mesa/src/amd/vulkan/radv_pipeline.c

7689 lines
302 KiB
C

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "spirv/nir_spirv.h"
#include "util/disk_cache.h"
#include "util/mesa-sha1.h"
#include "util/os_time.h"
#include "util/u_atomic.h"
#include "radv_cs.h"
#include "radv_debug.h"
#include "radv_meta.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "radv_shader_args.h"
#include "vk_pipeline.h"
#include "vk_util.h"
#include "util/debug.h"
#include "ac_binary.h"
#include "ac_nir.h"
#include "ac_shader_util.h"
#include "aco_interface.h"
#include "sid.h"
#include "vk_format.h"
struct radv_blend_state {
uint32_t blend_enable_4bit;
uint32_t need_src_alpha;
uint32_t cb_target_mask;
uint32_t cb_target_enabled_4bit;
uint32_t sx_mrt_blend_opt[8];
uint32_t cb_blend_control[8];
uint32_t spi_shader_col_format;
uint32_t col_format_is_int8;
uint32_t col_format_is_int10;
uint32_t col_format_is_float32;
uint32_t cb_shader_mask;
uint32_t db_alpha_to_mask;
uint32_t commutative_4bit;
bool mrt0_is_dual_src;
};
struct radv_depth_stencil_state {
uint32_t db_render_control;
uint32_t db_render_override;
uint32_t db_render_override2;
};
struct radv_dsa_order_invariance {
/* Whether the final result in Z/S buffers is guaranteed to be
* invariant under changes to the order in which fragments arrive.
*/
bool zs;
/* Whether the set of fragments that pass the combined Z/S test is
* guaranteed to be invariant under changes to the order in which
* fragments arrive.
*/
bool pass_set;
};
static bool
radv_is_raster_enabled(const struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
return !pCreateInfo->pRasterizationState->rasterizerDiscardEnable ||
(pipeline->dynamic_states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE);
}
static bool
radv_is_static_vrs_enabled(const struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_info *info)
{
return info->fsr.size.width != 1 || info->fsr.size.height != 1 ||
info->fsr.combiner_ops[0] != VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR ||
info->fsr.combiner_ops[1] != VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR;
}
static bool
radv_is_vrs_enabled(const struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_info *info)
{
return radv_is_static_vrs_enabled(pipeline, info) ||
(pipeline->dynamic_states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
}
static bool
radv_pipeline_has_ds_attachments(const struct radv_rendering_info *ri_info)
{
return ri_info->depth_att_format != VK_FORMAT_UNDEFINED ||
ri_info->stencil_att_format != VK_FORMAT_UNDEFINED;
}
static bool
radv_pipeline_has_color_attachments(const struct radv_rendering_info *ri_info)
{
for (uint32_t i = 0; i < ri_info->color_att_count; ++i) {
if (ri_info->color_att_formats[i] != VK_FORMAT_UNDEFINED)
return true;
}
return false;
}
static bool
radv_pipeline_has_ngg(const struct radv_graphics_pipeline *pipeline)
{
struct radv_shader *shader = pipeline->base.shaders[pipeline->last_vgt_api_stage];
return shader->info.is_ngg;
}
bool
radv_pipeline_has_ngg_passthrough(const struct radv_graphics_pipeline *pipeline)
{
assert(radv_pipeline_has_ngg(pipeline));
struct radv_shader *shader = pipeline->base.shaders[pipeline->last_vgt_api_stage];
return shader->info.is_ngg_passthrough;
}
bool
radv_pipeline_has_gs_copy_shader(const struct radv_pipeline *pipeline)
{
return !!pipeline->gs_copy_shader;
}
static struct radv_pipeline_slab *
radv_pipeline_slab_create(struct radv_device *device, struct radv_pipeline *pipeline,
uint32_t code_size)
{
struct radv_pipeline_slab *slab;
slab = calloc(1, sizeof(*slab));
if (!slab)
return NULL;
slab->ref_count = 1;
slab->alloc = radv_alloc_shader_memory(device, code_size, pipeline);
if (!slab->alloc) {
free(slab);
return NULL;
}
return slab;
}
void
radv_pipeline_slab_destroy(struct radv_device *device, struct radv_pipeline_slab *slab)
{
if (!p_atomic_dec_zero(&slab->ref_count))
return;
radv_free_shader_memory(device, slab->alloc);
free(slab);
}
void
radv_pipeline_destroy(struct radv_device *device, struct radv_pipeline *pipeline,
const VkAllocationCallbacks *allocator)
{
if (pipeline->type == RADV_PIPELINE_COMPUTE) {
struct radv_compute_pipeline *compute_pipeline = radv_pipeline_to_compute(pipeline);
free(compute_pipeline->rt_group_handles);
free(compute_pipeline->rt_stack_sizes);
} else if (pipeline->type == RADV_PIPELINE_LIBRARY) {
struct radv_library_pipeline *library_pipeline = radv_pipeline_to_library(pipeline);
free(library_pipeline->groups);
