mesa/src/gallium/drivers/llvmpipe/lp_tex_sample_c.c

1714 lines
53 KiB
C

/**************************************************************************
*
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
* Copyright 2008 VMware, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* Texture sampling
*
* Authors:
* Brian Paul
*/
#include "lp_context.h"
#include "lp_quad.h"
#include "lp_surface.h"
#include "lp_texture.h"
#include "lp_tex_sample.h"
#include "lp_tex_cache.h"
#include "pipe/p_context.h"
#include "pipe/p_defines.h"
#include "pipe/p_shader_tokens.h"
#include "util/u_math.h"
#include "util/u_memory.h"
/*
* Note, the FRAC macro has to work perfectly. Otherwise you'll sometimes
* see 1-pixel bands of improperly weighted linear-filtered textures.
* The tests/texwrap.c demo is a good test.
* Also note, FRAC(x) doesn't truly return the fractional part of x for x < 0.
* Instead, if x < 0 then FRAC(x) = 1 - true_frac(x).
*/
#define FRAC(f) ((f) - util_ifloor(f))
/**
* Linear interpolation macro
*/
static INLINE float
lerp(float a, float v0, float v1)
{
return v0 + a * (v1 - v0);
}
/**
* Do 2D/biliner interpolation of float values.
* v00, v10, v01 and v11 are typically four texture samples in a square/box.
* a and b are the horizontal and vertical interpolants.
* It's important that this function is inlined when compiled with
* optimization! If we find that's not true on some systems, convert
* to a macro.
*/
static INLINE float
lerp_2d(float a, float b,
float v00, float v10, float v01, float v11)
{
const float temp0 = lerp(a, v00, v10);
const float temp1 = lerp(a, v01, v11);
return lerp(b, temp0, temp1);
}
/**
* As above, but 3D interpolation of 8 values.
*/
static INLINE float
lerp_3d(float a, float b, float c,
float v000, float v100, float v010, float v110,
float v001, float v101, float v011, float v111)
{
const float temp0 = lerp_2d(a, b, v000, v100, v010, v110);
const float temp1 = lerp_2d(a, b, v001, v101, v011, v111);
return lerp(c, temp0, temp1);
}
/**
* If A is a signed integer, A % B doesn't give the right value for A < 0
* (in terms of texture repeat). Just casting to unsigned fixes that.
*/
#define REMAINDER(A, B) ((unsigned) (A) % (unsigned) (B))
/**
* Apply texture coord wrapping mode and return integer texture indexes
* for a vector of four texcoords (S or T or P).
* \param wrapMode PIPE_TEX_WRAP_x
* \param s the incoming texcoords
* \param size the texture image size
* \param icoord returns the integer texcoords
* \return integer texture index
*/
static INLINE void
nearest_texcoord_4(unsigned wrapMode, const float s[4], unsigned size,
int icoord[4])
{
uint ch;
switch (wrapMode) {
case PIPE_TEX_WRAP_REPEAT:
/* s limited to [0,1) */
/* i limited to [0,size-1] */
for (ch = 0; ch < 4; ch++) {
int i = util_ifloor(s[ch] * size);
icoord[ch] = REMAINDER(i, size);
}
return;
case PIPE_TEX_WRAP_CLAMP:
/* s limited to [0,1] */
/* i limited to [0,size-1] */
for (ch = 0; ch < 4; ch++) {
if (s[ch] <= 0.0F)
icoord[ch] = 0;
else if (s[ch] >= 1.0F)
icoord[ch] = size - 1;
else
icoord[ch] = util_ifloor(s[ch] * size);
}
return;
case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
{
/* s limited to [min,max] */
/* i limited to [0, size-1] */
const float min = 1.0F / (2.0F * size);
const float max = 1.0F - min;
for (ch = 0; ch < 4; ch++) {
if (s[ch] < min)
icoord[ch] = 0;
else if (s[ch] > max)
icoord[ch] = size - 1;
else
icoord[ch] = util_ifloor(s[ch] * size);
}
}
return;
case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
{
/* s limited to [min,max] */
/* i limited to [-1, size] */
const float min = -1.0F / (2.0F * size);
const float max = 1.0F - min;
for (ch = 0; ch < 4; ch++) {
if (s[ch] <= min)
icoord[ch] = -1;
else if (s[ch] >= max)
icoord[ch] = size;
else
icoord[ch] = util_ifloor(s[ch] * size);
}
}
return;
case PIPE_TEX_WRAP_MIRROR_REPEAT:
{
const float min = 1.0F / (2.0F * size);
const float max = 1.0F - min;
for (ch = 0; ch < 4; ch++) {
const int flr = util_ifloor(s[ch]);
float u;
if (flr & 1)
u = 1.0F - (s[ch] - (float) flr);
else
u = s[ch] - (float) flr;
if (u < min)
icoord[ch] = 0;
else if (u > max)
icoord[ch] = size - 1;
else
icoord[ch] = util_ifloor(u * size);
}
}
return;
case PIPE_TEX_WRAP_MIRROR_CLAMP:
for (ch = 0; ch < 4; ch++) {
/* s limited to [0,1] */
/* i limited to [0,size-1] */
const float u = fabsf(s[ch]);
if (u <= 0.0F)
icoord[ch] = 0;
else if (u >= 1.0F)
icoord[ch] = size - 1;
else
icoord[ch] = util_ifloor(u * size);
}
return;
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
{
/* s limited to [min,max] */
/* i limited to [0, size-1] */
const float min = 1.0F / (2.0F * size);
const float max = 1.0F - min;
for (ch = 0; ch < 4; ch++) {
const float u = fabsf(s[ch]);
if (u < min)
icoord[ch] = 0;
else if (u > max)
icoord[ch] = size - 1;
else
icoord[ch] = util_ifloor(u * size);
}
}
return;
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
{
/* s limited to [min,max] */
/* i limited to [0, size-1] */
const float min = -1.0F / (2.0F * size);
const float max = 1.0F - min;
for (ch = 0; ch < 4; ch++) {
const float u = fabsf(s[ch]);
if (u < min)
icoord[ch] = -1;
else if (u > max)
icoord[ch] = size;
else
icoord[ch] = util_ifloor(u * size);
}
}
return;
default:
assert(0);
}
}
/**
* Used to compute texel locations for linear sampling for four texcoords.
