mesa/src/gallium/drivers/radeonsi/si_shader.h

1073 lines
37 KiB
C

/*
* Copyright 2012 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* The compiler middle-end architecture: Explaining (non-)monolithic shaders
* -------------------------------------------------------------------------
*
* Typically, there is one-to-one correspondence between API and HW shaders,
* that is, for every API shader, there is exactly one shader binary in
* the driver.
*
* The problem with that is that we also have to emulate some API states
* (e.g. alpha-test, and many others) in shaders too. The two obvious ways
* to deal with it are:
* - each shader has multiple variants for each combination of emulated states,
* and the variants are compiled on demand, possibly relying on a shader
* cache for good performance
* - patch shaders at the binary level
*
* This driver uses something completely different. The emulated states are
* usually implemented at the beginning or end of shaders. Therefore, we can
* split the shader into 3 parts:
* - prolog part (shader code dependent on states)
* - main part (the API shader)
* - epilog part (shader code dependent on states)
*
* Each part is compiled as a separate shader and the final binaries are
* concatenated. This type of shader is called non-monolithic, because it
* consists of multiple independent binaries. Creating a new shader variant
* is therefore only a concatenation of shader parts (binaries) and doesn't
* involve any compilation. The main shader parts are the only parts that are
* compiled when applications create shader objects. The prolog and epilog
* parts are compiled on the first use and saved, so that their binaries can
* be reused by many other shaders.
*
* One of the roles of the prolog part is to compute vertex buffer addresses
* for vertex shaders. A few of the roles of the epilog part are color buffer
* format conversions in pixel shaders that we have to do manually, and write
* tessellation factors in tessellation control shaders. The prolog and epilog
* have many other important responsibilities in various shader stages.
* They don't just "emulate legacy stuff".
*
* Monolithic shaders are shaders where the parts are combined before LLVM
* compilation, and the whole thing is compiled and optimized as one unit with
* one binary on the output. The result is the same as the non-monolithic
* shader, but the final code can be better, because LLVM can optimize across
* all shader parts. Monolithic shaders aren't usually used except for these
* special cases:
*
* 1) Some rarely-used states require modification of the main shader part
* itself, and in such cases, only the monolithic shader variant is
* compiled, and that's always done on the first use.
*
* 2) When we do cross-stage optimizations for separate shader objects and
* e.g. eliminate unused shader varyings, the resulting optimized shader
* variants are always compiled as monolithic shaders, and always
* asynchronously (i.e. not stalling ongoing rendering). We call them
* "optimized monolithic" shaders. The important property here is that
* the non-monolithic unoptimized shader variant is always available for use
* when the asynchronous compilation of the optimized shader is not done
* yet.
*
* Starting with GFX9 chips, some shader stages are merged, and the number of
* shader parts per shader increased. The complete new list of shader parts is:
* - 1st shader: prolog part
* - 1st shader: main part
* - 2nd shader: prolog part
* - 2nd shader: main part
* - 2nd shader: epilog part
*/
/* How linking shader inputs and outputs between vertex, tessellation, and
* geometry shaders works.
*
* Inputs and outputs between shaders are stored in a buffer. This buffer
* lives in LDS (typical case for tessellation), but it can also live
* in memory (ESGS). Each input or output has a fixed location within a vertex.
* The highest used input or output determines the stride between vertices.
*
* Since GS and tessellation are only possible in the OpenGL core profile,
* only these semantics are valid for per-vertex data:
*
* Name Location
*
* POSITION 0
* PSIZE 1
* CLIPDIST0..1 2..3
* CULLDIST0..1 (not implemented)
* GENERIC0..31 4..35
*
* For example, a shader only writing GENERIC0 has the output stride of 5.
*
* Only these semantics are valid for per-patch data:
*
* Name Location
*
* TESSOUTER 0
* TESSINNER 1
* PATCH0..29 2..31
*
* That's how independent shaders agree on input and output locations.
* The si_shader_io_get_unique_index function assigns the locations.
*
* For tessellation, other required information for calculating the input and
* output addresses like the vertex stride, the patch stride, and the offsets
* where per-vertex and per-patch data start, is passed to the shader via
* user data SGPRs. The offsets and strides are calculated at draw time and
* aren't available at compile time.
*/
#ifndef SI_SHADER_H
#define SI_SHADER_H
#include "ac_binary.h"
#include "ac_llvm_build.h"
#include "ac_llvm_util.h"
#include "util/simple_mtx.h"
#include "util/u_inlines.h"
#include "util/u_live_shader_cache.h"
#include "util/u_queue.h"
#include "si_pm4.h"
#include <stdio.h>
#ifdef __cplusplus
extern "C" {
#endif
// Use LDS symbols when supported by LLVM. Can be disabled for testing the old
// path on newer LLVM for now. Should be removed in the long term.
