb;
else
memset(&sctx->debug, 0, sizeof(sctx->debug));
}
static void si_set_log_context(struct pipe_context *ctx, struct u_log_context *log)
{
struct si_context *sctx = (struct si_context *)ctx;
sctx->log = log;
if (log)
u_log_add_auto_logger(log, si_auto_log_cs, sctx);
}
static void si_set_context_param(struct pipe_context *ctx, enum pipe_context_param param,
unsigned value)
{
struct radeon_winsys *ws = ((struct si_context *)ctx)->ws;
switch (param) {
case PIPE_CONTEXT_PARAM_PIN_THREADS_TO_L3_CACHE:
ws->pin_threads_to_L3_cache(ws, value);
break;
default:;
}
}
static void si_set_frontend_noop(struct pipe_context *ctx, bool enable)
{
struct si_context *sctx = (struct si_context *)ctx;
ctx->flush(ctx, NULL, PIPE_FLUSH_ASYNC);
sctx->is_noop = enable;
}
static struct pipe_context *si_create_context(struct pipe_screen *screen, unsigned flags)
{
struct si_screen *sscreen = (struct si_screen *)screen;
STATIC_ASSERT(DBG_COUNT <= 64);
/* Don't create a context if it's not compute-only and hw is compute-only. */
if (!sscreen->info.has_graphics && !(flags & PIPE_CONTEXT_COMPUTE_ONLY)) {
fprintf(stderr, "radeonsi: can't create a graphics context on a compute chip\n");
return NULL;
}
struct si_context *sctx = CALLOC_STRUCT(si_context);
struct radeon_winsys *ws = sscreen->ws;
int shader, i;
bool stop_exec_on_failure = (flags & PIPE_CONTEXT_LOSE_CONTEXT_ON_RESET) != 0;
enum radeon_ctx_priority priority;
if (!sctx) {
fprintf(stderr, "radeonsi: can't allocate a context\n");
return NULL;
}
sctx->has_graphics = sscreen->info.gfx_level == GFX6 || !(flags & PIPE_CONTEXT_COMPUTE_ONLY);
if (flags & PIPE_CONTEXT_DEBUG)
sscreen->record_llvm_ir = true; /* racy but not critical */
sctx->b.screen = screen; /* this must be set first */
sctx->b.priv = NULL;
sctx->b.destroy = si_destroy_context;
sctx->screen = sscreen; /* Easy accessing of screen/winsys. */
sctx->is_debug = (flags & PIPE_CONTEXT_DEBUG) != 0;
sctx->context_flags = flags;
slab_create_child(&sctx->pool_transfers, &sscreen->pool_transfers);
slab_create_child(&sctx->pool_transfers_unsync, &sscreen->pool_transfers);
sctx->ws = sscreen->ws;
sctx->family = sscreen->info.family;
sctx->gfx_level = sscreen->info.gfx_level;
if (sctx->gfx_level == GFX7 || sctx->gfx_level == GFX8 || sctx->gfx_level == GFX9) {
sctx->eop_bug_scratch = si_aligned_buffer_create(
&sscreen->b, PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL,
PIPE_USAGE_DEFAULT, 16 * sscreen->info.max_render_backends, 256);
if (!sctx->eop_bug_scratch) {
fprintf(stderr, "radeonsi: can't create eop_bug_scratch\n");
goto fail;
}
}
if (flags & PIPE_CONTEXT_HIGH_PRIORITY) {
priority = RADEON_CTX_PRIORITY_HIGH;
} else if (flags & PIPE_CONTEXT_LOW_PRIORITY) {
priority = RADEON_CTX_PRIORITY_LOW;
} else {
priority = RADEON_CTX_PRIORITY_MEDIUM;
}
/* Initialize the context handle and the command stream. */
sctx->ctx = sctx->ws->ctx_create(sctx->ws, priority);
if (!sctx->ctx && priority != RADEON_CTX_PRIORITY_MEDIUM) {
/* Context priority should be treated as a hint. If context creation
* fails with the requested priority, for example because the caller
* lacks CAP_SYS_NICE capability or other system resource constraints,
* fallback to normal priority.
*/
priority = RADEON_CTX_PRIORITY_MEDIUM;
sctx->ctx = sctx->ws->ctx_create(sctx->ws, priority);
}
if (!sctx->ctx) {
fprintf(stderr, "radeonsi: can't create radeon_winsys_ctx\n");
goto fail;
}
ws->cs_create(&sctx->gfx_cs, sctx->ctx, sctx->has_graphics ? AMD_IP_GFX : AMD_IP_COMPUTE,
(void *)si_flush_gfx_cs, sctx, stop_exec_on_failure);
/* Initialize private allocators. */
u_suballocator_init(&sctx->allocator_zeroed_memory, &sctx->b, 128 * 1024, 0,
PIPE_USAGE_DEFAULT,
SI_RESOURCE_FLAG_CLEAR | SI_RESOURCE_FLAG_32BIT, false);
sctx->cached_gtt_allocator = u_upload_create(&sctx->b, 16 * 1024, 0, PIPE_USAGE_STAGING, 0);
if (!sctx->cached_gtt_allocator) {
fprintf(stderr, "radeonsi: can't create cached_gtt_allocator\n");
goto fail;
}
/* Initialize public allocators. */
/* Unify uploaders as follows:
* - dGPUs with Smart Access Memory: there is only one uploader instance writing to VRAM.
* - APUs: There is only one uploader instance writing to RAM. VRAM has the same perf on APUs.
* - Other chips: The const uploader writes to VRAM and the stream uploader writes to RAM.