* \param wrapMode PIPE_TEX_WRAP_x
* \param s the texcoords
* \param size the texture image size
* \param icoord0 returns first texture indexes
* \param icoord1 returns second texture indexes (usually icoord0 + 1)
* \param w returns blend factor/weight between texture indexes
* \param icoord returns the computed integer texture coords
*/
static INLINE void
linear_texcoord_4(unsigned wrapMode, const float s[4], unsigned size,
int icoord0[4], int icoord1[4], float w[4])
{
uint ch;
switch (wrapMode) {
case PIPE_TEX_WRAP_REPEAT:
for (ch = 0; ch < 4; ch++) {
float u = s[ch] * size - 0.5F;
icoord0[ch] = REMAINDER(util_ifloor(u), size);
icoord1[ch] = REMAINDER(icoord0[ch] + 1, size);
w[ch] = FRAC(u);
}
break;;
case PIPE_TEX_WRAP_CLAMP:
for (ch = 0; ch < 4; ch++) {
float u = CLAMP(s[ch], 0.0F, 1.0F);
u = u * size - 0.5f;
icoord0[ch] = util_ifloor(u);
icoord1[ch] = icoord0[ch] + 1;
w[ch] = FRAC(u);
}
break;;
case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
for (ch = 0; ch < 4; ch++) {
float u = CLAMP(s[ch], 0.0F, 1.0F);
u = u * size - 0.5f;
icoord0[ch] = util_ifloor(u);
icoord1[ch] = icoord0[ch] + 1;
if (icoord0[ch] < 0)
icoord0[ch] = 0;
if (icoord1[ch] >= (int) size)
icoord1[ch] = size - 1;
w[ch] = FRAC(u);
}
break;;
case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
{
const float min = -1.0F / (2.0F * size);
const float max = 1.0F - min;
for (ch = 0; ch < 4; ch++) {
float u = CLAMP(s[ch], min, max);
u = u * size - 0.5f;
icoord0[ch] = util_ifloor(u);
icoord1[ch] = icoord0[ch] + 1;
w[ch] = FRAC(u);
}
}
break;;
case PIPE_TEX_WRAP_MIRROR_REPEAT:
for (ch = 0; ch < 4; ch++) {
const int flr = util_ifloor(s[ch]);
float u;
if (flr & 1)
u = 1.0F - (s[ch] - (float) flr);
else
u = s[ch] - (float) flr;
u = u * size - 0.5F;
icoord0[ch] = util_ifloor(u);
icoord1[ch] = icoord0[ch] + 1;
if (icoord0[ch] < 0)
icoord0[ch] = 0;
if (icoord1[ch] >= (int) size)
icoord1[ch] = size - 1;
w[ch] = FRAC(u);
}
break;;
case PIPE_TEX_WRAP_MIRROR_CLAMP:
for (ch = 0; ch < 4; ch++) {
float u = fabsf(s[ch]);
if (u >= 1.0F)
u = (float) size;
else
u *= size;
u -= 0.5F;
icoord0[ch] = util_ifloor(u);
icoord1[ch] = icoord0[ch] + 1;
w[ch] = FRAC(u);
}
break;;
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
for (ch = 0; ch < 4; ch++) {
float u = fabsf(s[ch]);
if (u >= 1.0F)
u = (float) size;
else
u *= size;
u -= 0.5F;
icoord0[ch] = util_ifloor(u);
icoord1[ch] = icoord0[ch] + 1;
if (icoord0[ch] < 0)
icoord0[ch] = 0;
if (icoord1[ch] >= (int) size)
icoord1[ch] = size - 1;
w[ch] = FRAC(u);
}
break;;
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
{
const float min = -1.0F / (2.0F * size);
const float max = 1.0F - min;
for (ch = 0; ch < 4; ch++) {
float u = fabsf(s[ch]);
if (u <= min)
u = min * size;
else if (u >= max)
u = max * size;
else
u *= size;
u -= 0.5F;
icoord0[ch] = util_ifloor(u);
icoord1[ch] = icoord0[ch] + 1;
w[ch] = FRAC(u);
}
}
break;;
default:
assert(0);
}
}
/**
* For RECT textures / unnormalized texcoords
* Only a subset of wrap modes supported.
*/
static INLINE void
nearest_texcoord_unnorm_4(unsigned wrapMode, const float s[4], unsigned size,
int icoord[4])
{
uint ch;
switch (wrapMode) {
case PIPE_TEX_WRAP_CLAMP:
for (ch = 0; ch < 4; ch++) {
int i = util_ifloor(s[ch]);
icoord[ch]= CLAMP(i, 0, (int) size-1);
}
return;
case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
/* fall-through */
case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
for (ch = 0; ch < 4; ch++) {
icoord[ch]= util_ifloor( CLAMP(s[ch], 0.5F, (float) size - 0.5F) );
}
return;
default:
assert(0);
}
}
/**
* For RECT textures / unnormalized texcoords.
* Only a subset of wrap modes supported.
*/
static INLINE void
linear_texcoord_unnorm_4(unsigned wrapMode, const float s[4], unsigned size,
int icoord0[4], int icoord1[4], float w[4])
{
uint ch;
switch (wrapMode) {
case PIPE_TEX_WRAP_CLAMP:
for (ch = 0; ch < 4; ch++) {
/* Not exactly what the spec says, but it matches NVIDIA output */
float u = CLAMP(s[ch] - 0.5F, 0.0f, (float) size - 1.0f);
icoord0[ch] = util_ifloor(u);
icoord1[ch] = icoord0[ch] + 1;
w[ch] = FRAC(u);
}
return;
case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
/* fall-through */
case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
for (ch = 0; ch < 4; ch++) {
float u = CLAMP(s[ch], 0.5F, (float) size - 0.5F);
u -= 0.5F;
icoord0[ch] = util_ifloor(u);
icoord1[ch] = icoord0[ch] + 1;
if (icoord1[ch] > (int) size - 1)
icoord1[ch] = size - 1;
w[ch] = FRAC(u);
}
break;
default:
assert(0);
}
}
static unsigned
choose_cube_face(float rx, float ry, float rz, float *newS, float *newT)
{
/*
major axis
direction target sc tc ma
---------- ------------------------------- --- --- ---
+rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx
-rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx
+ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry
-ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry
+rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz
-rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz
*/
const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz);
unsigned face;
float sc, tc, ma;
if (arx > ary && arx > arz) {
if (rx >= 0.0F) {
face = PIPE_TEX_FACE_POS_X;
sc = -rz;
tc = -ry;
ma = arx;
}
else {
face = PIPE_TEX_FACE_NEG_X;
sc = rz;
tc = -ry;
ma = arx;
}
}
else if (ary > arx && ary > arz) {
if (ry >= 0.0F) {
face = PIPE_TEX_FACE_POS_Y;
sc = rx;
tc = rz;
ma = ary;
}
else {
face = PIPE_TEX_FACE_NEG_Y;
sc = rx;
tc = -rz;
ma = ary;
}
}
else {
if (rz > 0.0F) {
face = PIPE_TEX_FACE_POS_Z;
sc = rx;
tc = -ry;
ma = arz;
}
else {
face = PIPE_TEX_FACE_NEG_Z;
sc = -rx;
tc = -ry;
ma = arz;
}
}
*newS = ( sc / ma + 1.0F ) * 0.5F;
*newT = ( tc / ma + 1.0F ) * 0.5F;
return face;
}
/**
* Examine the quad's texture coordinates to compute the partial
* derivatives w.r.t X and Y, then compute lambda (level of detail).
