mesa/src/gallium/drivers/radeonsi/si_blit.c

1418 lines
55 KiB
C

/*
* Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
* Copyright 2015 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_compute.h"
#include "si_pipe.h"
#include "util/format/u_format.h"
#include "util/u_log.h"
#include "util/u_surface.h"
enum
{
SI_COPY =
SI_SAVE_FRAMEBUFFER | SI_SAVE_TEXTURES | SI_SAVE_FRAGMENT_STATE | SI_DISABLE_RENDER_COND,
SI_BLIT = SI_SAVE_FRAMEBUFFER | SI_SAVE_TEXTURES | SI_SAVE_FRAGMENT_STATE,
SI_DECOMPRESS = SI_SAVE_FRAMEBUFFER | SI_SAVE_FRAGMENT_STATE | SI_DISABLE_RENDER_COND,
SI_COLOR_RESOLVE = SI_SAVE_FRAMEBUFFER | SI_SAVE_FRAGMENT_STATE
};
void si_blitter_begin(struct si_context *sctx, enum si_blitter_op op)
{
util_blitter_save_vertex_shader(sctx->blitter, sctx->shader.vs.cso);
util_blitter_save_tessctrl_shader(sctx->blitter, sctx->shader.tcs.cso);
util_blitter_save_tesseval_shader(sctx->blitter, sctx->shader.tes.cso);
util_blitter_save_geometry_shader(sctx->blitter, sctx->shader.gs.cso);
util_blitter_save_so_targets(sctx->blitter, sctx->streamout.num_targets,
(struct pipe_stream_output_target **)sctx->streamout.targets);
util_blitter_save_rasterizer(sctx->blitter, sctx->queued.named.rasterizer);
if (op & SI_SAVE_FRAGMENT_STATE) {
struct pipe_constant_buffer fs_cb = {};
si_get_pipe_constant_buffer(sctx, PIPE_SHADER_FRAGMENT, 0, &fs_cb);
util_blitter_save_fragment_constant_buffer_slot(sctx->blitter, &fs_cb);
pipe_resource_reference(&fs_cb.buffer, NULL);
util_blitter_save_blend(sctx->blitter, sctx->queued.named.blend);
util_blitter_save_depth_stencil_alpha(sctx->blitter, sctx->queued.named.dsa);
util_blitter_save_stencil_ref(sctx->blitter, &sctx->stencil_ref.state);
util_blitter_save_fragment_shader(sctx->blitter, sctx->shader.ps.cso);
util_blitter_save_sample_mask(sctx->blitter, sctx->sample_mask, sctx->ps_iter_samples);
util_blitter_save_scissor(sctx->blitter, &sctx->scissors[0]);
util_blitter_save_window_rectangles(sctx->blitter, sctx->window_rectangles_include,
sctx->num_window_rectangles, sctx->window_rectangles);
}
if (op & SI_SAVE_FRAMEBUFFER)
util_blitter_save_framebuffer(sctx->blitter, &sctx->framebuffer.state);
if (op & SI_SAVE_TEXTURES) {
util_blitter_save_fragment_sampler_states(
sctx->blitter, 2, (void **)sctx->samplers[PIPE_SHADER_FRAGMENT].sampler_states);
util_blitter_save_fragment_sampler_views(sctx->blitter, 2,
sctx->samplers[PIPE_SHADER_FRAGMENT].views);
}
if (op & SI_DISABLE_RENDER_COND)
sctx->render_cond_enabled = false;
if (sctx->screen->dpbb_allowed) {
sctx->dpbb_force_off = true;
si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
}
sctx->blitter_running = true;
}
void si_blitter_end(struct si_context *sctx)
{
sctx->blitter_running = false;
if (sctx->screen->dpbb_allowed) {
sctx->dpbb_force_off = false;
si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
}
sctx->render_cond_enabled = sctx->render_cond;
/* Restore shader pointers because the VS blit shader changed all
* non-global VS user SGPRs. */
sctx->shader_pointers_dirty |= SI_DESCS_SHADER_MASK(VERTEX);
if (sctx->gfx_level >= GFX11)
sctx->gs_attribute_ring_pointer_dirty = true;
/* Reset SI_SGPR_SMALL_PRIM_CULL_INFO: */
if (sctx->screen->use_ngg_culling)
si_mark_atom_dirty(sctx, &sctx->atoms.s.ngg_cull_state);
unsigned num_vbos_in_user_sgprs = si_num_vbos_in_user_sgprs(sctx->screen);
sctx->vertex_buffer_pointer_dirty = sctx->vb_descriptors_buffer != NULL &&
sctx->num_vertex_elements >
num_vbos_in_user_sgprs;
sctx->vertex_buffer_user_sgprs_dirty = sctx->num_vertex_elements > 0 &&
num_vbos_in_user_sgprs;
si_mark_atom_dirty(sctx, &sctx->atoms.s.shader_pointers);
}
static unsigned u_max_sample(struct pipe_resource *r)
{
return r->nr_samples ? r->nr_samples - 1 : 0;
}
static unsigned si_blit_dbcb_copy(struct si_context *sctx, struct si_texture *src,
struct si_texture *dst, unsigned planes, unsigned level_mask,
unsigned first_layer, unsigned last_layer, unsigned first_sample,
unsigned last_sample)
{
struct pipe_surface surf_tmpl = {{0}};
unsigned layer, sample, checked_last_layer, max_layer;
unsigned fully_copied_levels = 0;
if (planes & PIPE_MASK_Z)
sctx->dbcb_depth_copy_enabled = true;
if (planes & PIPE_MASK_S)
sctx->dbcb_stencil_copy_enabled = true;
si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
assert(sctx->dbcb_depth_copy_enabled || sctx->dbcb_stencil_copy_enabled);
sctx->decompression_enabled = true;
while (level_mask) {
unsigned level = u_bit_scan(&level_mask);
/* The smaller the mipmap level, the less layers there are
* as far as 3D textures are concerned. */
max_layer = util_max_layer(&src->buffer.b.b, level);
checked_last_layer = MIN2(last_layer, max_layer);
surf_tmpl.u.tex.level = level;
for (layer = first_layer; layer <= checked_last_layer; layer++) {
struct pipe_surface *zsurf, *cbsurf;
surf_tmpl.format = src->buffer.b.b.format;
surf_tmpl.u.tex.first_layer = layer;
surf_tmpl.u.tex.last_layer = layer;
zsurf = sctx->b.create_surface(&sctx->b, &src->buffer.b.b, &surf_tmpl);
surf_tmpl.format = dst->buffer.b.b.format;
cbsurf = sctx->b.create_surface(&sctx->b, &dst->buffer.b.b, &surf_tmpl);
for (sample = first_sample; sample <= last_sample; sample++) {
if (sample != sctx->dbcb_copy_sample) {
sctx->dbcb_copy_sample = sample;
si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
}
si_blitter_begin(sctx, SI_DECOMPRESS);
util_blitter_custom_depth_stencil(sctx->blitter, zsurf, cbsurf, 1 << sample,
sctx->custom_dsa_flush, 1.0f);
si_blitter_end(sctx);
}
pipe_surface_reference(&zsurf, NULL);
pipe_surface_reference(&cbsurf, NULL);
}
if (first_layer == 0 && last_layer >= max_layer && first_sample == 0 &&
last_sample >= u_max_sample(&src->buffer.b.b))
fully_copied_levels |= 1u << level;
}
sctx->decompression_enabled = false;
sctx->dbcb_depth_copy_enabled = false;
sctx->dbcb_stencil_copy_enabled = false;
si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
return fully_copied_levels;
}
/* Helper function for si_blit_decompress_zs_in_place.