for (uint32_t i = 0; i < library_pipeline->stage_count; i++) {
RADV_FROM_HANDLE(vk_shader_module, module, library_pipeline->stages[i].module);
if (module) {
vk_object_base_finish(&module->base);
ralloc_free(module);
}
}
free(library_pipeline->stages);
free(library_pipeline->identifiers);
free(library_pipeline->hashes);
}
if (pipeline->slab)
radv_pipeline_slab_destroy(device, pipeline->slab);
for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i)
if (pipeline->shaders[i])
radv_shader_destroy(device, pipeline->shaders[i]);
if (pipeline->gs_copy_shader)
radv_shader_destroy(device, pipeline->gs_copy_shader);
if (pipeline->cs.buf)
free(pipeline->cs.buf);
vk_object_base_finish(&pipeline->base);
vk_free2(&device->vk.alloc, allocator, pipeline);
}
VKAPI_ATTR void VKAPI_CALL
radv_DestroyPipeline(VkDevice _device, VkPipeline _pipeline,
const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
if (!_pipeline)
return;
radv_pipeline_destroy(device, pipeline, pAllocator);
}
uint32_t
radv_get_hash_flags(const struct radv_device *device, bool stats)
{
uint32_t hash_flags = 0;
if (device->physical_device->use_ngg_culling)
hash_flags |= RADV_HASH_SHADER_USE_NGG_CULLING;
if (device->instance->perftest_flags & RADV_PERFTEST_EMULATE_RT)
hash_flags |= RADV_HASH_SHADER_EMULATE_RT;
if (device->physical_device->rt_wave_size == 64)
hash_flags |= RADV_HASH_SHADER_RT_WAVE64;
if (device->physical_device->cs_wave_size == 32)
hash_flags |= RADV_HASH_SHADER_CS_WAVE32;
if (device->physical_device->ps_wave_size == 32)
hash_flags |= RADV_HASH_SHADER_PS_WAVE32;
if (device->physical_device->ge_wave_size == 32)
hash_flags |= RADV_HASH_SHADER_GE_WAVE32;
if (device->physical_device->use_llvm)
hash_flags |= RADV_HASH_SHADER_LLVM;
if (stats)
hash_flags |= RADV_HASH_SHADER_KEEP_STATISTICS;
if (device->robust_buffer_access) /* forces per-attribute vertex descriptors */
hash_flags |= RADV_HASH_SHADER_ROBUST_BUFFER_ACCESS;
if (device->robust_buffer_access2) /* affects load/store vectorizer */
hash_flags |= RADV_HASH_SHADER_ROBUST_BUFFER_ACCESS2;
if (device->instance->debug_flags & RADV_DEBUG_SPLIT_FMA)
hash_flags |= RADV_HASH_SHADER_SPLIT_FMA;
return hash_flags;
}
static void
radv_pipeline_init_scratch(const struct radv_device *device, struct radv_pipeline *pipeline)
{
unsigned scratch_bytes_per_wave = 0;
unsigned max_waves = 0;
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (pipeline->shaders[i] && pipeline->shaders[i]->config.scratch_bytes_per_wave) {
unsigned max_stage_waves = device->scratch_waves;
scratch_bytes_per_wave =
MAX2(scratch_bytes_per_wave, pipeline->shaders[i]->config.scratch_bytes_per_wave);
max_stage_waves =
MIN2(max_stage_waves, 4 * device->physical_device->rad_info.num_cu *
radv_get_max_waves(device, pipeline->shaders[i], i));
max_waves = MAX2(max_waves, max_stage_waves);
}
}
pipeline->scratch_bytes_per_wave = scratch_bytes_per_wave;
pipeline->max_waves = max_waves;
}
static uint32_t
si_translate_blend_function(VkBlendOp op)
{
switch (op) {
case VK_BLEND_OP_ADD:
return V_028780_COMB_DST_PLUS_SRC;
case VK_BLEND_OP_SUBTRACT:
return V_028780_COMB_SRC_MINUS_DST;
case VK_BLEND_OP_REVERSE_SUBTRACT:
return V_028780_COMB_DST_MINUS_SRC;
case VK_BLEND_OP_MIN:
return V_028780_COMB_MIN_DST_SRC;
case VK_BLEND_OP_MAX:
return V_028780_COMB_MAX_DST_SRC;
default:
return 0;
}
}
static uint32_t
si_translate_blend_factor(enum amd_gfx_level gfx_level, VkBlendFactor factor)
{
switch (factor) {
case VK_BLEND_FACTOR_ZERO:
return V_028780_BLEND_ZERO;
case VK_BLEND_FACTOR_ONE:
return V_028780_BLEND_ONE;
case VK_BLEND_FACTOR_SRC_COLOR:
return V_028780_BLEND_SRC_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
return V_028780_BLEND_ONE_MINUS_SRC_COLOR;
case VK_BLEND_FACTOR_DST_COLOR:
return V_028780_BLEND_DST_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
return V_028780_BLEND_ONE_MINUS_DST_COLOR;
case VK_BLEND_FACTOR_SRC_ALPHA:
return V_028780_BLEND_SRC_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
return V_028780_BLEND_ONE_MINUS_SRC_ALPHA;
case VK_BLEND_FACTOR_DST_ALPHA:
return V_028780_BLEND_DST_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
return V_028780_BLEND_ONE_MINUS_DST_ALPHA;
case VK_BLEND_FACTOR_CONSTANT_COLOR:
return gfx_level >= GFX11 ? V_028780_BLEND_CONSTANT_COLOR_GFX11
: V_028780_BLEND_CONSTANT_COLOR_GFX6;
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
return gfx_level >= GFX11 ? V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR_GFX11
: V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR_GFX6;
case VK_BLEND_FACTOR_CONSTANT_ALPHA:
