mesa/src/gallium/drivers/radeonsi/si_shader_llvm.c

1361 lines
50 KiB
C

/*
* Copyright 2016 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "ac_nir.h"
#include "ac_nir_to_llvm.h"
#include "ac_rtld.h"
#include "si_pipe.h"
#include "si_shader_internal.h"
#include "sid.h"
#include "tgsi/tgsi_from_mesa.h"
#include "util/u_memory.h"
struct si_llvm_diagnostics {
struct util_debug_callback *debug;
unsigned retval;
};
static void si_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
{
struct si_llvm_diagnostics *diag = (struct si_llvm_diagnostics *)context;
LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
const char *severity_str = NULL;
switch (severity) {
case LLVMDSError:
severity_str = "error";
break;
case LLVMDSWarning:
severity_str = "warning";
break;
case LLVMDSRemark:
case LLVMDSNote:
default:
return;
}
char *description = LLVMGetDiagInfoDescription(di);
util_debug_message(diag->debug, SHADER_INFO, "LLVM diagnostic (%s): %s", severity_str,
description);
if (severity == LLVMDSError) {
diag->retval = 1;
fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n", description);
}
LLVMDisposeMessage(description);
}
bool si_compile_llvm(struct si_screen *sscreen, struct si_shader_binary *binary,
struct ac_shader_config *conf, struct ac_llvm_compiler *compiler,
struct ac_llvm_context *ac, struct util_debug_callback *debug,
gl_shader_stage stage, const char *name, bool less_optimized)
{
unsigned count = p_atomic_inc_return(&sscreen->num_compilations);
if (si_can_dump_shader(sscreen, stage)) {
fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
if (!(sscreen->debug_flags & (DBG(NO_IR) | DBG(PREOPT_IR)))) {
fprintf(stderr, "%s LLVM IR:\n\n", name);
ac_dump_module(ac->module);
fprintf(stderr, "\n");
}
}
if (sscreen->record_llvm_ir) {
char *ir = LLVMPrintModuleToString(ac->module);
binary->llvm_ir_string = strdup(ir);
LLVMDisposeMessage(ir);
}
if (!si_replace_shader(count, binary)) {
struct ac_compiler_passes *passes = compiler->passes;
if (less_optimized && compiler->low_opt_passes)
passes = compiler->low_opt_passes;
struct si_llvm_diagnostics diag = {debug};
LLVMContextSetDiagnosticHandler(ac->context, si_diagnostic_handler, &diag);
if (!ac_compile_module_to_elf(passes, ac->module, (char **)&binary->elf_buffer,
&binary->elf_size))
diag.retval = 1;
if (diag.retval != 0) {
util_debug_message(debug, SHADER_INFO, "LLVM compilation failed");
return false;
}
}
struct ac_rtld_binary rtld;
if (!ac_rtld_open(&rtld, (struct ac_rtld_open_info){
.info = &sscreen->info,
.shader_type = stage,
.wave_size = ac->wave_size,
.num_parts = 1,
.elf_ptrs = &binary->elf_buffer,
.elf_sizes = &binary->elf_size}))
return false;
bool ok = ac_rtld_read_config(&sscreen->info, &rtld, conf);
ac_rtld_close(&rtld);
return ok;
}
void si_llvm_context_init(struct si_shader_context *ctx, struct si_screen *sscreen,
struct ac_llvm_compiler *compiler, unsigned wave_size)
{
memset(ctx, 0, sizeof(*ctx));
ctx->screen = sscreen;
ctx->compiler = compiler;
ac_llvm_context_init(&ctx->ac, compiler, sscreen->info.gfx_level, sscreen->info.family,
sscreen->info.has_3d_cube_border_color_mipmap, AC_FLOAT_MODE_DEFAULT_OPENGL, wave_size, 64);
}
void si_llvm_create_func(struct si_shader_context *ctx, const char *name, LLVMTypeRef *return_types,
unsigned num_return_elems, unsigned max_workgroup_size)
{
LLVMTypeRef ret_type;
enum ac_llvm_calling_convention call_conv;
if (num_return_elems)
ret_type = LLVMStructTypeInContext(ctx->ac.context, return_types, num_return_elems, true);
else
ret_type = ctx->ac.voidt;
gl_shader_stage real_stage = ctx->stage;
/* LS is merged into HS (TCS), and ES is merged into GS. */
if (ctx->screen->info.gfx_level >= GFX9 && ctx->stage <= MESA_SHADER_GEOMETRY) {
if (ctx->shader->key.ge.as_ls)
real_stage = MESA_SHADER_TESS_CTRL;
else if (ctx->shader->key.ge.as_es || ctx->shader->key.ge.as_ngg)
real_stage = MESA_SHADER_GEOMETRY;
}
switch (real_stage) {
case MESA_SHADER_VERTEX:
case MESA_SHADER_TESS_EVAL:
call_conv = AC_LLVM_AMDGPU_VS;
break;
case MESA_SHADER_TESS_CTRL:
call_conv = AC_LLVM_AMDGPU_HS;
break;
case MESA_SHADER_GEOMETRY:
call_conv = AC_LLVM_AMDGPU_GS;
break;
case MESA_SHADER_FRAGMENT:
call_conv = AC_LLVM_AMDGPU_PS;
break;
case MESA_SHADER_COMPUTE:
call_conv = AC_LLVM_AMDGPU_CS;
break;
default:
unreachable("Unhandle shader type");
}
/* Setup the function */
ctx->return_type = ret_type;
ctx->main_fn = ac_build_main(&ctx->args, &ctx->ac, call_conv, name, ret_type, ctx->ac.module);
ctx->return_value = LLVMGetUndef(ctx->return_type);
if (ctx->screen->info.address32_hi) {
ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-32bit-address-high-bits",
ctx->screen->info.address32_hi);
}
if (ctx->stage <= MESA_SHADER_GEOMETRY && ctx->shader->key.ge.as_ngg &&
si_shader_uses_streamout(ctx->shader))
ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size", 256);
ac_llvm_set_workgroup_size(ctx->main_fn, max_workgroup_size);
ac_llvm_set_target_features(ctx->main_fn, &ctx->ac);
}
void si_llvm_create_main_func(struct si_shader_context *ctx, bool ngg_cull_shader)
{
struct si_shader *shader = ctx->shader;
LLVMTypeRef returns[AC_MAX_ARGS];
unsigned i;
si_init_shader_args(ctx, ngg_cull_shader);
for (i = 0; i < ctx->args.num_sgprs_returned; i++)
returns[i] = ctx->ac.i32; /* SGPR */
for (; i < ctx->args.return_count; i++)
returns[i] = ctx->ac.f32; /* VGPR */
si_llvm_create_func(ctx, ngg_cull_shader ? "ngg_cull_main" : "main", returns,
ctx->args.return_count, si_get_max_workgroup_size(shader));
/* Reserve register locations for VGPR inputs the PS prolog may need. */
if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->shader->is_monolithic) {
ac_llvm_add_target_dep_function_attr(
ctx->main_fn, "InitialPSInputAddr",
S_0286D0_PERSP_SAMPLE_ENA(1) | S_0286D0_PERSP_CENTER_ENA(1) |
S_0286D0_PERSP_CENTROID_ENA(1) | S_0286D0_LINEAR_SAMPLE_ENA(1) |
S_0286D0_LINEAR_CENTER_ENA(1) | S_0286D0_LINEAR_CENTROID_ENA(1) |
S_0286D0_FRONT_FACE_ENA(1) | S_0286D0_ANCILLARY_ENA(1) |
S_0286D0_SAMPLE_COVERAGE_ENA(1) | S_0286D0_POS_FIXED_PT_ENA(1));
}
if (ctx->stage <= MESA_SHADER_GEOMETRY &&
(shader->key.ge.as_ls || ctx->stage == MESA_SHADER_TESS_CTRL)) {
if (USE_LDS_SYMBOLS) {
/* The LSHS size is not known until draw time, so we append it
* at the end of whatever LDS use there may be in the rest of
* the shader (currently none, unless LLVM decides to do its
* own LDS-based lowering).