*/
static void si_blit_decompress_zs_planes_in_place(struct si_context *sctx,
struct si_texture *texture, unsigned planes,
unsigned level_mask, unsigned first_layer,
unsigned last_layer)
{
struct pipe_surface *zsurf, surf_tmpl = {{0}};
unsigned layer, max_layer, checked_last_layer;
unsigned fully_decompressed_mask = 0;
if (!level_mask)
return;
if (planes & PIPE_MASK_S)
sctx->db_flush_stencil_inplace = true;
if (planes & PIPE_MASK_Z)
sctx->db_flush_depth_inplace = true;
si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
surf_tmpl.format = texture->buffer.b.b.format;
sctx->decompression_enabled = true;
while (level_mask) {
unsigned level = u_bit_scan(&level_mask);
surf_tmpl.u.tex.level = level;
/* The smaller the mipmap level, the less layers there are
* as far as 3D textures are concerned. */
max_layer = util_max_layer(&texture->buffer.b.b, level);
checked_last_layer = MIN2(last_layer, max_layer);
for (layer = first_layer; layer <= checked_last_layer; layer++) {
surf_tmpl.u.tex.first_layer = layer;
surf_tmpl.u.tex.last_layer = layer;
zsurf = sctx->b.create_surface(&sctx->b, &texture->buffer.b.b, &surf_tmpl);
si_blitter_begin(sctx, SI_DECOMPRESS);
util_blitter_custom_depth_stencil(sctx->blitter, zsurf, NULL, ~0, sctx->custom_dsa_flush,
1.0f);
si_blitter_end(sctx);
pipe_surface_reference(&zsurf, NULL);
}
/* The texture will always be dirty if some layers aren't flushed.
* I don't think this case occurs often though. */
if (first_layer == 0 && last_layer >= max_layer) {
fully_decompressed_mask |= 1u << level;
}
}
if (planes & PIPE_MASK_Z)
texture->dirty_level_mask &= ~fully_decompressed_mask;
if (planes & PIPE_MASK_S)
texture->stencil_dirty_level_mask &= ~fully_decompressed_mask;
sctx->decompression_enabled = false;
sctx->db_flush_depth_inplace = false;
sctx->db_flush_stencil_inplace = false;
si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
}
/* Helper function of si_flush_depth_texture: decompress the given levels
* of Z and/or S planes in place.
*/
static void si_blit_decompress_zs_in_place(struct si_context *sctx, struct si_texture *texture,
unsigned levels_z, unsigned levels_s,
unsigned first_layer, unsigned last_layer)
{
unsigned both = levels_z & levels_s;
/* First, do combined Z & S decompresses for levels that need it. */
if (both) {
si_blit_decompress_zs_planes_in_place(sctx, texture, PIPE_MASK_Z | PIPE_MASK_S, both,
first_layer, last_layer);
levels_z &= ~both;
levels_s &= ~both;
}
/* Now do separate Z and S decompresses. */
if (levels_z) {
si_blit_decompress_zs_planes_in_place(sctx, texture, PIPE_MASK_Z, levels_z, first_layer,
last_layer);
}
if (levels_s) {
si_blit_decompress_zs_planes_in_place(sctx, texture, PIPE_MASK_S, levels_s, first_layer,
last_layer);
}
}
static void si_decompress_depth(struct si_context *sctx, struct si_texture *tex,
unsigned required_planes, unsigned first_level, unsigned last_level,
unsigned first_layer, unsigned last_layer)
{
unsigned inplace_planes = 0;
unsigned copy_planes = 0;
unsigned level_mask = u_bit_consecutive(first_level, last_level - first_level + 1);
unsigned levels_z = 0;
unsigned levels_s = 0;
if (required_planes & PIPE_MASK_Z) {
levels_z = level_mask & tex->dirty_level_mask;
if (levels_z) {
if (si_can_sample_zs(tex, false))
inplace_planes |= PIPE_MASK_Z;
else
copy_planes |= PIPE_MASK_Z;
}
}
if (required_planes & PIPE_MASK_S) {
levels_s = level_mask & tex->stencil_dirty_level_mask;
if (levels_s) {
if (si_can_sample_zs(tex, true))
inplace_planes |= PIPE_MASK_S;
else
copy_planes |= PIPE_MASK_S;
}
}
if (unlikely(sctx->log))
u_log_printf(sctx->log,
"\n------------------------------------------------\n"
"Decompress Depth (levels %u - %u, levels Z: 0x%x S: 0x%x)\n\n",
first_level, last_level, levels_z, levels_s);
/* We may have to allocate the flushed texture here when called from
* si_decompress_subresource.
*/
if (copy_planes &&
(tex->flushed_depth_texture || si_init_flushed_depth_texture(&sctx->b, &tex->buffer.b.b))) {
struct si_texture *dst = tex->flushed_depth_texture;
unsigned fully_copied_levels;
unsigned levels = 0;
assert(tex->flushed_depth_texture);
if (util_format_is_depth_and_stencil(dst->buffer.b.b.format))
copy_planes = PIPE_MASK_Z | PIPE_MASK_S;
if (copy_planes & PIPE_MASK_Z) {
levels |= levels_z;
levels_z = 0;
}
if (copy_planes & PIPE_MASK_S) {
levels |= levels_s;
levels_s = 0;
}
fully_copied_levels = si_blit_dbcb_copy(sctx, tex, dst, copy_planes, levels, first_layer,
last_layer, 0, u_max_sample(&tex->buffer.b.b));
if (copy_planes & PIPE_MASK_Z)
tex->dirty_level_mask &= ~fully_copied_levels;
if (copy_planes & PIPE_MASK_S)
tex->stencil_dirty_level_mask &= ~fully_copied_levels;
}
if (inplace_planes) {
bool has_htile = si_htile_enabled(tex, first_level, inplace_planes);
bool tc_compat_htile = vi_tc_compat_htile_enabled(tex, first_level, inplace_planes);
/* Don't decompress if there is no HTILE or when HTILE is
* TC-compatible. */
if (has_htile && !tc_compat_htile) {
si_blit_decompress_zs_in_place(sctx, tex, levels_z, levels_s, first_layer, last_layer);
} else {
/* This is only a cache flush.
