mesa/src/vulkan/overlay-layer/overlay.cpp

1844 lines
76 KiB
C++

/*
* Copyright © 2019 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <vk_loader_platform.h>
#include <vulkan/vulkan.h>
#include <vk_dispatch_table_helper.h>
#include <vulkan/vk_layer.h>
#include "vk_layer_data.h"
#include "vk_layer_table.h"
#include "vk_layer_extension_utils.h"
#include "imgui.h"
#include "util/debug.h"
#include "util/hash_table.h"
#include "util/ralloc.h"
#include "util/os_time.h"
#include "util/simple_mtx.h"
#include "vk_enum_to_str.h"
enum layer_position {
LAYER_POSITION_TOP_LEFT,
LAYER_POSITION_TOP_RIGHT,
LAYER_POSITION_BOTTOM_LEFT,
LAYER_POSITION_BOTTOM_RIGHT,
};
static enum layer_position
parse_layer_position(const char *str)
{
if (!str || !strcmp(str, "top-left"))
return LAYER_POSITION_TOP_LEFT;
if (!strcmp(str, "top-right"))
return LAYER_POSITION_TOP_RIGHT;
if (!strcmp(str, "bottom-left"))
return LAYER_POSITION_BOTTOM_LEFT;
if (!strcmp(str, "bottom-right"))
return LAYER_POSITION_BOTTOM_RIGHT;
return LAYER_POSITION_TOP_LEFT;
}
/* Mapped from VkInstace/VkPhysicalDevice */
struct instance_data {
VkLayerInstanceDispatchTable vtable;
VkInstance instance;
enum layer_position position;
uint64_t enabled_stats;
};
enum frame_stat_type {
FRAME_STAT_SUBMIT,
FRAME_STAT_DRAW,
FRAME_STAT_DRAW_INDEXED,
FRAME_STAT_DRAW_INDIRECT,
FRAME_STAT_DRAW_INDEXED_INDIRECT,
FRAME_STAT_DRAW_INDIRECT_COUNT,
FRAME_STAT_DRAW_INDEXED_INDIRECT_COUNT,
FRAME_STAT_DISPATCH,
FRAME_STAT_DISPATCH_INDIRECT,
FRAME_STAT_PIPELINE_GRAPHICS,
FRAME_STAT_PIPELINE_COMPUTE,
FRAME_STAT_PIPELINE_RAYTRACING,
FRAME_STAT_COUNT,
FRAME_STAT_ACQUIRE_TIMING = FRAME_STAT_COUNT,
FRAME_STAT_HELP,
};
#define FRAME_STAT_ENABLED(id) (1ULL << (FRAME_STAT_ ## id))
static struct debug_control enable_flags[] = {
{ "submit", FRAME_STAT_ENABLED(SUBMIT) },
{ "draw", FRAME_STAT_ENABLED(DRAW) },
{ "draw-indexed", FRAME_STAT_ENABLED(DRAW_INDEXED) },
{ "draw-indirect", FRAME_STAT_ENABLED(DRAW_INDIRECT) },
{ "draw-indexed-indirect", FRAME_STAT_ENABLED(DRAW_INDEXED_INDIRECT) },
{ "draw-indirect-count", FRAME_STAT_ENABLED(DRAW_INDIRECT_COUNT) },
{ "draw-indexed-indirect-count", FRAME_STAT_ENABLED(DRAW_INDEXED_INDIRECT_COUNT) },
{ "dispatch", FRAME_STAT_ENABLED(DISPATCH) },
{ "dispatch-indirect", FRAME_STAT_ENABLED(DISPATCH_INDIRECT) },
{ "pipeline-graphics", FRAME_STAT_ENABLED(PIPELINE_GRAPHICS) },
{ "pipeline-compute", FRAME_STAT_ENABLED(PIPELINE_COMPUTE) },
{ "pipeline-raytracing", FRAME_STAT_ENABLED(PIPELINE_RAYTRACING) },
{ "acquire-timing", FRAME_STAT_ENABLED(ACQUIRE_TIMING) },
{ "help", FRAME_STAT_ENABLED(HELP) },
{ NULL, 0 },
};
struct frame_stat {
uint32_t stats[FRAME_STAT_COUNT];
};
/* Mapped from VkDevice/VkCommandBuffer */
struct queue_data;
struct device_data {
struct instance_data *instance;
VkLayerDispatchTable vtable;
VkPhysicalDevice physical_device;
VkDevice device;
VkPhysicalDeviceProperties properties;
struct queue_data *graphic_queue;
struct queue_data **queues;
uint32_t n_queues;
struct frame_stat stats;
};
/* Mapped from VkQueue */
struct queue_data {
struct device_data *device;
VkQueue queue;
VkQueueFlags flags;
uint32_t family_index;
};
/* Mapped from VkSwapchainKHR */
struct swapchain_data {
struct device_data *device;
VkSwapchainKHR swapchain;
unsigned width, height;
VkFormat format;
uint32_t n_images;
VkImage *images;
VkImageView *image_views;
VkFramebuffer *framebuffers;
VkRenderPass render_pass;
VkDescriptorPool descriptor_pool;
VkDescriptorSetLayout descriptor_layout;
VkDescriptorSet descriptor_set;
VkSampler font_sampler;
VkPipelineLayout pipeline_layout;
VkPipeline pipeline;
VkCommandPool command_pool;
struct {
VkCommandBuffer command_buffer;
VkBuffer vertex_buffer;
VkDeviceMemory vertex_buffer_mem;
VkDeviceSize vertex_buffer_size;
VkBuffer index_buffer;
VkDeviceMemory index_buffer_mem;
VkDeviceSize index_buffer_size;
} frame_data[2];
bool font_uploaded;
VkImage font_image;
VkImageView font_image_view;
VkDeviceMemory font_mem;
VkBuffer upload_font_buffer;
VkDeviceMemory upload_font_buffer_mem;
VkFence fence;
VkSemaphore submission_semaphore;
/**/
ImGuiContext* imgui_context;
ImVec2 window_size;
/**/
uint64_t n_frames;
uint64_t last_present_time;
double frame_times[200];
double acquire_times[200];
uint64_t n_acquire;
enum frame_stat_type stat_selector;
struct frame_stat stats_min, stats_max;
struct frame_stat stats[200];
};
static struct hash_table *vk_object_to_data = NULL;
static simple_mtx_t vk_object_to_data_mutex = _SIMPLE_MTX_INITIALIZER_NP;
thread_local ImGuiContext* __MesaImGui;
static inline void ensure_vk_object_map(void)
{
if (!vk_object_to_data) {
vk_object_to_data = _mesa_hash_table_create(NULL,
_mesa_hash_pointer,
_mesa_key_pointer_equal);
}
}
#define FIND_SWAPCHAIN_DATA(obj) ((struct swapchain_data *)find_object_data((void *) obj))
#define FIND_DEVICE_DATA(obj) ((struct device_data *)find_object_data((void *) obj))
#define FIND_QUEUE_DATA(obj) ((struct queue_data *)find_object_data((void *) obj))
#define FIND_PHYSICAL_DEVICE_DATA(obj) ((struct instance_data *)find_object_data((void *) obj))
#define FIND_INSTANCE_DATA(obj) ((struct instance_data *)find_object_data((void *) obj))
static void *find_object_data(void *obj)
{
simple_mtx_lock(&vk_object_to_data_mutex);
ensure_vk_object_map();
struct hash_entry *entry = _mesa_hash_table_search(vk_object_to_data, obj);
void *data = entry ? entry->data : NULL;
simple_mtx_unlock(&vk_object_to_data_mutex);
return data;
}
static void map_object(void *obj, void *data)
{
simple_mtx_lock(&vk_object_to_data_mutex);
ensure_vk_object_map();
_mesa_hash_table_insert(vk_object_to_data, obj, data);
simple_mtx_unlock(&vk_object_to_data_mutex);
}
static void unmap_object(void *obj)
{
simple_mtx_lock(&vk_object_to_data_mutex);
struct hash_entry *entry = _mesa_hash_table_search(vk_object_to_data, obj);
_mesa_hash_table_remove(vk_object_to_data, entry);
simple_mtx_unlock(&vk_object_to_data_mutex);
}
/**/
static struct instance_data *new_instance_data(VkInstance instance)
{
struct instance_data *data = rzalloc(NULL, struct instance_data);
data->instance = instance;
map_object(data->instance, data);
return data;
}
static void destroy_instance_data(struct instance_data *data)
{
unmap_object(data->instance);
ralloc_free(data);
}
static void instance_data_map_physical_devices(struct instance_data *instance_data,
bool map)
{
uint32_t physicalDeviceCount = 0;
instance_data->vtable.EnumeratePhysicalDevices(instance_data->instance,
&physicalDeviceCount,
NULL);
VkPhysicalDevice *physicalDevices = (VkPhysicalDevice *) malloc(sizeof(VkPhysicalDevice) * physicalDeviceCount);
instance_data->vtable.EnumeratePhysicalDevices(instance_data->instance,
&physicalDeviceCount,
physicalDevices);
for (uint32_t i = 0; i < physicalDeviceCount; i++) {
if (map)
map_object(physicalDevices[i], instance_data);
else
unmap_object(physicalDevices[i]);
}
free(physicalDevices);
}
/**/
static struct device_data *new_device_data(VkDevice device, struct instance_data *instance)
{
struct device_data *data = rzalloc(NULL, struct device_data);
data->instance = instance;
data->device = device;
map_object(data->device, data);
return data;
}
static struct queue_data *new_queue_data(VkQueue queue,
const VkQueueFamilyProperties *family_props,
uint32_t family_index,
struct device_data *device_data)
{
struct queue_data *data = rzalloc(device_data, struct queue_data);