#define USE_LDS_SYMBOLS (true)
struct nir_shader;
struct si_shader;
struct si_context;
#define SI_MAX_ATTRIBS 16
#define SI_MAX_VS_OUTPUTS 40
#define SI_USER_CLIP_PLANE_MASK 0x3F
#define SI_NGG_PRIM_EDGE_FLAG_BITS ((1 << 9) | (1 << 19) | (1 << 29))
#define SI_PS_INPUT_CNTL_0000 (S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(0))
#define SI_PS_INPUT_CNTL_0001 (S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(3))
#define SI_PS_INPUT_CNTL_UNUSED SI_PS_INPUT_CNTL_0000
/* D3D9 behaviour for COLOR0 requires 0001. GL is undefined. */
#define SI_PS_INPUT_CNTL_UNUSED_COLOR0 SI_PS_INPUT_CNTL_0001
/* SGPR user data indices */
enum
{
SI_SGPR_INTERNAL_BINDINGS,
SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES,
SI_SGPR_CONST_AND_SHADER_BUFFERS, /* or just a constant buffer 0 pointer */
SI_SGPR_SAMPLERS_AND_IMAGES,
SI_NUM_RESOURCE_SGPRS,
/* API VS, TES without GS, GS copy shader */
SI_SGPR_VS_STATE_BITS = SI_NUM_RESOURCE_SGPRS,
SI_NUM_VS_STATE_RESOURCE_SGPRS,
/* all VS variants */
SI_SGPR_BASE_VERTEX = SI_NUM_VS_STATE_RESOURCE_SGPRS,
SI_SGPR_DRAWID,
SI_SGPR_START_INSTANCE,
SI_VS_NUM_USER_SGPR,
SI_SGPR_VS_BLIT_DATA = SI_SGPR_CONST_AND_SHADER_BUFFERS,
/* TES */
SI_SGPR_TES_OFFCHIP_LAYOUT = SI_NUM_VS_STATE_RESOURCE_SGPRS,
SI_SGPR_TES_OFFCHIP_ADDR,
SI_TES_NUM_USER_SGPR,
/* GFX6-8: TCS only */
GFX6_SGPR_TCS_OFFCHIP_LAYOUT = SI_NUM_RESOURCE_SGPRS,
GFX6_SGPR_TCS_OUT_OFFSETS,
GFX6_SGPR_TCS_OUT_LAYOUT,
GFX6_SGPR_TCS_IN_LAYOUT,
GFX6_TCS_NUM_USER_SGPR,
/* GFX9: Merged LS-HS (VS-TCS) only. */
GFX9_SGPR_TCS_OFFCHIP_LAYOUT = SI_VS_NUM_USER_SGPR,
GFX9_SGPR_TCS_OUT_OFFSETS,
GFX9_SGPR_TCS_OUT_LAYOUT,
GFX9_TCS_NUM_USER_SGPR,
/* GS limits */
GFX6_GS_NUM_USER_SGPR = SI_NUM_RESOURCE_SGPRS,
SI_GSCOPY_NUM_USER_SGPR = SI_NUM_VS_STATE_RESOURCE_SGPRS,
GFX9_SGPR_SMALL_PRIM_CULL_INFO = MAX2(SI_VS_NUM_USER_SGPR, SI_TES_NUM_USER_SGPR),
GFX9_SGPR_ATTRIBUTE_RING_ADDR,
GFX9_GS_NUM_USER_SGPR,
/* PS only */
SI_SGPR_ALPHA_REF = SI_NUM_RESOURCE_SGPRS,
SI_PS_NUM_USER_SGPR,
/* The value has to be 12, because the hw requires that descriptors
* are aligned to 4 SGPRs.
*/
SI_SGPR_VS_VB_DESCRIPTOR_FIRST = 12,
};
/* LLVM function parameter indices */
enum
{
SI_NUM_RESOURCE_PARAMS = 4,
/* PS only parameters */
SI_PARAM_ALPHA_REF = SI_NUM_RESOURCE_PARAMS,
SI_PARAM_PRIM_MASK,
SI_PARAM_PERSP_SAMPLE,
SI_PARAM_PERSP_CENTER,
SI_PARAM_PERSP_CENTROID,
SI_PARAM_PERSP_PULL_MODEL,
SI_PARAM_LINEAR_SAMPLE,
SI_PARAM_LINEAR_CENTER,
SI_PARAM_LINEAR_CENTROID,
SI_PARAM_LINE_STIPPLE_TEX,
SI_PARAM_POS_X_FLOAT,
SI_PARAM_POS_Y_FLOAT,
SI_PARAM_POS_Z_FLOAT,
SI_PARAM_POS_W_FLOAT,
SI_PARAM_FRONT_FACE,
SI_PARAM_ANCILLARY,
SI_PARAM_SAMPLE_COVERAGE,
SI_PARAM_POS_FIXED_PT,
SI_NUM_PARAMS = SI_PARAM_POS_FIXED_PT + 9, /* +8 for COLOR[0..1] */
};
/* These fields are only set in current_vs_state (except INDEXED) in si_context, and they are
* accessible in the shader via vs_state_bits in VS, TES, and GS.
*/
#define VS_STATE_CLAMP_VERTEX_COLOR__SHIFT 0
#define VS_STATE_CLAMP_VERTEX_COLOR__MASK 0x1 /* Shared by VS and GS */
#define VS_STATE_INDEXED__SHIFT 1
#define VS_STATE_INDEXED__MASK 0x1 /* Shared by VS and GS */
/* These fields are only set in current_vs_state in si_context, and they are accessible
* in the shader via vs_state_bits in LS/HS.