*/
ctx->ac.lds = LLVMAddGlobalInAddressSpace(ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0),
"__lds_end", AC_ADDR_SPACE_LDS);
LLVMSetAlignment(ctx->ac.lds, 256);
} else {
ac_declare_lds_as_pointer(&ctx->ac);
}
}
/* Unlike radv, we override these arguments in the prolog, so to the
* API shader they appear as normal arguments.
*/
if (ctx->stage == MESA_SHADER_VERTEX) {
ctx->abi.vertex_id = ac_get_arg(&ctx->ac, ctx->args.vertex_id);
ctx->abi.instance_id = ac_get_arg(&ctx->ac, ctx->args.instance_id);
} else if (ctx->stage == MESA_SHADER_FRAGMENT) {
ctx->abi.persp_centroid = ac_get_arg(&ctx->ac, ctx->args.persp_centroid);
ctx->abi.linear_centroid = ac_get_arg(&ctx->ac, ctx->args.linear_centroid);
}
}
void si_llvm_optimize_module(struct si_shader_context *ctx)
{
/* Dump LLVM IR before any optimization passes */
if (ctx->screen->debug_flags & DBG(PREOPT_IR) && si_can_dump_shader(ctx->screen, ctx->stage))
LLVMDumpModule(ctx->ac.module);
/* Run the pass */
LLVMRunPassManager(ctx->compiler->passmgr, ctx->ac.module);
LLVMDisposeBuilder(ctx->ac.builder);
}
void si_llvm_dispose(struct si_shader_context *ctx)
{
LLVMDisposeModule(ctx->ac.module);
LLVMContextDispose(ctx->ac.context);
ac_llvm_context_dispose(&ctx->ac);
}
/**
* Load a dword from a constant buffer.
*/
LLVMValueRef si_buffer_load_const(struct si_shader_context *ctx, LLVMValueRef resource,
LLVMValueRef offset)
{
return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL, ctx->ac.f32,
0, true, true);
}
void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
{
if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
LLVMBuildRetVoid(ctx->ac.builder);
else
LLVMBuildRet(ctx->ac.builder, ret);
}
LLVMValueRef si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret,
struct ac_arg param, unsigned return_index)
{
return LLVMBuildInsertValue(ctx->ac.builder, ret, ac_get_arg(&ctx->ac, param), return_index, "");
}
LLVMValueRef si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret,
struct ac_arg param, unsigned return_index)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef p = ac_get_arg(&ctx->ac, param);
return LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, p), return_index, "");
}
LLVMValueRef si_insert_input_ptr(struct si_shader_context *ctx, LLVMValueRef ret,
struct ac_arg param, unsigned return_index)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef ptr = ac_get_arg(&ctx->ac, param);
ptr = LLVMBuildPtrToInt(builder, ptr, ctx->ac.i32, "");
return LLVMBuildInsertValue(builder, ret, ptr, return_index, "");
}
LLVMValueRef si_prolog_get_internal_bindings(struct si_shader_context *ctx)
{
LLVMValueRef ptr[2], list;
bool merged_shader = si_is_merged_shader(ctx->shader);
ptr[0] = LLVMGetParam(ctx->main_fn, (merged_shader ? 8 : 0) + SI_SGPR_INTERNAL_BINDINGS);
list =
LLVMBuildIntToPtr(ctx->ac.builder, ptr[0], ac_array_in_const32_addr_space(ctx->ac.v4i32), "");
return list;
}
/* Ensure that the esgs ring is declared.
*
* We declare it with 64KB alignment as a hint that the
* pointer value will always be 0.
*/
void si_llvm_declare_esgs_ring(struct si_shader_context *ctx)
{
if (ctx->esgs_ring)
return;
assert(!LLVMGetNamedGlobal(ctx->ac.module, "esgs_ring"));
ctx->esgs_ring = LLVMAddGlobalInAddressSpace(ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0),
"esgs_ring", AC_ADDR_SPACE_LDS);
LLVMSetLinkage(ctx->esgs_ring, LLVMExternalLinkage);
LLVMSetAlignment(ctx->esgs_ring, 64 * 1024);
}
static void si_init_exec_from_input(struct si_shader_context *ctx, struct ac_arg param,
unsigned bitoffset)
{
LLVMValueRef args[] = {
ac_get_arg(&ctx->ac, param),
LLVMConstInt(ctx->ac.i32, bitoffset, 0),
};
ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.init.exec.from.input", ctx->ac.voidt, args, 2,
AC_FUNC_ATTR_CONVERGENT);
}
/**
* Get the value of a shader input parameter and extract a bitfield.