return gfx_level >= GFX11 ? V_028780_BLEND_CONSTANT_ALPHA_GFX11
: V_028780_BLEND_CONSTANT_ALPHA_GFX6;
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
return gfx_level >= GFX11 ? V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA_GFX11
: V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA_GFX6;
case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
return V_028780_BLEND_SRC_ALPHA_SATURATE;
case VK_BLEND_FACTOR_SRC1_COLOR:
return gfx_level >= GFX11 ? V_028780_BLEND_SRC1_COLOR_GFX11 : V_028780_BLEND_SRC1_COLOR_GFX6;
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
return gfx_level >= GFX11 ? V_028780_BLEND_INV_SRC1_COLOR_GFX11
: V_028780_BLEND_INV_SRC1_COLOR_GFX6;
case VK_BLEND_FACTOR_SRC1_ALPHA:
return gfx_level >= GFX11 ? V_028780_BLEND_SRC1_ALPHA_GFX11 : V_028780_BLEND_SRC1_ALPHA_GFX6;
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
return gfx_level >= GFX11 ? V_028780_BLEND_INV_SRC1_ALPHA_GFX11
: V_028780_BLEND_INV_SRC1_ALPHA_GFX6;
default:
return 0;
}
}
static uint32_t
si_translate_blend_opt_function(unsigned op)
{
switch (op) {
case V_028780_COMB_DST_PLUS_SRC:
return V_028760_OPT_COMB_ADD;
case V_028780_COMB_SRC_MINUS_DST:
return V_028760_OPT_COMB_SUBTRACT;
case V_028780_COMB_DST_MINUS_SRC:
return V_028760_OPT_COMB_REVSUBTRACT;
case V_028780_COMB_MIN_DST_SRC:
return V_028760_OPT_COMB_MIN;
case V_028780_COMB_MAX_DST_SRC:
return V_028760_OPT_COMB_MAX;
default:
return V_028760_OPT_COMB_BLEND_DISABLED;
}
}
static uint32_t
si_translate_blend_opt_factor(unsigned factor, bool is_alpha)
{
switch (factor) {
case V_028780_BLEND_ZERO:
return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_ALL;
case V_028780_BLEND_ONE:
return V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE;
case V_028780_BLEND_SRC_COLOR:
return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0
: V_028760_BLEND_OPT_PRESERVE_C1_IGNORE_C0;
case V_028780_BLEND_ONE_MINUS_SRC_COLOR:
return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1
: V_028760_BLEND_OPT_PRESERVE_C0_IGNORE_C1;
case V_028780_BLEND_SRC_ALPHA:
return V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0;
case V_028780_BLEND_ONE_MINUS_SRC_ALPHA:
return V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1;
case V_028780_BLEND_SRC_ALPHA_SATURATE:
return is_alpha ? V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE
: V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
default:
return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
}
}
/**
* Get rid of DST in the blend factors by commuting the operands:
* func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
*/
static void
si_blend_remove_dst(unsigned *func, unsigned *src_factor, unsigned *dst_factor,
unsigned expected_dst, unsigned replacement_src)
{
if (*src_factor == expected_dst && *dst_factor == V_028780_BLEND_ZERO) {
*src_factor = V_028780_BLEND_ZERO;
*dst_factor = replacement_src;
/* Commuting the operands requires reversing subtractions. */
if (*func == V_028780_COMB_SRC_MINUS_DST)
*func = V_028780_COMB_DST_MINUS_SRC;
else if (*func == V_028780_COMB_DST_MINUS_SRC)
*func = V_028780_COMB_SRC_MINUS_DST;
}
}
static bool
si_blend_factor_uses_dst(unsigned factor)
{
return factor == V_028780_BLEND_DST_COLOR ||
factor == V_028780_BLEND_DST_ALPHA ||
factor == V_028780_BLEND_SRC_ALPHA_SATURATE ||
factor == V_028780_BLEND_ONE_MINUS_DST_ALPHA ||
factor == V_028780_BLEND_ONE_MINUS_DST_COLOR;
}
static bool
is_dual_src(enum amd_gfx_level gfx_level, unsigned factor)
{
if (gfx_level >= GFX11) {
switch (factor) {
case V_028780_BLEND_SRC1_COLOR_GFX11:
case V_028780_BLEND_INV_SRC1_COLOR_GFX11:
case V_028780_BLEND_SRC1_ALPHA_GFX11:
case V_028780_BLEND_INV_SRC1_ALPHA_GFX11:
return true;
default:
return false;
}
} else {
switch (factor) {
case V_028780_BLEND_SRC1_COLOR_GFX6:
case V_028780_BLEND_INV_SRC1_COLOR_GFX6:
case V_028780_BLEND_SRC1_ALPHA_GFX6:
case V_028780_BLEND_INV_SRC1_ALPHA_GFX6:
return true;
default:
return false;
}
}
}
static unsigned
radv_choose_spi_color_format(const struct radv_device *device, VkFormat vk_format,
bool blend_enable, bool blend_need_alpha)
{
const struct util_format_description *desc = vk_format_description(vk_format);
bool use_rbplus = device->physical_device->rad_info.rbplus_allowed;
struct ac_spi_color_formats formats = {0};
unsigned format, ntype, swap;
format = radv_translate_colorformat(vk_format);
ntype = radv_translate_color_numformat(vk_format, desc,
vk_format_get_first_non_void_channel(vk_format));