data->device = device_data;
data->queue = queue;
data->flags = family_props->queueFlags;
data->family_index = family_index;
map_object(data->queue, data);
if (data->flags & VK_QUEUE_GRAPHICS_BIT)
device_data->graphic_queue = data;
return data;
}
static void device_map_queues(struct device_data *data,
const VkDeviceCreateInfo *pCreateInfo)
{
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
data->n_queues += pCreateInfo->pQueueCreateInfos[i].queueCount;
data->queues = ralloc_array(data, struct queue_data *, data->n_queues);
struct instance_data *instance_data = data->instance;
uint32_t n_family_props;
instance_data->vtable.GetPhysicalDeviceQueueFamilyProperties(data->physical_device,
&n_family_props,
NULL);
VkQueueFamilyProperties *family_props =
(VkQueueFamilyProperties *)malloc(sizeof(VkQueueFamilyProperties) * n_family_props);
instance_data->vtable.GetPhysicalDeviceQueueFamilyProperties(data->physical_device,
&n_family_props,
family_props);
uint32_t queue_index = 0;
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
for (uint32_t j = 0; j < pCreateInfo->pQueueCreateInfos[i].queueCount; j++) {
VkQueue queue;
data->vtable.GetDeviceQueue(data->device,
pCreateInfo->pQueueCreateInfos[i].queueFamilyIndex,
j, &queue);
data->queues[queue_index++] =
new_queue_data(queue, &family_props[pCreateInfo->pQueueCreateInfos[i].queueFamilyIndex],
pCreateInfo->pQueueCreateInfos[i].queueFamilyIndex, data);
}
}
free(family_props);
}
static void device_unmap_queues(struct device_data *data)
{
for (uint32_t i = 0; i < data->n_queues; i++)
unmap_object(data->queues[i]->queue);
}
static void destroy_device_data(struct device_data *data)
{
unmap_object(data->device);
ralloc_free(data);
}
static void check_vk_result(VkResult err)
{
if (err != VK_SUCCESS)
printf("ERROR!\n");
}
/**/
static struct swapchain_data *new_swapchain_data(VkSwapchainKHR swapchain,
struct device_data *device_data)
{
struct swapchain_data *data = rzalloc(NULL, struct swapchain_data);
data->device = device_data;
data->swapchain = swapchain;
data->window_size = ImVec2(300, 300);
map_object(data->swapchain, data);
return data;
}
static void destroy_swapchain_data(struct swapchain_data *data)
{
unmap_object(data->swapchain);
ralloc_free(data);
}
static void snapshot_swapchain_frame(struct swapchain_data *data)
{
uint64_t now = os_time_get();
if (data->last_present_time) {
data->frame_times[(data->n_frames - 1) % ARRAY_SIZE(data->frame_times)] =
((double)now - (double)data->last_present_time) / 1000.0;
}
struct device_data *device_data = data->device;
data->stats[data->n_frames % ARRAY_SIZE(data->frame_times)] = device_data->stats;
memset(&device_data->stats, 0, sizeof(device_data->stats));
data->last_present_time = now;
data->n_frames++;
}
static float get_frame_timing(void *_data, int _idx)
{
struct swapchain_data *data = (struct swapchain_data *) _data;
if ((ARRAY_SIZE(data->frame_times) - _idx) > (data->n_frames - 2))
return 0.0f;
int idx = ARRAY_SIZE(data->frame_times) +
(data->n_frames - 2) < ARRAY_SIZE(data->frame_times) ?
_idx - (data->n_frames - 2) :
_idx + (data->n_frames - 2);
idx %= ARRAY_SIZE(data->frame_times);
return data->frame_times[idx];
}
static float get_acquire_timing(void *_data, int _idx)
{
struct swapchain_data *data = (struct swapchain_data *) _data;
if ((ARRAY_SIZE(data->acquire_times) - _idx) > data->n_acquire)
return 0.0f;
int idx = ARRAY_SIZE(data->acquire_times) +
data->n_acquire < ARRAY_SIZE(data->acquire_times) ?
_idx - data->n_acquire :
_idx + data->n_acquire;
idx %= ARRAY_SIZE(data->acquire_times);
return data->acquire_times[idx];
}
static float get_stat(void *_data, int _idx)
{
struct swapchain_data *data = (struct swapchain_data *) _data;
if ((ARRAY_SIZE(data->stats) - _idx) > data->n_frames)
return 0.0f;
int idx = ARRAY_SIZE(data->stats) +
data->n_frames < ARRAY_SIZE(data->stats) ?
_idx - data->n_frames :
_idx + data->n_frames;
idx %= ARRAY_SIZE(data->stats);
return data->stats[idx].stats[data->stat_selector];
}
static void position_layer(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
struct instance_data *instance_data = device_data->instance;
ImGui::SetNextWindowBgAlpha(0.5);
ImGui::SetNextWindowSize(data->window_size, ImGuiCond_Always);
switch (instance_data->position) {
case LAYER_POSITION_TOP_LEFT:
ImGui::SetNextWindowPos(ImVec2(0, 0), ImGuiCond_Always);
break;
case LAYER_POSITION_TOP_RIGHT:
ImGui::SetNextWindowPos(ImVec2(data->width - data->window_size.x, 0),
ImGuiCond_Always);
break;
case LAYER_POSITION_BOTTOM_LEFT:
ImGui::SetNextWindowPos(ImVec2(0, data->height - data->window_size.y),
ImGuiCond_Always);
break;
case LAYER_POSITION_BOTTOM_RIGHT:
ImGui::SetNextWindowPos(ImVec2(data->width - data->window_size.x,
data->height - data->window_size.y),
ImGuiCond_Always);
break;
}
}
static void compute_swapchain_display(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
struct instance_data *instance_data = device_data->instance;
ImGui::SetCurrentContext(data->imgui_context);
ImGui::NewFrame();
position_layer(data);
ImGui::Begin("Mesa overlay");
ImGui::Text("Device: %s", device_data->properties.deviceName);
const char *format_name = vk_Format_to_str(data->format);
format_name = format_name ? (format_name + strlen("VK_FORMAT_")) : "unknown";
ImGui::Text("Swapchain format: %s", format_name);
ImGui::Text("Frames: %lu", data->n_frames);
{
double min_time = FLT_MAX, max_time = 0.0f;
for (uint32_t i = 0; i < MIN2(data->n_frames - 2, ARRAY_SIZE(data->frame_times)); i++) {
min_time = MIN2(min_time, data->frame_times[i]);
max_time = MAX2(max_time, data->frame_times[i]);
}
ImGui::PlotHistogram("##Frame timings", get_frame_timing, data,
ARRAY_SIZE(data->frame_times), 0,
NULL, min_time, max_time,
ImVec2(ImGui::GetContentRegionAvailWidth(), 30));
ImGui::Text("Frame timing: %.3fms [%.3f, %.3f]",
get_frame_timing(data, ARRAY_SIZE(data->frame_times) - 1),
min_time, max_time);
}
if (instance_data->enabled_stats & FRAME_STAT_ENABLED(ACQUIRE_TIMING)) {
double min_time = FLT_MAX, max_time = 0.0f;
for (uint32_t i = 0; i < MIN2(data->n_acquire - 2, ARRAY_SIZE(data->acquire_times)); i++) {
min_time = MIN2(min_time, data->acquire_times[i]);
max_time = MAX2(max_time, data->acquire_times[i]);
}
ImGui::PlotHistogram("##Acquire timings", get_acquire_timing, data,
ARRAY_SIZE(data->acquire_times), 0,
NULL, min_time, max_time,
ImVec2(ImGui::GetContentRegionAvailWidth(), 30));
ImGui::Text("Acquire timing: %.3fms [%.3f, %.3f]",
get_acquire_timing(data, ARRAY_SIZE(data->acquire_times) - 1),
min_time, max_time);
for (uint32_t i = 0; i < ARRAY_SIZE(data->stats_min.stats); i++) {
data->stats_min.stats[i] = UINT32_MAX;
data->stats_max.stats[i] = 0;
}
for (uint32_t i = 0; i < MIN2(data->n_frames - 1, ARRAY_SIZE(data->stats)); i++) {
for (uint32_t j = 0; j < ARRAY_SIZE(data->stats[0].stats); j++) {
data->stats_min.stats[j] = MIN2(data->stats[i].stats[j],
data->stats_min.stats[j]);
data->stats_max.stats[j] = MAX2(data->stats[i].stats[j],
data->stats_max.stats[j]);
}
}
}
for (uint32_t i = 0; i < ARRAY_SIZE(device_data->stats.stats); i++) {
if (!(instance_data->enabled_stats & (1ULL << i)))
continue;
char hash[40];
snprintf(hash, sizeof(hash), "##%s", enable_flags[i].string);
data->stat_selector = (enum frame_stat_type) i;
ImGui::PlotHistogram(hash, get_stat, data,
ARRAY_SIZE(data->stats), 0,
NULL,
data->stats_min.stats[i],