*/
static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx, LLVMValueRef value,
unsigned rshift, unsigned bitwidth)
{
if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
value = ac_to_integer(&ctx->ac, value);
if (rshift)
value = LLVMBuildLShr(ctx->ac.builder, value, LLVMConstInt(ctx->ac.i32, rshift, 0), "");
if (rshift + bitwidth < 32) {
unsigned mask = (1 << bitwidth) - 1;
value = LLVMBuildAnd(ctx->ac.builder, value, LLVMConstInt(ctx->ac.i32, mask, 0), "");
}
return value;
}
LLVMValueRef si_unpack_param(struct si_shader_context *ctx, struct ac_arg param, unsigned rshift,
unsigned bitwidth)
{
LLVMValueRef value = ac_get_arg(&ctx->ac, param);
return unpack_llvm_param(ctx, value, rshift, bitwidth);
}
LLVMValueRef si_get_primitive_id(struct si_shader_context *ctx, unsigned swizzle)
{
if (swizzle > 0)
return ctx->ac.i32_0;
switch (ctx->stage) {
case MESA_SHADER_VERTEX:
return ac_get_arg(&ctx->ac, ctx->args.vs_prim_id);
case MESA_SHADER_TESS_CTRL:
return ac_get_arg(&ctx->ac, ctx->args.tcs_patch_id);
case MESA_SHADER_TESS_EVAL:
return ac_get_arg(&ctx->ac, ctx->args.tes_patch_id);
case MESA_SHADER_GEOMETRY:
return ac_get_arg(&ctx->ac, ctx->args.gs_prim_id);
default:
assert(0);
return ctx->ac.i32_0;
}
}
static void si_llvm_declare_compute_memory(struct si_shader_context *ctx)
{
struct si_shader_selector *sel = ctx->shader->selector;
unsigned lds_size = sel->info.base.shared_size;
LLVMTypeRef i8p = LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_LDS);
LLVMValueRef var;
assert(!ctx->ac.lds);
var = LLVMAddGlobalInAddressSpace(ctx->ac.module, LLVMArrayType(ctx->ac.i8, lds_size),
"compute_lds", AC_ADDR_SPACE_LDS);
LLVMSetAlignment(var, 64 * 1024);
ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, var, i8p, "");
}
/**
* Given a list of shader part functions, build a wrapper function that
* runs them in sequence to form a monolithic shader.
*/
void si_build_wrapper_function(struct si_shader_context *ctx, LLVMValueRef *parts,
unsigned num_parts, unsigned main_part,
unsigned next_shader_first_part, bool same_thread_count)
{
LLVMBuilderRef builder = ctx->ac.builder;
/* PS epilog has one arg per color component; gfx9 merged shader
* prologs need to forward 40 SGPRs.
*/
LLVMValueRef initial[AC_MAX_ARGS], out[AC_MAX_ARGS];
LLVMTypeRef function_type;
unsigned num_first_params;
unsigned num_out, initial_num_out;
ASSERTED unsigned num_out_sgpr; /* used in debug checks */
ASSERTED unsigned initial_num_out_sgpr; /* used in debug checks */
unsigned num_sgprs, num_vgprs;
unsigned gprs;
memset(&ctx->args, 0, sizeof(ctx->args));
for (unsigned i = 0; i < num_parts; ++i) {
ac_add_function_attr(ctx->ac.context, parts[i], -1, AC_FUNC_ATTR_ALWAYSINLINE);
LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
}
/* The parameters of the wrapper function correspond to those of the
* first part in terms of SGPRs and VGPRs, but we use the types of the
* main part to get the right types. This is relevant for the
* dereferenceable attribute on descriptor table pointers.
*/
num_sgprs = 0;
num_vgprs = 0;
function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
num_first_params = LLVMCountParamTypes(function_type);
for (unsigned i = 0; i < num_first_params; ++i) {
LLVMValueRef param = LLVMGetParam(parts[0], i);
if (ac_is_sgpr_param(param)) {
assert(num_vgprs == 0);
num_sgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
} else {
num_vgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
}
}
gprs = 0;
while (gprs < num_sgprs + num_vgprs) {
LLVMValueRef param = LLVMGetParam(parts[main_part], ctx->args.arg_count);
LLVMTypeRef type = LLVMTypeOf(param);
unsigned size = ac_get_type_size(type) / 4;
/* This is going to get casted anyways, so we don't have to
* have the exact same type. But we do have to preserve the
* pointer-ness so that LLVM knows about it.
*/
enum ac_arg_type arg_type = AC_ARG_INT;
if (LLVMGetTypeKind(type) == LLVMPointerTypeKind) {
type = LLVMGetElementType(type);
if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
if (LLVMGetVectorSize(type) == 4)
arg_type = AC_ARG_CONST_DESC_PTR;
else if (LLVMGetVectorSize(type) == 8)
arg_type = AC_ARG_CONST_IMAGE_PTR;
else
assert(0);
} else if (type == ctx->ac.f32) {
arg_type = AC_ARG_CONST_FLOAT_PTR;
} else {
assert(0);
}
}
ac_add_arg(&ctx->args, gprs < num_sgprs ? AC_ARG_SGPR : AC_ARG_VGPR, size, arg_type, NULL);
assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
assert(gprs + size <= num_sgprs + num_vgprs &&
(gprs >= num_sgprs || gprs + size <= num_sgprs));
gprs += size;
}
/* Prepare the return type. */
unsigned num_returns = 0;
LLVMTypeRef returns[AC_MAX_ARGS], last_func_type, return_type;
last_func_type = LLVMGetElementType(LLVMTypeOf(parts[num_parts - 1]));
return_type = LLVMGetReturnType(last_func_type);
switch (LLVMGetTypeKind(return_type)) {
case LLVMStructTypeKind:
num_returns = LLVMCountStructElementTypes(return_type);
assert(num_returns <= ARRAY_SIZE(returns));
LLVMGetStructElementTypes(return_type, returns);
break;
case LLVMVoidTypeKind:
break;
default:
unreachable("unexpected type");
}
si_llvm_create_func(ctx, "wrapper", returns, num_returns,
si_get_max_workgroup_size(ctx->shader));
if (si_is_merged_shader(ctx->shader) && !same_thread_count)
ac_init_exec_full_mask(&ctx->ac);
/* Record the arguments of the function as if they were an output of
* a previous part.