*/
/* bit gap */
#define VS_STATE_LS_OUT_PATCH_SIZE__SHIFT 11
#define VS_STATE_LS_OUT_PATCH_SIZE__MASK 0x1fff
#define VS_STATE_LS_OUT_VERTEX_SIZE__SHIFT 24
#define VS_STATE_LS_OUT_VERTEX_SIZE__MASK 0xff
/* These fields are only set in current_gs_state in si_context, and they are accessible
* in the shader via vs_state_bits in legacy GS, the GS copy shader, and any NGG shader.
*/
/* bit gap */
#define GS_STATE_SMALL_PRIM_PRECISION__SHIFT 22
#define GS_STATE_SMALL_PRIM_PRECISION__MASK 0xf
#define GS_STATE_STREAMOUT_QUERY_ENABLED__SHIFT 26
#define GS_STATE_STREAMOUT_QUERY_ENABLED__MASK 0x1
#define GS_STATE_PROVOKING_VTX_INDEX__SHIFT 27
#define GS_STATE_PROVOKING_VTX_INDEX__MASK 0x3
#define GS_STATE_OUTPRIM__SHIFT 29
#define GS_STATE_OUTPRIM__MASK 0x3
#define GS_STATE_PIPELINE_STATS_EMU__SHIFT 31
#define GS_STATE_PIPELINE_STATS_EMU__MASK 0x1
#define ENCODE_FIELD(field, value) (((unsigned)(value) & field##__MASK) << field##__SHIFT)
#define CLEAR_FIELD(field) (~((unsigned)field##__MASK << field##__SHIFT))
/* This is called by functions that change states. */
#define SET_FIELD(var, field, value) do { \
assert((value) == ((unsigned)(value) & field##__MASK)); \
(var) &= CLEAR_FIELD(field); \
(var) |= ENCODE_FIELD(field, value); \
} while (0)
/* This is called during shader compilation and returns LLVMValueRef. */
#define GET_FIELD(ctx, field) si_unpack_param((ctx), (ctx)->vs_state_bits, field##__SHIFT, \
util_bitcount(field##__MASK))
enum
{
/* These represent the number of SGPRs the shader uses. */
SI_VS_BLIT_SGPRS_POS = 3,
SI_VS_BLIT_SGPRS_POS_COLOR = 7,
SI_VS_BLIT_SGPRS_POS_TEXCOORD = 9,
};
#define SI_NGG_CULL_TRIANGLES (1 << 0) /* this implies W, view.xy, and small prim culling */
#define SI_NGG_CULL_BACK_FACE (1 << 1) /* back faces */
#define SI_NGG_CULL_FRONT_FACE (1 << 2) /* front faces */
#define SI_NGG_CULL_LINES (1 << 3) /* the primitive type is lines */
#define SI_NGG_CULL_SMALL_LINES_DIAMOND_EXIT (1 << 4) /* cull small lines according to the diamond exit rule */
#define SI_NGG_CULL_CLIP_PLANE_ENABLE(enable) (((enable) & 0xff) << 5)
#define SI_NGG_CULL_GET_CLIP_PLANE_ENABLE(x) (((x) >> 5) & 0xff)
#define SI_PROFILE_WAVE32 (1 << 0)
#define SI_PROFILE_WAVE64 (1 << 1)
#define SI_PROFILE_IGNORE_LLVM13_DISCARD_BUG (1 << 2)
#define SI_PROFILE_VS_NO_BINNING (1 << 3)
#define SI_PROFILE_PS_NO_BINNING (1 << 4)
#define SI_PROFILE_CLAMP_DIV_BY_ZERO (1 << 5)
/**
* For VS shader keys, describe any fixups required for vertex fetch.
*
* \ref log_size, \ref format, and the number of channels are interpreted as
* by \ref ac_build_opencoded_load_format.
*
* Note: all bits 0 (size = 1 byte, num channels = 1, format = float) is an
* impossible format and indicates that no fixup is needed (just use
* buffer_load_format_xyzw).