data->stats_max.stats[i],
ImVec2(ImGui::GetContentRegionAvailWidth(), 30));
ImGui::Text("%s: %.0f [%u, %u]", enable_flags[i].string,
get_stat(data, ARRAY_SIZE(data->stats) - 1),
data->stats_min.stats[i], data->stats_max.stats[i]);
}
data->window_size = ImVec2(data->window_size.x, ImGui::GetCursorPosY() + 10.0f);
ImGui::End();
ImGui::EndFrame();
ImGui::Render();
}
static uint32_t vk_memory_type(struct device_data *data,
VkMemoryPropertyFlags properties,
uint32_t type_bits)
{
VkPhysicalDeviceMemoryProperties prop;
data->instance->vtable.GetPhysicalDeviceMemoryProperties(data->physical_device, &prop);
for (uint32_t i = 0; i < prop.memoryTypeCount; i++)
if ((prop.memoryTypes[i].propertyFlags & properties) == properties && type_bits & (1<<i))
return i;
return 0xFFFFFFFF; // Unable to find memoryType
}
static void ensure_swapchain_fonts(struct swapchain_data *data,
VkCommandBuffer command_buffer)
{
if (data->font_uploaded)
return;
data->font_uploaded = true;
struct device_data *device_data = data->device;
VkResult err;
ImGuiIO& io = ImGui::GetIO();
unsigned char* pixels;
int width, height;
io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height);
size_t upload_size = width * height * 4 * sizeof(char);
/* Upload buffer */
VkBufferCreateInfo buffer_info = {};
buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_info.size = upload_size;
buffer_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
err = device_data->vtable.CreateBuffer(device_data->device, &buffer_info,
NULL, &data->upload_font_buffer);
check_vk_result(err);
VkMemoryRequirements upload_buffer_req;
device_data->vtable.GetBufferMemoryRequirements(device_data->device,
data->upload_font_buffer,
&upload_buffer_req);
VkMemoryAllocateInfo upload_alloc_info = {};
upload_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
upload_alloc_info.allocationSize = upload_buffer_req.size;
upload_alloc_info.memoryTypeIndex = vk_memory_type(device_data,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
upload_buffer_req.memoryTypeBits);
err = device_data->vtable.AllocateMemory(device_data->device,
&upload_alloc_info,
NULL,
&data->upload_font_buffer_mem);
check_vk_result(err);
err = device_data->vtable.BindBufferMemory(device_data->device,
data->upload_font_buffer,
data->upload_font_buffer_mem, 0);
check_vk_result(err);
/* Upload to Buffer */
char* map = NULL;
err = device_data->vtable.MapMemory(device_data->device,
data->upload_font_buffer_mem,
0, upload_size, 0, (void**)(&map));
check_vk_result(err);
memcpy(map, pixels, upload_size);
VkMappedMemoryRange range[1] = {};
range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range[0].memory = data->upload_font_buffer_mem;
range[0].size = upload_size;
err = device_data->vtable.FlushMappedMemoryRanges(device_data->device, 1, range);
check_vk_result(err);
device_data->vtable.UnmapMemory(device_data->device,
data->upload_font_buffer_mem);
/* Copy buffer to image */
VkImageMemoryBarrier copy_barrier[1] = {};
copy_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
copy_barrier[0].dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
copy_barrier[0].oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
copy_barrier[0].newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
copy_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
copy_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
copy_barrier[0].image = data->font_image;
copy_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_barrier[0].subresourceRange.levelCount = 1;
copy_barrier[0].subresourceRange.layerCount = 1;
device_data->vtable.CmdPipelineBarrier(command_buffer,
VK_PIPELINE_STAGE_HOST_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0, 0, NULL, 0, NULL,
1, copy_barrier);
VkBufferImageCopy region = {};
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.layerCount = 1;
region.imageExtent.width = width;
region.imageExtent.height = height;
region.imageExtent.depth = 1;
device_data->vtable.CmdCopyBufferToImage(command_buffer,
data->upload_font_buffer,
data->font_image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &region);
VkImageMemoryBarrier use_barrier[1] = {};
use_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
use_barrier[0].srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
use_barrier[0].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
use_barrier[0].oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
use_barrier[0].newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
use_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
use_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
use_barrier[0].image = data->font_image;
use_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
use_barrier[0].subresourceRange.levelCount = 1;
use_barrier[0].subresourceRange.layerCount = 1;
device_data->vtable.CmdPipelineBarrier(command_buffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
0,
0, NULL,
0, NULL,
1, use_barrier);
/* Store our identifier */
io.Fonts->TexID = (ImTextureID)(intptr_t)data->font_image;
}
static void CreateOrResizeBuffer(struct device_data *data,
VkBuffer *buffer,
VkDeviceMemory *buffer_memory,
VkDeviceSize *buffer_size,
size_t new_size, VkBufferUsageFlagBits usage)
{
VkResult err;
if (*buffer != VK_NULL_HANDLE)
data->vtable.DestroyBuffer(data->device, *buffer, NULL);
if (*buffer_memory)
data->vtable.FreeMemory(data->device, *buffer_memory, NULL);
VkBufferCreateInfo buffer_info = {};
buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_info.size = new_size;
buffer_info.usage = usage;
buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
err = data->vtable.CreateBuffer(data->device, &buffer_info, NULL, buffer);
check_vk_result(err);
VkMemoryRequirements req;
data->vtable.GetBufferMemoryRequirements(data->device, *buffer, &req);
VkMemoryAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
alloc_info.allocationSize = req.size;
alloc_info.memoryTypeIndex =
vk_memory_type(data, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, req.memoryTypeBits);
err = data->vtable.AllocateMemory(data->device, &alloc_info, NULL, buffer_memory);
check_vk_result(err);
err = data->vtable.BindBufferMemory(data->device, *buffer, *buffer_memory, 0);
check_vk_result(err);
*buffer_size = new_size;
}
static void render_swapchain_display(struct swapchain_data *data, unsigned image_index)
{
ImDrawData* draw_data = ImGui::GetDrawData();
if (draw_data->TotalVtxCount == 0)
return;
struct device_data *device_data = data->device;
uint32_t idx = data->n_frames % ARRAY_SIZE(data->frame_data);
VkCommandBuffer command_buffer = data->frame_data[idx].command_buffer;
VkResult err;
device_data->vtable.ResetCommandBuffer(command_buffer, 0);
VkRenderPassBeginInfo render_pass_info = {};
render_pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
render_pass_info.renderPass = data->render_pass;
render_pass_info.framebuffer = data->framebuffers[image_index];
render_pass_info.renderArea.extent.width = data->width;
render_pass_info.renderArea.extent.height = data->height;
VkCommandBufferBeginInfo buffer_begin_info = {};
buffer_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
device_data->vtable.BeginCommandBuffer(command_buffer, &buffer_begin_info);
ensure_swapchain_fonts(data, command_buffer);
/* Bounce the image to display back to color attachment layout for
* rendering on top of it.