swap = radv_translate_colorswap(vk_format, false);
ac_choose_spi_color_formats(format, swap, ntype, false, use_rbplus, &formats);
if (blend_enable && blend_need_alpha)
return formats.blend_alpha;
else if (blend_need_alpha)
return formats.alpha;
else if (blend_enable)
return formats.blend;
else
return formats.normal;
}
static bool
format_is_int8(VkFormat format)
{
const struct util_format_description *desc = vk_format_description(format);
int channel = vk_format_get_first_non_void_channel(format);
return channel >= 0 && desc->channel[channel].pure_integer && desc->channel[channel].size == 8;
}
static bool
format_is_int10(VkFormat format)
{
const struct util_format_description *desc = vk_format_description(format);
if (desc->nr_channels != 4)
return false;
for (unsigned i = 0; i < 4; i++) {
if (desc->channel[i].pure_integer && desc->channel[i].size == 10)
return true;
}
return false;
}
static bool
format_is_float32(VkFormat format)
{
const struct util_format_description *desc = vk_format_description(format);
int channel = vk_format_get_first_non_void_channel(format);
return channel >= 0 &&
desc->channel[channel].type == UTIL_FORMAT_TYPE_FLOAT && desc->channel[channel].size == 32;
}
static void
radv_pipeline_compute_spi_color_formats(const struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
struct radv_blend_state *blend,
const struct radv_graphics_pipeline_info *info)
{
unsigned col_format = 0, is_int8 = 0, is_int10 = 0, is_float32 = 0;
unsigned num_targets;
for (unsigned i = 0; i < info->ri.color_att_count; ++i) {
unsigned cf;
VkFormat fmt = info->ri.color_att_formats[i];
if (fmt == VK_FORMAT_UNDEFINED || !(blend->cb_target_mask & (0xfu << (i * 4)))) {
cf = V_028714_SPI_SHADER_ZERO;
} else {
bool blend_enable = blend->blend_enable_4bit & (0xfu << (i * 4));
cf = radv_choose_spi_color_format(pipeline->base.device, fmt, blend_enable,
blend->need_src_alpha & (1 << i));
if (format_is_int8(fmt))
is_int8 |= 1 << i;
if (format_is_int10(fmt))
is_int10 |= 1 << i;
if (format_is_float32(fmt))
is_float32 |= 1 << i;
}
col_format |= cf << (4 * i);
}
if (!(col_format & 0xf) && blend->need_src_alpha & (1 << 0)) {
/* When a subpass doesn't have any color attachments, write the
* alpha channel of MRT0 when alpha coverage is enabled because
* the depth attachment needs it.
*/
col_format |= V_028714_SPI_SHADER_32_AR;
}
/* If the i-th target format is set, all previous target formats must
* be non-zero to avoid hangs.
*/
num_targets = (util_last_bit(col_format) + 3) / 4;
for (unsigned i = 0; i < num_targets; i++) {
if (!(col_format & (0xfu << (i * 4)))) {
col_format |= V_028714_SPI_SHADER_32_R << (i * 4);
}
}
/* The output for dual source blending should have the same format as
* the first output.
*/
if (blend->mrt0_is_dual_src) {
assert(!(col_format >> 4));
col_format |= (col_format & 0xf) << 4;
}
blend->cb_shader_mask = ac_get_cb_shader_mask(col_format);
blend->spi_shader_col_format = col_format;
blend->col_format_is_int8 = is_int8;
blend->col_format_is_int10 = is_int10;
blend->col_format_is_float32 = is_float32;
}
/*
* Ordered so that for each i,
* radv_format_meta_fs_key(radv_fs_key_format_exemplars[i]) == i.
*/
const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS] = {
VK_FORMAT_R32_SFLOAT,
VK_FORMAT_R32G32_SFLOAT,
VK_FORMAT_R8G8B8A8_UNORM,
VK_FORMAT_R16G16B16A16_UNORM,
VK_FORMAT_R16G16B16A16_SNORM,
VK_FORMAT_R16G16B16A16_UINT,
VK_FORMAT_R16G16B16A16_SINT,
VK_FORMAT_R32G32B32A32_SFLOAT,
VK_FORMAT_R8G8B8A8_UINT,
VK_FORMAT_R8G8B8A8_SINT,
VK_FORMAT_A2R10G10B10_UINT_PACK32,
VK_FORMAT_A2R10G10B10_SINT_PACK32,
};
unsigned
radv_format_meta_fs_key(struct radv_device *device, VkFormat format)
{
unsigned col_format = radv_choose_spi_color_format(device, format, false, false);
assert(col_format != V_028714_SPI_SHADER_32_AR);
bool is_int8 = format_is_int8(format);
bool is_int10 = format_is_int10(format);
if (col_format == V_028714_SPI_SHADER_UINT16_ABGR && is_int8)
return 8;
else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR && is_int8)
return 9;
else if (col_format == V_028714_SPI_SHADER_UINT16_ABGR && is_int10)
return 10;
else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR && is_int10)
return 11;
else {
if (col_format >= V_028714_SPI_SHADER_32_AR)
--col_format; /* Skip V_028714_SPI_SHADER_32_AR since there is no such VkFormat */
--col_format; /* Skip V_028714_SPI_SHADER_ZERO */
return col_format;
}
}
static void
radv_blend_check_commutativity(enum amd_gfx_level gfx_level, struct radv_blend_state *blend,