*/
num_out = 0;
num_out_sgpr = 0;
for (unsigned i = 0; i < ctx->args.arg_count; ++i) {
LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
LLVMTypeRef param_type = LLVMTypeOf(param);
LLVMTypeRef out_type = ctx->args.args[i].file == AC_ARG_SGPR ? ctx->ac.i32 : ctx->ac.f32;
unsigned size = ac_get_type_size(param_type) / 4;
if (size == 1) {
if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
param = LLVMBuildPtrToInt(builder, param, ctx->ac.i32, "");
param_type = ctx->ac.i32;
}
if (param_type != out_type)
param = LLVMBuildBitCast(builder, param, out_type, "");
out[num_out++] = param;
} else {
LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
param = LLVMBuildPtrToInt(builder, param, ctx->ac.i64, "");
param_type = ctx->ac.i64;
}
if (param_type != vector_type)
param = LLVMBuildBitCast(builder, param, vector_type, "");
for (unsigned j = 0; j < size; ++j)
out[num_out++] =
LLVMBuildExtractElement(builder, param, LLVMConstInt(ctx->ac.i32, j, 0), "");
}
if (ctx->args.args[i].file == AC_ARG_SGPR)
num_out_sgpr = num_out;
}
memcpy(initial, out, sizeof(out));
initial_num_out = num_out;
initial_num_out_sgpr = num_out_sgpr;
/* Now chain the parts. */
LLVMValueRef ret = NULL;
for (unsigned part = 0; part < num_parts; ++part) {
LLVMValueRef in[AC_MAX_ARGS];
LLVMTypeRef ret_type;
unsigned out_idx = 0;
unsigned num_params = LLVMCountParams(parts[part]);
/* Merged shaders are executed conditionally depending
* on the number of enabled threads passed in the input SGPRs. */
if (si_is_multi_part_shader(ctx->shader) && part == 0) {
if (same_thread_count) {
struct ac_arg arg;
arg.arg_index = 3;
arg.used = true;
si_init_exec_from_input(ctx, arg, 0);
} else {
LLVMValueRef ena, count = initial[3];
count = LLVMBuildAnd(builder, count, LLVMConstInt(ctx->ac.i32, 0x7f, 0), "");
ena = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), count, "");
ac_build_ifcc(&ctx->ac, ena, 6506);
}
}
/* Derive arguments for the next part from outputs of the
* previous one.
*/
for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
LLVMValueRef param;
LLVMTypeRef param_type;
bool is_sgpr;
unsigned param_size;
LLVMValueRef arg = NULL;
param = LLVMGetParam(parts[part], param_idx);
param_type = LLVMTypeOf(param);
param_size = ac_get_type_size(param_type) / 4;
is_sgpr = ac_is_sgpr_param(param);
if (is_sgpr) {
ac_add_function_attr(ctx->ac.context, parts[part], param_idx + 1, AC_FUNC_ATTR_INREG);
} else if (out_idx < num_out_sgpr) {
/* Skip returned SGPRs the current part doesn't
* declare on the input. */
out_idx = num_out_sgpr;
}
assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
if (param_size == 1)
arg = out[out_idx];
else
arg = ac_build_gather_values(&ctx->ac, &out[out_idx], param_size);
if (LLVMTypeOf(arg) != param_type) {
if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
if (LLVMGetPointerAddressSpace(param_type) == AC_ADDR_SPACE_CONST_32BIT) {
arg = LLVMBuildBitCast(builder, arg, ctx->ac.i32, "");
arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
} else {
arg = LLVMBuildBitCast(builder, arg, ctx->ac.i64, "");
arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
}
} else {
arg = LLVMBuildBitCast(builder, arg, param_type, "");
}
}
in[param_idx] = arg;
out_idx += param_size;
}
ret = ac_build_call(&ctx->ac, parts[part], in, num_params);
if (!same_thread_count &&
si_is_multi_part_shader(ctx->shader) && part + 1 == next_shader_first_part) {
ac_build_endif(&ctx->ac, 6506);
/* The second half of the merged shader should use
* the inputs from the toplevel (wrapper) function,
* not the return value from the last call.
*
* That's because the last call was executed condi-
* tionally, so we can't consume it in the main
* block.
*/
memcpy(out, initial, sizeof(initial));
num_out = initial_num_out;
num_out_sgpr = initial_num_out_sgpr;
/* Execute the second shader conditionally based on the number of
* enabled threads there.
*/
if (ctx->stage == MESA_SHADER_TESS_CTRL) {
LLVMValueRef ena, count = initial[3];
count = LLVMBuildLShr(builder, count, LLVMConstInt(ctx->ac.i32, 8, 0), "");
count = LLVMBuildAnd(builder, count, LLVMConstInt(ctx->ac.i32, 0x7f, 0), "");
ena = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), count, "");
ac_build_ifcc(&ctx->ac, ena, 6507);
}
continue;
}
/* Extract the returned GPRs. */
ret_type = LLVMTypeOf(ret);
num_out = 0;
num_out_sgpr = 0;
if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
unsigned ret_size = LLVMCountStructElementTypes(ret_type);
for (unsigned i = 0; i < ret_size; ++i) {
LLVMValueRef val = LLVMBuildExtractValue(builder, ret, i, "");
assert(num_out < ARRAY_SIZE(out));
out[num_out++] = val;
if (LLVMTypeOf(val) == ctx->ac.i32) {
assert(num_out_sgpr + 1 == num_out);
num_out_sgpr = num_out;
}
}
}
}
/* Close the conditional wrapping the second shader. */
if (ctx->stage == MESA_SHADER_TESS_CTRL &&
!same_thread_count && si_is_multi_part_shader(ctx->shader))
ac_build_endif(&ctx->ac, 6507);
if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
LLVMBuildRetVoid(builder);
else
LLVMBuildRet(builder, ret);
}
static LLVMValueRef si_llvm_load_intrinsic(struct ac_shader_abi *abi, nir_intrinsic_op op)
{
struct si_shader_context *ctx = si_shader_context_from_abi(abi);
switch (op) {
case nir_intrinsic_load_first_vertex:
return ac_get_arg(&ctx->ac, ctx->args.base_vertex);
case nir_intrinsic_load_base_vertex: {
/* For non-indexed draws, the base vertex set by the driver
* (for direct draws) or the CP (for indirect draws) is the
* first vertex ID, but GLSL expects 0 to be returned.