*/
VkImageMemoryBarrier imb;
imb.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imb.pNext = nullptr;
imb.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
imb.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
imb.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
imb.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
imb.image = data->images[image_index];
imb.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imb.subresourceRange.baseMipLevel = 0;
imb.subresourceRange.levelCount = 1;
imb.subresourceRange.baseArrayLayer = 0;
imb.subresourceRange.layerCount = 1;
imb.srcQueueFamilyIndex = device_data->graphic_queue->family_index;
imb.dstQueueFamilyIndex = device_data->graphic_queue->family_index;
device_data->vtable.CmdPipelineBarrier(command_buffer,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
0, /* dependency flags */
0, nullptr, /* memory barriers */
0, nullptr, /* buffer memory barriers */
1, &imb); /* image memory barriers */
device_data->vtable.CmdBeginRenderPass(command_buffer, &render_pass_info,
VK_SUBPASS_CONTENTS_INLINE);
/* Create/Resize vertex & index buffers */
size_t vertex_size = draw_data->TotalVtxCount * sizeof(ImDrawVert);
size_t index_size = draw_data->TotalIdxCount * sizeof(ImDrawIdx);
if (data->frame_data[idx].vertex_buffer_size < vertex_size) {
CreateOrResizeBuffer(device_data,
&data->frame_data[idx].vertex_buffer,
&data->frame_data[idx].vertex_buffer_mem,
&data->frame_data[idx].vertex_buffer_size,
vertex_size, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
}
if (data->frame_data[idx].index_buffer_size < index_size) {
CreateOrResizeBuffer(device_data,
&data->frame_data[idx].index_buffer,
&data->frame_data[idx].index_buffer_mem,
&data->frame_data[idx].index_buffer_size,
index_size, VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
}
/* Upload vertex & index data */
VkBuffer vertex_buffer = data->frame_data[idx].vertex_buffer;
VkDeviceMemory vertex_mem = data->frame_data[idx].vertex_buffer_mem;
VkBuffer index_buffer = data->frame_data[idx].index_buffer;
VkDeviceMemory index_mem = data->frame_data[idx].index_buffer_mem;
ImDrawVert* vtx_dst = NULL;
ImDrawIdx* idx_dst = NULL;
err = device_data->vtable.MapMemory(device_data->device, vertex_mem,
0, vertex_size, 0, (void**)(&vtx_dst));
check_vk_result(err);
err = device_data->vtable.MapMemory(device_data->device, index_mem,
0, index_size, 0, (void**)(&idx_dst));
check_vk_result(err);
for (int n = 0; n < draw_data->CmdListsCount; n++)
{
const ImDrawList* cmd_list = draw_data->CmdLists[n];
memcpy(vtx_dst, cmd_list->VtxBuffer.Data, cmd_list->VtxBuffer.Size * sizeof(ImDrawVert));
memcpy(idx_dst, cmd_list->IdxBuffer.Data, cmd_list->IdxBuffer.Size * sizeof(ImDrawIdx));
vtx_dst += cmd_list->VtxBuffer.Size;
idx_dst += cmd_list->IdxBuffer.Size;
}
VkMappedMemoryRange range[2] = {};
range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range[0].memory = vertex_mem;
range[0].size = VK_WHOLE_SIZE;
range[1].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range[1].memory = index_mem;
range[1].size = VK_WHOLE_SIZE;
err = device_data->vtable.FlushMappedMemoryRanges(device_data->device, 2, range);
check_vk_result(err);
device_data->vtable.UnmapMemory(device_data->device, vertex_mem);
device_data->vtable.UnmapMemory(device_data->device, index_mem);
/* Bind pipeline and descriptor sets */
device_data->vtable.CmdBindPipeline(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, data->pipeline);
VkDescriptorSet desc_set[1] = { data->descriptor_set };
device_data->vtable.CmdBindDescriptorSets(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
data->pipeline_layout, 0, 1, desc_set, 0, NULL);
/* Bind vertex & index buffers */
VkBuffer vertex_buffers[1] = { vertex_buffer };
VkDeviceSize vertex_offset[1] = { 0 };
device_data->vtable.CmdBindVertexBuffers(command_buffer, 0, 1, vertex_buffers, vertex_offset);
device_data->vtable.CmdBindIndexBuffer(command_buffer, index_buffer, 0, VK_INDEX_TYPE_UINT16);
/* Setup viewport */
VkViewport viewport;
viewport.x = 0;
viewport.y = 0;
viewport.width = draw_data->DisplaySize.x;
viewport.height = draw_data->DisplaySize.y;
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
device_data->vtable.CmdSetViewport(command_buffer, 0, 1, &viewport);
/* Setup scale and translation through push constants :
*
* Our visible imgui space lies from draw_data->DisplayPos (top left) to
* draw_data->DisplayPos+data_data->DisplaySize (bottom right). DisplayMin
* is typically (0,0) for single viewport apps.
*/
float scale[2];
scale[0] = 2.0f / draw_data->DisplaySize.x;
scale[1] = 2.0f / draw_data->DisplaySize.y;
float translate[2];
translate[0] = -1.0f - draw_data->DisplayPos.x * scale[0];
translate[1] = -1.0f - draw_data->DisplayPos.y * scale[1];
device_data->vtable.CmdPushConstants(command_buffer, data->pipeline_layout,
VK_SHADER_STAGE_VERTEX_BIT,
sizeof(float) * 0, sizeof(float) * 2, scale);
device_data->vtable.CmdPushConstants(command_buffer, data->pipeline_layout,
VK_SHADER_STAGE_VERTEX_BIT,
sizeof(float) * 2, sizeof(float) * 2, translate);
// Render the command lists:
int vtx_offset = 0;
int idx_offset = 0;
ImVec2 display_pos = draw_data->DisplayPos;
for (int n = 0; n < draw_data->CmdListsCount; n++)
{
const ImDrawList* cmd_list = draw_data->CmdLists[n];
for (int cmd_i = 0; cmd_i < cmd_list->CmdBuffer.Size; cmd_i++)
{
const ImDrawCmd* pcmd = &cmd_list->CmdBuffer[cmd_i];
// Apply scissor/clipping rectangle
// FIXME: We could clamp width/height based on clamped min/max values.
VkRect2D scissor;
scissor.offset.x = (int32_t)(pcmd->ClipRect.x - display_pos.x) > 0 ? (int32_t)(pcmd->ClipRect.x - display_pos.x) : 0;
scissor.offset.y = (int32_t)(pcmd->ClipRect.y - display_pos.y) > 0 ? (int32_t)(pcmd->ClipRect.y - display_pos.y) : 0;
scissor.extent.width = (uint32_t)(pcmd->ClipRect.z - pcmd->ClipRect.x);
scissor.extent.height = (uint32_t)(pcmd->ClipRect.w - pcmd->ClipRect.y + 1); // FIXME: Why +1 here?