unsigned op, unsigned src, unsigned dst, unsigned chanmask)
{
bool is_src_allowed = false;
/* Src factor is allowed when it does not depend on Dst. */
if (src == V_028780_BLEND_ZERO ||
src == V_028780_BLEND_ONE ||
src == V_028780_BLEND_SRC_COLOR ||
src == V_028780_BLEND_SRC_ALPHA ||
src == V_028780_BLEND_SRC_ALPHA_SATURATE ||
src == V_028780_BLEND_ONE_MINUS_SRC_COLOR ||
src == V_028780_BLEND_ONE_MINUS_SRC_ALPHA) {
is_src_allowed = true;
}
if (gfx_level >= GFX11) {
if (src == V_028780_BLEND_CONSTANT_COLOR_GFX11 ||
src == V_028780_BLEND_CONSTANT_ALPHA_GFX11 ||
src == V_028780_BLEND_SRC1_COLOR_GFX11 ||
src == V_028780_BLEND_SRC1_ALPHA_GFX11 ||
src == V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR_GFX11 ||
src == V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA_GFX11 ||
src == V_028780_BLEND_INV_SRC1_COLOR_GFX11 ||
src == V_028780_BLEND_INV_SRC1_ALPHA_GFX11) {
is_src_allowed = true;
}
} else {
if (src == V_028780_BLEND_CONSTANT_COLOR_GFX6 ||
src == V_028780_BLEND_CONSTANT_ALPHA_GFX6 ||
src == V_028780_BLEND_SRC1_COLOR_GFX6 ||
src == V_028780_BLEND_SRC1_ALPHA_GFX6 ||
src == V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR_GFX6 ||
src == V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA_GFX6 ||
src == V_028780_BLEND_INV_SRC1_COLOR_GFX6 ||
src == V_028780_BLEND_INV_SRC1_ALPHA_GFX6) {
is_src_allowed = true;
}
}
if (dst == V_028780_BLEND_ONE && is_src_allowed) {
/* Addition is commutative, but floating point addition isn't
* associative: subtle changes can be introduced via different
* rounding. Be conservative, only enable for min and max.
*/
if (op == V_028780_COMB_MAX_DST_SRC || op == V_028780_COMB_MIN_DST_SRC)
blend->commutative_4bit |= chanmask;
}
}
static struct radv_blend_state
radv_pipeline_init_blend_state(struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_info *info)
{
const struct radv_device *device = pipeline->base.device;
struct radv_blend_state blend = {0};
unsigned cb_color_control = 0;
const enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level;
int i;
if (info->cb.logic_op_enable)
cb_color_control |= S_028808_ROP3(info->cb.logic_op);
else
cb_color_control |= S_028808_ROP3(V_028808_ROP3_COPY);
if (device->instance->debug_flags & RADV_DEBUG_NO_ATOC_DITHERING)
{
blend.db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(2) | S_028B70_ALPHA_TO_MASK_OFFSET1(2) |
S_028B70_ALPHA_TO_MASK_OFFSET2(2) | S_028B70_ALPHA_TO_MASK_OFFSET3(2) |
S_028B70_OFFSET_ROUND(0);
}
else
{
blend.db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(3) | S_028B70_ALPHA_TO_MASK_OFFSET1(1) |
S_028B70_ALPHA_TO_MASK_OFFSET2(0) | S_028B70_ALPHA_TO_MASK_OFFSET3(2) |
S_028B70_OFFSET_ROUND(1);
}
if (info->ms.alpha_to_coverage_enable) {
blend.db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1);
blend.need_src_alpha |= 0x1;
}
blend.cb_target_mask = 0;
for (i = 0; i < info->cb.att_count; i++) {
unsigned blend_cntl = 0;
unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt;
unsigned eqRGB = info->cb.att[i].color_blend_op;
unsigned srcRGB = info->cb.att[i].src_color_blend_factor;
unsigned dstRGB = info->cb.att[i].dst_color_blend_factor;
unsigned eqA = info->cb.att[i].alpha_blend_op;
unsigned srcA = info->cb.att[i].src_alpha_blend_factor;
unsigned dstA = info->cb.att[i].dst_alpha_blend_factor;
blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) |
S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
if (!info->cb.att[i].color_write_mask)
continue;
/* Ignore other blend targets if dual-source blending
* is enabled to prevent wrong behaviour.
*/
if (blend.mrt0_is_dual_src)
continue;
blend.cb_target_mask |= (unsigned)info->cb.att[i].color_write_mask << (4 * i);
blend.cb_target_enabled_4bit |= 0xfu << (4 * i);
if (!info->cb.att[i].blend_enable) {
blend.cb_blend_control[i] = blend_cntl;
continue;
}
if (is_dual_src(gfx_level, srcRGB) || is_dual_src(gfx_level, dstRGB) ||
is_dual_src(gfx_level, srcA) || is_dual_src(gfx_level, dstA))
if (i == 0)
blend.mrt0_is_dual_src = true;
if (eqRGB == V_028780_COMB_MIN_DST_SRC || eqRGB == V_028780_COMB_MAX_DST_SRC) {
srcRGB = V_028780_BLEND_ONE;
dstRGB = V_028780_BLEND_ONE;
}
if (eqA == V_028780_COMB_MIN_DST_SRC || eqA == V_028780_COMB_MAX_DST_SRC) {
srcA = V_028780_BLEND_ONE;
dstA = V_028780_BLEND_ONE;
}
radv_blend_check_commutativity(gfx_level, &blend, eqRGB, srcRGB, dstRGB, 0x7u << (4 * i));
radv_blend_check_commutativity(gfx_level, &blend, eqA, srcA, dstA, 0x8u << (4 * i));
/* Blending optimizations for RB+.
* These transformations don't change the behavior.