*/
union si_vs_fix_fetch {
struct {
uint8_t log_size : 2; /* 1, 2, 4, 8 or bytes per channel */
uint8_t num_channels_m1 : 2; /* number of channels minus 1 */
uint8_t format : 3; /* AC_FETCH_FORMAT_xxx */
uint8_t reverse : 1; /* reverse XYZ channels */
} u;
uint8_t bits;
};
struct si_shader;
/* State of the context creating the shader object. */
struct si_compiler_ctx_state {
/* Should only be used by si_init_shader_selector_async and
* si_build_shader_variant if thread_index == -1 (non-threaded). */
struct ac_llvm_compiler *compiler;
/* Used if thread_index == -1 or if debug.async is true. */
struct util_debug_callback debug;
/* Used for creating the log string for gallium/ddebug. */
bool is_debug_context;
};
enum si_color_output_type {
SI_TYPE_ANY32,
SI_TYPE_FLOAT16,
SI_TYPE_INT16,
SI_TYPE_UINT16,
};
union si_input_info {
struct {
ubyte semantic;
ubyte interpolate;
ubyte fp16_lo_hi_valid;
ubyte usage_mask;
};
uint32_t _unused; /* this just forces 4-byte alignment */
};
struct si_shader_info {
shader_info base;
uint32_t options; /* bitmask of SI_PROFILE_* */
ubyte num_inputs;
ubyte num_outputs;
union si_input_info input[PIPE_MAX_SHADER_INPUTS];
ubyte output_semantic[PIPE_MAX_SHADER_OUTPUTS];
ubyte output_usagemask[PIPE_MAX_SHADER_OUTPUTS];
ubyte output_readmask[PIPE_MAX_SHADER_OUTPUTS];
ubyte output_streams[PIPE_MAX_SHADER_OUTPUTS];
ubyte output_type[PIPE_MAX_SHADER_OUTPUTS]; /* enum nir_alu_type */
ubyte num_vs_inputs;
ubyte num_vbos_in_user_sgprs;
ubyte num_stream_output_components[4];
uint16_t enabled_streamout_buffer_mask;
uint64_t inputs_read; /* "get_unique_index" bits */
uint64_t tcs_vgpr_only_inputs; /* TCS inputs that are only in VGPRs, not LDS. */
uint64_t outputs_written_before_ps; /* "get_unique_index" bits */
uint64_t outputs_written; /* "get_unique_index" bits */
uint32_t patch_outputs_written; /* "get_unique_index_patch" bits */
ubyte clipdist_mask;
ubyte culldist_mask;
uint16_t lshs_vertex_stride;
uint16_t esgs_itemsize; /* vertex stride */
uint16_t gsvs_vertex_size;
ubyte gs_input_verts_per_prim;
unsigned max_gsvs_emit_size;
/* Set 0xf or 0x0 (4 bits) per each written output.
* ANDed with spi_shader_col_format.
*/
unsigned colors_written_4bit;
int constbuf0_num_slots;
uint num_memory_stores;
ubyte color_attr_index[2];
ubyte color_interpolate[2];
ubyte color_interpolate_loc[2];
ubyte colors_read; /**< which color components are read by the FS */
ubyte colors_written;
uint16_t output_color_types; /**< Each bit pair is enum si_color_output_type */
bool vs_needs_prolog;
bool color0_writes_all_cbufs; /**< gl_FragColor */
bool reads_samplemask; /**< does fragment shader read sample mask? */
bool reads_tess_factors; /**< If TES reads TESSINNER or TESSOUTER */
bool writes_z; /**< does fragment shader write Z value? */
bool writes_stencil; /**< does fragment shader write stencil value? */
bool writes_samplemask; /**< does fragment shader write sample mask? */
bool writes_edgeflag; /**< vertex shader outputs edgeflag */
bool uses_interp_color;
bool uses_persp_center_color;
bool uses_persp_centroid_color;
bool uses_persp_sample_color;
bool uses_persp_center;
bool uses_persp_centroid;
bool uses_persp_sample;
bool uses_linear_center;
bool uses_linear_centroid;
bool uses_linear_sample;
bool uses_interp_at_sample;
bool uses_instanceid;
bool uses_base_vertex;
bool uses_base_instance;
bool uses_drawid;
bool uses_primid;
bool uses_frontface;
bool uses_invocationid;
bool uses_thread_id[3];
bool uses_block_id[3];
bool uses_variable_block_size;
bool uses_grid_size;
bool uses_subgroup_info;
bool writes_position;
bool writes_psize;
bool writes_clipvertex;
bool writes_primid;
bool writes_viewport_index;
bool writes_layer;
bool uses_bindless_samplers;
bool uses_bindless_images;
bool uses_indirect_descriptor;
bool has_divergent_loop;
bool uses_vmem_sampler_or_bvh;
bool uses_vmem_load_other; /* all other VMEM loads and atomics with return */
/** Whether all codepaths write tess factors in all invocations. */
bool tessfactors_are_def_in_all_invocs;
/* A flag to check if vrs2x2 can be enabled to reduce number of
* fragment shader invocations if flat shading.
*/
bool allow_flat_shading;
/* Optimization: if the texture bound to this texunit has been cleared to 1,
* then the draw can be skipped (see si_draw_vbo_skip_noop). Initially the
* value is 0xff (undetermined) and can be later changed to 0 (= false) or
* texunit + 1.
*/
uint8_t writes_1_if_tex_is_1;
};
/* A shader selector is a gallium CSO and contains shader variants and
* binaries for one NIR program. This can be shared by multiple contexts.
*/
struct si_shader_selector {
struct util_live_shader base;
struct si_screen *screen;
struct util_queue_fence ready;
struct si_compiler_ctx_state compiler_ctx_state;
gl_shader_stage stage;
simple_mtx_t mutex;
union si_shader_key *keys;
unsigned variants_count;
unsigned variants_max_count;
struct si_shader **variants;
/* The compiled NIR shader without a prolog and/or epilog (not
* uploaded to a buffer object).