device_data->vtable.CmdSetScissor(command_buffer, 0, 1, &scissor);
// Draw
device_data->vtable.CmdDrawIndexed(command_buffer, pcmd->ElemCount, 1, idx_offset, vtx_offset, 0);
idx_offset += pcmd->ElemCount;
}
vtx_offset += cmd_list->VtxBuffer.Size;
}
device_data->vtable.CmdEndRenderPass(command_buffer);
device_data->vtable.EndCommandBuffer(command_buffer);
if (data->submission_semaphore) {
device_data->vtable.DestroySemaphore(device_data->device,
data->submission_semaphore,
NULL);
}
/* Submission semaphore */
VkSemaphoreCreateInfo semaphore_info = {};
semaphore_info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
err = device_data->vtable.CreateSemaphore(device_data->device, &semaphore_info,
NULL, &data->submission_semaphore);
check_vk_result(err);
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &command_buffer;
submit_info.signalSemaphoreCount = 1;
submit_info.pSignalSemaphores = &data->submission_semaphore;
device_data->vtable.WaitForFences(device_data->device, 1, &data->fence, VK_TRUE, UINT64_MAX);
device_data->vtable.ResetFences(device_data->device, 1, &data->fence);
device_data->vtable.QueueSubmit(device_data->graphic_queue->queue, 1, &submit_info, data->fence);
}
static const uint32_t overlay_vert_spv[] = {
#include "overlay.vert.spv.h"
};
static const uint32_t overlay_frag_spv[] = {
#include "overlay.frag.spv.h"
};
static void setup_swapchain_data_pipeline(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
VkShaderModule vert_module, frag_module;
VkResult err;
/* Create shader modules */
VkShaderModuleCreateInfo vert_info = {};
vert_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
vert_info.codeSize = sizeof(overlay_vert_spv);
vert_info.pCode = overlay_vert_spv;
err = device_data->vtable.CreateShaderModule(device_data->device,
&vert_info, NULL, &vert_module);
check_vk_result(err);
VkShaderModuleCreateInfo frag_info = {};
frag_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
frag_info.codeSize = sizeof(overlay_frag_spv);
frag_info.pCode = (uint32_t*)overlay_frag_spv;
err = device_data->vtable.CreateShaderModule(device_data->device,
&frag_info, NULL, &frag_module);
check_vk_result(err);
/* Font sampler */
VkSamplerCreateInfo sampler_info = {};
sampler_info.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
sampler_info.magFilter = VK_FILTER_LINEAR;
sampler_info.minFilter = VK_FILTER_LINEAR;
sampler_info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler_info.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.minLod = -1000;
sampler_info.maxLod = 1000;
sampler_info.maxAnisotropy = 1.0f;
err = device_data->vtable.CreateSampler(device_data->device, &sampler_info,
NULL, &data->font_sampler);
check_vk_result(err);
/* Descriptor pool */
VkDescriptorPoolSize sampler_pool_size = {};
sampler_pool_size.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
sampler_pool_size.descriptorCount = 1;
VkDescriptorPoolCreateInfo desc_pool_info = {};
desc_pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
desc_pool_info.maxSets = 1;
desc_pool_info.poolSizeCount = 1;
desc_pool_info.pPoolSizes = &sampler_pool_size;
err = device_data->vtable.CreateDescriptorPool(device_data->device,
&desc_pool_info,
NULL, &data->descriptor_pool);
check_vk_result(err);
/* Descriptor layout */
VkSampler sampler[1] = { data->font_sampler };
VkDescriptorSetLayoutBinding binding[1] = {};
binding[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
binding[0].descriptorCount = 1;
binding[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
binding[0].pImmutableSamplers = sampler;
VkDescriptorSetLayoutCreateInfo set_layout_info = {};
set_layout_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
set_layout_info.bindingCount = 1;
set_layout_info.pBindings = binding;
err = device_data->vtable.CreateDescriptorSetLayout(device_data->device,
&set_layout_info,
NULL, &data->descriptor_layout);
check_vk_result(err);
/* Descriptor set */
VkDescriptorSetAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
alloc_info.descriptorPool = data->descriptor_pool;
alloc_info.descriptorSetCount = 1;
alloc_info.pSetLayouts = &data->descriptor_layout;
err = device_data->vtable.AllocateDescriptorSets(device_data->device,
&alloc_info,
&data->descriptor_set);
check_vk_result(err);
/* Constants: we are using 'vec2 offset' and 'vec2 scale' instead of a full
* 3d projection matrix
*/
VkPushConstantRange push_constants[1] = {};
push_constants[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
push_constants[0].offset = sizeof(float) * 0;
push_constants[0].size = sizeof(float) * 4;
VkPipelineLayoutCreateInfo layout_info = {};
layout_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
layout_info.setLayoutCount = 1;
layout_info.pSetLayouts = &data->descriptor_layout;
layout_info.pushConstantRangeCount = 1;
layout_info.pPushConstantRanges = push_constants;
err = device_data->vtable.CreatePipelineLayout(device_data->device,
&layout_info,
NULL, &data->pipeline_layout);
check_vk_result(err);
VkPipelineShaderStageCreateInfo stage[2] = {};
stage[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
stage[0].module = vert_module;
stage[0].pName = "main";
stage[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
stage[1].module = frag_module;
stage[1].pName = "main";
VkVertexInputBindingDescription binding_desc[1] = {};
binding_desc[0].stride = sizeof(ImDrawVert);
binding_desc[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
VkVertexInputAttributeDescription attribute_desc[3] = {};
attribute_desc[0].location = 0;
attribute_desc[0].binding = binding_desc[0].binding;
attribute_desc[0].format = VK_FORMAT_R32G32_SFLOAT;
attribute_desc[0].offset = IM_OFFSETOF(ImDrawVert, pos);
attribute_desc[1].location = 1;
attribute_desc[1].binding = binding_desc[0].binding;
attribute_desc[1].format = VK_FORMAT_R32G32_SFLOAT;
attribute_desc[1].offset = IM_OFFSETOF(ImDrawVert, uv);
attribute_desc[2].location = 2;
attribute_desc[2].binding = binding_desc[0].binding;
attribute_desc[2].format = VK_FORMAT_R8G8B8A8_UNORM;
attribute_desc[2].offset = IM_OFFSETOF(ImDrawVert, col);
VkPipelineVertexInputStateCreateInfo vertex_info = {};
vertex_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertex_info.vertexBindingDescriptionCount = 1;
vertex_info.pVertexBindingDescriptions = binding_desc;
vertex_info.vertexAttributeDescriptionCount = 3;
vertex_info.pVertexAttributeDescriptions = attribute_desc;
VkPipelineInputAssemblyStateCreateInfo ia_info = {};
ia_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
ia_info.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
VkPipelineViewportStateCreateInfo viewport_info = {};
viewport_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewport_info.viewportCount = 1;
viewport_info.scissorCount = 1;
VkPipelineRasterizationStateCreateInfo raster_info = {};
raster_info.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
raster_info.polygonMode = VK_POLYGON_MODE_FILL;
raster_info.cullMode = VK_CULL_MODE_NONE;
raster_info.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
raster_info.lineWidth = 1.0f;
VkPipelineMultisampleStateCreateInfo ms_info = {};
ms_info.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
ms_info.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
VkPipelineColorBlendAttachmentState color_attachment[1] = {};
color_attachment[0].blendEnable = VK_TRUE;
color_attachment[0].srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
color_attachment[0].dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
color_attachment[0].colorBlendOp = VK_BLEND_OP_ADD;
color_attachment[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
color_attachment[0].dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
color_attachment[0].alphaBlendOp = VK_BLEND_OP_ADD;
color_attachment[0].colorWriteMask = VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
VkPipelineDepthStencilStateCreateInfo depth_info = {};
depth_info.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
VkPipelineColorBlendStateCreateInfo blend_info = {};
blend_info.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
blend_info.attachmentCount = 1;
blend_info.pAttachments = color_attachment;
VkDynamicState dynamic_states[2] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamic_state = {};
dynamic_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamic_state.dynamicStateCount = (uint32_t)IM_ARRAYSIZE(dynamic_states);
dynamic_state.pDynamicStates = dynamic_states;
VkGraphicsPipelineCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.flags = 0;
info.stageCount = 2;
info.pStages = stage;
info.pVertexInputState = &vertex_info;
info.pInputAssemblyState = &ia_info;
info.pViewportState = &viewport_info;
info.pRasterizationState = &raster_info;
info.pMultisampleState = &ms_info;
info.pDepthStencilState = &depth_info;
info.pColorBlendState = &blend_info;
info.pDynamicState = &dynamic_state;
info.layout = data->pipeline_layout;
info.renderPass = data->render_pass;
err = device_data->vtable.CreateGraphicsPipelines(device_data->device, VK_NULL_HANDLE,
1, &info,
NULL, &data->pipeline);
check_vk_result(err);
device_data->vtable.DestroyShaderModule(device_data->device, vert_module, NULL);
device_data->vtable.DestroyShaderModule(device_data->device, frag_module, NULL);
ImGuiIO& io = ImGui::GetIO();
unsigned char* pixels;
int width, height;
io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height);
/* Font image */
VkImageCreateInfo image_info = {};
image_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_info.imageType = VK_IMAGE_TYPE_2D;
image_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image_info.extent.width = width;
image_info.extent.height = height;
image_info.extent.depth = 1;
image_info.mipLevels = 1;
image_info.arrayLayers = 1;
image_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
image_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
err = device_data->vtable.CreateImage(device_data->device, &image_info,
NULL, &data->font_image);
check_vk_result(err);
VkMemoryRequirements font_image_req;
device_data->vtable.GetImageMemoryRequirements(device_data->device,
data->font_image, &font_image_req);
VkMemoryAllocateInfo image_alloc_info = {};
image_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
image_alloc_info.allocationSize = font_image_req.size;
image_alloc_info.memoryTypeIndex = vk_memory_type(device_data,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