*/
bool smart_access_memory = sscreen->info.smart_access_memory;
bool is_apu = !sscreen->info.has_dedicated_vram;
sctx->b.stream_uploader =
u_upload_create(&sctx->b, 1024 * 1024, 0,
smart_access_memory && !is_apu ? PIPE_USAGE_DEFAULT : PIPE_USAGE_STREAM,
SI_RESOURCE_FLAG_32BIT); /* same flags as const_uploader */
if (!sctx->b.stream_uploader) {
fprintf(stderr, "radeonsi: can't create stream_uploader\n");
goto fail;
}
if (smart_access_memory || is_apu) {
sctx->b.const_uploader = sctx->b.stream_uploader;
} else {
sctx->b.const_uploader =
u_upload_create(&sctx->b, 256 * 1024, 0, PIPE_USAGE_DEFAULT,
SI_RESOURCE_FLAG_32BIT);
if (!sctx->b.const_uploader) {
fprintf(stderr, "radeonsi: can't create const_uploader\n");
goto fail;
}
}
/* Border colors. */
if (sscreen->info.has_3d_cube_border_color_mipmap) {
sctx->border_color_table = malloc(SI_MAX_BORDER_COLORS * sizeof(*sctx->border_color_table));
if (!sctx->border_color_table) {
fprintf(stderr, "radeonsi: can't create border_color_table\n");
goto fail;
}
sctx->border_color_buffer = si_resource(pipe_buffer_create(
screen, 0, PIPE_USAGE_DEFAULT, SI_MAX_BORDER_COLORS * sizeof(*sctx->border_color_table)));
if (!sctx->border_color_buffer) {
fprintf(stderr, "radeonsi: can't create border_color_buffer\n");
goto fail;
}
sctx->border_color_map =
ws->buffer_map(ws, sctx->border_color_buffer->buf, NULL, PIPE_MAP_WRITE);
if (!sctx->border_color_map) {
fprintf(stderr, "radeonsi: can't map border_color_buffer\n");
goto fail;
}
}
sctx->ngg = sscreen->use_ngg;
si_shader_change_notify(sctx);
/* Initialize context functions used by graphics and compute. */
if (sctx->gfx_level >= GFX10)
sctx->emit_cache_flush = gfx10_emit_cache_flush;
else
sctx->emit_cache_flush = si_emit_cache_flush;
sctx->b.emit_string_marker = si_emit_string_marker;
sctx->b.set_debug_callback = si_set_debug_callback;
sctx->b.set_log_context = si_set_log_context;
sctx->b.set_context_param = si_set_context_param;
sctx->b.get_device_reset_status = si_get_reset_status;
sctx->b.set_device_reset_callback = si_set_device_reset_callback;
sctx->b.set_frontend_noop = si_set_frontend_noop;
si_init_all_descriptors(sctx);
si_init_buffer_functions(sctx);
si_init_clear_functions(sctx);
si_init_blit_functions(sctx);
si_init_compute_functions(sctx);
si_init_compute_blit_functions(sctx);
si_init_debug_functions(sctx);
si_init_fence_functions(sctx);
si_init_query_functions(sctx);
si_init_state_compute_functions(sctx);
si_init_context_texture_functions(sctx);
/* Initialize graphics-only context functions. */
if (sctx->has_graphics) {
if (sctx->gfx_level >= GFX10)
gfx10_init_query(sctx);
si_init_msaa_functions(sctx);
si_init_shader_functions(sctx);
si_init_state_functions(sctx);
si_init_streamout_functions(sctx);
si_init_viewport_functions(sctx);
si_init_spi_map_functions(sctx);
sctx->blitter = util_blitter_create(&sctx->b);
if (sctx->blitter == NULL) {
fprintf(stderr, "radeonsi: can't create blitter\n");
goto fail;
}
sctx->blitter->skip_viewport_restore = true;
/* Some states are expected to be always non-NULL. */
sctx->noop_blend = util_blitter_get_noop_blend_state(sctx->blitter);
sctx->queued.named.blend = sctx->noop_blend;
sctx->noop_dsa = util_blitter_get_noop_dsa_state(sctx->blitter);
sctx->queued.named.dsa = sctx->noop_dsa;
sctx->no_velems_state = sctx->b.create_vertex_elements_state(&sctx->b, 0, NULL);
sctx->vertex_elements = sctx->no_velems_state;
sctx->discard_rasterizer_state = util_blitter_get_discard_rasterizer_state(sctx->blitter);
sctx->queued.named.rasterizer = sctx->discard_rasterizer_state;
switch (sctx->gfx_level) {
case GFX6:
si_init_draw_functions_GFX6(sctx);
break;
case GFX7:
si_init_draw_functions_GFX7(sctx);
break;
case GFX8:
si_init_draw_functions_GFX8(sctx);
break;
case GFX9:
si_init_draw_functions_GFX9(sctx);
break;
case GFX10:
si_init_draw_functions_GFX10(sctx);
break;
case GFX10_3:
si_init_draw_functions_GFX10_3(sctx);
break;
case GFX11:
si_init_draw_functions_GFX11(sctx);
break;
default:
unreachable("unhandled gfx level");
}
}
sctx->sample_mask = 0xffff;
/* Initialize multimedia functions. */