*
* Only clear the mask that we are flushing, because
* si_make_DB_shader_coherent() treats different levels
* and depth and stencil differently.
*/
if (inplace_planes & PIPE_MASK_Z)
tex->dirty_level_mask &= ~levels_z;
if (inplace_planes & PIPE_MASK_S)
tex->stencil_dirty_level_mask &= ~levels_s;
}
/* We just had to completely decompress Z/S for texturing. Enable
* TC-compatible HTILE on the next clear, so that the decompression
* doesn't have to be done for this texture ever again.
*
* TC-compatible HTILE might slightly reduce Z/S performance, but
* the decompression is much worse.
*/
if (has_htile && !tc_compat_htile &&
/* We can only transition the whole buffer in one clear, so no mipmapping: */
tex->buffer.b.b.last_level == 0 &&
tex->surface.flags & RADEON_SURF_TC_COMPATIBLE_HTILE &&
(inplace_planes & PIPE_MASK_Z || !tex->htile_stencil_disabled))
tex->enable_tc_compatible_htile_next_clear = true;
/* Only in-place decompression needs to flush DB caches, or
* when we don't decompress but TC-compatible planes are dirty.
*/
si_make_DB_shader_coherent(sctx, tex->buffer.b.b.nr_samples, inplace_planes & PIPE_MASK_S,
tc_compat_htile);
}
/* set_framebuffer_state takes care of coherency for single-sample.
* The DB->CB copy uses CB for the final writes.
*/
if (copy_planes && tex->buffer.b.b.nr_samples > 1)
si_make_CB_shader_coherent(sctx, tex->buffer.b.b.nr_samples, false, true /* no DCC */);
}
static bool si_decompress_sampler_depth_textures(struct si_context *sctx,
struct si_samplers *textures)
{
unsigned i;
unsigned mask = textures->needs_depth_decompress_mask;
bool need_flush = false;
while (mask) {
struct pipe_sampler_view *view;
struct si_sampler_view *sview;
struct si_texture *tex;
i = u_bit_scan(&mask);
view = textures->views[i];
assert(view);
sview = (struct si_sampler_view *)view;
tex = (struct si_texture *)view->texture;
assert(tex->db_compatible);
si_decompress_depth(sctx, tex, sview->is_stencil_sampler ? PIPE_MASK_S : PIPE_MASK_Z,
view->u.tex.first_level, view->u.tex.last_level, 0,
util_max_layer(&tex->buffer.b.b, view->u.tex.first_level));
if (tex->need_flush_after_depth_decompression) {
need_flush = true;
tex->need_flush_after_depth_decompression = false;
}
}
return need_flush;
}
static void si_blit_decompress_color(struct si_context *sctx, struct si_texture *tex,
unsigned first_level, unsigned last_level,
unsigned first_layer, unsigned last_layer,
bool need_dcc_decompress, bool need_fmask_expand)
{
void *custom_blend;
unsigned layer, checked_last_layer, max_layer;
unsigned level_mask = u_bit_consecutive(first_level, last_level - first_level + 1);
if (!need_dcc_decompress)
level_mask &= tex->dirty_level_mask;
if (!level_mask)
goto expand_fmask;
/* No color decompression is needed on GFX11. */
assert(sctx->gfx_level < GFX11 || need_dcc_decompress);
if (unlikely(sctx->log))
u_log_printf(sctx->log,
"\n------------------------------------------------\n"
"Decompress Color (levels %u - %u, mask 0x%x)\n\n",
first_level, last_level, level_mask);
if (need_dcc_decompress) {
assert(sctx->gfx_level == GFX8 || tex->buffer.b.b.nr_storage_samples >= 2);
custom_blend = sctx->custom_blend_dcc_decompress;
assert(vi_dcc_enabled(tex, first_level));
/* disable levels without DCC */
for (int i = first_level; i <= last_level; i++) {
if (!vi_dcc_enabled(tex, i))
level_mask &= ~(1 << i);
}
} else if (tex->surface.fmask_size) {
custom_blend = sctx->custom_blend_fmask_decompress;
} else {
custom_blend = sctx->custom_blend_eliminate_fastclear;
}
sctx->decompression_enabled = true;
while (level_mask) {
unsigned level = u_bit_scan(&level_mask);
/* The smaller the mipmap level, the less layers there are
* as far as 3D textures are concerned. */
max_layer = util_max_layer(&tex->buffer.b.b, level);
checked_last_layer = MIN2(last_layer, max_layer);
for (layer = first_layer; layer <= checked_last_layer; layer++) {
struct pipe_surface *cbsurf, surf_tmpl;
surf_tmpl.format = tex->buffer.b.b.format;
surf_tmpl.u.tex.level = level;
surf_tmpl.u.tex.first_layer = layer;
surf_tmpl.u.tex.last_layer = layer;
cbsurf = sctx->b.create_surface(&sctx->b, &tex->buffer.b.b, &surf_tmpl);
/* Required before and after FMASK and DCC_DECOMPRESS. */
if (custom_blend == sctx->custom_blend_fmask_decompress ||
custom_blend == sctx->custom_blend_dcc_decompress)
sctx->flags |= SI_CONTEXT_FLUSH_AND_INV_CB;
si_blitter_begin(sctx, SI_DECOMPRESS);
util_blitter_custom_color(sctx->blitter, cbsurf, custom_blend);
si_blitter_end(sctx);
if (custom_blend == sctx->custom_blend_fmask_decompress ||
custom_blend == sctx->custom_blend_dcc_decompress)
sctx->flags |= SI_CONTEXT_FLUSH_AND_INV_CB;
/* When running FMASK decompresion with DCC, we need to run the "eliminate fast clear" pass
* separately because FMASK decompression doesn't eliminate DCC fast clear. This makes
* render->texture transitions more expensive. It can be disabled by
* allow_dcc_msaa_clear_to_reg_for_bpp.
*
* TODO: When we get here, change the compression to TC-compatible on the next clear
* to disable both the FMASK decompression and fast clear elimination passes.
*/
if (sctx->screen->allow_dcc_msaa_clear_to_reg_for_bpp[util_logbase2(tex->surface.bpe)] &&
custom_blend == sctx->custom_blend_fmask_decompress &&
vi_dcc_enabled(tex, level)) {
si_blitter_begin(sctx, SI_DECOMPRESS);
util_blitter_custom_color(sctx->blitter, cbsurf, sctx->custom_blend_eliminate_fastclear);
si_blitter_end(sctx);
}
pipe_surface_reference(&cbsurf, NULL);
}
/* The texture will always be dirty if some layers aren't flushed.