*
* First, get rid of DST in the blend factors:
* func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
*/
si_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB, V_028780_BLEND_DST_COLOR,
V_028780_BLEND_SRC_COLOR);
si_blend_remove_dst(&eqA, &srcA, &dstA, V_028780_BLEND_DST_COLOR,
V_028780_BLEND_SRC_COLOR);
si_blend_remove_dst(&eqA, &srcA, &dstA, V_028780_BLEND_DST_ALPHA,
V_028780_BLEND_SRC_ALPHA);
/* Look up the ideal settings from tables. */
srcRGB_opt = si_translate_blend_opt_factor(srcRGB, false);
dstRGB_opt = si_translate_blend_opt_factor(dstRGB, false);
srcA_opt = si_translate_blend_opt_factor(srcA, true);
dstA_opt = si_translate_blend_opt_factor(dstA, true);
/* Handle interdependencies. */
if (si_blend_factor_uses_dst(srcRGB))
dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
if (si_blend_factor_uses_dst(srcA))
dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
if (srcRGB == V_028780_BLEND_SRC_ALPHA_SATURATE &&
(dstRGB == V_028780_BLEND_ZERO || dstRGB == V_028780_BLEND_SRC_ALPHA ||
dstRGB == V_028780_BLEND_SRC_ALPHA_SATURATE))
dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
/* Set the final value. */
blend.sx_mrt_blend_opt[i] =
S_028760_COLOR_SRC_OPT(srcRGB_opt) | S_028760_COLOR_DST_OPT(dstRGB_opt) |
S_028760_COLOR_COMB_FCN(si_translate_blend_opt_function(eqRGB)) |
S_028760_ALPHA_SRC_OPT(srcA_opt) | S_028760_ALPHA_DST_OPT(dstA_opt) |
S_028760_ALPHA_COMB_FCN(si_translate_blend_opt_function(eqA));
blend_cntl |= S_028780_ENABLE(1);
blend_cntl |= S_028780_COLOR_COMB_FCN(eqRGB);
blend_cntl |= S_028780_COLOR_SRCBLEND(srcRGB);
blend_cntl |= S_028780_COLOR_DESTBLEND(dstRGB);
if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1);
blend_cntl |= S_028780_ALPHA_COMB_FCN(eqA);
blend_cntl |= S_028780_ALPHA_SRCBLEND(srcA);
blend_cntl |= S_028780_ALPHA_DESTBLEND(dstA);
}
blend.cb_blend_control[i] = blend_cntl;
blend.blend_enable_4bit |= 0xfu << (i * 4);
if (srcRGB == V_028780_BLEND_SRC_ALPHA || dstRGB == V_028780_BLEND_SRC_ALPHA ||
srcRGB == V_028780_BLEND_SRC_ALPHA_SATURATE ||
dstRGB == V_028780_BLEND_SRC_ALPHA_SATURATE ||
srcRGB == V_028780_BLEND_ONE_MINUS_SRC_ALPHA ||
dstRGB == V_028780_BLEND_ONE_MINUS_SRC_ALPHA)
blend.need_src_alpha |= 1 << i;
}
for (i = info->cb.att_count; i < 8; i++) {
blend.cb_blend_control[i] = 0;
blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) |
S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
}
if (device->physical_device->rad_info.has_rbplus) {
/* Disable RB+ blend optimizations for dual source blending. */
if (blend.mrt0_is_dual_src) {
for (i = 0; i < 8; i++) {
blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) |
S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE);
}
}
/* RB+ doesn't work with dual source blending, logic op and
* RESOLVE.
*/
if (blend.mrt0_is_dual_src || info->cb.logic_op_enable ||
(device->physical_device->rad_info.gfx_level >= GFX11 && blend.blend_enable_4bit))
cb_color_control |= S_028808_DISABLE_DUAL_QUAD(1);
}
if (blend.cb_target_mask)
cb_color_control |= S_028808_MODE(V_028808_CB_NORMAL);
else
cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE);
radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo, &blend, info);
pipeline->cb_color_control = cb_color_control;
return blend;
}
static uint32_t
si_translate_fill(VkPolygonMode func)
{
switch (func) {
case VK_POLYGON_MODE_FILL:
return V_028814_X_DRAW_TRIANGLES;
case VK_POLYGON_MODE_LINE:
return V_028814_X_DRAW_LINES;
case VK_POLYGON_MODE_POINT:
return V_028814_X_DRAW_POINTS;
default:
assert(0);
return V_028814_X_DRAW_POINTS;
}
}
static unsigned
radv_pipeline_color_samples( const struct radv_graphics_pipeline_info *info)
{
if (info->color_att_samples && radv_pipeline_has_color_attachments(&info->ri)) {
return info->color_att_samples;
}
return info->ms.raster_samples;
}
static unsigned
radv_pipeline_depth_samples(const struct radv_graphics_pipeline_info *info)
{
if (info->ds_att_samples && radv_pipeline_has_ds_attachments(&info->ri)) {
return info->ds_att_samples;
}
return info->ms.raster_samples;
}
static uint8_t
radv_pipeline_get_ps_iter_samples(const struct radv_graphics_pipeline_info *info)
{
uint32_t ps_iter_samples = 1;
uint32_t num_samples = radv_pipeline_color_samples(info);
if (info->ms.sample_shading_enable) {
ps_iter_samples = ceilf(info->ms.min_sample_shading * num_samples);
ps_iter_samples = util_next_power_of_two(ps_iter_samples);
}
return ps_iter_samples;
}
static bool
radv_is_depth_write_enabled(const struct radv_depth_stencil_info *ds_info)
{
return ds_info->depth_test_enable && ds_info->depth_write_enable &&
ds_info->depth_compare_op != VK_COMPARE_OP_NEVER;
}
static bool
radv_writes_stencil(const struct radv_stencil_op_info *info)
{
return info->write_mask &&
(info->fail_op != VK_STENCIL_OP_KEEP || info->pass_op != VK_STENCIL_OP_KEEP ||
info->depth_fail_op != VK_STENCIL_OP_KEEP);
}
static bool
radv_is_stencil_write_enabled(const struct radv_depth_stencil_info *ds_info)
{
return ds_info->stencil_test_enable &&
(radv_writes_stencil(&ds_info->front) || radv_writes_stencil(&ds_info->back));
}
static bool
radv_order_invariant_stencil_op(VkStencilOp op)
{
/* REPLACE is normally order invariant, except when the stencil
* reference value is written by the fragment shader. Tracking this
* interaction does not seem worth the effort, so be conservative.