if (sscreen->info.ip[AMD_IP_UVD].num_queues || sscreen->info.has_video_hw.vcn_decode ||
sscreen->info.ip[AMD_IP_VCN_JPEG].num_queues || sscreen->info.has_video_hw.vce_encode ||
sscreen->info.has_video_hw.uvd_encode || sscreen->info.has_video_hw.vcn_encode) {
sctx->b.create_video_codec = si_uvd_create_decoder;
sctx->b.create_video_buffer = si_video_buffer_create;
if (screen->resource_create_with_modifiers)
sctx->b.create_video_buffer_with_modifiers = si_video_buffer_create_with_modifiers;
} else {
sctx->b.create_video_codec = vl_create_decoder;
sctx->b.create_video_buffer = vl_video_buffer_create;
}
/* GFX7 cannot unbind a constant buffer (S_BUFFER_LOAD doesn't skip loads
* if NUM_RECORDS == 0). We need to use a dummy buffer instead. */
if (sctx->gfx_level == GFX7) {
sctx->null_const_buf.buffer =
pipe_aligned_buffer_create(screen,
PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_32BIT |
SI_RESOURCE_FLAG_DRIVER_INTERNAL,
PIPE_USAGE_DEFAULT, 16,
sctx->screen->info.tcc_cache_line_size);
if (!sctx->null_const_buf.buffer) {
fprintf(stderr, "radeonsi: can't create null_const_buf\n");
goto fail;
}
sctx->null_const_buf.buffer_size = sctx->null_const_buf.buffer->width0;
unsigned start_shader = sctx->has_graphics ? 0 : PIPE_SHADER_COMPUTE;
for (shader = start_shader; shader < SI_NUM_SHADERS; shader++) {
for (i = 0; i < SI_NUM_CONST_BUFFERS; i++) {
sctx->b.set_constant_buffer(&sctx->b, shader, i, false, &sctx->null_const_buf);
}
}
si_set_internal_const_buffer(sctx, SI_HS_CONST_DEFAULT_TESS_LEVELS, &sctx->null_const_buf);
si_set_internal_const_buffer(sctx, SI_VS_CONST_INSTANCE_DIVISORS, &sctx->null_const_buf);
si_set_internal_const_buffer(sctx, SI_VS_CONST_CLIP_PLANES, &sctx->null_const_buf);
si_set_internal_const_buffer(sctx, SI_PS_CONST_POLY_STIPPLE, &sctx->null_const_buf);
si_set_internal_const_buffer(sctx, SI_PS_CONST_SAMPLE_POSITIONS, &sctx->null_const_buf);
}
/* Bindless handles. */
sctx->tex_handles = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
sctx->img_handles = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
util_dynarray_init(&sctx->resident_tex_handles, NULL);
util_dynarray_init(&sctx->resident_img_handles, NULL);
util_dynarray_init(&sctx->resident_tex_needs_color_decompress, NULL);
util_dynarray_init(&sctx->resident_img_needs_color_decompress, NULL);
util_dynarray_init(&sctx->resident_tex_needs_depth_decompress, NULL);
sctx->dirty_implicit_resources = _mesa_pointer_hash_table_create(NULL);
if (!sctx->dirty_implicit_resources) {
fprintf(stderr, "radeonsi: can't create dirty_implicit_resources\n");
goto fail;
}
/* The remainder of this function initializes the gfx CS and must be last. */
assert(sctx->gfx_cs.current.cdw == 0);
if (sctx->has_graphics) {
si_init_cp_reg_shadowing(sctx);
}
/* Set immutable fields of shader keys. */
if (sctx->gfx_level >= GFX9) {
/* The LS output / HS input layout can be communicated
* directly instead of via user SGPRs for merged LS-HS.
* This also enables jumping over the VS prolog for HS-only waves.
*
* When the LS VGPR fix is needed, monolithic shaders can:
* - avoid initializing EXEC in both the LS prolog
* and the LS main part when !vs_needs_prolog
* - remove the fixup for unused input VGPRs
*/
sctx->shader.tcs.key.ge.opt.prefer_mono = 1;
/* This enables jumping over the VS prolog for GS-only waves. */
sctx->shader.gs.key.ge.opt.prefer_mono = 1;
}
si_begin_new_gfx_cs(sctx, true);
assert(sctx->gfx_cs.current.cdw == sctx->initial_gfx_cs_size);
if (sctx->gfx_level >= GFX9 && sctx->gfx_level < GFX11) {
sctx->wait_mem_scratch =
si_aligned_buffer_create(screen,
PIPE_RESOURCE_FLAG_UNMAPPABLE |
SI_RESOURCE_FLAG_DRIVER_INTERNAL,
PIPE_USAGE_DEFAULT, 4,
sscreen->info.tcc_cache_line_size);
if (!sctx->wait_mem_scratch) {
fprintf(stderr, "radeonsi: can't create wait_mem_scratch\n");
goto fail;
}
si_cp_write_data(sctx, sctx->wait_mem_scratch, 0, 4, V_370_MEM, V_370_ME,
&sctx->wait_mem_number);
}
if (sctx->gfx_level == GFX7) {
/* Clear the NULL constant buffer, because loads should return zeros.
* Note that this forces CP DMA to be used, because clover deadlocks
* for some reason when the compute codepath is used.