* I don't think this case occurs often though. */
if (first_layer == 0 && last_layer >= max_layer) {
tex->dirty_level_mask &= ~(1 << level);
}
}
sctx->decompression_enabled = false;
si_make_CB_shader_coherent(sctx, tex->buffer.b.b.nr_samples, vi_dcc_enabled(tex, first_level),
tex->surface.u.gfx9.color.dcc.pipe_aligned);
expand_fmask:
if (need_fmask_expand && tex->surface.fmask_offset && !tex->fmask_is_identity) {
assert(sctx->gfx_level < GFX11); /* no FMASK on gfx11 */
si_compute_expand_fmask(&sctx->b, &tex->buffer.b.b);
tex->fmask_is_identity = true;
}
}
static void si_decompress_color_texture(struct si_context *sctx, struct si_texture *tex,
unsigned first_level, unsigned last_level,
bool need_fmask_expand)
{
/* CMASK or DCC can be discarded and we can still end up here. */
if (!tex->cmask_buffer && !tex->surface.fmask_size &&
!vi_dcc_enabled(tex, first_level))
return;
si_blit_decompress_color(sctx, tex, first_level, last_level, 0,
util_max_layer(&tex->buffer.b.b, first_level), false,
need_fmask_expand);
}
static void si_decompress_sampler_color_textures(struct si_context *sctx,
struct si_samplers *textures)
{
unsigned i;
unsigned mask = textures->needs_color_decompress_mask;
while (mask) {
struct pipe_sampler_view *view;
struct si_texture *tex;
i = u_bit_scan(&mask);
view = textures->views[i];
assert(view);
tex = (struct si_texture *)view->texture;
si_decompress_color_texture(sctx, tex, view->u.tex.first_level, view->u.tex.last_level,
false);
}
}
static void si_decompress_image_color_textures(struct si_context *sctx, struct si_images *images)
{
unsigned i;
unsigned mask = images->needs_color_decompress_mask;
while (mask) {
const struct pipe_image_view *view;
struct si_texture *tex;
i = u_bit_scan(&mask);
view = &images->views[i];
assert(view->resource->target != PIPE_BUFFER);
tex = (struct si_texture *)view->resource;
si_decompress_color_texture(sctx, tex, view->u.tex.level, view->u.tex.level,
view->access & PIPE_IMAGE_ACCESS_WRITE);
}
}
static void si_check_render_feedback_texture(struct si_context *sctx, struct si_texture *tex,
unsigned first_level, unsigned last_level,
unsigned first_layer, unsigned last_layer)
{
bool render_feedback = false;
if (!vi_dcc_enabled(tex, first_level))
return;
for (unsigned j = 0; j < sctx->framebuffer.state.nr_cbufs; ++j) {
struct si_surface *surf;
if (!sctx->framebuffer.state.cbufs[j])
continue;
surf = (struct si_surface *)sctx->framebuffer.state.cbufs[j];
if (tex == (struct si_texture *)surf->base.texture && surf->base.u.tex.level >= first_level &&
surf->base.u.tex.level <= last_level && surf->base.u.tex.first_layer <= last_layer &&
surf->base.u.tex.last_layer >= first_layer) {
render_feedback = true;
break;
}
}
if (render_feedback)
si_texture_disable_dcc(sctx, tex);
}
static void si_check_render_feedback_textures(struct si_context *sctx, struct si_samplers *textures,
uint32_t in_use_mask)
{
uint32_t mask = textures->enabled_mask & in_use_mask;
while (mask) {
const struct pipe_sampler_view *view;
struct si_texture *tex;
unsigned i = u_bit_scan(&mask);
view = textures->views[i];
if (view->texture->target == PIPE_BUFFER)
continue;
tex = (struct si_texture *)view->texture;
si_check_render_feedback_texture(sctx, tex, view->u.tex.first_level, view->u.tex.last_level,
view->u.tex.first_layer, view->u.tex.last_layer);
}
}
static void si_check_render_feedback_images(struct si_context *sctx, struct si_images *images,
uint32_t in_use_mask)
{
uint32_t mask = images->enabled_mask & in_use_mask;
while (mask) {
const struct pipe_image_view *view;
struct si_texture *tex;
unsigned i = u_bit_scan(&mask);
view = &images->views[i];
if (view->resource->target == PIPE_BUFFER)
continue;
tex = (struct si_texture *)view->resource;
si_check_render_feedback_texture(sctx, tex, view->u.tex.level, view->u.tex.level,
view->u.tex.first_layer, view->u.tex.last_layer);
}
}
static void si_check_render_feedback_resident_textures(struct si_context *sctx)
{
util_dynarray_foreach (&sctx->resident_tex_handles, struct si_texture_handle *, tex_handle) {
struct pipe_sampler_view *view;
struct si_texture *tex;
view = (*tex_handle)->view;
if (view->texture->target == PIPE_BUFFER)
continue;
tex = (struct si_texture *)view->texture;
si_check_render_feedback_texture(sctx, tex, view->u.tex.first_level, view->u.tex.last_level,
view->u.tex.first_layer, view->u.tex.last_layer);
}
}
static void si_check_render_feedback_resident_images(struct si_context *sctx)
{
util_dynarray_foreach (&sctx->resident_img_handles, struct si_image_handle *, img_handle) {
struct pipe_image_view *view;
struct si_texture *tex;
view = &(*img_handle)->view;
if (view->resource->target == PIPE_BUFFER)
continue;
tex = (struct si_texture *)view->resource;
si_check_render_feedback_texture(sctx, tex, view->u.tex.level, view->u.tex.level,
view->u.tex.first_layer, view->u.tex.last_layer);
}
}
static void si_check_render_feedback(struct si_context *sctx)
{
if (!sctx->need_check_render_feedback)
return;
/* There is no render feedback if color writes are disabled.