font_image_req.memoryTypeBits);
err = device_data->vtable.AllocateMemory(device_data->device, &image_alloc_info,
NULL, &data->font_mem);
check_vk_result(err);
err = device_data->vtable.BindImageMemory(device_data->device,
data->font_image,
data->font_mem, 0);
check_vk_result(err);
/* Font image view */
VkImageViewCreateInfo view_info = {};
view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view_info.image = data->font_image;
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_info.format = VK_FORMAT_R8G8B8A8_UNORM;
view_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view_info.subresourceRange.levelCount = 1;
view_info.subresourceRange.layerCount = 1;
err = device_data->vtable.CreateImageView(device_data->device, &view_info,
NULL, &data->font_image_view);
check_vk_result(err);
/* Descriptor set */
VkDescriptorImageInfo desc_image[1] = {};
desc_image[0].sampler = data->font_sampler;
desc_image[0].imageView = data->font_image_view;
desc_image[0].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
VkWriteDescriptorSet write_desc[1] = {};
write_desc[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
write_desc[0].dstSet = data->descriptor_set;
write_desc[0].descriptorCount = 1;
write_desc[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
write_desc[0].pImageInfo = desc_image;
device_data->vtable.UpdateDescriptorSets(device_data->device, 1, write_desc, 0, NULL);
}
static void setup_swapchain_data(struct swapchain_data *data,
const VkSwapchainCreateInfoKHR *pCreateInfo)
{
data->width = pCreateInfo->imageExtent.width;
data->height = pCreateInfo->imageExtent.height;
data->format = pCreateInfo->imageFormat;
data->imgui_context = ImGui::CreateContext();
ImGui::SetCurrentContext(data->imgui_context);
ImGui::GetIO().IniFilename = NULL;
ImGui::GetIO().DisplaySize = ImVec2((float)data->width, (float)data->height);
struct device_data *device_data = data->device;
VkResult err;
/* Render pass */
VkAttachmentDescription attachment_desc = {};
attachment_desc.format = pCreateInfo->imageFormat;
attachment_desc.samples = VK_SAMPLE_COUNT_1_BIT;
attachment_desc.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachment_desc.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachment_desc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachment_desc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachment_desc.initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachment_desc.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
VkAttachmentReference color_attachment = {};
color_attachment.attachment = 0;
color_attachment.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_attachment;
VkSubpassDependency dependency = {};
dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
dependency.dstSubpass = 0;
dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependency.srcAccessMask = 0;
dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
VkRenderPassCreateInfo render_pass_info = {};
render_pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
render_pass_info.attachmentCount = 1;
render_pass_info.pAttachments = &attachment_desc;
render_pass_info.subpassCount = 1;
render_pass_info.pSubpasses = &subpass;
render_pass_info.dependencyCount = 1;
render_pass_info.pDependencies = &dependency;
err = device_data->vtable.CreateRenderPass(device_data->device,
&render_pass_info,
NULL, &data->render_pass);
check_vk_result(err);
setup_swapchain_data_pipeline(data);
device_data->vtable.GetSwapchainImagesKHR(device_data->device,
data->swapchain,
&data->n_images,
NULL);
data->images = ralloc_array(data, VkImage, data->n_images);
data->image_views = ralloc_array(data, VkImageView, data->n_images);
data->framebuffers = ralloc_array(data, VkFramebuffer, data->n_images);
device_data->vtable.GetSwapchainImagesKHR(device_data->device,
data->swapchain,
&data->n_images,
data->images);
/* Image views */
VkImageViewCreateInfo view_info = {};
view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_info.format = pCreateInfo->imageFormat;
view_info.components.r = VK_COMPONENT_SWIZZLE_R;
view_info.components.g = VK_COMPONENT_SWIZZLE_G;
view_info.components.b = VK_COMPONENT_SWIZZLE_B;
view_info.components.a = VK_COMPONENT_SWIZZLE_A;
view_info.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
for (uint32_t i = 0; i < data->n_images; i++) {
view_info.image = data->images[i];
err = device_data->vtable.CreateImageView(device_data->device, &view_info,
NULL, &data->image_views[i]);
check_vk_result(err);
}
/* Framebuffers */
VkImageView attachment[1];
VkFramebufferCreateInfo fb_info = {};
fb_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fb_info.renderPass = data->render_pass;
fb_info.attachmentCount = 1;
fb_info.pAttachments = attachment;
fb_info.width = data->width;
fb_info.height = data->height;
fb_info.layers = 1;
for (uint32_t i = 0; i < data->n_images; i++) {
attachment[0] = data->image_views[i];
err = device_data->vtable.CreateFramebuffer(device_data->device, &fb_info,
NULL, &data->framebuffers[i]);
check_vk_result(err);
}
/* Command buffer */
VkCommandPoolCreateInfo cmd_buffer_pool_info = {};
cmd_buffer_pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmd_buffer_pool_info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
cmd_buffer_pool_info.queueFamilyIndex = device_data->graphic_queue->family_index;
err = device_data->vtable.CreateCommandPool(device_data->device,
&cmd_buffer_pool_info,
NULL, &data->command_pool);
check_vk_result(err);
VkCommandBuffer cmd_bufs[ARRAY_SIZE(data->frame_data)];
VkCommandBufferAllocateInfo cmd_buffer_info = {};
cmd_buffer_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cmd_buffer_info.commandPool = data->command_pool;
cmd_buffer_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
cmd_buffer_info.commandBufferCount = 2;
err = device_data->vtable.AllocateCommandBuffers(device_data->device,
&cmd_buffer_info,
cmd_bufs);
check_vk_result(err);
for (uint32_t i = 0; i < ARRAY_SIZE(data->frame_data); i++)
data->frame_data[i].command_buffer = cmd_bufs[i];
/* Submission fence */
VkFenceCreateInfo fence_info = {};
fence_info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fence_info.flags = VK_FENCE_CREATE_SIGNALED_BIT;
err = device_data->vtable.CreateFence(device_data->device, &fence_info,
NULL, &data->fence);
check_vk_result(err);
}
static void shutdown_swapchain_data(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
for (uint32_t i = 0; i < data->n_images; i++) {
device_data->vtable.DestroyImageView(device_data->device, data->image_views[i], NULL);
device_data->vtable.DestroyFramebuffer(device_data->device, data->framebuffers[i], NULL);
}
device_data->vtable.DestroyRenderPass(device_data->device, data->render_pass, NULL);
for (uint32_t i = 0; i < ARRAY_SIZE(data->frame_data); i++) {
device_data->vtable.FreeCommandBuffers(device_data->device,
data->command_pool,
1, &data->frame_data[i].command_buffer);
if (data->frame_data[i].vertex_buffer)
device_data->vtable.DestroyBuffer(device_data->device, data->frame_data[i].vertex_buffer, NULL);
if (data->frame_data[i].index_buffer)
device_data->vtable.DestroyBuffer(device_data->device, data->frame_data[i].index_buffer, NULL);
if (data->frame_data[i].vertex_buffer_mem)
device_data->vtable.FreeMemory(device_data->device, data->frame_data[i].vertex_buffer_mem, NULL);
if (data->frame_data[i].index_buffer_mem)
device_data->vtable.FreeMemory(device_data->device, data->frame_data[i].index_buffer_mem, NULL);
}
device_data->vtable.DestroyCommandPool(device_data->device, data->command_pool, NULL);
device_data->vtable.DestroyFence(device_data->device, data->fence, NULL);
if (data->submission_semaphore)
device_data->vtable.DestroySemaphore(device_data->device, data->submission_semaphore, NULL);
device_data->vtable.DestroyPipeline(device_data->device, data->pipeline, NULL);
device_data->vtable.DestroyPipelineLayout(device_data->device, data->pipeline_layout, NULL);
device_data->vtable.FreeDescriptorSets(device_data->device, data->descriptor_pool,
1, &data->descriptor_set);
device_data->vtable.DestroyDescriptorPool(device_data->device,
data->descriptor_pool, NULL);
device_data->vtable.DestroyDescriptorSetLayout(device_data->device,
data->descriptor_layout, NULL);
device_data->vtable.DestroySampler(device_data->device, data->font_sampler, NULL);
device_data->vtable.DestroyImageView(device_data->device, data->font_image_view, NULL);
device_data->vtable.DestroyImage(device_data->device, data->font_image, NULL);
device_data->vtable.FreeMemory(device_data->device, data->font_mem, NULL);
device_data->vtable.DestroyBuffer(device_data->device, data->upload_font_buffer, NULL);
device_data->vtable.FreeMemory(device_data->device, data->upload_font_buffer_mem, NULL);
ImGui::DestroyContext(data->imgui_context);
}
static void before_present(struct swapchain_data *swapchain_data,
unsigned imageIndex)
{
snapshot_swapchain_frame(swapchain_data);
compute_swapchain_display(swapchain_data);
render_swapchain_display(swapchain_data, imageIndex);
}
VKAPI_ATTR VkResult VKAPI_CALL overlay_CreateSwapchainKHR(
VkDevice device,
const VkSwapchainCreateInfoKHR* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSwapchainKHR* pSwapchain)
{
struct device_data *device_data = FIND_DEVICE_DATA(device);
VkResult result = device_data->vtable.CreateSwapchainKHR(device, pCreateInfo, pAllocator, pSwapchain);
if (result != VK_SUCCESS) return result;
struct swapchain_data *swapchain_data = new_swapchain_data(*pSwapchain, device_data);
setup_swapchain_data(swapchain_data, pCreateInfo);
return result;
}
VKAPI_ATTR void VKAPI_CALL overlay_DestroySwapchainKHR(
VkDevice device,
VkSwapchainKHR swapchain,
const VkAllocationCallbacks* pAllocator)
{
struct swapchain_data *swapchain_data = FIND_SWAPCHAIN_DATA(swapchain);
shutdown_swapchain_data(swapchain_data);
swapchain_data->device->vtable.DestroySwapchainKHR(device, swapchain, pAllocator);
destroy_swapchain_data(swapchain_data);
}
VKAPI_ATTR VkResult VKAPI_CALL overlay_QueuePresentKHR(
VkQueue queue,
const VkPresentInfoKHR* pPresentInfo)
{
struct queue_data *queue_data = FIND_QUEUE_DATA(queue);
struct device_data *device_data = queue_data->device;
/* If we present on the graphic queue this layer is using to draw an
* overlay, we don't need more than submitting the overlay draw prior to
* present.