*/
uint32_t clear_value = 0;
si_clear_buffer(sctx, sctx->null_const_buf.buffer, 0, sctx->null_const_buf.buffer->width0,
&clear_value, 4, SI_OP_SYNC_AFTER, SI_COHERENCY_SHADER,
SI_CP_DMA_CLEAR_METHOD);
}
if (!(flags & SI_CONTEXT_FLAG_AUX)) {
p_atomic_inc(&screen->num_contexts);
/* Check if the aux_context needs to be recreated */
struct si_context *saux = si_get_aux_context(sscreen);
enum pipe_reset_status status = sctx->ws->ctx_query_reset_status(
saux->ctx, true, NULL);
if (status != PIPE_NO_RESET) {
/* We lost the aux_context, create a new one */
struct u_log_context *aux_log = (saux)->log;
saux->b.set_log_context(&saux->b, NULL);
saux->b.destroy(&saux->b);
saux = (struct si_context *)si_create_context(
&sscreen->b, SI_CONTEXT_FLAG_AUX |
(sscreen->options.aux_debug ? PIPE_CONTEXT_DEBUG : 0) |
(sscreen->info.has_graphics ? 0 : PIPE_CONTEXT_COMPUTE_ONLY));
saux->b.set_log_context(&saux->b, aux_log);
sscreen->aux_context = saux;
}
si_put_aux_context_flush(sscreen);
simple_mtx_lock(&sscreen->async_compute_context_lock);
if (status != PIPE_NO_RESET && sscreen->async_compute_context) {
sscreen->async_compute_context->destroy(sscreen->async_compute_context);
sscreen->async_compute_context = NULL;
}
simple_mtx_unlock(&sscreen->async_compute_context_lock);
}
sctx->initial_gfx_cs_size = sctx->gfx_cs.current.cdw;
return &sctx->b;
fail:
fprintf(stderr, "radeonsi: Failed to create a context.\n");
si_destroy_context(&sctx->b);
return NULL;
}
static bool si_is_resource_busy(struct pipe_screen *screen, struct pipe_resource *resource,
unsigned usage)
{
struct radeon_winsys *ws = ((struct si_screen *)screen)->ws;
return !ws->buffer_wait(ws, si_resource(resource)->buf, 0,
/* If mapping for write, we need to wait for all reads and writes.
* If mapping for read, we only need to wait for writes.
*/
usage & PIPE_MAP_WRITE ? RADEON_USAGE_READWRITE : RADEON_USAGE_WRITE);
}
static struct pipe_context *si_pipe_create_context(struct pipe_screen *screen, void *priv,
unsigned flags)
{
struct si_screen *sscreen = (struct si_screen *)screen;
struct pipe_context *ctx;
if (sscreen->debug_flags & DBG(CHECK_VM))
flags |= PIPE_CONTEXT_DEBUG;
ctx = si_create_context(screen, flags);
if (ctx && sscreen->info.gfx_level >= GFX9 && sscreen->debug_flags & DBG(SQTT)) {
if (ac_check_profile_state(&sscreen->info)) {
fprintf(stderr, "radeonsi: Canceling RGP trace request as a hang condition has been "
"detected. Force the GPU into a profiling mode with e.g. "
"\"echo profile_peak > "
"/sys/class/drm/card0/device/power_dpm_force_performance_level\"\n");
} else if (!si_init_thread_trace((struct si_context *)ctx)) {
FREE(ctx);
return NULL;
}
}
if (!(flags & PIPE_CONTEXT_PREFER_THREADED))
return ctx;
/* Clover (compute-only) is unsupported. */
if (flags & PIPE_CONTEXT_COMPUTE_ONLY)
return ctx;
/* When shaders are logged to stderr, asynchronous compilation is
* disabled too. */
if (sscreen->debug_flags & DBG_ALL_SHADERS)
return ctx;
/* Use asynchronous flushes only on amdgpu, since the radeon
* implementation for fence_server_sync is incomplete. */
struct pipe_context *tc =
threaded_context_create(ctx, &sscreen->pool_transfers,
si_replace_buffer_storage,
&(struct threaded_context_options){
.create_fence = sscreen->info.is_amdgpu ?
si_create_fence : NULL,
.is_resource_busy = si_is_resource_busy,
.driver_calls_flush_notify = true,
},
&((struct si_context *)ctx)->tc);
if (tc && tc != ctx)
threaded_context_init_bytes_mapped_limit((struct threaded_context *)tc, 4);
return tc;
}
/*
* pipe_screen
*/
static void si_destroy_screen(struct pipe_screen *pscreen)
{
struct si_screen *sscreen = (struct si_screen *)pscreen;
struct si_shader_part *parts[] = {sscreen->vs_prologs, sscreen->tcs_epilogs,
sscreen->ps_prologs, sscreen->ps_epilogs};
unsigned i;
if (!sscreen->ws->unref(sscreen->ws))
return;
if (sscreen->debug_flags & DBG(CACHE_STATS)) {
printf("live shader cache: hits = %u, misses = %u\n", sscreen->live_shader_cache.hits,
sscreen->live_shader_cache.misses);
printf("memory shader cache: hits = %u, misses = %u\n", sscreen->num_memory_shader_cache_hits,
sscreen->num_memory_shader_cache_misses);
printf("disk shader cache: hits = %u, misses = %u\n", sscreen->num_disk_shader_cache_hits,
sscreen->num_disk_shader_cache_misses);
}
si_resource_reference(&sscreen->attribute_ring, NULL);
if (sscreen->aux_context) {
struct si_context *saux = si_get_aux_context(sscreen);
struct u_log_context *aux_log = saux->log;
if (aux_log) {
saux->b.set_log_context(&saux->b, NULL);
u_log_context_destroy(aux_log);
FREE(aux_log);
}
saux->b.destroy(&saux->b);
mtx_unlock(&sscreen->aux_context_lock);
}
mtx_destroy(&sscreen->aux_context_lock);
simple_mtx_destroy(&sscreen->async_compute_context_lock);
if (sscreen->async_compute_context) {
sscreen->async_compute_context->destroy(sscreen->async_compute_context);
}
util_queue_destroy(&sscreen->shader_compiler_queue);
util_queue_destroy(&sscreen->shader_compiler_queue_low_priority);
/* Release the reference on glsl types of the compiler threads. */
glsl_type_singleton_decref();
for (i = 0; i < ARRAY_SIZE(sscreen->compiler); i++)
si_destroy_compiler(&sscreen->compiler[i]);
for (i = 0; i < ARRAY_SIZE(sscreen->compiler_lowp); i++)
si_destroy_compiler(&sscreen->compiler_lowp[i]);
/* Free shader parts. */
for (i = 0; i < ARRAY_SIZE(parts); i++) {
while (parts[i]) {
struct si_shader_part *part = parts[i];