*
* This is only done for fragment shaders, not vertex shaders.
*/
static float
compute_lambda(struct tgsi_sampler *tgsi_sampler,
const float s[QUAD_SIZE],
const float t[QUAD_SIZE],
const float p[QUAD_SIZE],
float lodbias)
{
const struct lp_shader_sampler *samp = lp_shader_sampler(tgsi_sampler);
const struct pipe_texture *texture = samp->texture;
const struct pipe_sampler_state *sampler = samp->sampler;
float rho, lambda;
if (samp->processor == TGSI_PROCESSOR_VERTEX)
return lodbias;
assert(sampler->normalized_coords);
assert(s);
{
float dsdx = s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT];
float dsdy = s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT];
dsdx = fabsf(dsdx);
dsdy = fabsf(dsdy);
rho = MAX2(dsdx, dsdy) * texture->width[0];
}
if (t) {
float dtdx = t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT];
float dtdy = t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT];
float max;
dtdx = fabsf(dtdx);
dtdy = fabsf(dtdy);
max = MAX2(dtdx, dtdy) * texture->height[0];
rho = MAX2(rho, max);
}
if (p) {
float dpdx = p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT];
float dpdy = p[QUAD_TOP_LEFT] - p[QUAD_BOTTOM_LEFT];
float max;
dpdx = fabsf(dpdx);
dpdy = fabsf(dpdy);
max = MAX2(dpdx, dpdy) * texture->depth[0];
rho = MAX2(rho, max);
}
lambda = util_fast_log2(rho);
lambda += lodbias + sampler->lod_bias;
lambda = CLAMP(lambda, sampler->min_lod, sampler->max_lod);
return lambda;
}
/**
* Do several things here:
* 1. Compute lambda from the texcoords, if needed
* 2. Determine if we're minifying or magnifying
* 3. If minifying, choose mipmap levels
* 4. Return image filter to use within mipmap images
* \param level0 Returns first mipmap level to sample from
* \param level1 Returns second mipmap level to sample from
* \param levelBlend Returns blend factor between levels, in [0,1]
* \param imgFilter Returns either the min or mag filter, depending on lambda
*/
static void
choose_mipmap_levels(struct tgsi_sampler *tgsi_sampler,
const float s[QUAD_SIZE],
const float t[QUAD_SIZE],
const float p[QUAD_SIZE],
float lodbias,
unsigned *level0, unsigned *level1, float *levelBlend,
unsigned *imgFilter)
{
const struct lp_shader_sampler *samp = lp_shader_sampler(tgsi_sampler);
const struct pipe_texture *texture = samp->texture;
const struct pipe_sampler_state *sampler = samp->sampler;
if (sampler->min_mip_filter == PIPE_TEX_MIPFILTER_NONE) {
/* no mipmap selection needed */
*level0 = *level1 = CLAMP((int) sampler->min_lod,
0, (int) texture->last_level);
if (sampler->min_img_filter != sampler->mag_img_filter) {
/* non-mipmapped texture, but still need to determine if doing
* minification or magnification.
*/
float lambda = compute_lambda(tgsi_sampler, s, t, p, lodbias);
if (lambda <= 0.0) {
*imgFilter = sampler->mag_img_filter;
}
else {
*imgFilter = sampler->min_img_filter;
}
}
else {
*imgFilter = sampler->mag_img_filter;
}
}
else {
float lambda = compute_lambda(tgsi_sampler, s, t, p, lodbias);
if (lambda <= 0.0) { /* XXX threshold depends on the filter */
/* magnifying */
*imgFilter = sampler->mag_img_filter;
*level0 = *level1 = 0;
}
else {
/* minifying */
*imgFilter = sampler->min_img_filter;
/* choose mipmap level(s) and compute the blend factor between them */
if (sampler->min_mip_filter == PIPE_TEX_MIPFILTER_NEAREST) {
/* Nearest mipmap level */
const int lvl = (int) (lambda + 0.5);
*level0 =
*level1 = CLAMP(lvl, 0, (int) texture->last_level);
}
else {
/* Linear interpolation between mipmap levels */
const int lvl = (int) lambda;
*level0 = CLAMP(lvl, 0, (int) texture->last_level);
*level1 = CLAMP(lvl + 1, 0, (int) texture->last_level);
*levelBlend = FRAC(lambda); /* blending weight between levels */
}
}
}
}
/**
* Get a texel from a texture, using the texture tile cache.
*
* \param face the cube face in 0..5
* \param level the mipmap level
* \param x the x coord of texel within 2D image
* \param y the y coord of texel within 2D image
* \param z which slice of a 3D texture
* \param rgba the quad to put the texel/color into
* \param j which element of the rgba quad to write to
*
* XXX maybe move this into lp_tile_cache.c and merge with the
* lp_get_cached_tile_tex() function. Also, get 4 texels instead of 1...