*/
struct si_shader *main_shader_part;
struct si_shader *main_shader_part_ls; /* as_ls is set in the key */
struct si_shader *main_shader_part_es; /* as_es is set in the key */
struct si_shader *main_shader_part_ngg; /* as_ngg is set in the key */
struct si_shader *main_shader_part_ngg_es; /* for Wave32 TES before legacy GS */
struct nir_shader *nir;
void *nir_binary;
unsigned nir_size;
struct si_shader_info info;
enum pipe_shader_type pipe_shader_type;
ubyte const_and_shader_buf_descriptors_index;
ubyte sampler_and_images_descriptors_index;
ubyte cs_shaderbufs_sgpr_index;
ubyte cs_num_shaderbufs_in_user_sgprs;
ubyte cs_images_sgpr_index;
ubyte cs_images_num_sgprs;
ubyte cs_num_images_in_user_sgprs;
unsigned ngg_cull_vert_threshold; /* UINT32_MAX = disabled */
enum pipe_prim_type rast_prim;
/* GS parameters. */
bool tess_turns_off_ngg;
/* bitmasks of used descriptor slots */
uint64_t active_const_and_shader_buffers;
uint64_t active_samplers_and_images;
};
/* Valid shader configurations:
*
* API shaders VS | TCS | TES | GS |pass| PS
* are compiled as: | | | |thru|
* | | | | |
* Only VS & PS: VS | | | | | PS
* GFX6 - with GS: ES | | | GS | VS | PS
* - with tess: LS | HS | VS | | | PS
* - with both: LS | HS | ES | GS | VS | PS
* GFX9 - with GS: -> | | | GS | VS | PS
* - with tess: -> | HS | VS | | | PS
* - with both: -> | HS | -> | GS | VS | PS
* | | | | |
* NGG - VS & PS: GS | | | | | PS
* (GFX10+) - with GS: -> | | | GS | | PS
* - with tess: -> | HS | GS | | | PS
* - with both: -> | HS | -> | GS | | PS
*
* -> = merged with the next stage
*/
/* Use the byte alignment for all following structure members for optimal
* shader key memory footprint.
*/
#pragma pack(push, 1)
/* Common VS bits between the shader key and the prolog key. */
struct si_vs_prolog_bits {
/* - If neither "is_one" nor "is_fetched" has a bit set, the instance
* divisor is 0.
* - If "is_one" has a bit set, the instance divisor is 1.
* - If "is_fetched" has a bit set, the instance divisor will be loaded
* from the constant buffer.
*/
uint16_t instance_divisor_is_one; /* bitmask of inputs */
uint16_t instance_divisor_is_fetched; /* bitmask of inputs */
unsigned ls_vgpr_fix : 1;
};
/* Common TCS bits between the shader key and the epilog key. */
struct si_tcs_epilog_bits {
unsigned prim_mode : 3;
unsigned invoc0_tess_factors_are_def : 1;
unsigned tes_reads_tess_factors : 1;
};
/* Common PS bits between the shader key and the prolog key. */
struct si_ps_prolog_bits {
unsigned color_two_side : 1;
unsigned flatshade_colors : 1;
unsigned poly_stipple : 1;
unsigned force_persp_sample_interp : 1;
unsigned force_linear_sample_interp : 1;
unsigned force_persp_center_interp : 1;
unsigned force_linear_center_interp : 1;
unsigned bc_optimize_for_persp : 1;
unsigned bc_optimize_for_linear : 1;
unsigned samplemask_log_ps_iter : 3;
};
/* Common PS bits between the shader key and the epilog key. */
struct si_ps_epilog_bits {
unsigned spi_shader_col_format;
unsigned color_is_int8 : 8;
unsigned color_is_int10 : 8;
unsigned last_cbuf : 3;
unsigned alpha_func : 3;
unsigned alpha_to_one : 1;
unsigned alpha_to_coverage_via_mrtz : 1; /* gfx11+ */
unsigned clamp_color : 1;
unsigned dual_src_blend_swizzle : 1; /* gfx11+ */
};
union si_shader_part_key {
struct {
struct si_vs_prolog_bits states;
unsigned wave32 : 1;
unsigned num_input_sgprs : 6;
/* For merged stages such as LS-HS, HS input VGPRs are first. */
unsigned num_merged_next_stage_vgprs : 3;
unsigned num_inputs : 5;
unsigned as_ls : 1;
unsigned as_es : 1;
unsigned as_ngg : 1;
unsigned load_vgprs_after_culling : 1;
/* Prologs for monolithic shaders shouldn't set EXEC. */
unsigned is_monolithic : 1;
} vs_prolog;
struct {
struct si_tcs_epilog_bits states;
unsigned wave32 : 1;
unsigned noop_s_barrier : 1;
} tcs_epilog;
struct {
struct si_ps_prolog_bits states;
unsigned wave32 : 1;
unsigned num_input_sgprs : 6;
unsigned num_input_vgprs : 5;
/* Color interpolation and two-side color selection. */
unsigned colors_read : 8; /* color input components read */
unsigned num_interp_inputs : 5; /* BCOLOR is at this location */
unsigned face_vgpr_index : 5;
unsigned ancillary_vgpr_index : 5;
unsigned sample_coverage_vgpr_index : 5;
unsigned wqm : 1;
char color_attr_index[2];
signed char color_interp_vgpr_index[2]; /* -1 == constant */
} ps_prolog;
struct {
struct si_ps_epilog_bits states;
unsigned wave32 : 1;
unsigned uses_discard : 1;
unsigned colors_written : 8;
unsigned color_types : 16;
unsigned writes_z : 1;
unsigned writes_stencil : 1;
unsigned writes_samplemask : 1;
} ps_epilog;
};
/* The shader key for geometry stages (VS, TCS, TES, GS) */
struct si_shader_key_ge {
/* Prolog and epilog flags. */
union {
struct {
struct si_vs_prolog_bits prolog;
} vs;
struct {
struct si_vs_prolog_bits ls_prolog; /* for merged LS-HS */
struct si_shader_selector *ls; /* for merged LS-HS */
struct si_tcs_epilog_bits epilog;
} tcs; /* tessellation control shader */
struct {
struct si_vs_prolog_bits vs_prolog; /* for merged ES-GS */
struct si_shader_selector *es; /* for merged ES-GS */
} gs;
} part;
/* These three are initially set according to the NEXT_SHADER property,
* or guessed if the property doesn't seem correct.