parts[i] = part->next;
si_shader_binary_clean(&part->binary);
FREE(part);
}
}
simple_mtx_destroy(&sscreen->shader_parts_mutex);
si_destroy_shader_cache(sscreen);
si_destroy_perfcounters(sscreen);
si_gpu_load_kill_thread(sscreen);
simple_mtx_destroy(&sscreen->gpu_load_mutex);
simple_mtx_destroy(&sscreen->gds_mutex);
radeon_bo_reference(sscreen->ws, &sscreen->gds, NULL);
radeon_bo_reference(sscreen->ws, &sscreen->gds_oa, NULL);
slab_destroy_parent(&sscreen->pool_transfers);
disk_cache_destroy(sscreen->disk_shader_cache);
util_live_shader_cache_deinit(&sscreen->live_shader_cache);
util_idalloc_mt_fini(&sscreen->buffer_ids);
util_vertex_state_cache_deinit(&sscreen->vertex_state_cache);
sscreen->ws->destroy(sscreen->ws);
FREE(sscreen);
}
static void si_init_gs_info(struct si_screen *sscreen)
{
sscreen->gs_table_depth = ac_get_gs_table_depth(sscreen->info.gfx_level, sscreen->info.family);
}
static void si_test_vmfault(struct si_screen *sscreen, uint64_t test_flags)
{
struct pipe_context *ctx = sscreen->aux_context;
struct si_context *sctx = (struct si_context *)ctx;
struct pipe_resource *buf = pipe_buffer_create_const0(&sscreen->b, 0, PIPE_USAGE_DEFAULT, 64);
if (!buf) {
puts("Buffer allocation failed.");
exit(1);
}
si_resource(buf)->gpu_address = 0; /* cause a VM fault */
if (test_flags & DBG(TEST_VMFAULT_CP)) {
si_cp_dma_copy_buffer(sctx, buf, buf, 0, 4, 4, SI_OP_SYNC_BEFORE_AFTER,
SI_COHERENCY_NONE, L2_BYPASS);
ctx->flush(ctx, NULL, 0);
puts("VM fault test: CP - done.");
}
if (test_flags & DBG(TEST_VMFAULT_SHADER)) {
util_test_constant_buffer(ctx, buf);
puts("VM fault test: Shader - done.");
}
exit(0);
}
static void si_test_gds_memory_management(struct si_context *sctx, unsigned alloc_size,
unsigned alignment, enum radeon_bo_domain domain)
{
struct radeon_winsys *ws = sctx->ws;
struct radeon_cmdbuf cs[8];
struct pb_buffer *gds_bo[ARRAY_SIZE(cs)];
for (unsigned i = 0; i < ARRAY_SIZE(cs); i++) {
ws->cs_create(&cs[i], sctx->ctx, AMD_IP_COMPUTE, NULL, NULL, false);
gds_bo[i] = ws->buffer_create(ws, alloc_size, alignment, domain, 0);
assert(gds_bo[i]);
}
for (unsigned iterations = 0; iterations < 20000; iterations++) {
for (unsigned i = 0; i < ARRAY_SIZE(cs); i++) {
/* This clears GDS with CP DMA.
*
* We don't care if GDS is present. Just add some packet
* to make the GPU busy for a moment.
*/
si_cp_dma_clear_buffer(
sctx, &cs[i], NULL, 0, alloc_size, 0,
SI_OP_CPDMA_SKIP_CHECK_CS_SPACE, 0,
0);
ws->cs_add_buffer(&cs[i], gds_bo[i], RADEON_USAGE_READWRITE, domain);
ws->cs_flush(&cs[i], PIPE_FLUSH_ASYNC, NULL);
}
}
exit(0);
}
static void si_disk_cache_create(struct si_screen *sscreen)
{
/* Don't use the cache if shader dumping is enabled. */
if (sscreen->debug_flags & DBG_ALL_SHADERS)
return;
struct mesa_sha1 ctx;
unsigned char sha1[20];
char cache_id[20 * 2 + 1];
_mesa_sha1_init(&ctx);
if (!disk_cache_get_function_identifier(si_disk_cache_create, &ctx) ||
!disk_cache_get_function_identifier(LLVMInitializeAMDGPUTargetInfo, &ctx))
return;
_mesa_sha1_final(&ctx, sha1);
disk_cache_format_hex_id(cache_id, sha1, 20 * 2);
sscreen->disk_shader_cache = disk_cache_create(sscreen->info.name, cache_id,
sscreen->info.address32_hi);
}
static void si_set_max_shader_compiler_threads(struct pipe_screen *screen, unsigned max_threads)
{
struct si_screen *sscreen = (struct si_screen *)screen;
/* This function doesn't allow a greater number of threads than
* the queue had at its creation. */
util_queue_adjust_num_threads(&sscreen->shader_compiler_queue, max_threads);
/* Don't change the number of threads on the low priority queue. */
}
static bool si_is_parallel_shader_compilation_finished(struct pipe_screen *screen, void *shader,
enum pipe_shader_type shader_type)
{
struct si_shader_selector *sel = (struct si_shader_selector *)shader;
return util_queue_fence_is_signalled(&sel->ready);
}
static struct pipe_screen *radeonsi_screen_create_impl(struct radeon_winsys *ws,
const struct pipe_screen_config *config)
{
struct si_screen *sscreen = CALLOC_STRUCT(si_screen);
unsigned hw_threads, num_comp_hi_threads, num_comp_lo_threads;
uint64_t test_flags;
if (!sscreen) {
return NULL;
}
{
#define OPT_BOOL(name, dflt, description) \
sscreen->options.name = driQueryOptionb(config->options, "radeonsi_" #name);
#define OPT_INT(name, dflt, description) \
sscreen->options.name = driQueryOptioni(config->options, "radeonsi_" #name);
#include "si_debug_options.h"
}
sscreen->ws = ws;
ws->query_info(ws, &sscreen->info,
sscreen->options.enable_sam,
sscreen->options.disable_sam);
if (sscreen->info.gfx_level >= GFX9) {
sscreen->se_tile_repeat = 32 * sscreen->info.max_se;
} else {
ac_get_raster_config(&sscreen->info, &sscreen->pa_sc_raster_config,
&sscreen->pa_sc_raster_config_1, &sscreen->se_tile_repeat);
}
sscreen->debug_flags = debug_get_flags_option("R600_DEBUG", radeonsi_debug_options, 0);
sscreen->debug_flags |= debug_get_flags_option("AMD_DEBUG", radeonsi_debug_options, 0);
test_flags = debug_get_flags_option("AMD_TEST", test_options, 0);
if (sscreen->debug_flags & DBG(NO_GFX))
sscreen->info.has_graphics = false;
if ((sscreen->debug_flags & DBG(TMZ)) &&
!sscreen->info.has_tmz_support) {
fprintf(stderr, "radeonsi: requesting TMZ features but TMZ is not supported\n");
FREE(sscreen);
return NULL;
}
/* Initialize just one compiler instance to check for errors. The other compiler instances are
* initialized on demand.