* (e.g. a pixel shader with image stores)
*/
if (!si_get_total_colormask(sctx))
return;
for (int i = 0; i < SI_NUM_GRAPHICS_SHADERS; ++i) {
if (!sctx->shaders[i].cso)
continue;
struct si_shader_info *info = &sctx->shaders[i].cso->info;
si_check_render_feedback_images(sctx, &sctx->images[i],
u_bit_consecutive(0, info->base.num_images));
si_check_render_feedback_textures(sctx, &sctx->samplers[i],
info->base.textures_used[0]);
}
si_check_render_feedback_resident_images(sctx);
si_check_render_feedback_resident_textures(sctx);
sctx->need_check_render_feedback = false;
}
static void si_decompress_resident_textures(struct si_context *sctx)
{
util_dynarray_foreach (&sctx->resident_tex_needs_color_decompress, struct si_texture_handle *,
tex_handle) {
struct pipe_sampler_view *view = (*tex_handle)->view;
struct si_texture *tex = (struct si_texture *)view->texture;
si_decompress_color_texture(sctx, tex, view->u.tex.first_level, view->u.tex.last_level,
false);
}
util_dynarray_foreach (&sctx->resident_tex_needs_depth_decompress, struct si_texture_handle *,
tex_handle) {
struct pipe_sampler_view *view = (*tex_handle)->view;
struct si_sampler_view *sview = (struct si_sampler_view *)view;
struct si_texture *tex = (struct si_texture *)view->texture;
si_decompress_depth(sctx, tex, sview->is_stencil_sampler ? PIPE_MASK_S : PIPE_MASK_Z,
view->u.tex.first_level, view->u.tex.last_level, 0,
util_max_layer(&tex->buffer.b.b, view->u.tex.first_level));
}
}
static void si_decompress_resident_images(struct si_context *sctx)
{
util_dynarray_foreach (&sctx->resident_img_needs_color_decompress, struct si_image_handle *,
img_handle) {
struct pipe_image_view *view = &(*img_handle)->view;
struct si_texture *tex = (struct si_texture *)view->resource;
si_decompress_color_texture(sctx, tex, view->u.tex.level, view->u.tex.level,
view->access & PIPE_IMAGE_ACCESS_WRITE);
}
}
void si_decompress_textures(struct si_context *sctx, unsigned shader_mask)
{
unsigned compressed_colortex_counter, mask;
bool need_flush = false;
if (sctx->blitter_running)
return;
/* Update the compressed_colortex_mask if necessary. */
compressed_colortex_counter = p_atomic_read(&sctx->screen->compressed_colortex_counter);
if (compressed_colortex_counter != sctx->last_compressed_colortex_counter) {
sctx->last_compressed_colortex_counter = compressed_colortex_counter;
si_update_needs_color_decompress_masks(sctx);
}
/* Decompress color & depth textures if needed. */
mask = sctx->shader_needs_decompress_mask & shader_mask;
while (mask) {
unsigned i = u_bit_scan(&mask);
if (sctx->samplers[i].needs_depth_decompress_mask) {
need_flush |= si_decompress_sampler_depth_textures(sctx, &sctx->samplers[i]);
}
if (sctx->samplers[i].needs_color_decompress_mask) {
si_decompress_sampler_color_textures(sctx, &sctx->samplers[i]);
}
if (sctx->images[i].needs_color_decompress_mask) {
si_decompress_image_color_textures(sctx, &sctx->images[i]);
}
}
if (sctx->gfx_level == GFX10_3 && need_flush) {
/* This fixes a corruption with the following sequence:
* - fast clear depth
* - decompress depth
* - draw
* (see https://gitlab.freedesktop.org/drm/amd/-/issues/1810#note_1170171)
*/
sctx->b.flush(&sctx->b, NULL, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW);
}
if (shader_mask & u_bit_consecutive(0, SI_NUM_GRAPHICS_SHADERS)) {
if (sctx->uses_bindless_samplers)
si_decompress_resident_textures(sctx);
if (sctx->uses_bindless_images)
si_decompress_resident_images(sctx);
if (sctx->ps_uses_fbfetch) {
struct pipe_surface *cb0 = sctx->framebuffer.state.cbufs[0];
si_decompress_color_texture(sctx, (struct si_texture *)cb0->texture,
cb0->u.tex.first_layer, cb0->u.tex.last_layer, false);
}
si_check_render_feedback(sctx);
} else if (shader_mask & (1 << PIPE_SHADER_COMPUTE)) {
if (sctx->cs_shader_state.program->sel.info.uses_bindless_samplers)
si_decompress_resident_textures(sctx);
if (sctx->cs_shader_state.program->sel.info.uses_bindless_images)
si_decompress_resident_images(sctx);
}
}
/* Helper for decompressing a portion of a color or depth resource before
* blitting if any decompression is needed.
* The driver doesn't decompress resources automatically while u_blitter is
* rendering. */
void si_decompress_subresource(struct pipe_context *ctx, struct pipe_resource *tex, unsigned planes,
unsigned level, unsigned first_layer, unsigned last_layer)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_texture *stex = (struct si_texture *)tex;
if (stex->db_compatible) {
planes &= PIPE_MASK_Z | PIPE_MASK_S;
if (!stex->surface.has_stencil)
planes &= ~PIPE_MASK_S;
/* If we've rendered into the framebuffer and it's a blitting
* source, make sure the decompression pass is invoked
* by dirtying the framebuffer.
*/
if (sctx->framebuffer.state.zsbuf && sctx->framebuffer.state.zsbuf->u.tex.level == level &&
sctx->framebuffer.state.zsbuf->texture == tex)
si_update_fb_dirtiness_after_rendering(sctx);
si_decompress_depth(sctx, stex, planes, level, level, first_layer, last_layer);
} else if (stex->surface.fmask_size || stex->cmask_buffer ||
vi_dcc_enabled(stex, level)) {
/* If we've rendered into the framebuffer and it's a blitting
* source, make sure the decompression pass is invoked
* by dirtying the framebuffer.
*/
for (unsigned i = 0; i < sctx->framebuffer.state.nr_cbufs; i++) {
if (sctx->framebuffer.state.cbufs[i] &&
sctx->framebuffer.state.cbufs[i]->u.tex.level == level &&
sctx->framebuffer.state.cbufs[i]->texture == tex) {
si_update_fb_dirtiness_after_rendering(sctx);
break;
}
}
si_blit_decompress_color(sctx, stex, level, level, first_layer, last_layer, false, false);
}
}
struct texture_orig_info {
unsigned format;
unsigned width0;
unsigned height0;
unsigned npix_x;
unsigned npix_y;
unsigned npix0_x;
unsigned npix0_y;
};
static bool si_can_use_compute_blit(struct si_context *sctx, enum pipe_format format,
unsigned num_samples, bool is_store, bool has_dcc)
{
/* TODO: This format fails AMD_TEST=imagecopy. */
if (format == PIPE_FORMAT_A8R8_UNORM && is_store)
return false;
if (num_samples > 1)
return false;
if (util_format_is_depth_or_stencil(format))
return false;
/* Image stores support DCC since GFX10. */
if (has_dcc && is_store && sctx->gfx_level < GFX10)
return false;
return true;
}
static void si_use_compute_copy_for_float_formats(struct si_context *sctx,
struct pipe_resource *texture,
unsigned level)
{
struct si_texture *tex = (struct si_texture *)texture;
/* If we are uploading into FP16 or R11G11B10_FLOAT via a blit, CB clobbers NaNs,
* so in order to preserve them exactly, we have to use the compute blit.
* The compute blit is used only when the destination doesn't have DCC, so
* disable it here, which is kinda a hack.
* If we are uploading into 32-bit floats with DCC via a blit, NaNs will also get
* lost so we need to disable DCC as well.
*
* This makes KHR-GL45.texture_view.view_classes pass on gfx9.