*/
return op != VK_STENCIL_OP_INCREMENT_AND_CLAMP && op != VK_STENCIL_OP_DECREMENT_AND_CLAMP &&
op != VK_STENCIL_OP_REPLACE;
}
static bool
radv_order_invariant_stencil_state(const struct radv_stencil_op_info *info)
{
/* Compute whether, assuming Z writes are disabled, this stencil state
* is order invariant in the sense that the set of passing fragments as
* well as the final stencil buffer result does not depend on the order
* of fragments.
*/
return !info->write_mask ||
/* The following assumes that Z writes are disabled. */
(info->compare_op == VK_COMPARE_OP_ALWAYS &&
radv_order_invariant_stencil_op(info->pass_op) &&
radv_order_invariant_stencil_op(info->depth_fail_op)) ||
(info->compare_op == VK_COMPARE_OP_NEVER &&
radv_order_invariant_stencil_op(info->fail_op));
}
static bool
radv_pipeline_has_dynamic_ds_states(const struct radv_graphics_pipeline *pipeline)
{
return !!(pipeline->dynamic_states & (RADV_DYNAMIC_DEPTH_TEST_ENABLE |
RADV_DYNAMIC_DEPTH_WRITE_ENABLE |
RADV_DYNAMIC_DEPTH_COMPARE_OP |
RADV_DYNAMIC_STENCIL_TEST_ENABLE |
RADV_DYNAMIC_STENCIL_OP));
}
static bool
radv_pipeline_out_of_order_rast(struct radv_graphics_pipeline *pipeline,
const struct radv_blend_state *blend,
const struct radv_graphics_pipeline_info *info)
{
unsigned colormask = blend->cb_target_enabled_4bit;
if (!pipeline->base.device->physical_device->out_of_order_rast_allowed)
return false;
/* Be conservative if a logic operation is enabled with color buffers. */
if (colormask && info->cb.logic_op_enable)
return false;
/* Be conservative if an extended dynamic depth/stencil state is
* enabled because the driver can't update out-of-order rasterization
* dynamically.
*/
if (radv_pipeline_has_dynamic_ds_states(pipeline))
return false;
/* Default depth/stencil invariance when no attachment is bound. */
struct radv_dsa_order_invariance dsa_order_invariant = {.zs = true, .pass_set = true};
bool has_stencil = info->ri.stencil_att_format != VK_FORMAT_UNDEFINED;
struct radv_dsa_order_invariance order_invariance[2];
struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
/* Compute depth/stencil order invariance in order to know if
* it's safe to enable out-of-order.
*/
bool zfunc_is_ordered = info->ds.depth_compare_op == VK_COMPARE_OP_NEVER ||
info->ds.depth_compare_op == VK_COMPARE_OP_LESS ||
info->ds.depth_compare_op == VK_COMPARE_OP_LESS_OR_EQUAL ||
info->ds.depth_compare_op == VK_COMPARE_OP_GREATER ||
info->ds.depth_compare_op == VK_COMPARE_OP_GREATER_OR_EQUAL;
bool depth_write_enabled = radv_is_depth_write_enabled(&info->ds);
bool stencil_write_enabled = radv_is_stencil_write_enabled(&info->ds);
bool ds_write_enabled = depth_write_enabled || stencil_write_enabled;
bool nozwrite_and_order_invariant_stencil =
!ds_write_enabled ||
(!depth_write_enabled && radv_order_invariant_stencil_state(&info->ds.front) &&
radv_order_invariant_stencil_state(&info->ds.back));
order_invariance[1].zs = nozwrite_and_order_invariant_stencil ||
(!stencil_write_enabled && zfunc_is_ordered);
order_invariance[0].zs = !depth_write_enabled || zfunc_is_ordered;
order_invariance[1].pass_set =
nozwrite_and_order_invariant_stencil ||
(!stencil_write_enabled &&
(info->ds.depth_compare_op == VK_COMPARE_OP_ALWAYS ||
info->ds.depth_compare_op == VK_COMPARE_OP_NEVER));
order_invariance[0].pass_set =
!depth_write_enabled ||
(info->ds.depth_compare_op == VK_COMPARE_OP_ALWAYS ||
info->ds.depth_compare_op == VK_COMPARE_OP_NEVER);
dsa_order_invariant = order_invariance[has_stencil];
if (!dsa_order_invariant.zs)
return false;
/* The set of PS invocations is always order invariant,
* except when early Z/S tests are requested.