*/
if (!si_init_compiler(sscreen, &sscreen->compiler[0])) {
/* The callee prints the error message. */
FREE(sscreen);
return NULL;
}
util_idalloc_mt_init_tc(&sscreen->buffer_ids);
/* Set functions first. */
sscreen->b.context_create = si_pipe_create_context;
sscreen->b.destroy = si_destroy_screen;
sscreen->b.set_max_shader_compiler_threads = si_set_max_shader_compiler_threads;
sscreen->b.is_parallel_shader_compilation_finished = si_is_parallel_shader_compilation_finished;
sscreen->b.finalize_nir = si_finalize_nir;
si_init_screen_get_functions(sscreen);
si_init_screen_buffer_functions(sscreen);
si_init_screen_fence_functions(sscreen);
si_init_screen_state_functions(sscreen);
si_init_screen_texture_functions(sscreen);
si_init_screen_query_functions(sscreen);
si_init_screen_live_shader_cache(sscreen);
sscreen->max_texel_buffer_elements = sscreen->b.get_param(
&sscreen->b, PIPE_CAP_MAX_TEXEL_BUFFER_ELEMENTS_UINT);
/* Set these flags in debug_flags early, so that the shader cache takes
* them into account.
*
* Enable FS_CORRECT_DERIVS_AFTER_KILL by default if LLVM is >= 13. This makes
* nir_opt_move_discards_to_top more effective.
*/
if (driQueryOptionb(config->options, "glsl_correct_derivatives_after_discard") ||
LLVM_VERSION_MAJOR >= 13)
sscreen->debug_flags |= DBG(FS_CORRECT_DERIVS_AFTER_KILL);
if (sscreen->debug_flags & DBG(INFO))
ac_print_gpu_info(&sscreen->info, stdout);
slab_create_parent(&sscreen->pool_transfers, sizeof(struct si_transfer), 64);
sscreen->force_aniso = MIN2(16, debug_get_num_option("R600_TEX_ANISO", -1));
if (sscreen->force_aniso == -1) {
sscreen->force_aniso = MIN2(16, debug_get_num_option("AMD_TEX_ANISO", -1));
}
if (sscreen->force_aniso >= 0) {
printf("radeonsi: Forcing anisotropy filter to %ix\n",
/* round down to a power of two */
1 << util_logbase2(sscreen->force_aniso));
}
(void)mtx_init(&sscreen->aux_context_lock, mtx_recursive);
(void)simple_mtx_init(&sscreen->async_compute_context_lock, mtx_plain);
(void)simple_mtx_init(&sscreen->gpu_load_mutex, mtx_plain);
(void)simple_mtx_init(&sscreen->gds_mutex, mtx_plain);
si_init_gs_info(sscreen);
if (!si_init_shader_cache(sscreen)) {
FREE(sscreen);
return NULL;
}
if (sscreen->info.gfx_level < GFX10_3)
sscreen->options.vrs2x2 = false;
si_disk_cache_create(sscreen);
/* Determine the number of shader compiler threads. */
const struct util_cpu_caps_t *caps = util_get_cpu_caps();
hw_threads = caps->nr_cpus;
if (hw_threads >= 12) {
num_comp_hi_threads = hw_threads * 3 / 4;
num_comp_lo_threads = hw_threads / 3;
} else if (hw_threads >= 6) {
num_comp_hi_threads = hw_threads - 2;
num_comp_lo_threads = hw_threads / 2;
} else if (hw_threads >= 2) {
num_comp_hi_threads = hw_threads - 1;
num_comp_lo_threads = hw_threads / 2;
} else {
num_comp_hi_threads = 1;
num_comp_lo_threads = 1;
}
#ifndef NDEBUG
nir_process_debug_variable();
/* Use a single compilation thread if NIR printing is enabled to avoid
* multiple shaders being printed at the same time.
*/
if (NIR_DEBUG(PRINT)) {
num_comp_hi_threads = 1;
num_comp_lo_threads = 1;
}
#endif
num_comp_hi_threads = MIN2(num_comp_hi_threads, ARRAY_SIZE(sscreen->compiler));
num_comp_lo_threads = MIN2(num_comp_lo_threads, ARRAY_SIZE(sscreen->compiler_lowp));
/* Take a reference on the glsl types for the compiler threads. */
glsl_type_singleton_init_or_ref();
/* Start with a single thread and a single slot.