*/
if (vi_dcc_enabled(tex, level) &&
util_format_is_float(texture->format) &&
/* Check if disabling DCC enables the compute copy. */
!si_can_use_compute_blit(sctx, texture->format, texture->nr_samples, true, true) &&
si_can_use_compute_blit(sctx, texture->format, texture->nr_samples, true, false)) {
si_texture_disable_dcc(sctx, tex);
}
}
void si_resource_copy_region(struct pipe_context *ctx, struct pipe_resource *dst,
unsigned dst_level, unsigned dstx, unsigned dsty, unsigned dstz,
struct pipe_resource *src, unsigned src_level,
const struct pipe_box *src_box)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_texture *ssrc = (struct si_texture *)src;
struct si_texture *sdst = (struct si_texture *)dst;
struct pipe_surface *dst_view, dst_templ;
struct pipe_sampler_view src_templ, *src_view;
struct pipe_box dstbox;
/* Handle buffers first. */
if (dst->target == PIPE_BUFFER && src->target == PIPE_BUFFER) {
si_copy_buffer(sctx, dst, src, dstx, src_box->x, src_box->width, SI_OP_SYNC_BEFORE_AFTER);
return;
}
si_use_compute_copy_for_float_formats(sctx, dst, dst_level);
/* The compute copy is mandatory for compressed and subsampled formats because the gfx copy
* doesn't support them. In all other cases, call si_can_use_compute_blit.
*
* The format is identical (we only need to check the src format) except compressed formats,
* which can be paired with an equivalent integer format.
*/
if (util_format_is_compressed(src->format) ||
util_format_is_compressed(dst->format) ||
util_format_is_subsampled_422(src->format) ||
(si_can_use_compute_blit(sctx, dst->format, dst->nr_samples, true,
vi_dcc_enabled(sdst, dst_level)) &&
si_can_use_compute_blit(sctx, src->format, src->nr_samples, false,
vi_dcc_enabled(ssrc, src_level)))) {
si_compute_copy_image(sctx, dst, dst_level, src, src_level, dstx, dsty, dstz,
src_box, false, SI_OP_SYNC_BEFORE_AFTER);
return;
}
assert(u_max_sample(dst) == u_max_sample(src));
/* The driver doesn't decompress resources automatically while
* u_blitter is rendering. */
si_decompress_subresource(ctx, src, PIPE_MASK_RGBAZS, src_level, src_box->z,
src_box->z + src_box->depth - 1);
util_blitter_default_dst_texture(&dst_templ, dst, dst_level, dstz);
util_blitter_default_src_texture(sctx->blitter, &src_templ, src, src_level);
assert(!util_format_is_compressed(src->format) && !util_format_is_compressed(dst->format));
assert(!util_format_is_subsampled_422(src->format));
if (!util_blitter_is_copy_supported(sctx->blitter, dst, src)) {
switch (ssrc->surface.bpe) {
case 1:
dst_templ.format = PIPE_FORMAT_R8_UNORM;
src_templ.format = PIPE_FORMAT_R8_UNORM;
break;
case 2:
dst_templ.format = PIPE_FORMAT_R8G8_UNORM;
src_templ.format = PIPE_FORMAT_R8G8_UNORM;
break;
case 4:
dst_templ.format = PIPE_FORMAT_R8G8B8A8_UNORM;
src_templ.format = PIPE_FORMAT_R8G8B8A8_UNORM;
break;
case 8:
dst_templ.format = PIPE_FORMAT_R16G16B16A16_UINT;
src_templ.format = PIPE_FORMAT_R16G16B16A16_UINT;
break;
case 16:
dst_templ.format = PIPE_FORMAT_R32G32B32A32_UINT;
src_templ.format = PIPE_FORMAT_R32G32B32A32_UINT;
break;
default:
fprintf(stderr, "Unhandled format %s with blocksize %u\n",
util_format_short_name(src->format), ssrc->surface.bpe);
assert(0);
}
}
/* SNORM blitting has precision issues on some chips. Use the SINT
* equivalent instead, which doesn't force DCC decompression.
*/
if (util_format_is_snorm(dst_templ.format)) {
dst_templ.format = src_templ.format = util_format_snorm_to_sint(dst_templ.format);
}
vi_disable_dcc_if_incompatible_format(sctx, dst, dst_level, dst_templ.format);
vi_disable_dcc_if_incompatible_format(sctx, src, src_level, src_templ.format);
/* Initialize the surface. */
dst_view = ctx->create_surface(ctx, dst, &dst_templ);
/* Initialize the sampler view. */
src_view = ctx->create_sampler_view(ctx, src, &src_templ);
u_box_3d(dstx, dsty, dstz, abs(src_box->width), abs(src_box->height), abs(src_box->depth),
&dstbox);
/* Copy. */
si_blitter_begin(sctx, SI_COPY);
util_blitter_blit_generic(sctx->blitter, dst_view, &dstbox, src_view, src_box, src->width0,
src->height0, PIPE_MASK_RGBAZS, PIPE_TEX_FILTER_NEAREST, NULL,
false, false, 0);
si_blitter_end(sctx);
pipe_surface_reference(&dst_view, NULL);
pipe_sampler_view_reference(&src_view, NULL);
}
static void si_do_CB_resolve(struct si_context *sctx, const struct pipe_blit_info *info,
struct pipe_resource *dst, unsigned dst_level, unsigned dst_z,
enum pipe_format format)
{
/* Required before and after CB_RESOLVE. */
sctx->flags |= SI_CONTEXT_FLUSH_AND_INV_CB;
si_blitter_begin(
sctx, SI_COLOR_RESOLVE | (info->render_condition_enable ? 0 : SI_DISABLE_RENDER_COND));
util_blitter_custom_resolve_color(sctx->blitter, dst, dst_level, dst_z, info->src.resource,
info->src.box.z, ~0, sctx->custom_blend_resolve, format);
si_blitter_end(sctx);
/* Flush caches for possible texturing. */
si_make_CB_shader_coherent(sctx, 1, false, true /* no DCC */);
}
static bool resolve_formats_compatible(enum pipe_format src, enum pipe_format dst,
bool src_swaps_rgb_to_bgr, bool *need_rgb_to_bgr)
{
*need_rgb_to_bgr = false;
if (src_swaps_rgb_to_bgr) {
/* We must only check the swapped format. */
enum pipe_format swapped_src = util_format_rgb_to_bgr(src);
assert(swapped_src);
return util_is_format_compatible(util_format_description(swapped_src),
util_format_description(dst));
}
if (util_is_format_compatible(util_format_description(src), util_format_description(dst)))
return true;
enum pipe_format swapped_src = util_format_rgb_to_bgr(src);
*need_rgb_to_bgr = util_is_format_compatible(util_format_description(swapped_src),
util_format_description(dst));
return *need_rgb_to_bgr;
}
static bool do_hardware_msaa_resolve(struct pipe_context *ctx, const struct pipe_blit_info *info)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_texture *src = (struct si_texture *)info->src.resource;
struct si_texture *dst = (struct si_texture *)info->dst.resource;
ASSERTED struct si_texture *stmp;
unsigned dst_width = u_minify(info->dst.resource->width0, info->dst.level);
unsigned dst_height = u_minify(info->dst.resource->height0, info->dst.level);
enum pipe_format format = info->src.format;
struct pipe_resource *tmp, templ;
struct pipe_blit_info blit;
/* Check basic requirements for hw resolve. */
if (!(info->src.resource->nr_samples > 1 && info->dst.resource->nr_samples <= 1 &&
!util_format_is_pure_integer(format) && !util_format_is_depth_or_stencil(format) &&
util_max_layer(info->src.resource, 0) == 0))
return false;
/* Hardware MSAA resolve doesn't work if SPI format = NORM16_ABGR and
* the format is R16G16. Use R16A16, which does work.