*/
LLVMValueRef indexed = GET_FIELD(ctx, VS_STATE_INDEXED);
indexed = LLVMBuildTrunc(ctx->ac.builder, indexed, ctx->ac.i1, "");
return LLVMBuildSelect(ctx->ac.builder, indexed, ac_get_arg(&ctx->ac, ctx->args.base_vertex),
ctx->ac.i32_0, "");
}
case nir_intrinsic_load_workgroup_size: {
assert(ctx->shader->selector->info.base.workgroup_size_variable &&
ctx->shader->selector->info.uses_variable_block_size);
LLVMValueRef chan[3] = {
si_unpack_param(ctx, ctx->block_size, 0, 10),
si_unpack_param(ctx, ctx->block_size, 10, 10),
si_unpack_param(ctx, ctx->block_size, 20, 10),
};
return ac_build_gather_values(&ctx->ac, chan, 3);
}
case nir_intrinsic_load_tess_level_outer_default:
case nir_intrinsic_load_tess_level_inner_default: {
LLVMValueRef slot = LLVMConstInt(ctx->ac.i32, SI_HS_CONST_DEFAULT_TESS_LEVELS, 0);
LLVMValueRef buf = ac_get_arg(&ctx->ac, ctx->internal_bindings);
buf = ac_build_load_to_sgpr(&ctx->ac, buf, slot);
int offset = op == nir_intrinsic_load_tess_level_inner_default ? 4 : 0;
LLVMValueRef val[4];
for (int i = 0; i < 4; i++)
val[i] = si_buffer_load_const(ctx, buf, LLVMConstInt(ctx->ac.i32, (offset + i) * 4, 0));
return ac_build_gather_values(&ctx->ac, val, 4);
}
case nir_intrinsic_load_patch_vertices_in:
if (ctx->stage == MESA_SHADER_TESS_CTRL)
return si_unpack_param(ctx, ctx->tcs_out_lds_layout, 13, 6);
else if (ctx->stage == MESA_SHADER_TESS_EVAL)
return si_get_num_tcs_out_vertices(ctx);
else
return NULL;
case nir_intrinsic_load_sample_mask_in:
return ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args.sample_coverage));
case nir_intrinsic_load_lshs_vertex_stride_amd:
return LLVMBuildShl(ctx->ac.builder, si_get_tcs_in_vertex_dw_stride(ctx),
LLVMConstInt(ctx->ac.i32, 2, 0), "");
case nir_intrinsic_load_tcs_num_patches_amd:
return LLVMBuildAdd(ctx->ac.builder,
si_unpack_param(ctx, ctx->tcs_offchip_layout, 0, 6),
ctx->ac.i32_1, "");
case nir_intrinsic_load_hs_out_patch_data_offset_amd:
return si_unpack_param(ctx, ctx->tcs_offchip_layout, 11, 21);
case nir_intrinsic_load_ring_tess_offchip_amd:
return ctx->tess_offchip_ring;
case nir_intrinsic_load_ring_tess_offchip_offset_amd:
return ac_get_arg(&ctx->ac, ctx->args.tess_offchip_offset);
case nir_intrinsic_load_tess_rel_patch_id_amd:
return si_get_rel_patch_id(ctx);
case nir_intrinsic_load_ring_esgs_amd:
return ctx->esgs_ring;
case nir_intrinsic_load_ring_es2gs_offset_amd:
return ac_get_arg(&ctx->ac, ctx->args.es2gs_offset);
default:
return NULL;
}
}
bool si_llvm_translate_nir(struct si_shader_context *ctx, struct si_shader *shader,
struct nir_shader *nir, bool free_nir, bool ngg_cull_shader)
{
struct si_shader_selector *sel = shader->selector;
const struct si_shader_info *info = &sel->info;
ctx->shader = shader;
ctx->stage = sel->stage;
ctx->num_const_buffers = info->base.num_ubos;
ctx->num_shader_buffers = info->base.num_ssbos;
ctx->num_samplers = BITSET_LAST_BIT(info->base.textures_used);
ctx->num_images = info->base.num_images;
ctx->abi.intrinsic_load = si_llvm_load_intrinsic;
si_llvm_init_resource_callbacks(ctx);
si_llvm_create_main_func(ctx, ngg_cull_shader);
if (ctx->stage <= MESA_SHADER_GEOMETRY &&
(ctx->shader->key.ge.as_es || ctx->stage == MESA_SHADER_GEOMETRY))
si_preload_esgs_ring(ctx);
switch (ctx->stage) {
case MESA_SHADER_VERTEX:
si_llvm_init_vs_callbacks(ctx, ngg_cull_shader);
break;
case MESA_SHADER_TESS_CTRL:
si_llvm_init_tcs_callbacks(ctx);
si_llvm_preload_tess_rings(ctx);
break;
case MESA_SHADER_TESS_EVAL:
si_llvm_preload_tess_rings(ctx);
break;
case MESA_SHADER_GEOMETRY:
si_llvm_init_gs_callbacks(ctx);
if (!ctx->shader->key.ge.as_ngg)
si_preload_gs_rings(ctx);
for (unsigned i = 0; i < 4; i++)
ctx->gs_next_vertex[i] = ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
if (shader->key.ge.as_ngg) {
for (unsigned i = 0; i < 4; ++i) {
ctx->gs_curprim_verts[i] = ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
ctx->gs_generated_prims[i] = ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
}
assert(!ctx->gs_ngg_scratch);
LLVMTypeRef ai32 = LLVMArrayType(ctx->ac.i32, gfx10_ngg_get_scratch_dw_size(shader));
ctx->gs_ngg_scratch =
LLVMAddGlobalInAddressSpace(ctx->ac.module, ai32, "ngg_scratch", AC_ADDR_SPACE_LDS);
LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(ai32));
LLVMSetAlignment(ctx->gs_ngg_scratch, 4);
ctx->gs_ngg_emit = LLVMAddGlobalInAddressSpace(
ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0), "ngg_emit", AC_ADDR_SPACE_LDS);
LLVMSetLinkage(ctx->gs_ngg_emit, LLVMExternalLinkage);
LLVMSetAlignment(ctx->gs_ngg_emit, 4);
} else {
ctx->gs_emitted_vertices = LLVMConstInt(ctx->ac.i32, 0, false);
}
break;
case MESA_SHADER_FRAGMENT: {
si_llvm_init_ps_callbacks(ctx);
unsigned colors_read = ctx->shader->selector->info.colors_read;
LLVMValueRef main_fn = ctx->main_fn;
LLVMValueRef undef = LLVMGetUndef(ctx->ac.f32);
unsigned offset = SI_PARAM_POS_FIXED_PT + 1;
if (colors_read & 0x0f) {
unsigned mask = colors_read & 0x0f;
LLVMValueRef values[4];
values[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : undef;
values[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : undef;
values[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : undef;
values[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : undef;
ctx->abi.color0 = ac_to_integer(&ctx->ac, ac_build_gather_values(&ctx->ac, values, 4));
}
if (colors_read & 0xf0) {
unsigned mask = (colors_read & 0xf0) >> 4;
LLVMValueRef values[4];
values[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : undef;
values[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : undef;
values[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : undef;
values[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : undef;
ctx->abi.color1 = ac_to_integer(&ctx->ac, ac_build_gather_values(&ctx->ac, values, 4));
}
ctx->abi.num_interp = si_get_ps_num_interp(shader);
ctx->abi.interp_at_sample_force_center =
ctx->shader->key.ps.mono.interpolate_at_sample_force_center;
ctx->abi.kill_ps_if_inf_interp =
ctx->screen->options.no_infinite_interp &&
(ctx->shader->selector->info.uses_persp_center ||
ctx->shader->selector->info.uses_persp_centroid ||
ctx->shader->selector->info.uses_persp_sample);
break;
}
case MESA_SHADER_COMPUTE:
if (nir->info.cs.user_data_components_amd) {
ctx->abi.user_data = ac_get_arg(&ctx->ac, ctx->cs_user_data);
ctx->abi.user_data = ac_build_expand_to_vec4(&ctx->ac, ctx->abi.user_data,
nir->info.cs.user_data_components_amd);
}
if (ctx->shader->selector->info.base.shared_size)
si_llvm_declare_compute_memory(ctx);
break;
default:
break;
}
if ((ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL) &&
shader->key.ge.as_ngg && !shader->key.ge.as_es) {
/* Unconditionally declare scratch space base for streamout and
* vertex compaction. Whether space is actually allocated is
* determined during linking / PM4 creation.