*/
unsigned as_es : 1; /* whether it's a shader before GS */
unsigned as_ls : 1; /* whether it's VS before TCS */
unsigned as_ngg : 1; /* whether it's the last GE stage and NGG is enabled,
also set for the stage right before GS */
/* Flags for monolithic compilation only. */
struct {
/* Whether fetch should be opencoded according to vs_fix_fetch.
* Otherwise, if vs_fix_fetch is non-zero, buffer_load_format_xyzw
* with minimal fixups is used. */
uint16_t vs_fetch_opencode;
union si_vs_fix_fetch vs_fix_fetch[SI_MAX_ATTRIBS];
union {
/* When PS needs PrimID and GS is disabled. */
unsigned vs_export_prim_id : 1; /* VS and TES only */
unsigned gs_tri_strip_adj_fix : 1; /* GS only */
} u;
} mono;
/* Optimization flags for asynchronous compilation only. */
struct {
/* For HW VS (it can be VS, TES, GS) */
uint64_t kill_outputs; /* "get_unique_index" bits */
unsigned kill_clip_distances : 8;
unsigned kill_pointsize : 1;
unsigned remove_streamout : 1;
/* For NGG VS and TES. */
unsigned ngg_culling : 13; /* SI_NGG_CULL_* */
/* For shaders where monolithic variants have better code.
*
* This is a flag that has no effect on code generation,
* but forces monolithic shaders to be used as soon as
* possible, because it's in the "opt" group.
*/
unsigned prefer_mono : 1;
/* VS and TCS have the same number of patch vertices. */
unsigned same_patch_vertices:1;
unsigned inline_uniforms:1;
/* This must be kept last to limit the number of variants
* depending only on the uniform values.
*/
uint32_t inlined_uniform_values[MAX_INLINABLE_UNIFORMS];
} opt;
};
struct si_shader_key_ps {
struct {
/* Prolog and epilog flags. */
struct si_ps_prolog_bits prolog;
struct si_ps_epilog_bits epilog;
} part;
/* Flags for monolithic compilation only. */
struct {
unsigned poly_line_smoothing : 1;
unsigned point_smoothing : 1;
unsigned interpolate_at_sample_force_center : 1;
unsigned fbfetch_msaa : 1;
unsigned fbfetch_is_1D : 1;
unsigned fbfetch_layered : 1;
} mono;
/* Optimization flags for asynchronous compilation only. */
struct {
/* For shaders where monolithic variants have better code.
*
* This is a flag that has no effect on code generation,
* but forces monolithic shaders to be used as soon as
* possible, because it's in the "opt" group.
*/
unsigned prefer_mono : 1;
unsigned inline_uniforms:1;
/* This must be kept last to limit the number of variants
* depending only on the uniform values.
*/
uint32_t inlined_uniform_values[MAX_INLINABLE_UNIFORMS];
} opt;
};
union si_shader_key {
struct si_shader_key_ge ge; /* geometry engine shaders */
struct si_shader_key_ps ps;
};
/* Restore the pack alignment to default. */
#pragma pack(pop)
/* GCN-specific shader info. */
struct si_shader_binary_info {
ubyte vs_output_param_offset[NUM_TOTAL_VARYING_SLOTS];
uint64_t vs_output_param_mask; /* which params to export, indexed by "base" */
uint32_t vs_output_ps_input_cntl[NUM_TOTAL_VARYING_SLOTS];
ubyte num_input_sgprs;
ubyte num_input_vgprs;
bool uses_vmem_load_other; /* all other VMEM loads and atomics with return */
bool uses_vmem_sampler_or_bvh;
signed char face_vgpr_index;
signed char ancillary_vgpr_index;
signed char sample_coverage_vgpr_index;
bool uses_instanceid;
ubyte nr_pos_exports;
ubyte nr_param_exports;
unsigned private_mem_vgprs;
unsigned max_simd_waves;
};
struct si_shader_binary {
const char *elf_buffer;
size_t elf_size;
char *uploaded_code;
size_t uploaded_code_size;
char *llvm_ir_string;
};
struct gfx9_gs_info {
unsigned es_verts_per_subgroup;
unsigned gs_prims_per_subgroup;
unsigned gs_inst_prims_in_subgroup;
unsigned max_prims_per_subgroup;
unsigned esgs_ring_size; /* in bytes */
};
#define SI_NUM_VGT_STAGES_KEY_BITS 8
#define SI_NUM_VGT_STAGES_STATES (1 << SI_NUM_VGT_STAGES_KEY_BITS)
/* The VGT_SHADER_STAGES key used to index the table of precomputed values.