*/
if (format == PIPE_FORMAT_R16G16_UNORM)
format = PIPE_FORMAT_R16A16_UNORM;
if (format == PIPE_FORMAT_R16G16_SNORM)
format = PIPE_FORMAT_R16A16_SNORM;
bool need_rgb_to_bgr = false;
/* Check the remaining requirements for hw resolve. */
if (util_max_layer(info->dst.resource, info->dst.level) == 0 && !info->scissor_enable &&
(info->mask & PIPE_MASK_RGBA) == PIPE_MASK_RGBA &&
resolve_formats_compatible(info->src.format, info->dst.format,
src->swap_rgb_to_bgr, &need_rgb_to_bgr) &&
dst_width == info->src.resource->width0 && dst_height == info->src.resource->height0 &&
info->dst.box.x == 0 && info->dst.box.y == 0 && info->dst.box.width == dst_width &&
info->dst.box.height == dst_height && info->dst.box.depth == 1 && info->src.box.x == 0 &&
info->src.box.y == 0 && info->src.box.width == dst_width &&
info->src.box.height == dst_height && info->src.box.depth == 1 && !dst->surface.is_linear &&
(!dst->cmask_buffer || !dst->dirty_level_mask)) { /* dst cannot be fast-cleared */
/* Check the remaining constraints. */
if (src->surface.micro_tile_mode != dst->surface.micro_tile_mode ||
need_rgb_to_bgr) {
/* The next fast clear will switch to this mode to
* get direct hw resolve next time if the mode is
* different now.
*
* TODO-GFX10: This does not work in GFX10 because MSAA
* is restricted to 64KB_R_X and 64KB_Z_X swizzle modes.
* In some cases we could change the swizzle of the
* destination texture instead, but the more general
* solution is to implement compute shader resolve.
*/
if (src->surface.micro_tile_mode != dst->surface.micro_tile_mode)
src->last_msaa_resolve_target_micro_mode = dst->surface.micro_tile_mode;
if (need_rgb_to_bgr)
src->swap_rgb_to_bgr_on_next_clear = true;
goto resolve_to_temp;
}
/* Resolving into a surface with DCC is unsupported. Since
* it's being overwritten anyway, clear it to uncompressed.
* This is still the fastest codepath even with this clear.
*/
if (vi_dcc_enabled(dst, info->dst.level)) {
struct si_clear_info clear_info;
if (!vi_dcc_get_clear_info(sctx, dst, info->dst.level, DCC_UNCOMPRESSED, &clear_info))
goto resolve_to_temp;
si_execute_clears(sctx, &clear_info, 1, SI_CLEAR_TYPE_DCC);
dst->dirty_level_mask &= ~(1 << info->dst.level);
}
/* Resolve directly from src to dst. */
si_do_CB_resolve(sctx, info, info->dst.resource, info->dst.level, info->dst.box.z, format);
return true;
}
resolve_to_temp:
/* Shader-based resolve is VERY SLOW. Instead, resolve into
* a temporary texture and blit.
*/
memset(&templ, 0, sizeof(templ));
templ.target = PIPE_TEXTURE_2D;
templ.format = info->src.resource->format;
templ.width0 = info->src.resource->width0;
templ.height0 = info->src.resource->height0;
templ.depth0 = 1;
templ.array_size = 1;
templ.usage = PIPE_USAGE_DEFAULT;
templ.flags = SI_RESOURCE_FLAG_FORCE_MSAA_TILING | SI_RESOURCE_FLAG_FORCE_MICRO_TILE_MODE |
SI_RESOURCE_FLAG_MICRO_TILE_MODE_SET(src->surface.micro_tile_mode) |
SI_RESOURCE_FLAG_DISABLE_DCC | SI_RESOURCE_FLAG_DRIVER_INTERNAL;
/* The src and dst microtile modes must be the same. */
if (sctx->gfx_level <= GFX8 && src->surface.micro_tile_mode == RADEON_MICRO_MODE_DISPLAY)
templ.bind = PIPE_BIND_SCANOUT;
else
templ.bind = 0;
tmp = ctx->screen->resource_create(ctx->screen, &templ);
if (!tmp)
return false;
stmp = (struct si_texture *)tmp;
/* Match the channel order of src. */
stmp->swap_rgb_to_bgr = src->swap_rgb_to_bgr;
assert(!stmp->surface.is_linear);
assert(src->surface.micro_tile_mode == stmp->surface.micro_tile_mode);
/* resolve */
si_do_CB_resolve(sctx, info, tmp, 0, 0, format);
/* blit */
blit = *info;
blit.src.resource = tmp;
blit.src.box.z = 0;
si_blitter_begin(sctx, SI_BLIT | (info->render_condition_enable ? 0 : SI_DISABLE_RENDER_COND));
util_blitter_blit(sctx->blitter, &blit);
si_blitter_end(sctx);
pipe_resource_reference(&tmp, NULL);
return true;
}
static void si_blit(struct pipe_context *ctx, const struct pipe_blit_info *info)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_texture *sdst = (struct si_texture *)info->dst.resource;
/* Gfx11 doesn't have CB_RESOLVE. */
/* TODO: Use compute-based resolving instead. */
if (sctx->gfx_level < GFX11 && do_hardware_msaa_resolve(ctx, info))
return;
if ((info->dst.resource->bind & PIPE_BIND_PRIME_BLIT_DST) && sdst->surface.is_linear &&
sctx->gfx_level >= GFX7) {
struct si_texture *ssrc = (struct si_texture *)info->src.resource;
/* Use SDMA or async compute when copying to a DRI_PRIME imported linear surface. */
bool async_copy = info->dst.box.x == 0 && info->dst.box.y == 0 && info->dst.box.z == 0 &&
info->src.box.x == 0 && info->src.box.y == 0 && info->src.box.z == 0 &&
info->dst.level == 0 && info->src.level == 0 &&
info->src.box.width == info->dst.resource->width0 &&
info->src.box.height == info->dst.resource->height0 &&
info->src.box.depth == 1 &&
util_can_blit_via_copy_region(info, true, sctx->render_cond != NULL);
/* Try SDMA first... */
if (async_copy && si_sdma_copy_image(sctx, sdst, ssrc))
return;
/* ... and use async compute as the fallback. */
if (async_copy) {
struct si_screen *sscreen = sctx->screen;
simple_mtx_lock(&sscreen->async_compute_context_lock);
if (!sscreen->async_compute_context)
si_init_aux_async_compute_ctx(sscreen);
if (sscreen->async_compute_context) {
si_compute_copy_image((struct si_context*)sctx->screen->async_compute_context,
info->dst.resource, 0, info->src.resource, 0, 0, 0, 0,
&info->src.box, false, 0);
si_flush_gfx_cs((struct si_context*)sctx->screen->async_compute_context, 0, NULL);
simple_mtx_unlock(&sscreen->async_compute_context_lock);
return;
}
simple_mtx_unlock(&sscreen->async_compute_context_lock);
}
}
if (unlikely(sctx->thread_trace_enabled))
sctx->sqtt_next_event = EventCmdCopyImage;
/* Using compute for copying to a linear texture in GTT is much faster than
* going through RBs (render backends). This improves DRI PRIME performance.