*/
si_llvm_declare_esgs_ring(ctx);
/* This is really only needed when streamout and / or vertex
* compaction is enabled.
*/
if (!ctx->gs_ngg_scratch && (ctx->so.num_outputs || shader->key.ge.opt.ngg_culling)) {
LLVMTypeRef asi32 = LLVMArrayType(ctx->ac.i32, gfx10_ngg_get_scratch_dw_size(shader));
ctx->gs_ngg_scratch =
LLVMAddGlobalInAddressSpace(ctx->ac.module, asi32, "ngg_scratch", AC_ADDR_SPACE_LDS);
LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(asi32));
LLVMSetAlignment(ctx->gs_ngg_scratch, 4);
}
}
/* For merged shaders (VS-TCS, VS-GS, TES-GS): */
if (ctx->screen->info.gfx_level >= GFX9 && si_is_merged_shader(shader)) {
/* TES is special because it has only 1 shader part if NGG shader culling is disabled,
* and therefore it doesn't use the wrapper function.
*/
bool no_wrapper_func = ctx->stage == MESA_SHADER_TESS_EVAL && !shader->key.ge.as_es &&
!shader->key.ge.opt.ngg_culling;
/* Set EXEC = ~0 before the first shader. If the prolog is present, EXEC is set there
* instead. For monolithic shaders, the wrapper function does this.
*/
if ((!shader->is_monolithic || no_wrapper_func) &&
(ctx->stage == MESA_SHADER_TESS_EVAL ||
(ctx->stage == MESA_SHADER_VERTEX &&
!si_vs_needs_prolog(sel, &shader->key.ge.part.vs.prolog, &shader->key, ngg_cull_shader,
false))))
ac_init_exec_full_mask(&ctx->ac);
/* NGG VS and NGG TES: Send gs_alloc_req and the prim export at the beginning to decrease
* register usage.
*/
if ((ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL) &&
shader->key.ge.as_ngg && !shader->key.ge.as_es && !shader->key.ge.opt.ngg_culling) {
/* GFX10 requires a barrier before gs_alloc_req due to a hw bug. */
if (ctx->screen->info.gfx_level == GFX10)
ac_build_s_barrier(&ctx->ac, ctx->stage);
gfx10_ngg_build_sendmsg_gs_alloc_req(ctx);
/* Build the primitive export at the beginning
* of the shader if possible.
*/
if (gfx10_ngg_export_prim_early(shader))
gfx10_ngg_build_export_prim(ctx, NULL, NULL);
}
/* NGG GS: Initialize LDS and insert s_barrier, which must not be inside the if statement. */
if (ctx->stage == MESA_SHADER_GEOMETRY && shader->key.ge.as_ngg)
gfx10_ngg_gs_emit_begin(ctx);
LLVMValueRef thread_enabled = NULL;
if (ctx->stage == MESA_SHADER_GEOMETRY ||
(ctx->stage == MESA_SHADER_TESS_CTRL && !shader->is_monolithic)) {
/* Wrap both shaders in an if statement according to the number of enabled threads
* there. For monolithic TCS, the if statement is inserted by the wrapper function,
* not here.
*/
thread_enabled = si_is_gs_thread(ctx); /* 2nd shader: thread enabled bool */
} else if (((shader->key.ge.as_ls || shader->key.ge.as_es) && !shader->is_monolithic) ||
(shader->key.ge.as_ngg && !shader->key.ge.as_es)) {
/* This is NGG VS or NGG TES or VS before GS or TES before GS or VS before TCS.
* For monolithic LS (VS before TCS) and ES (VS before GS and TES before GS),
* the if statement is inserted by the wrapper function.
*/
thread_enabled = si_is_es_thread(ctx); /* 1st shader: thread enabled bool */
}
if (thread_enabled) {
ctx->merged_wrap_if_entry_block = LLVMGetInsertBlock(ctx->ac.builder);
ctx->merged_wrap_if_label = 11500;
ac_build_ifcc(&ctx->ac, thread_enabled, ctx->merged_wrap_if_label);
}
/* Execute a barrier before the second shader in
* a merged shader.
*
* Execute the barrier inside the conditional block,
* so that empty waves can jump directly to s_endpgm,
* which will also signal the barrier.
*
* This is possible in gfx9, because an empty wave for the second shader does not insert
* any ending. With NGG, empty waves may still be required to export data (e.g. GS output
* vertices), so we cannot let them exit early.
*
* If the shader is TCS and the TCS epilog is present
* and contains a barrier, it will wait there and then
* reach s_endpgm.
*/
if (ctx->stage == MESA_SHADER_TESS_CTRL) {
/* We need the barrier only if TCS inputs are read from LDS. */
if (!shader->key.ge.opt.same_patch_vertices ||
shader->selector->info.base.inputs_read &
~shader->selector->info.tcs_vgpr_only_inputs) {
ac_build_waitcnt(&ctx->ac, AC_WAIT_LGKM);
/* If both input and output patches are wholly in one wave, we don't need a barrier.
* That's true when both VS and TCS have the same number of patch vertices and
* the wave size is a multiple of the number of patch vertices.