* Some fields are set by state-change calls, most are set by draw_vbo.
*/
union si_vgt_stages_key {
struct {
#if UTIL_ARCH_LITTLE_ENDIAN
uint8_t tess : 1;
uint8_t gs : 1;
uint8_t ngg_passthrough : 1;
uint8_t ngg : 1; /* gfx10+ */
uint8_t streamout : 1; /* only used with NGG */
uint8_t hs_wave32 : 1;
uint8_t gs_wave32 : 1;
uint8_t vs_wave32 : 1;
#else /* UTIL_ARCH_BIG_ENDIAN */
uint8_t vs_wave32 : 1;
uint8_t gs_wave32 : 1;
uint8_t hs_wave32 : 1;
uint8_t streamout : 1;
uint8_t ngg : 1;
uint8_t ngg_passthrough : 1;
uint8_t gs : 1;
uint8_t tess : 1;
#endif
} u;
uint8_t index;
};
struct si_shader {
struct si_pm4_state pm4; /* base class */
struct si_compiler_ctx_state compiler_ctx_state;
struct si_shader_selector *selector;
struct si_shader_selector *previous_stage_sel; /* for refcounting */
struct si_shader_part *prolog;
struct si_shader *previous_stage; /* for GFX9 */
struct si_shader_part *epilog;
struct si_shader *gs_copy_shader;
struct si_resource *bo;
struct si_resource *scratch_bo;
union si_shader_key key;
struct util_queue_fence ready;
bool compilation_failed;
bool is_monolithic;
bool is_optimized;
bool is_binary_shared;
bool is_gs_copy_shader;
uint8_t wave_size;
/* The following data is all that's needed for binary shaders. */
struct si_shader_binary binary;
struct ac_shader_config config;
struct si_shader_binary_info info;
/* SI_SGPR_VS_STATE_BITS */
bool uses_vs_state_provoking_vertex;
bool uses_gs_state_outprim;
bool uses_base_instance;
struct {
uint16_t ngg_emit_size; /* in dwords */
uint16_t hw_max_esverts;
uint16_t max_gsprims;
uint16_t max_out_verts;
uint16_t prim_amp_factor;
bool max_vert_out_per_gs_instance;
} ngg;
/* Shader key + LLVM IR + disassembly + statistics.
* Generated for debug contexts only.
*/
char *shader_log;
size_t shader_log_size;
struct gfx9_gs_info gs_info;
/* For save precompute context registers values. */
union {
struct {
unsigned vgt_gsvs_ring_offset_1;
unsigned vgt_gsvs_ring_offset_2;
unsigned vgt_gsvs_ring_offset_3;
unsigned vgt_gsvs_ring_itemsize;
unsigned vgt_gs_max_vert_out;
unsigned vgt_gs_vert_itemsize;
unsigned vgt_gs_vert_itemsize_1;
unsigned vgt_gs_vert_itemsize_2;
unsigned vgt_gs_vert_itemsize_3;
unsigned vgt_gs_instance_cnt;
unsigned vgt_gs_onchip_cntl;
unsigned vgt_gs_max_prims_per_subgroup;
unsigned vgt_esgs_ring_itemsize;
unsigned spi_shader_pgm_rsrc3_gs;
unsigned spi_shader_pgm_rsrc4_gs;
} gs;
struct {
unsigned ge_max_output_per_subgroup;
unsigned ge_ngg_subgrp_cntl;
unsigned vgt_primitiveid_en;
unsigned vgt_gs_onchip_cntl;
unsigned vgt_gs_instance_cnt;
unsigned vgt_esgs_ring_itemsize;
unsigned spi_vs_out_config;
unsigned spi_shader_idx_format;
unsigned spi_shader_pos_format;
unsigned pa_cl_vte_cntl;
unsigned pa_cl_ngg_cntl;
unsigned vgt_gs_max_vert_out; /* for API GS */
unsigned ge_pc_alloc; /* uconfig register */
unsigned spi_shader_pgm_rsrc3_gs;
unsigned spi_shader_pgm_rsrc4_gs;
union si_vgt_stages_key vgt_stages;
} ngg;
struct {
unsigned vgt_gs_mode;
unsigned vgt_primitiveid_en;
unsigned vgt_reuse_off;
unsigned spi_vs_out_config;
unsigned spi_shader_pos_format;
unsigned pa_cl_vte_cntl;
unsigned ge_pc_alloc; /* uconfig register */
} vs;
struct {
unsigned spi_ps_input_ena;
unsigned spi_ps_input_addr;
unsigned spi_baryc_cntl;
unsigned spi_ps_in_control;
unsigned spi_shader_z_format;
unsigned spi_shader_col_format;
unsigned cb_shader_mask;
unsigned db_shader_control;
unsigned num_interp;
} ps;
} ctx_reg;
/*For save precompute registers value */
unsigned vgt_tf_param; /* VGT_TF_PARAM */
unsigned vgt_vertex_reuse_block_cntl; /* VGT_VERTEX_REUSE_BLOCK_CNTL */
unsigned pa_cl_vs_out_cntl;
unsigned ge_cntl;
};
struct si_shader_part {
struct si_shader_part *next;
union si_shader_part_key key;
struct si_shader_binary binary;
struct ac_shader_config config;
};
/* si_shader.c */
void si_update_shader_binary_info(struct si_shader *shader, nir_shader *nir);