*/
static void
get_texel_quad_2d(const struct tgsi_sampler *tgsi_sampler,
unsigned face, unsigned level, int x, int y,
const uint8_t *out[4])
{
const struct lp_shader_sampler *samp = lp_shader_sampler(tgsi_sampler);
const struct llvmpipe_cached_tex_tile *tile
= lp_get_cached_tex_tile(samp->cache,
tex_tile_address(x, y, 0, face, level));
y %= TEX_TILE_SIZE;
x %= TEX_TILE_SIZE;
out[0] = &tile->color[y ][x ][0];
out[1] = &tile->color[y ][x+1][0];
out[2] = &tile->color[y+1][x ][0];
out[3] = &tile->color[y+1][x+1][0];
}
static INLINE const uint8_t *
get_texel_2d_ptr(const struct tgsi_sampler *tgsi_sampler,
unsigned face, unsigned level, int x, int y)
{
const struct lp_shader_sampler *samp = lp_shader_sampler(tgsi_sampler);
const struct llvmpipe_cached_tex_tile *tile
= lp_get_cached_tex_tile(samp->cache,
tex_tile_address(x, y, 0, face, level));
y %= TEX_TILE_SIZE;
x %= TEX_TILE_SIZE;
return &tile->color[y][x][0];
}
static void
get_texel_quad_2d_mt(const struct tgsi_sampler *tgsi_sampler,
unsigned face, unsigned level,
int x0, int y0,
int x1, int y1,
const uint8_t *out[4])
{
unsigned i;
for (i = 0; i < 4; i++) {
unsigned tx = (i & 1) ? x1 : x0;
unsigned ty = (i >> 1) ? y1 : y0;
out[i] = get_texel_2d_ptr( tgsi_sampler, face, level, tx, ty );
}
}
static void
get_texel(const struct tgsi_sampler *tgsi_sampler,
unsigned face, unsigned level, int x, int y, int z,
float rgba[NUM_CHANNELS][QUAD_SIZE], unsigned j)
{
const struct lp_shader_sampler *samp = lp_shader_sampler(tgsi_sampler);
const struct pipe_texture *texture = samp->texture;
const struct pipe_sampler_state *sampler = samp->sampler;
if (x < 0 || x >= (int) texture->width[level] ||
y < 0 || y >= (int) texture->height[level] ||
z < 0 || z >= (int) texture->depth[level]) {
rgba[0][j] = sampler->border_color[0];
rgba[1][j] = sampler->border_color[1];
rgba[2][j] = sampler->border_color[2];
rgba[3][j] = sampler->border_color[3];
}
else {
const unsigned tx = x % TEX_TILE_SIZE;
const unsigned ty = y % TEX_TILE_SIZE;
const struct llvmpipe_cached_tex_tile *tile;
tile = lp_get_cached_tex_tile(samp->cache,
tex_tile_address(x, y, z, face, level));
rgba[0][j] = ubyte_to_float(tile->color[ty][tx][0]);
rgba[1][j] = ubyte_to_float(tile->color[ty][tx][1]);
rgba[2][j] = ubyte_to_float(tile->color[ty][tx][2]);
rgba[3][j] = ubyte_to_float(tile->color[ty][tx][3]);
if (0)
{
debug_printf("Get texel %f %f %f %f from %s\n",
rgba[0][j], rgba[1][j], rgba[2][j], rgba[3][j],
pf_name(texture->format));
}
}
}
/**
* Compare texcoord 'p' (aka R) against texture value 'rgba[0]'
* When we sampled the depth texture, the depth value was put into all
* RGBA channels. We look at the red channel here.
* \param rgba quad of (depth) texel values
* \param p texture 'P' components for four pixels in quad
* \param j which pixel in the quad to test [0..3]
*/
static INLINE void
shadow_compare(const struct pipe_sampler_state *sampler,
float rgba[NUM_CHANNELS][QUAD_SIZE],
const float p[QUAD_SIZE],
uint j)
{
int k;
switch (sampler->compare_func) {
case PIPE_FUNC_LESS:
k = p[j] < rgba[0][j];
break;
case PIPE_FUNC_LEQUAL:
k = p[j] <= rgba[0][j];
break;
case PIPE_FUNC_GREATER:
k = p[j] > rgba[0][j];
break;
case PIPE_FUNC_GEQUAL:
k = p[j] >= rgba[0][j];
break;
case PIPE_FUNC_EQUAL:
k = p[j] == rgba[0][j];
break;
case PIPE_FUNC_NOTEQUAL:
k = p[j] != rgba[0][j];
break;
case PIPE_FUNC_ALWAYS:
k = 1;
break;
case PIPE_FUNC_NEVER:
k = 0;
break;
default:
k = 0;
assert(0);
break;
}
/* XXX returning result for default GL_DEPTH_TEXTURE_MODE = GL_LUMINANCE */
rgba[0][j] = rgba[1][j] = rgba[2][j] = (float) k;
rgba[3][j] = 1.0F;
}
/**
* As above, but do four z/texture comparisons.
*/
static INLINE void
shadow_compare4(const struct pipe_sampler_state *sampler,
float rgba[NUM_CHANNELS][QUAD_SIZE],
const float p[QUAD_SIZE])
{
int j, k0, k1, k2, k3;
float val;
/* compare four texcoords vs. four texture samples */
switch (sampler->compare_func) {
case PIPE_FUNC_LESS:
k0 = p[0] < rgba[0][0];
k1 = p[1] < rgba[0][1];
k2 = p[2] < rgba[0][2];
k3 = p[3] < rgba[0][3];
break;
case PIPE_FUNC_LEQUAL:
k0 = p[0] <= rgba[0][0];
k1 = p[1] <= rgba[0][1];
k2 = p[2] <= rgba[0][2];
k3 = p[3] <= rgba[0][3];
break;
case PIPE_FUNC_GREATER:
k0 = p[0] > rgba[0][0];
k1 = p[1] > rgba[0][1];
k2 = p[2] > rgba[0][2];
k3 = p[3] > rgba[0][3];
break;
case PIPE_FUNC_GEQUAL:
k0 = p[0] >= rgba[0][0];
k1 = p[1] >= rgba[0][1];
k2 = p[2] >= rgba[0][2];
k3 = p[3] >= rgba[0][3];
break;
case PIPE_FUNC_EQUAL:
k0 = p[0] == rgba[0][0];
k1 = p[1] == rgba[0][1];
k2 = p[2] == rgba[0][2];
k3 = p[3] == rgba[0][3];
break;
case PIPE_FUNC_NOTEQUAL:
k0 = p[0] != rgba[0][0];
k1 = p[1] != rgba[0][1];
k2 = p[2] != rgba[0][2];
k3 = p[3] != rgba[0][3];
break;
case PIPE_FUNC_ALWAYS:
k0 = k1 = k2 = k3 = 1;
break;
case PIPE_FUNC_NEVER:
k0 = k1 = k2 = k3 = 0;
break;
default:
k0 = k1 = k2 = k3 = 0;
assert(0);
break;
}
/* convert four pass/fail values to an intensity in [0,1] */
val = 0.25F * (k0 + k1 + k2 + k3);
/* XXX returning result for default GL_DEPTH_TEXTURE_MODE = GL_LUMINANCE */
for (j = 0; j < 4; j++) {
rgba[0][j] = rgba[1][j] = rgba[2][j] = val;
rgba[3][j] = 1.0F;
}
}
static void
lp_get_samples_2d_linear_repeat_POT(struct tgsi_sampler *tgsi_sampler,
const float s[QUAD_SIZE],
const float t[QUAD_SIZE],
const float p[QUAD_SIZE],
float lodbias,
float rgba[NUM_CHANNELS][QUAD_SIZE])
{
const struct lp_shader_sampler *samp = lp_shader_sampler(tgsi_sampler);
unsigned j;
unsigned level = samp->level;
unsigned xpot = 1 << (samp->xpot - level);
unsigned ypot = 1 << (samp->ypot - level);
unsigned xmax = (xpot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, xpot) - 1; */
unsigned ymax = (ypot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, ypot) - 1; */
for (j = 0; j < QUAD_SIZE; j++) {
int c;
float u = s[j] * xpot - 0.5F;
float v = t[j] * ypot - 0.5F;
int uflr = util_ifloor(u);
int vflr = util_ifloor(v);
float xw = u - (float)uflr;
float yw = v - (float)vflr;
int x0 = uflr & (xpot - 1);
int y0 = vflr & (ypot - 1);