*/
if (!shader->key.ge.opt.same_patch_vertices ||
ctx->ac.wave_size % sel->info.base.tess.tcs_vertices_out != 0)
ac_build_s_barrier(&ctx->ac, ctx->stage);
}
} else if (ctx->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg) {
/* gfx10_ngg_gs_emit_begin inserts the barrier for NGG. */
ac_build_waitcnt(&ctx->ac, AC_WAIT_LGKM);
ac_build_s_barrier(&ctx->ac, ctx->stage);
}
}
ctx->abi.clamp_shadow_reference = true;
ctx->abi.robust_buffer_access = true;
ctx->abi.convert_undef_to_zero = true;
ctx->abi.load_grid_size_from_user_sgpr = true;
ctx->abi.clamp_div_by_zero = ctx->screen->options.clamp_div_by_zero ||
info->options & SI_PROFILE_CLAMP_DIV_BY_ZERO;
ctx->abi.use_waterfall_for_divergent_tex_samplers = true;
for (unsigned i = 0; i < info->num_outputs; i++) {
LLVMTypeRef type = ctx->ac.f32;
/* Only FS uses unpacked f16. Other stages pack 16-bit outputs into low and high bits of f32. */
if (nir->info.stage == MESA_SHADER_FRAGMENT &&
nir_alu_type_get_type_size(ctx->shader->selector->info.output_type[i]) == 16)
type = ctx->ac.f16;
for (unsigned j = 0; j < 4; j++) {
ctx->abi.outputs[i * 4 + j] = ac_build_alloca_undef(&ctx->ac, type, "");
ctx->abi.is_16bit[i * 4 + j] = type == ctx->ac.f16;
}
}
ac_nir_translate(&ctx->ac, &ctx->abi, &ctx->args, nir);
switch (sel->stage) {
case MESA_SHADER_VERTEX:
if (shader->key.ge.as_ls)
si_llvm_ls_build_end(ctx);
else if (shader->key.ge.as_es)
si_llvm_es_build_end(ctx);
else if (ngg_cull_shader)
gfx10_ngg_culling_build_end(ctx);
else if (shader->key.ge.as_ngg)
gfx10_ngg_build_end(ctx);
else
si_llvm_vs_build_end(ctx);
break;
case MESA_SHADER_TESS_CTRL:
si_llvm_tcs_build_end(ctx);
break;
case MESA_SHADER_TESS_EVAL:
if (ctx->shader->key.ge.as_es)
si_llvm_es_build_end(ctx);
else if (ngg_cull_shader)
gfx10_ngg_culling_build_end(ctx);
else if (ctx->shader->key.ge.as_ngg)
gfx10_ngg_build_end(ctx);
else
si_llvm_vs_build_end(ctx);
break;
case MESA_SHADER_GEOMETRY:
if (ctx->shader->key.ge.as_ngg)
gfx10_ngg_gs_build_end(ctx);
else
si_llvm_gs_build_end(ctx);
break;
case MESA_SHADER_FRAGMENT:
si_llvm_ps_build_end(ctx);
break;
default:
break;
}
si_llvm_build_ret(ctx, ctx->return_value);
if (free_nir)
ralloc_free(nir);
return true;
}
static bool si_should_optimize_less(struct ac_llvm_compiler *compiler,
struct si_shader_selector *sel)
{
if (!compiler->low_opt_passes)
return false;
/* Assume a slow CPU. */
assert(!sel->screen->info.has_dedicated_vram && sel->screen->info.gfx_level <= GFX8);
/* For a crazy dEQP test containing 2597 memory opcodes, mostly
* buffer stores. */
return sel->stage == MESA_SHADER_COMPUTE && sel->info.num_memory_stores > 1000;
}
bool si_llvm_compile_shader(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
struct si_shader *shader, const struct pipe_stream_output_info *so,
struct util_debug_callback *debug, struct nir_shader *nir,
bool free_nir)
{
struct si_shader_selector *sel = shader->selector;
struct si_shader_context ctx;
si_llvm_context_init(&ctx, sscreen, compiler, shader->wave_size);
ctx.so = *so;
LLVMValueRef ngg_cull_main_fn = NULL;
if (sel->stage <= MESA_SHADER_TESS_EVAL && shader->key.ge.opt.ngg_culling) {
if (!si_llvm_translate_nir(&ctx, shader, nir, false, true)) {
si_llvm_dispose(&ctx);
return false;
}
ngg_cull_main_fn = ctx.main_fn;
ctx.main_fn = NULL;
}
if (!si_llvm_translate_nir(&ctx, shader, nir, free_nir, false)) {
si_llvm_dispose(&ctx);
return false;
}
if (shader->is_monolithic && sel->stage == MESA_SHADER_VERTEX) {
LLVMValueRef parts[4];
unsigned num_parts = 0;
bool first_is_prolog = false;
LLVMValueRef main_fn = ctx.main_fn;
if (ngg_cull_main_fn) {
if (si_vs_needs_prolog(sel, &shader->key.ge.part.vs.prolog, &shader->key, true, false)) {
union si_shader_part_key prolog_key;
si_get_vs_prolog_key(&sel->info, shader->info.num_input_sgprs, true,
&shader->key.ge.part.vs.prolog, shader, &prolog_key);
prolog_key.vs_prolog.is_monolithic = true;
si_llvm_build_vs_prolog(&ctx, &prolog_key);
parts[num_parts++] = ctx.main_fn;
first_is_prolog = true;
}
parts[num_parts++] = ngg_cull_main_fn;
}
if (si_vs_needs_prolog(sel, &shader->key.ge.part.vs.prolog, &shader->key, false, false)) {
union si_shader_part_key prolog_key;
si_get_vs_prolog_key(&sel->info, shader->info.num_input_sgprs, false,
&shader->key.ge.part.vs.prolog, shader, &prolog_key);
prolog_key.vs_prolog.is_monolithic = true;
si_llvm_build_vs_prolog(&ctx, &prolog_key);
parts[num_parts++] = ctx.main_fn;
if (num_parts == 1)
first_is_prolog = true;
}
parts[num_parts++] = main_fn;
si_build_wrapper_function(&ctx, parts, num_parts, first_is_prolog ? 1 : 0, 0, false);
} else if (shader->is_monolithic && sel->stage == MESA_SHADER_TESS_EVAL && ngg_cull_main_fn) {
LLVMValueRef parts[3], prolog, main_fn = ctx.main_fn;
/* We reuse the VS prolog code for TES just to load the input VGPRs from LDS. */
union si_shader_part_key prolog_key;
memset(&prolog_key, 0, sizeof(prolog_key));
prolog_key.vs_prolog.num_input_sgprs = shader->info.num_input_sgprs;
prolog_key.vs_prolog.num_merged_next_stage_vgprs = 5;
prolog_key.vs_prolog.as_ngg = 1;
prolog_key.vs_prolog.load_vgprs_after_culling = 1;