bool si_compile_shader(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
struct si_shader *shader, struct util_debug_callback *debug);
bool si_create_shader_variant(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
struct si_shader *shader, struct util_debug_callback *debug);
void si_shader_destroy(struct si_shader *shader);
unsigned si_shader_io_get_unique_index_patch(unsigned semantic);
unsigned si_shader_io_get_unique_index(unsigned semantic, bool is_varying);
bool si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader,
uint64_t scratch_va);
void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader,
struct util_debug_callback *debug, FILE *f, bool check_debug_option);
void si_shader_dump_stats_for_shader_db(struct si_screen *screen, struct si_shader *shader,
struct util_debug_callback *debug);
void si_multiwave_lds_size_workaround(struct si_screen *sscreen, unsigned *lds_size);
const char *si_get_shader_name(const struct si_shader *shader);
void si_shader_binary_clean(struct si_shader_binary *binary);
struct nir_shader *si_deserialize_shader(struct si_shader_selector *sel);
unsigned si_get_ps_num_interp(struct si_shader *ps);
/* si_shader_info.c */
void si_nir_scan_shader(struct si_screen *sscreen, const struct nir_shader *nir,
struct si_shader_info *info);
/* si_shader_llvm_gs.c */
struct si_shader *si_generate_gs_copy_shader(struct si_screen *sscreen,
struct ac_llvm_compiler *compiler,
struct si_shader_selector *gs_selector,
const struct pipe_stream_output_info *so,
struct util_debug_callback *debug);
/* si_shader_nir.c */
void si_nir_opts(struct si_screen *sscreen, struct nir_shader *nir, bool first);
void si_nir_late_opts(nir_shader *nir);
char *si_finalize_nir(struct pipe_screen *screen, void *nirptr);
/* si_state_shaders.cpp */
unsigned si_determine_wave_size(struct si_screen *sscreen, struct si_shader *shader);
void gfx9_get_gs_info(struct si_shader_selector *es, struct si_shader_selector *gs,
struct gfx9_gs_info *out);
bool gfx10_is_ngg_passthrough(struct si_shader *shader);
/* Inline helpers. */
/* Return the pointer to the main shader part's pointer. */
static inline struct si_shader **si_get_main_shader_part(struct si_shader_selector *sel,
const union si_shader_key *key)
{
if (sel->stage <= MESA_SHADER_GEOMETRY) {
if (key->ge.as_ls)
return &sel->main_shader_part_ls;
if (key->ge.as_es && key->ge.as_ngg)
return &sel->main_shader_part_ngg_es;
if (key->ge.as_es)
return &sel->main_shader_part_es;
if (key->ge.as_ngg)
return &sel->main_shader_part_ngg;
}
return &sel->main_shader_part;
}
static inline bool si_shader_uses_bindless_samplers(struct si_shader_selector *selector)
{
return selector ? selector->info.uses_bindless_samplers : false;
}
static inline bool si_shader_uses_bindless_images(struct si_shader_selector *selector)
{
return selector ? selector->info.uses_bindless_images : false;
}
static inline bool gfx10_edgeflags_have_effect(struct si_shader *shader)
{
if (shader->selector->stage == MESA_SHADER_VERTEX &&
!shader->selector->info.base.vs.blit_sgprs_amd &&
!(shader->key.ge.opt.ngg_culling & SI_NGG_CULL_LINES))
return true;
return false;
}
static inline bool gfx10_ngg_writes_user_edgeflags(struct si_shader *shader)
{
return gfx10_edgeflags_have_effect(shader) &&
shader->selector->info.writes_edgeflag;
}
static inline bool si_shader_uses_streamout(struct si_shader *shader)
{
return shader->selector->stage <= MESA_SHADER_GEOMETRY &&
shader->selector->info.enabled_streamout_buffer_mask &&
!shader->key.ge.opt.remove_streamout;
}
static inline bool si_shader_uses_discard(struct si_shader *shader)
{
/* Changes to this should also update ps_modifies_zs. */
return shader->selector->info.base.fs.uses_discard ||
shader->key.ps.part.prolog.poly_stipple ||
shader->key.ps.mono.point_smoothing ||
shader->key.ps.part.epilog.alpha_func != PIPE_FUNC_ALWAYS;
}
#ifdef __cplusplus
}
#endif
#endif