const uint8_t *tx[4];
/* Can we fetch all four at once:
*/
if (x0 < xmax && y0 < ymax)
{
get_texel_quad_2d(tgsi_sampler, 0, level, x0, y0, tx);
}
else
{
unsigned x1 = (x0 + 1) & (xpot - 1);
unsigned y1 = (y0 + 1) & (ypot - 1);
get_texel_quad_2d_mt(tgsi_sampler, 0, level,
x0, y0, x1, y1, tx);
}
/* interpolate R, G, B, A */
for (c = 0; c < 4; c++) {
rgba[c][j] = lerp_2d(xw, yw,
ubyte_to_float(tx[0][c]), ubyte_to_float(tx[1][c]),
ubyte_to_float(tx[2][c]), ubyte_to_float(tx[3][c]));
}
}
}
static void
lp_get_samples_2d_nearest_repeat_POT(struct tgsi_sampler *tgsi_sampler,
const float s[QUAD_SIZE],
const float t[QUAD_SIZE],
const float p[QUAD_SIZE],
float lodbias,
float rgba[NUM_CHANNELS][QUAD_SIZE])
{
const struct lp_shader_sampler *samp = lp_shader_sampler(tgsi_sampler);
unsigned j;
unsigned level = samp->level;
unsigned xpot = 1 << (samp->xpot - level);
unsigned ypot = 1 << (samp->ypot - level);
for (j = 0; j < QUAD_SIZE; j++) {
int c;
float u = s[j] * xpot;
float v = t[j] * ypot;
int uflr = util_ifloor(u);
int vflr = util_ifloor(v);
int x0 = uflr & (xpot - 1);
int y0 = vflr & (ypot - 1);
const uint8_t *out = get_texel_2d_ptr(tgsi_sampler, 0, level, x0, y0);
for (c = 0; c < 4; c++) {
rgba[c][j] = ubyte_to_float(out[c]);
}
}
}
static void
lp_get_samples_2d_nearest_clamp_POT(struct tgsi_sampler *tgsi_sampler,
const float s[QUAD_SIZE],
const float t[QUAD_SIZE],
const float p[QUAD_SIZE],
float lodbias,
float rgba[NUM_CHANNELS][QUAD_SIZE])
{
const struct lp_shader_sampler *samp = lp_shader_sampler(tgsi_sampler);
unsigned j;
unsigned level = samp->level;
unsigned xpot = 1 << (samp->xpot - level);
unsigned ypot = 1 << (samp->ypot - level);
for (j = 0; j < QUAD_SIZE; j++) {
int c;
float u = s[j] * xpot;
float v = t[j] * ypot;
int x0, y0;
const uint8_t *out;
x0 = util_ifloor(u);
if (x0 < 0)
x0 = 0;
else if (x0 > xpot - 1)
x0 = xpot - 1;
y0 = util_ifloor(v);
if (y0 < 0)
y0 = 0;
else if (y0 > ypot - 1)
y0 = ypot - 1;
out = get_texel_2d_ptr(tgsi_sampler, 0, level, x0, y0);
for (c = 0; c < 4; c++) {
rgba[c][j] = ubyte_to_float(out[c]);
}
}
}
static void
lp_get_samples_2d_linear_mip_linear_repeat_POT(struct tgsi_sampler *tgsi_sampler,
const float s[QUAD_SIZE],
const float t[QUAD_SIZE],
const float p[QUAD_SIZE],
float lodbias,
float rgba[NUM_CHANNELS][QUAD_SIZE])
{
struct lp_shader_sampler *samp = lp_shader_sampler(tgsi_sampler);
const struct pipe_texture *texture = samp->texture;
int level0;
float lambda;
lambda = compute_lambda(tgsi_sampler, s, t, p, lodbias);
level0 = (int)lambda;
if (lambda < 0.0) {
samp->level = 0;
lp_get_samples_2d_linear_repeat_POT( tgsi_sampler,
s, t, p, 0, rgba );
}
else if (level0 >= texture->last_level) {
samp->level = texture->last_level;
lp_get_samples_2d_linear_repeat_POT( tgsi_sampler,
s, t, p, 0, rgba );
}
else {
float levelBlend = lambda - level0;
float rgba0[4][4];
float rgba1[4][4];
int c,j;
samp->level = level0;
lp_get_samples_2d_linear_repeat_POT( tgsi_sampler,
s, t, p, 0, rgba0 );
samp->level = level0+1;
lp_get_samples_2d_linear_repeat_POT( tgsi_sampler,
s, t, p, 0, rgba1 );
for (j = 0; j < QUAD_SIZE; j++) {
for (c = 0; c < 4; c++) {
rgba[c][j] = lerp(levelBlend, rgba0[c][j], rgba1[c][j]);
}
}
}
}
/**
* Common code for sampling 1D/2D/cube textures.
* Could probably extend for 3D...
*/
static void
lp_get_samples_2d_common(struct tgsi_sampler *tgsi_sampler,
const float s[QUAD_SIZE],
const float t[QUAD_SIZE],
const float p[QUAD_SIZE],
float lodbias,
float rgba[NUM_CHANNELS][QUAD_SIZE],
const unsigned faces[4])
{
const struct lp_shader_sampler *samp = lp_shader_sampler(tgsi_sampler);
const struct pipe_texture *texture = samp->texture;
const struct pipe_sampler_state *sampler = samp->sampler;
unsigned level0, level1, j, imgFilter;
int width, height;
float levelBlend;
choose_mipmap_levels(tgsi_sampler, s, t, p,
lodbias,
&level0, &level1, &levelBlend, &imgFilter);
assert(sampler->normalized_coords);
width = texture->width[level0];
height = texture->height[level0];
assert(width > 0);
switch (imgFilter) {
case PIPE_TEX_FILTER_NEAREST:
{
int x[4], y[4];
nearest_texcoord_4(sampler->wrap_s, s, width, x);
nearest_texcoord_4(sampler->wrap_t, t, height, y);
for (j = 0; j < QUAD_SIZE; j++) {
get_texel(tgsi_sampler, faces[j], level0, x[j], y[j], 0, rgba, j);
if (sampler->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE) {
shadow_compare(sampler, rgba, p, j);
}
if (level0 != level1) {
/* get texels from second mipmap level and blend */
float rgba2[4][4];
unsigned c;
x[j] /= 2;
y[j] /= 2;
get_texel(tgsi_sampler, faces[j], level1, x[j], y[j], 0,
rgba2, j);
if (sampler->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE){
shadow_compare(sampler, rgba2, p, j);
}
for (c = 0; c < NUM_CHANNELS; c++) {
rgba[c][j] = lerp(levelBlend, rgba[c][j], rgba2[c][j]);
}
}
}
}
break;
case PIPE_TEX_FILTER_LINEAR:
case PIPE_TEX_FILTER_ANISO:
{
int x0[4], y0[4], x1[4], y1[4];
float xw[4], yw[4]; /* weights */
linear_texcoord_4(sampler->wrap_s, s, width, x0, x1, xw);
linear_texcoord_4(sampler->wrap_t, t, height, y0, y1, yw);
for (j = 0; j < QUAD_SIZE; j++) {
float tx[4][4]; /* texels */
int c;
get_texel(tgsi_sampler, faces[j], level0, x0[j], y0[j], 0, tx, 0);
get_texel(tgsi_sampler, faces[j], level0, x1[j], y0[j], 0, tx, 1);
get_texel(tgsi_sampler, faces[j], level0, x0[j], y1[j], 0, tx, 2);
get_texel(tgsi_sampler, faces[j], level0, x1[j], y1[j], 0, tx, 3);
if (sampler->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE) {
shadow_compare4(sampler, tx, p);
}
/* interpolate R, G, B, A */
for (c = 0; c < 4; c++) {
rgba[c][j] = lerp_2d(xw[j], yw[j],
tx[c][0], tx[c][1],
tx[c][2], tx[c][3]);
}
if (level0 != level1) {
/* get texels from second mipmap level and blend */
float rgba2[4][4];
/* XXX: This is incorrect -- will often end up with (x0
* == x1 && y0 == y1), meaning that we fetch the same
* texel four times and linearly interpolate between
* identical values. The correct approach would be to
* call linear_texcoord again for the second level.