*/
if (queue_data == device_data->graphic_queue) {
for (uint32_t i = 0; i < pPresentInfo->swapchainCount; i++) {
struct swapchain_data *swapchain_data = FIND_SWAPCHAIN_DATA(pPresentInfo->pSwapchains[i]);
before_present(swapchain_data, pPresentInfo->pImageIndices[i]);
}
return queue_data->device->vtable.QueuePresentKHR(queue, pPresentInfo);
}
/* Otherwise we need to do cross queue synchronization to tie the overlay
* draw into the present queue.
*/
VkPresentInfoKHR present_info = *pPresentInfo;
VkSemaphore *semaphores =
(VkSemaphore *)malloc(sizeof(VkSemaphore) * (pPresentInfo->waitSemaphoreCount + pPresentInfo->swapchainCount));
for (uint32_t i = 0; i < pPresentInfo->waitSemaphoreCount; i++)
semaphores[i] = pPresentInfo->pWaitSemaphores[i];
for (uint32_t i = 0; i < pPresentInfo->swapchainCount; i++) {
struct swapchain_data *swapchain_data = FIND_SWAPCHAIN_DATA(pPresentInfo->pSwapchains[i]);
before_present(swapchain_data, pPresentInfo->pImageIndices[i]);
semaphores[pPresentInfo->waitSemaphoreCount + i] = swapchain_data->submission_semaphore;
}
present_info.pWaitSemaphores = semaphores;
present_info.waitSemaphoreCount = pPresentInfo->waitSemaphoreCount + pPresentInfo->swapchainCount;
VkResult result = queue_data->device->vtable.QueuePresentKHR(queue, &present_info);
free(semaphores);
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL overlay_AcquireNextImageKHR(
VkDevice device,
VkSwapchainKHR swapchain,
uint64_t timeout,
VkSemaphore semaphore,
VkFence fence,
uint32_t* pImageIndex)
{
struct swapchain_data *swapchain_data = FIND_SWAPCHAIN_DATA(swapchain);
struct device_data *device_data = swapchain_data->device;
uint64_t ts0 = os_time_get();
VkResult result = device_data->vtable.AcquireNextImageKHR(device, swapchain, timeout,
semaphore, fence, pImageIndex);
uint64_t ts1 = os_time_get();
swapchain_data->acquire_times[swapchain_data->n_acquire %
ARRAY_SIZE(swapchain_data->acquire_times)] =
((double)ts1 - (double)ts0) / 1000.0;
swapchain_data->n_acquire++;
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL overlay_AcquireNextImage2KHR(
VkDevice device,
const VkAcquireNextImageInfoKHR* pAcquireInfo,
uint32_t* pImageIndex)
{
struct swapchain_data *swapchain_data = FIND_SWAPCHAIN_DATA(pAcquireInfo->swapchain);
struct device_data *device_data = swapchain_data->device;
uint64_t ts0 = os_time_get();
VkResult result = device_data->vtable.AcquireNextImage2KHR(device, pAcquireInfo, pImageIndex);
uint64_t ts1 = os_time_get();
swapchain_data->acquire_times[swapchain_data->n_acquire %
ARRAY_SIZE(swapchain_data->acquire_times)] =
((double)ts1 - (double)ts0) / 1000.0;
swapchain_data->n_acquire++;
return result;
}
VKAPI_ATTR void VKAPI_CALL overlay_CmdDraw(
VkCommandBuffer commandBuffer,
uint32_t vertexCount,
uint32_t instanceCount,
uint32_t firstVertex,
uint32_t firstInstance)
{
struct device_data *device_data = FIND_DEVICE_DATA(commandBuffer);
device_data->vtable.CmdDraw(commandBuffer, vertexCount, instanceCount,
firstVertex, firstInstance);
device_data->stats.stats[FRAME_STAT_DRAW]++;
}
VKAPI_ATTR void VKAPI_CALL overlay_CmdDrawIndexed(
VkCommandBuffer commandBuffer,
uint32_t indexCount,
uint32_t instanceCount,
uint32_t firstIndex,
int32_t vertexOffset,
uint32_t firstInstance)
{
struct device_data *device_data = FIND_DEVICE_DATA(commandBuffer);
device_data->vtable.CmdDrawIndexed(commandBuffer, indexCount, instanceCount,
firstIndex, vertexOffset, firstInstance);
device_data->stats.stats[FRAME_STAT_DRAW_INDEXED]++;
}
VKAPI_ATTR void VKAPI_CALL overlay_CmdDrawIndirect(
VkCommandBuffer commandBuffer,
VkBuffer buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
struct device_data *device_data = FIND_DEVICE_DATA(commandBuffer);
device_data->vtable.CmdDrawIndirect(commandBuffer, buffer, offset, drawCount, stride);
device_data->stats.stats[FRAME_STAT_DRAW_INDIRECT]++;
}
VKAPI_ATTR void VKAPI_CALL overlay_CmdDrawIndexedIndirect(
VkCommandBuffer commandBuffer,
VkBuffer buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
struct device_data *device_data = FIND_DEVICE_DATA(commandBuffer);
device_data->vtable.CmdDrawIndexedIndirect(commandBuffer, buffer, offset, drawCount, stride);
device_data->stats.stats[FRAME_STAT_DRAW_INDEXED_INDIRECT]++;
}
VKAPI_ATTR void VKAPI_CALL overlay_CmdDrawIndirectCountKHR(
VkCommandBuffer commandBuffer,
VkBuffer buffer,
VkDeviceSize offset,
VkBuffer countBuffer,
VkDeviceSize countBufferOffset,
uint32_t maxDrawCount,
uint32_t stride)
{
struct device_data *device_data = FIND_DEVICE_DATA(commandBuffer);
device_data->vtable.CmdDrawIndirectCountKHR(commandBuffer, buffer, offset,
countBuffer, countBufferOffset,
maxDrawCount, stride);
device_data->stats.stats[FRAME_STAT_DRAW_INDIRECT_COUNT]++;
}
VKAPI_ATTR void VKAPI_CALL overlay_CmdDrawIndexedIndirectCountKHR(
VkCommandBuffer commandBuffer,
VkBuffer buffer,
VkDeviceSize offset,
VkBuffer countBuffer,
VkDeviceSize countBufferOffset,
uint32_t maxDrawCount,
uint32_t stride)
{
struct device_data *device_data = FIND_DEVICE_DATA(commandBuffer);
device_data->vtable.CmdDrawIndexedIndirectCountKHR(commandBuffer, buffer, offset,
countBuffer, countBufferOffset,
maxDrawCount, stride);
device_data->stats.stats[FRAME_STAT_DRAW_INDEXED_INDIRECT_COUNT]++;
}
VKAPI_ATTR void VKAPI_CALL overlay_CmdDispatch(
VkCommandBuffer commandBuffer,
uint32_t groupCountX,
uint32_t groupCountY,
uint32_t groupCountZ)
{
struct device_data *device_data = FIND_DEVICE_DATA(commandBuffer);
device_data->vtable.CmdDispatch(commandBuffer, groupCountX, groupCountY, groupCountZ);
device_data->stats.stats[FRAME_STAT_DISPATCH]++;
}
VKAPI_ATTR void VKAPI_CALL overlay_CmdDispatchIndirect(
VkCommandBuffer commandBuffer,
VkBuffer buffer,
VkDeviceSize offset)
{
struct device_data *device_data = FIND_DEVICE_DATA(commandBuffer);
device_data->vtable.CmdDispatchIndirect(commandBuffer, buffer, offset);
device_data->stats.stats[FRAME_STAT_DISPATCH_INDIRECT]++;
}
VKAPI_ATTR void VKAPI_CALL overlay_CmdBindPipeline(
VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipeline pipeline)
{
struct device_data *device_data = FIND_DEVICE_DATA(commandBuffer);
device_data->vtable.CmdBindPipeline(commandBuffer, pipelineBindPoint, pipeline);
switch (pipelineBindPoint) {
case VK_PIPELINE_BIND_POINT_GRAPHICS: device_data->stats.stats[FRAME_STAT_PIPELINE_GRAPHICS]++; break;
case VK_PIPELINE_BIND_POINT_COMPUTE: device_data->stats.stats[FRAME_STAT_PIPELINE_COMPUTE]++; break;
case VK_PIPELINE_BIND_POINT_RAY_TRACING_NV: device_data->stats.stats[FRAME_STAT_PIPELINE_RAYTRACING]++; break;
default: break;
}
}
VKAPI_ATTR VkResult VKAPI_CALL overlay_AllocateCommandBuffers(VkDevice device,