* Each time we'll hit the "all slots are in use" case, the number of threads and
* slots will be increased.
*/
int num_slots = num_comp_hi_threads == 1 ? 64 : 1;
if (!util_queue_init(&sscreen->shader_compiler_queue, "sh", num_slots,
num_comp_hi_threads,
UTIL_QUEUE_INIT_RESIZE_IF_FULL |
UTIL_QUEUE_INIT_SCALE_THREADS |
UTIL_QUEUE_INIT_SET_FULL_THREAD_AFFINITY, NULL)) {
si_destroy_shader_cache(sscreen);
FREE(sscreen);
glsl_type_singleton_decref();
return NULL;
}
if (!util_queue_init(&sscreen->shader_compiler_queue_low_priority, "shlo", num_slots,
num_comp_lo_threads,
UTIL_QUEUE_INIT_RESIZE_IF_FULL |
UTIL_QUEUE_INIT_SCALE_THREADS |
UTIL_QUEUE_INIT_SET_FULL_THREAD_AFFINITY |
UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY, NULL)) {
si_destroy_shader_cache(sscreen);
FREE(sscreen);
glsl_type_singleton_decref();
return NULL;
}
if (!debug_get_bool_option("RADEON_DISABLE_PERFCOUNTERS", false))
si_init_perfcounters(sscreen);
sscreen->max_memory_usage_kb = sscreen->info.vram_size_kb + sscreen->info.gart_size_kb / 4 * 3;
ac_get_hs_info(&sscreen->info, &sscreen->hs);
sscreen->has_draw_indirect_multi =
(sscreen->info.family >= CHIP_POLARIS10) ||
(sscreen->info.gfx_level == GFX8 && sscreen->info.pfp_fw_version >= 121 &&
sscreen->info.me_fw_version >= 87) ||
(sscreen->info.gfx_level == GFX7 && sscreen->info.pfp_fw_version >= 211 &&
sscreen->info.me_fw_version >= 173) ||
(sscreen->info.gfx_level == GFX6 && sscreen->info.pfp_fw_version >= 79 &&
sscreen->info.me_fw_version >= 142);
sscreen->has_out_of_order_rast =
sscreen->info.has_out_of_order_rast && !(sscreen->debug_flags & DBG(NO_OUT_OF_ORDER));
if (sscreen->info.gfx_level >= GFX11) {
sscreen->use_ngg = true;
sscreen->use_ngg_streamout = true;
/* TODO: Disable for now. Investigate if it helps. */
sscreen->use_ngg_culling = (sscreen->debug_flags & DBG(ALWAYS_NGG_CULLING_ALL)) &&
!(sscreen->debug_flags & DBG(NO_NGG_CULLING));
} else {
sscreen->use_ngg = !(sscreen->debug_flags & DBG(NO_NGG)) &&
sscreen->info.gfx_level >= GFX10 &&
(sscreen->info.family != CHIP_NAVI14 ||
sscreen->info.is_pro_graphics);
sscreen->use_ngg_streamout = false;
sscreen->use_ngg_culling = sscreen->use_ngg &&
sscreen->info.max_render_backends >= 2 &&
!(sscreen->debug_flags & DBG(NO_NGG_CULLING)) &&
LLVM_VERSION_MAJOR >= 12; /* hangs on 11, see #4874 */
}
/* Only set this for the cases that are known to work, which are:
* - GFX9 if bpp >= 4 (in bytes)
*/
if (sscreen->info.gfx_level >= GFX10) {
memset(sscreen->allow_dcc_msaa_clear_to_reg_for_bpp, true,
sizeof(sscreen->allow_dcc_msaa_clear_to_reg_for_bpp));
} else if (sscreen->info.gfx_level == GFX9) {
for (unsigned bpp_log2 = util_logbase2(1); bpp_log2 <= util_logbase2(16); bpp_log2++)
sscreen->allow_dcc_msaa_clear_to_reg_for_bpp[bpp_log2] = true;
}
/* DCC stores have 50% performance of uncompressed stores and sometimes
* even less than that. It's risky to enable on dGPUs.
*/
sscreen->always_allow_dcc_stores = !(sscreen->debug_flags & DBG(NO_DCC_STORE)) &&
(sscreen->debug_flags & DBG(DCC_STORE) ||
sscreen->info.gfx_level >= GFX11 || /* always enabled on gfx11 */
(sscreen->info.gfx_level >= GFX10_3 &&
!sscreen->info.has_dedicated_vram));
sscreen->dpbb_allowed = !(sscreen->debug_flags & DBG(NO_DPBB)) &&
(sscreen->info.gfx_level >= GFX10 ||
/* Only enable primitive binning on gfx9 APUs by default. */
(sscreen->info.gfx_level == GFX9 && !sscreen->info.has_dedicated_vram) ||
sscreen->debug_flags & DBG(DPBB));
if (sscreen->dpbb_allowed) {
if (sscreen->info.has_dedicated_vram) {
if (sscreen->info.max_render_backends > 4) {
sscreen->pbb_context_states_per_bin = 1;
sscreen->pbb_persistent_states_per_bin = 1;
} else {
sscreen->pbb_context_states_per_bin = 3;
sscreen->pbb_persistent_states_per_bin = 8;
}
} else {
/* This is a workaround for:
* https://bugs.freedesktop.org/show_bug.cgi?id=110214
* (an alternative is to insert manual BATCH_BREAK event when
* a context_roll is detected). */
sscreen->pbb_context_states_per_bin = sscreen->info.has_gfx9_scissor_bug ? 1 : 6;
/* Using 32 here can cause GPU hangs on RAVEN1 */
sscreen->pbb_persistent_states_per_bin = 16;
}
assert(sscreen->pbb_context_states_per_bin >= 1 &&
sscreen->pbb_context_states_per_bin <= 6);
assert(sscreen->pbb_persistent_states_per_bin >= 1 &&
sscreen->pbb_persistent_states_per_bin <= 32);
}
(void)simple_mtx_init(&sscreen->shader_parts_mutex, mtx_plain);
sscreen->use_monolithic_shaders = (sscreen->debug_flags & DBG(MONOLITHIC_SHADERS)) != 0;
sscreen->barrier_flags.cp_to_L2 = SI_CONTEXT_INV_SCACHE | SI_CONTEXT_INV_VCACHE;
if (sscreen->info.gfx_level <= GFX8) {
sscreen->barrier_flags.cp_to_L2 |= SI_CONTEXT_INV_L2;
sscreen->barrier_flags.L2_to_cp |= SI_CONTEXT_WB_L2;
}
if (debug_get_bool_option("RADEON_DUMP_SHADERS", false))
sscreen->debug_flags |= DBG_ALL_SHADERS;
/* Syntax:
* EQAA=s,z,c
* Example:
* EQAA=8,4,2
* That means 8 coverage samples, 4 Z/S samples, and 2 color samples.