*/
x0[j] /= 2;
y0[j] /= 2;
x1[j] /= 2;
y1[j] /= 2;
get_texel(tgsi_sampler, faces[j], level1, x0[j], y0[j], 0, tx, 0);
get_texel(tgsi_sampler, faces[j], level1, x1[j], y0[j], 0, tx, 1);
get_texel(tgsi_sampler, faces[j], level1, x0[j], y1[j], 0, tx, 2);
get_texel(tgsi_sampler, faces[j], level1, x1[j], y1[j], 0, tx, 3);
if (sampler->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE){
shadow_compare4(sampler, tx, p);
}
/* interpolate R, G, B, A */
for (c = 0; c < 4; c++) {
rgba2[c][j] = lerp_2d(xw[j], yw[j],
tx[c][0], tx[c][1], tx[c][2], tx[c][3]);
}
for (c = 0; c < NUM_CHANNELS; c++) {
rgba[c][j] = lerp(levelBlend, rgba[c][j], rgba2[c][j]);
}
}
}
}
break;
default:
assert(0);
}
}
static INLINE void
lp_get_samples_1d(struct tgsi_sampler *sampler,
const float s[QUAD_SIZE],
const float t[QUAD_SIZE],
const float p[QUAD_SIZE],
float lodbias,
float rgba[NUM_CHANNELS][QUAD_SIZE])
{
static const unsigned faces[4] = {0, 0, 0, 0};
static const float tzero[4] = {0, 0, 0, 0};
lp_get_samples_2d_common(sampler, s, tzero, NULL,
lodbias, rgba, faces);
}
static INLINE void
lp_get_samples_2d(struct tgsi_sampler *sampler,
const float s[QUAD_SIZE],
const float t[QUAD_SIZE],
const float p[QUAD_SIZE],
float lodbias,
float rgba[NUM_CHANNELS][QUAD_SIZE])
{
static const unsigned faces[4] = {0, 0, 0, 0};
lp_get_samples_2d_common(sampler, s, t, p,
lodbias, rgba, faces);
}
static INLINE void
lp_get_samples_3d(struct tgsi_sampler *tgsi_sampler,
const float s[QUAD_SIZE],
const float t[QUAD_SIZE],
const float p[QUAD_SIZE],
float lodbias,
float rgba[NUM_CHANNELS][QUAD_SIZE])
{
const struct lp_shader_sampler *samp = lp_shader_sampler(tgsi_sampler);
const struct pipe_texture *texture = samp->texture;
const struct pipe_sampler_state *sampler = samp->sampler;
/* get/map pipe_surfaces corresponding to 3D tex slices */
unsigned level0, level1, j, imgFilter;
int width, height, depth;
float levelBlend;
const uint face = 0;
choose_mipmap_levels(tgsi_sampler, s, t, p,
lodbias,
&level0, &level1, &levelBlend, &imgFilter);
assert(sampler->normalized_coords);
width = texture->width[level0];
height = texture->height[level0];
depth = texture->depth[level0];
assert(width > 0);
assert(height > 0);
assert(depth > 0);
switch (imgFilter) {
case PIPE_TEX_FILTER_NEAREST:
{
int x[4], y[4], z[4];
nearest_texcoord_4(sampler->wrap_s, s, width, x);
nearest_texcoord_4(sampler->wrap_t, t, height, y);
nearest_texcoord_4(sampler->wrap_r, p, depth, z);
for (j = 0; j < QUAD_SIZE; j++) {
get_texel(tgsi_sampler, face, level0, x[j], y[j], z[j], rgba, j);
if (level0 != level1) {
/* get texels from second mipmap level and blend */
float rgba2[4][4];
unsigned c;
x[j] /= 2;
y[j] /= 2;
z[j] /= 2;
get_texel(tgsi_sampler, face, level1, x[j], y[j], z[j], rgba2, j);
for (c = 0; c < NUM_CHANNELS; c++) {
rgba[c][j] = lerp(levelBlend, rgba2[c][j], rgba[c][j]);
}
}
}
}
break;
case PIPE_TEX_FILTER_LINEAR:
case PIPE_TEX_FILTER_ANISO:
{
int x0[4], x1[4], y0[4], y1[4], z0[4], z1[4];
float xw[4], yw[4], zw[4]; /* interpolation weights */
linear_texcoord_4(sampler->wrap_s, s, width, x0, x1, xw);
linear_texcoord_4(sampler->wrap_t, t, height, y0, y1, yw);
linear_texcoord_4(sampler->wrap_r, p, depth, z0, z1, zw);
for (j = 0; j < QUAD_SIZE; j++) {
int c;
float tx0[4][4], tx1[4][4];
get_texel(tgsi_sampler, face, level0, x0[j], y0[j], z0[j], tx0, 0);
get_texel(tgsi_sampler, face, level0, x1[j], y0[j], z0[j], tx0, 1);
get_texel(tgsi_sampler, face, level0, x0[j], y1[j], z0[j], tx0, 2);
get_texel(tgsi_sampler, face, level0, x1[j], y1[j], z0[j], tx0, 3);
get_texel(tgsi_sampler, face, level0, x0[j], y0[j], z1[j], tx1, 0);
get_texel(tgsi_sampler, face, level0, x1[j], y0[j], z1[j], tx1, 1);
get_texel(tgsi_sampler, face, level0, x0[j], y1[j], z1[j], tx1, 2);
get_texel(tgsi_sampler, face, level0, x1[j], y1[j], z1[j], tx1, 3);
/* interpolate R, G, B, A */
for (c = 0; c < 4; c++) {
rgba[c][j] = lerp_3d(xw[j], yw[j], zw[j],
tx0[c][0], tx0[c][1],
tx0[c][2], tx0[c][3],