*/
if (util_can_blit_via_copy_region(info, false, sctx->render_cond != NULL)) {
si_resource_copy_region(ctx, info->dst.resource, info->dst.level,
info->dst.box.x, info->dst.box.y, info->dst.box.z,
info->src.resource, info->src.level, &info->src.box);
return;
}
assert(util_blitter_is_blit_supported(sctx->blitter, info));
/* The driver doesn't decompress resources automatically while
* u_blitter is rendering. */
vi_disable_dcc_if_incompatible_format(sctx, info->src.resource, info->src.level,
info->src.format);
vi_disable_dcc_if_incompatible_format(sctx, info->dst.resource, info->dst.level,
info->dst.format);
si_decompress_subresource(ctx, info->src.resource, PIPE_MASK_RGBAZS, info->src.level,
info->src.box.z, info->src.box.z + info->src.box.depth - 1);
if (unlikely(sctx->thread_trace_enabled))
sctx->sqtt_next_event = EventCmdBlitImage;
si_blitter_begin(sctx, SI_BLIT | (info->render_condition_enable ? 0 : SI_DISABLE_RENDER_COND));
util_blitter_blit(sctx->blitter, info);
si_blitter_end(sctx);
}
static bool si_generate_mipmap(struct pipe_context *ctx, struct pipe_resource *tex,
enum pipe_format format, unsigned base_level, unsigned last_level,
unsigned first_layer, unsigned last_layer)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_texture *stex = (struct si_texture *)tex;
if (!util_blitter_is_copy_supported(sctx->blitter, tex, tex))
return false;
/* The driver doesn't decompress resources automatically while
* u_blitter is rendering. */
vi_disable_dcc_if_incompatible_format(sctx, tex, base_level, format);
si_decompress_subresource(ctx, tex, PIPE_MASK_RGBAZS, base_level, first_layer, last_layer);
/* Clear dirty_level_mask for the levels that will be overwritten. */
assert(base_level < last_level);
stex->dirty_level_mask &= ~u_bit_consecutive(base_level + 1, last_level - base_level);
sctx->generate_mipmap_for_depth = stex->is_depth;
si_blitter_begin(sctx, SI_BLIT | SI_DISABLE_RENDER_COND);
util_blitter_generate_mipmap(sctx->blitter, tex, format, base_level, last_level, first_layer,
last_layer);
si_blitter_end(sctx);
sctx->generate_mipmap_for_depth = false;
return true;
}
static void si_flush_resource(struct pipe_context *ctx, struct pipe_resource *res)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_texture *tex = (struct si_texture *)res;
if (res->target == PIPE_BUFFER)
return;
if (!tex->is_depth && (tex->cmask_buffer || vi_dcc_enabled(tex, 0))) {
si_blit_decompress_color(sctx, tex, 0, res->last_level, 0, util_max_layer(res, 0),
false, false);
if (tex->surface.display_dcc_offset && tex->displayable_dcc_dirty) {
si_retile_dcc(sctx, tex);
tex->displayable_dcc_dirty = false;
}
}
}
void si_flush_implicit_resources(struct si_context *sctx)
{
hash_table_foreach(sctx->dirty_implicit_resources, entry) {
si_flush_resource(&sctx->b, entry->data);
pipe_resource_reference((struct pipe_resource **)&entry->data, NULL);
}
_mesa_hash_table_clear(sctx->dirty_implicit_resources, NULL);
}
void si_decompress_dcc(struct si_context *sctx, struct si_texture *tex)
{
assert(!tex->is_depth);
/* If graphics is disabled, we can't decompress DCC, but it shouldn't
* be compressed either. The caller should simply discard it.
*/
if (!tex->surface.meta_offset || !sctx->has_graphics || sctx->in_dcc_decompress)
return;
sctx->in_dcc_decompress = true;
if (sctx->gfx_level == GFX8 || tex->buffer.b.b.nr_storage_samples >= 2) {
si_blit_decompress_color(sctx, tex, 0, tex->buffer.b.b.last_level, 0,
util_max_layer(&tex->buffer.b.b, 0), true, false);
} else {
struct pipe_resource *ptex = &tex->buffer.b.b;
assert(ptex->nr_storage_samples <= 1);
/* DCC decompression using a compute shader. */
for (unsigned level = 0; level < tex->surface.num_meta_levels; level++) {
struct pipe_box box;
u_box_3d(0, 0, 0, u_minify(ptex->width0, level),
u_minify(ptex->height0, level),
util_num_layers(ptex, level), &box);
si_compute_copy_image(sctx, ptex, level, ptex, level, 0, 0, 0, &box, true,
/* Sync before the first copy and after the last copy */
(level == 0 ? SI_OP_SYNC_BEFORE : 0) |
(level == tex->surface.num_meta_levels - 1 ? SI_OP_SYNC_AFTER : 0));
}
/* Now clear DCC metadata to uncompressed.
*
* This uses SI_COMPUTE_CLEAR_METHOD to avoid a failure when running this
* deqp caselist on gfx10:
* dEQP-GLES31.functional.image_load_store.2d.format_reinterpret.rgba32f_rgba32ui
* dEQP-GLES31.functional.image_load_store.2d.format_reinterpret.rgba32f_rgba32i
*/
uint32_t clear_value = DCC_UNCOMPRESSED;
si_clear_buffer(sctx, ptex, tex->surface.meta_offset,
tex->surface.meta_size, &clear_value, 4, SI_OP_SYNC_AFTER,
SI_COHERENCY_CB_META, SI_COMPUTE_CLEAR_METHOD);
si_mark_display_dcc_dirty(sctx, tex);
/* Clearing DCC metadata requires flushing L2 and invalidating L2 metadata to make
* the metadata visible to L2 caches. This is because clear_buffer uses plain stores
* that can go to different L2 channels than where L2 metadata caches expect them.
* This is not done for fast clears because plain stores are visible to CB/DB. Only
* L2 metadata caches have the problem.
*/
sctx->flags |= SI_CONTEXT_WB_L2 | SI_CONTEXT_INV_L2_METADATA;
}
sctx->in_dcc_decompress = false;
}
void si_init_blit_functions(struct si_context *sctx)
{
sctx->b.resource_copy_region = si_resource_copy_region;
if (sctx->has_graphics) {
sctx->b.blit = si_blit;
sctx->b.flush_resource = si_flush_resource;
sctx->b.generate_mipmap = si_generate_mipmap;
}
}