prolog_key.vs_prolog.is_monolithic = true;
si_llvm_build_vs_prolog(&ctx, &prolog_key);
prolog = ctx.main_fn;
parts[0] = ngg_cull_main_fn;
parts[1] = prolog;
parts[2] = main_fn;
si_build_wrapper_function(&ctx, parts, 3, 0, 0, false);
} else if (shader->is_monolithic && sel->stage == MESA_SHADER_TESS_CTRL) {
if (sscreen->info.gfx_level >= GFX9) {
struct si_shader_selector *ls = shader->key.ge.part.tcs.ls;
LLVMValueRef parts[4];
bool vs_needs_prolog =
si_vs_needs_prolog(ls, &shader->key.ge.part.tcs.ls_prolog, &shader->key, false, false);
/* TCS main part */
parts[2] = ctx.main_fn;
/* TCS epilog */
union si_shader_part_key tcs_epilog_key;
si_get_tcs_epilog_key(shader, &tcs_epilog_key);
si_llvm_build_tcs_epilog(&ctx, &tcs_epilog_key);
parts[3] = ctx.main_fn;
struct si_shader shader_ls = {};
shader_ls.selector = ls;
shader_ls.key.ge.part.vs.prolog = shader->key.ge.part.tcs.ls_prolog;
shader_ls.key.ge.as_ls = 1;
shader_ls.key.ge.mono = shader->key.ge.mono;
shader_ls.key.ge.opt = shader->key.ge.opt;
shader_ls.key.ge.opt.inline_uniforms = false; /* only TCS can inline uniforms */
shader_ls.is_monolithic = true;
nir = si_get_nir_shader(&shader_ls, &free_nir, sel->info.tcs_vgpr_only_inputs);
si_update_shader_binary_info(shader, nir);
if (!si_llvm_translate_nir(&ctx, &shader_ls, nir, free_nir, false)) {
si_llvm_dispose(&ctx);
return false;
}
shader->info.uses_instanceid |= ls->info.uses_instanceid;
parts[1] = ctx.main_fn;
/* LS prolog */
if (vs_needs_prolog) {
union si_shader_part_key vs_prolog_key;
si_get_vs_prolog_key(&ls->info, shader_ls.info.num_input_sgprs, false,
&shader->key.ge.part.tcs.ls_prolog, shader, &vs_prolog_key);
vs_prolog_key.vs_prolog.is_monolithic = true;
si_llvm_build_vs_prolog(&ctx, &vs_prolog_key);
parts[0] = ctx.main_fn;
}
/* Reset the shader context. */
ctx.shader = shader;
ctx.stage = MESA_SHADER_TESS_CTRL;
si_build_wrapper_function(&ctx, parts + !vs_needs_prolog, 4 - !vs_needs_prolog,
vs_needs_prolog, vs_needs_prolog ? 2 : 1,
shader->key.ge.opt.same_patch_vertices);
} else {
LLVMValueRef parts[2];
union si_shader_part_key epilog_key;
parts[0] = ctx.main_fn;
memset(&epilog_key, 0, sizeof(epilog_key));
epilog_key.tcs_epilog.states = shader->key.ge.part.tcs.epilog;
si_llvm_build_tcs_epilog(&ctx, &epilog_key);
parts[1] = ctx.main_fn;
si_build_wrapper_function(&ctx, parts, 2, 0, 0, false);
}
} else if (shader->is_monolithic && sel->stage == MESA_SHADER_GEOMETRY) {
if (ctx.screen->info.gfx_level >= GFX9) {
struct si_shader_selector *es = shader->key.ge.part.gs.es;
LLVMValueRef es_prolog = NULL;
LLVMValueRef es_main = NULL;
LLVMValueRef gs_main = ctx.main_fn;
/* ES main part */
struct si_shader shader_es = {};
shader_es.selector = es;
shader_es.key.ge.part.vs.prolog = shader->key.ge.part.gs.vs_prolog;
shader_es.key.ge.as_es = 1;
shader_es.key.ge.as_ngg = shader->key.ge.as_ngg;
shader_es.key.ge.mono = shader->key.ge.mono;
shader_es.key.ge.opt = shader->key.ge.opt;
shader_es.key.ge.opt.inline_uniforms = false; /* only GS can inline uniforms */
/* kill_outputs was computed based on GS outputs so we can't use it to kill VS outputs */
shader_es.key.ge.opt.kill_outputs = 0;
shader_es.is_monolithic = true;
nir = si_get_nir_shader(&shader_es, &free_nir, 0);
si_update_shader_binary_info(shader, nir);
if (!si_llvm_translate_nir(&ctx, &shader_es, nir, free_nir, false)) {
si_llvm_dispose(&ctx);
return false;
}
shader->info.uses_instanceid |= es->info.uses_instanceid;
es_main = ctx.main_fn;
/* ES prolog */
if (es->stage == MESA_SHADER_VERTEX &&
si_vs_needs_prolog(es, &shader->key.ge.part.gs.vs_prolog, &shader->key, false, true)) {
union si_shader_part_key vs_prolog_key;
si_get_vs_prolog_key(&es->info, shader_es.info.num_input_sgprs, false,
&shader->key.ge.part.gs.vs_prolog, shader, &vs_prolog_key);
vs_prolog_key.vs_prolog.is_monolithic = true;
si_llvm_build_vs_prolog(&ctx, &vs_prolog_key);
es_prolog = ctx.main_fn;
}
/* Reset the shader context. */
ctx.shader = shader;
ctx.stage = MESA_SHADER_GEOMETRY;
/* Prepare the array of shader parts. */
LLVMValueRef parts[4];
unsigned num_parts = 0, main_part;
if (es_prolog)
parts[num_parts++] = es_prolog;
parts[main_part = num_parts++] = es_main;
parts[num_parts++] = gs_main;
si_build_wrapper_function(&ctx, parts, num_parts, main_part, main_part + 1, false);
} else {
/* Nothing to do for gfx6-8. The shader has only 1 part and it's ctx.main_fn. */
}
} else if (shader->is_monolithic && sel->stage == MESA_SHADER_FRAGMENT) {
si_llvm_build_monolithic_ps(&ctx, shader);
}
si_llvm_optimize_module(&ctx);
/* Make sure the input is a pointer and not integer followed by inttoptr. */
assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(ctx.main_fn, 0))) == LLVMPointerTypeKind);
/* Compile to bytecode. */
if (!si_compile_llvm(sscreen, &shader->binary, &shader->config, compiler, &ctx.ac, debug,
sel->stage, si_get_shader_name(shader),
si_should_optimize_less(compiler, shader->selector))) {
si_llvm_dispose(&ctx);
fprintf(stderr, "LLVM failed to compile shader\n");
return false;
}
si_llvm_dispose(&ctx);
return true;
}