* Constraints:
* s >= z >= c (ignoring this only wastes memory)
* s = [2..16]
* z = [2..8]
* c = [2..8]
*
* Only MSAA color and depth buffers are overriden.
*/
if (sscreen->info.has_eqaa_surface_allocator) {
const char *eqaa = debug_get_option("EQAA", NULL);
unsigned s, z, f;
if (eqaa && sscanf(eqaa, "%u,%u,%u", &s, &z, &f) == 3 && s && z && f) {
sscreen->eqaa_force_coverage_samples = s;
sscreen->eqaa_force_z_samples = z;
sscreen->eqaa_force_color_samples = f;
}
}
sscreen->ngg_subgroup_size = 128;
if (sscreen->info.gfx_level >= GFX11) {
/* TODO: tweak this */
unsigned attr_ring_size_per_se = align(1400000, 64 * 1024);
unsigned attr_ring_size = attr_ring_size_per_se * sscreen->info.max_se;
assert(attr_ring_size <= 16 * 1024 * 1024); /* maximum size */
sscreen->attribute_ring = si_aligned_buffer_create(&sscreen->b,
PIPE_RESOURCE_FLAG_UNMAPPABLE |
SI_RESOURCE_FLAG_32BIT |
SI_RESOURCE_FLAG_DRIVER_INTERNAL |
SI_RESOURCE_FLAG_DISCARDABLE,
PIPE_USAGE_DEFAULT,
attr_ring_size, 2 * 1024 * 1024);
}
/* Create the auxiliary context. This must be done last. */
sscreen->aux_context = si_create_context(
&sscreen->b,
SI_CONTEXT_FLAG_AUX |
(sscreen->options.aux_debug ? PIPE_CONTEXT_DEBUG : 0) |
(sscreen->info.has_graphics ? 0 : PIPE_CONTEXT_COMPUTE_ONLY));
if (sscreen->options.aux_debug) {
struct u_log_context *log = CALLOC_STRUCT(u_log_context);
u_log_context_init(log);
si_get_aux_context(sscreen)->b.set_log_context(sscreen->aux_context, log);
si_put_aux_context_flush(sscreen);
}
if (test_flags & DBG(TEST_IMAGE_COPY))
si_test_image_copy_region(sscreen);
if (test_flags & DBG(TEST_DMA_PERF)) {
si_test_dma_perf(sscreen);
}
if (test_flags & (DBG(TEST_VMFAULT_CP) | DBG(TEST_VMFAULT_SHADER)))
si_test_vmfault(sscreen, test_flags);
if (test_flags & DBG(TEST_GDS))
si_test_gds((struct si_context *)sscreen->aux_context);
if (test_flags & DBG(TEST_GDS_MM)) {
si_test_gds_memory_management((struct si_context *)sscreen->aux_context, 32 * 1024, 4,
RADEON_DOMAIN_GDS);
}
if (test_flags & DBG(TEST_GDS_OA_MM)) {
si_test_gds_memory_management((struct si_context *)sscreen->aux_context, 4, 1,
RADEON_DOMAIN_OA);
}
ac_print_shadowed_regs(&sscreen->info);
STATIC_ASSERT(sizeof(union si_vgt_stages_key) == 1);
return &sscreen->b;
}
struct pipe_screen *radeonsi_screen_create(int fd, const struct pipe_screen_config *config)
{
drmVersionPtr version = drmGetVersion(fd);
struct radeon_winsys *rw = NULL;
driParseConfigFiles(config->options, config->options_info, 0, "radeonsi",
NULL, NULL, NULL, 0, NULL, 0);
switch (version->version_major) {
case 2:
rw = radeon_drm_winsys_create(fd, config, radeonsi_screen_create_impl);
break;
case 3:
rw = amdgpu_winsys_create(fd, config, radeonsi_screen_create_impl);
break;
}
drmFreeVersion(version);
return rw ? rw->screen : NULL;
}
struct si_context* si_get_aux_context(struct si_screen *sscreen)
{
mtx_lock(&sscreen->aux_context_lock);
return (struct si_context*)sscreen->aux_context;
}
void si_put_aux_context_flush(struct si_screen *sscreen)
{
struct pipe_context *c = &((struct si_context*)sscreen->aux_context)->b;
c->flush(c, NULL, 0);
mtx_unlock(&sscreen->aux_context_lock);
}