const VkCommandBufferAllocateInfo* pAllocateInfo,
VkCommandBuffer* pCommandBuffers)
{
struct device_data *device_data = FIND_DEVICE_DATA(device);
VkResult result =
device_data->vtable.AllocateCommandBuffers(device, pAllocateInfo, pCommandBuffers);
if (result != VK_SUCCESS) return result;
for (uint32_t i = 0; i < pAllocateInfo->commandBufferCount; i++)
map_object(pCommandBuffers[i], device_data);
return result;
}
VKAPI_ATTR void VKAPI_CALL overlay_FreeCommandBuffers(VkDevice device,
VkCommandPool commandPool,
uint32_t commandBufferCount,
const VkCommandBuffer* pCommandBuffers)
{
struct device_data *device_data = FIND_DEVICE_DATA(device);
for (uint32_t i = 0; i < commandBufferCount; i++)
unmap_object(pCommandBuffers[i]);
device_data->vtable.FreeCommandBuffers(device, commandPool,
commandBufferCount, pCommandBuffers);
}
VKAPI_ATTR VkResult VKAPI_CALL overlay_QueueSubmit(
VkQueue queue,
uint32_t submitCount,
const VkSubmitInfo* pSubmits,
VkFence fence)
{
struct queue_data *queue_data = FIND_QUEUE_DATA(queue);
struct device_data *device_data = queue_data->device;
device_data->stats.stats[FRAME_STAT_SUBMIT]++;
return device_data->vtable.QueueSubmit(queue, submitCount, pSubmits, fence);
}
VKAPI_ATTR VkResult VKAPI_CALL overlay_CreateDevice(
VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDevice* pDevice)
{
struct instance_data *instance_data = FIND_PHYSICAL_DEVICE_DATA(physicalDevice);
VkLayerDeviceCreateInfo *chain_info = get_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
assert(chain_info->u.pLayerInfo);
PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
PFN_vkGetDeviceProcAddr fpGetDeviceProcAddr = chain_info->u.pLayerInfo->pfnNextGetDeviceProcAddr;
PFN_vkCreateDevice fpCreateDevice = (PFN_vkCreateDevice)fpGetInstanceProcAddr(NULL, "vkCreateDevice");
if (fpCreateDevice == NULL) {
return VK_ERROR_INITIALIZATION_FAILED;
}
// Advance the link info for the next element on the chain
chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
VkResult result = fpCreateDevice(physicalDevice, pCreateInfo, pAllocator, pDevice);
if (result != VK_SUCCESS) return result;
struct device_data *device_data = new_device_data(*pDevice, instance_data);
device_data->physical_device = physicalDevice;
layer_init_device_dispatch_table(*pDevice, &device_data->vtable, fpGetDeviceProcAddr);
instance_data->vtable.GetPhysicalDeviceProperties(device_data->physical_device,
&device_data->properties);
device_map_queues(device_data, pCreateInfo);
return result;
}
VKAPI_ATTR void VKAPI_CALL overlay_DestroyDevice(
VkDevice device,
const VkAllocationCallbacks* pAllocator)
{
struct device_data *device_data = FIND_DEVICE_DATA(device);
device_unmap_queues(device_data);
device_data->vtable.DestroyDevice(device, pAllocator);
destroy_device_data(device_data);
}
VKAPI_ATTR VkResult VKAPI_CALL overlay_CreateInstance(
const VkInstanceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance)
{
VkLayerInstanceCreateInfo *chain_info = get_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
assert(chain_info->u.pLayerInfo);
PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr =
chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
PFN_vkCreateInstance fpCreateInstance =
(PFN_vkCreateInstance)fpGetInstanceProcAddr(NULL, "vkCreateInstance");
if (fpCreateInstance == NULL) {
return VK_ERROR_INITIALIZATION_FAILED;
}
// Advance the link info for the next element on the chain
chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
VkResult result = fpCreateInstance(pCreateInfo, pAllocator, pInstance);
if (result != VK_SUCCESS) return result;
struct instance_data *instance_data = new_instance_data(*pInstance);
layer_init_instance_dispatch_table(instance_data->instance,
&instance_data->vtable,
fpGetInstanceProcAddr);
instance_data_map_physical_devices(instance_data, true);
const char *stats_config = getenv("VK_LAYER_MESA_OVERLAY_STATS");
instance_data->enabled_stats = parse_debug_string(stats_config,
enable_flags);
if (instance_data->enabled_stats & FRAME_STAT_ENABLED(HELP)) {
fprintf(stderr, "Available stats:\n");
for (uint32_t i = 0; enable_flags[i].string != NULL; i++)
fprintf(stderr, "\t%s\n", enable_flags[i].string);
fprintf(stderr, "Position layer using VK_LAYER_MESA_OVERLAY_POSITION=\n"
"\ttop-left\n"
"\ttop-right\n"
"\tbottom-left\n"
"\tbottom-right\n");
}
instance_data->position =
parse_layer_position(getenv("VK_LAYER_MESA_OVERLAY_POSITION"));
return result;
}
VKAPI_ATTR void VKAPI_CALL overlay_DestroyInstance(
VkInstance instance,
const VkAllocationCallbacks* pAllocator)
{
struct instance_data *instance_data = FIND_INSTANCE_DATA(instance);
instance_data_map_physical_devices(instance_data, false);
instance_data->vtable.DestroyInstance(instance, pAllocator);
destroy_instance_data(instance_data);
}
static const struct {
const char *name;
void *ptr;
} name_to_funcptr_map[] = {
{ "vkGetDeviceProcAddr", (void *) vkGetDeviceProcAddr },
#define ADD_HOOK(fn) { "vk" # fn, (void *) overlay_ ## fn }
ADD_HOOK(AllocateCommandBuffers),
ADD_HOOK(CmdDraw),
ADD_HOOK(CmdDrawIndexed),
ADD_HOOK(CmdDrawIndexedIndirect),
ADD_HOOK(CmdDispatch),
ADD_HOOK(CmdDispatchIndirect),
ADD_HOOK(CmdDrawIndirectCountKHR),
ADD_HOOK(CmdDrawIndexedIndirectCountKHR),
ADD_HOOK(CmdBindPipeline),
ADD_HOOK(CreateSwapchainKHR),
ADD_HOOK(QueuePresentKHR),
ADD_HOOK(DestroySwapchainKHR),
ADD_HOOK(AcquireNextImageKHR),
ADD_HOOK(AcquireNextImage2KHR),
ADD_HOOK(QueueSubmit),
ADD_HOOK(CreateInstance),
ADD_HOOK(DestroyInstance),
ADD_HOOK(CreateDevice),
ADD_HOOK(DestroyDevice),
#undef ADD_HOOK
};
static void *find_ptr(const char *name)
{
for (uint32_t i = 0; i < ARRAY_SIZE(name_to_funcptr_map); i++) {
if (strcmp(name, name_to_funcptr_map[i].name) == 0)
return name_to_funcptr_map[i].ptr;
}
return NULL;
}
VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetDeviceProcAddr(VkDevice dev,
const char *funcName)
{
void *ptr = find_ptr(funcName);
if (ptr) return reinterpret_cast<PFN_vkVoidFunction>(ptr);
if (dev == NULL) return NULL;
struct device_data *device_data = FIND_DEVICE_DATA(dev);
if (device_data->vtable.GetDeviceProcAddr == NULL) return NULL;
return device_data->vtable.GetDeviceProcAddr(dev, funcName);
}
VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetInstanceProcAddr(VkInstance instance,
const char *funcName)
{
void *ptr = find_ptr(funcName);
if (ptr) return reinterpret_cast<PFN_vkVoidFunction>(ptr);
if (instance == NULL) return NULL;
struct instance_data *instance_data = FIND_INSTANCE_DATA(instance);
if (instance_data->vtable.GetInstanceProcAddr == NULL) return NULL;
return instance_data->vtable.GetInstanceProcAddr(instance, funcName);
}