tx1[c][0], tx1[c][1],
tx1[c][2], tx1[c][3]);
}
if (level0 != level1) {
/* get texels from second mipmap level and blend */
float rgba2[4][4];
x0[j] /= 2;
y0[j] /= 2;
z0[j] /= 2;
x1[j] /= 2;
y1[j] /= 2;
z1[j] /= 2;
get_texel(tgsi_sampler, face, level1, x0[j], y0[j], z0[j], tx0, 0);
get_texel(tgsi_sampler, face, level1, x1[j], y0[j], z0[j], tx0, 1);
get_texel(tgsi_sampler, face, level1, x0[j], y1[j], z0[j], tx0, 2);
get_texel(tgsi_sampler, face, level1, x1[j], y1[j], z0[j], tx0, 3);
get_texel(tgsi_sampler, face, level1, x0[j], y0[j], z1[j], tx1, 0);
get_texel(tgsi_sampler, face, level1, x1[j], y0[j], z1[j], tx1, 1);
get_texel(tgsi_sampler, face, level1, x0[j], y1[j], z1[j], tx1, 2);
get_texel(tgsi_sampler, face, level1, x1[j], y1[j], z1[j], tx1, 3);
/* interpolate R, G, B, A */
for (c = 0; c < 4; c++) {
rgba2[c][j] = lerp_3d(xw[j], yw[j], zw[j],
tx0[c][0], tx0[c][1],
tx0[c][2], tx0[c][3],
tx1[c][0], tx1[c][1],
tx1[c][2], tx1[c][3]);
}
/* blend mipmap levels */
for (c = 0; c < NUM_CHANNELS; c++) {
rgba[c][j] = lerp(levelBlend, rgba[c][j], rgba2[c][j]);
}
}
}
}
break;
default:
assert(0);
}
}
static void
lp_get_samples_cube(struct tgsi_sampler *sampler,
const float s[QUAD_SIZE],
const float t[QUAD_SIZE],
const float p[QUAD_SIZE],
float lodbias,
float rgba[NUM_CHANNELS][QUAD_SIZE])
{
unsigned faces[QUAD_SIZE], j;
float ssss[4], tttt[4];
for (j = 0; j < QUAD_SIZE; j++) {
faces[j] = choose_cube_face(s[j], t[j], p[j], ssss + j, tttt + j);
}
lp_get_samples_2d_common(sampler, ssss, tttt, NULL,
lodbias, rgba, faces);
}
static void
lp_get_samples_rect(struct tgsi_sampler *tgsi_sampler,
const float s[QUAD_SIZE],
const float t[QUAD_SIZE],
const float p[QUAD_SIZE],
float lodbias,
float rgba[NUM_CHANNELS][QUAD_SIZE])
{
const struct lp_shader_sampler *samp = lp_shader_sampler(tgsi_sampler);
const struct pipe_texture *texture = samp->texture;
const struct pipe_sampler_state *sampler = samp->sampler;
const uint face = 0;
unsigned level0, level1, j, imgFilter;
int width, height;
float levelBlend;
choose_mipmap_levels(tgsi_sampler, s, t, p,
lodbias,
&level0, &level1, &levelBlend, &imgFilter);
/* texture RECTS cannot be mipmapped */
assert(level0 == level1);
width = texture->width[level0];
height = texture->height[level0];
assert(width > 0);
switch (imgFilter) {
case PIPE_TEX_FILTER_NEAREST:
{
int x[4], y[4];
nearest_texcoord_unnorm_4(sampler->wrap_s, s, width, x);
nearest_texcoord_unnorm_4(sampler->wrap_t, t, height, y);
for (j = 0; j < QUAD_SIZE; j++) {
get_texel(tgsi_sampler, face, level0, x[j], y[j], 0, rgba, j);
if (sampler->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE) {
shadow_compare(sampler, rgba, p, j);
}
}
}
break;
case PIPE_TEX_FILTER_LINEAR:
case PIPE_TEX_FILTER_ANISO:
{
int x0[4], y0[4], x1[4], y1[4];
float xw[4], yw[4]; /* weights */
linear_texcoord_unnorm_4(sampler->wrap_s, s, width, x0, x1, xw);
linear_texcoord_unnorm_4(sampler->wrap_t, t, height, y0, y1, yw);
for (j = 0; j < QUAD_SIZE; j++) {
float tx[4][4]; /* texels */
int c;
get_texel(tgsi_sampler, face, level0, x0[j], y0[j], 0, tx, 0);
get_texel(tgsi_sampler, face, level0, x1[j], y0[j], 0, tx, 1);
get_texel(tgsi_sampler, face, level0, x0[j], y1[j], 0, tx, 2);
get_texel(tgsi_sampler, face, level0, x1[j], y1[j], 0, tx, 3);
if (sampler->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE) {
shadow_compare4(sampler, tx, p);
}
for (c = 0; c < 4; c++) {
rgba[c][j] = lerp_2d(xw[j], yw[j],
tx[c][0], tx[c][1], tx[c][2], tx[c][3]);
}
}
}
break;
default:
assert(0);
}
}
/**
* Error condition handler
*/
static INLINE void
lp_get_samples_null(struct tgsi_sampler *tgsi_sampler,
const float s[QUAD_SIZE],
const float t[QUAD_SIZE],
const float p[QUAD_SIZE],
float lodbias,
float rgba[NUM_CHANNELS][QUAD_SIZE])
{
int i,j;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
rgba[i][j] = 1.0;
}
/**
* Called via tgsi_sampler::get_samples() when using a sampler for the
* first time. Determine the actual sampler function, link it in and
* call it.
*/
void
lp_get_samples(struct tgsi_sampler *tgsi_sampler,
const float s[QUAD_SIZE],
const float t[QUAD_SIZE],
const float p[QUAD_SIZE],
float lodbias,
float rgba[NUM_CHANNELS][QUAD_SIZE])
{
struct lp_shader_sampler *samp = lp_shader_sampler(tgsi_sampler);
const struct pipe_texture *texture = samp->texture;
const struct pipe_sampler_state *sampler = samp->sampler;
/* Default to the 'undefined' case:
*/
tgsi_sampler->get_samples = lp_get_samples_null;
if (!texture) {
assert(0); /* is this legal?? */
goto out;
}
if (!sampler->normalized_coords) {
assert (texture->target == PIPE_TEXTURE_2D);
tgsi_sampler->get_samples = lp_get_samples_rect;
goto out;
}
switch (texture->target) {
case PIPE_TEXTURE_1D:
tgsi_sampler->get_samples = lp_get_samples_1d;
break;
case PIPE_TEXTURE_2D:
tgsi_sampler->get_samples = lp_get_samples_2d;
break;
case PIPE_TEXTURE_3D:
tgsi_sampler->get_samples = lp_get_samples_3d;
break;
case PIPE_TEXTURE_CUBE:
tgsi_sampler->get_samples = lp_get_samples_cube;
break;
default:
assert(0);
break;
}
/* Do this elsewhere:
*/
samp->xpot = util_unsigned_logbase2( samp->texture->width[0] );
samp->ypot = util_unsigned_logbase2( samp->texture->height[0] );
/* Try to hook in a faster sampler. Ultimately we'll have to
* code-generate these. Luckily most of this looks like it is
* orthogonal state within the sampler.
*/
if (texture->target == PIPE_TEXTURE_2D &&
sampler->min_img_filter == sampler->mag_img_filter &&
sampler->wrap_s == sampler->wrap_t &&
sampler->compare_mode == FALSE &&
sampler->normalized_coords)
{
if (sampler->min_mip_filter == PIPE_TEX_MIPFILTER_NONE) {
samp->level = CLAMP((int) sampler->min_lod,
0, (int) texture->last_level);
if (sampler->wrap_s == PIPE_TEX_WRAP_REPEAT) {
switch (sampler->min_img_filter) {
case PIPE_TEX_FILTER_NEAREST:
tgsi_sampler->get_samples = lp_get_samples_2d_nearest_repeat_POT;
break;
case PIPE_TEX_FILTER_LINEAR:
tgsi_sampler->get_samples = lp_get_samples_2d_linear_repeat_POT;
break;
default:
break;
}
}
else if (sampler->wrap_s == PIPE_TEX_WRAP_CLAMP) {
switch (sampler->min_img_filter) {
case PIPE_TEX_FILTER_NEAREST:
tgsi_sampler->get_samples = lp_get_samples_2d_nearest_clamp_POT;
break;
default:
break;
}
}
}
else if (sampler->min_mip_filter == PIPE_TEX_MIPFILTER_LINEAR) {
if (sampler->wrap_s == PIPE_TEX_WRAP_REPEAT) {
switch (sampler->min_img_filter) {
case PIPE_TEX_FILTER_LINEAR:
tgsi_sampler->get_samples = lp_get_samples_2d_linear_mip_linear_repeat_POT;
break;
default:
break;
}
}
}
}
else if (0) {
_debug_printf("target %d/%d min_mip %d/%d min_img %d/%d wrap %d/%d compare %d/%d norm %d/%d\n",
texture->target, PIPE_TEXTURE_2D,
sampler->min_mip_filter, PIPE_TEX_MIPFILTER_NONE,
sampler->min_img_filter, sampler->mag_img_filter,
sampler->wrap_s, sampler->wrap_t,
sampler->compare_mode, FALSE,
sampler->normalized_coords, TRUE);
}
out:
tgsi_sampler->get_samples( tgsi_sampler, s, t, p, lodbias, rgba );
}
void PIPE_CDECL
lp_fetch_texel_soa( struct tgsi_sampler **samplers,
uint32_t unit,
float *store )
{
struct tgsi_sampler *sampler = samplers[unit];
#if 0
uint j;
debug_printf("%s sampler: %p (%p) store: %p\n",
__FUNCTION__,
sampler, *sampler,
store );
debug_printf("lodbias %f\n", store[12]);
for (j = 0; j < 4; j++)
debug_printf("sample %d texcoord %f %f\n",
j,
store[0+j],
store[4+j]);
#endif
{
float rgba[NUM_CHANNELS][QUAD_SIZE];
sampler->get_samples(sampler,
&store[0],
&store[4],
&store[8],
0.0f, /*store[12], lodbias */
rgba);
memcpy(store, rgba, sizeof rgba);
}
#if 0
for (j = 0; j < 4; j++)
debug_printf("sample %d result %f %f %f %f\n",
j,
store[0+j],
store[4+j],
store[8+j],
store[12+j]);
#endif
}
#include "lp_bld_type.h"
#include "lp_bld_intr.h"
#include "lp_bld_tgsi.h"
struct lp_c_sampler_soa
{
struct lp_build_sampler_soa base;
LLVMValueRef context_ptr;
LLVMValueRef samplers_ptr;
/** Coords/texels store */
LLVMValueRef store_ptr;
};
static void
lp_c_sampler_soa_destroy(struct lp_build_sampler_soa *sampler)
{
FREE(sampler);
}
static void
lp_c_sampler_soa_emit_fetch_texel(struct lp_build_sampler_soa *_sampler,
LLVMBuilderRef builder,
struct lp_type type,
unsigned unit,
unsigned num_coords,
const LLVMValueRef *coords,
LLVMValueRef lodbias,
LLVMValueRef *texel)
{
struct lp_c_sampler_soa *sampler = (struct lp_c_sampler_soa *)_sampler;
LLVMTypeRef vec_type = LLVMTypeOf(coords[0]);
LLVMValueRef args[3];
unsigned i;
if(!sampler->samplers_ptr)
sampler->samplers_ptr = lp_jit_context_samplers(builder, sampler->context_ptr);
if(!sampler->store_ptr)
sampler->store_ptr = LLVMBuildArrayAlloca(builder,
vec_type,
LLVMConstInt(LLVMInt32Type(), 4, 0),
"texel_store");
for (i = 0; i < num_coords; i++) {
LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
LLVMValueRef coord_ptr = LLVMBuildGEP(builder, sampler->store_ptr, &index, 1, "");
LLVMBuildStore(builder, coords[i], coord_ptr);
}
args[0] = sampler->samplers_ptr;
args[1] = LLVMConstInt(LLVMInt32Type(), unit, 0);
args[2] = sampler->store_ptr;
lp_build_intrinsic(builder, "fetch_texel", LLVMVoidType(), args, 3);
for (i = 0; i < NUM_CHANNELS; ++i) {
LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
LLVMValueRef texel_ptr = LLVMBuildGEP(builder, sampler->store_ptr, &index, 1, "");
texel[i] = LLVMBuildLoad(builder, texel_ptr, "");
}
}
struct lp_build_sampler_soa *
lp_c_sampler_soa_create(LLVMValueRef context_ptr)
{
struct lp_c_sampler_soa *sampler;
sampler = CALLOC_STRUCT(lp_c_sampler_soa);
if(!sampler)
return NULL;
sampler->base.destroy = lp_c_sampler_soa_destroy;
sampler->base.emit_fetch_texel = lp_c_sampler_soa_emit_fetch_texel;
sampler->context_ptr = context_ptr;
return &sampler->base;
}