*/
if (ps && ps->info.ps.writes_memory && ps->info.ps.early_fragment_test &&
!dsa_order_invariant.pass_set)
return false;
/* Determine if out-of-order rasterization should be disabled when occlusion queries are used. */
pipeline->disable_out_of_order_rast_for_occlusion = !dsa_order_invariant.pass_set;
/* No color buffers are enabled for writing. */
if (!colormask)
return true;
unsigned blendmask = colormask & blend->blend_enable_4bit;
if (blendmask) {
/* Only commutative blending. */
if (blendmask & ~blend->commutative_4bit)
return false;
if (!dsa_order_invariant.pass_set)
return false;
}
if (colormask & ~blendmask)
return false;
return true;
}
static void
radv_pipeline_init_multisample_state(struct radv_graphics_pipeline *pipeline,
const struct radv_blend_state *blend,
const struct radv_graphics_pipeline_info *info,
unsigned rast_prim)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
struct radv_multisample_state *ms = &pipeline->ms;
unsigned num_tile_pipes = pdevice->rad_info.num_tile_pipes;
const VkConservativeRasterizationModeEXT mode = info->rs.conservative_mode;
bool out_of_order_rast = false;
int ps_iter_samples = 1;
ms->num_samples = info->ms.raster_samples;
/* From the Vulkan 1.1.129 spec, 26.7. Sample Shading:
*
* "Sample shading is enabled for a graphics pipeline:
*
* - If the interface of the fragment shader entry point of the
* graphics pipeline includes an input variable decorated
* with SampleId or SamplePosition. In this case
* minSampleShadingFactor takes the value 1.0.
* - Else if the sampleShadingEnable member of the
* VkPipelineMultisampleStateCreateInfo structure specified
* when creating the graphics pipeline is set to VK_TRUE. In
* this case minSampleShadingFactor takes the value of
* VkPipelineMultisampleStateCreateInfo::minSampleShading.
*
* Otherwise, sample shading is considered disabled."
*/
if (pipeline->base.shaders[MESA_SHADER_FRAGMENT]->info.ps.uses_sample_shading) {
ps_iter_samples = ms->num_samples;
} else {
ps_iter_samples = radv_pipeline_get_ps_iter_samples(info);
}
if (info->rs.order == VK_RASTERIZATION_ORDER_RELAXED_AMD) {
/* Out-of-order rasterization is explicitly enabled by the
* application.
*/
out_of_order_rast = true;
} else {
/* Determine if the driver can enable out-of-order
* rasterization internally.
*/
out_of_order_rast = radv_pipeline_out_of_order_rast(pipeline, blend, info);
}
ms->pa_sc_aa_config = 0;
ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) | S_028804_INCOHERENT_EQAA_READS(1) |
S_028804_INTERPOLATE_COMP_Z(1) | S_028804_STATIC_ANCHOR_ASSOCIATIONS(1);
/* Adjust MSAA state if conservative rasterization is enabled. */
if (mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) {
ms->pa_sc_aa_config |= S_028BE0_AA_MASK_CENTROID_DTMN(1);
ms->db_eqaa |=
S_028804_ENABLE_POSTZ_OVERRASTERIZATION(1) | S_028804_OVERRASTERIZATION_AMOUNT(4);
}
ms->pa_sc_mode_cntl_1 =
S_028A4C_WALK_FENCE_ENABLE(1) | // TODO linear dst fixes
S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) |
S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(out_of_order_rast) |
S_028A4C_OUT_OF_ORDER_WATER_MARK(0x7) |
/* always 1: */
S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) | S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) |
S_028A4C_TILE_WALK_ORDER_ENABLE(1) | S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) |
S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) | S_028A4C_FORCE_EOV_REZ_ENABLE(1);
ms->pa_sc_mode_cntl_0 = S_028A48_ALTERNATE_RBS_PER_TILE(pdevice->rad_info.gfx_level >= GFX9) |
S_028A48_VPORT_SCISSOR_ENABLE(1) |
S_028A48_LINE_STIPPLE_ENABLE(info->rs.stippled_line_enable);
if (info->rs.line_raster_mode == VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT &&
radv_rast_prim_is_line(rast_prim)) {
/* From the Vulkan spec 1.3.221:
*
* "When Bresenham lines are being rasterized, sample locations may all be treated as being at
* the pixel center (this may affect attribute and depth interpolation)."
*
* "One consequence of this is that Bresenham lines cover the same pixels regardless of the
* number of rasterization samples, and cover all samples in those pixels (unless masked out
* or killed)."
*/
ms->num_samples = 1;
}
if (ms->num_samples > 1) {
uint32_t z_samples = radv_pipeline_depth_samples(info);
unsigned log_samples = util_logbase2(ms->num_samples);
unsigned log_z_samples = util_logbase2(z_samples);
unsigned log_ps_iter_samples = util_logbase2(ps_iter_samples);
ms->pa_sc_mode_cntl_0 |= S_028A48_MSAA_ENABLE(1);
ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_z_samples) |
S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) |
S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) |
S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
ms->pa_sc_aa_config |=
S_028BE0_MSAA_NUM_SAMPLES(log_samples) |
S_028BE0_MAX_SAMPLE_DIST(radv_get_default_max_sample_dist(log_samples)) |
S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples) | /* CM_R_028BE0_PA_SC_AA_CONFIG */
S_028BE0_COVERED_CENTROID_IS_CENTER(pdevice->rad_info.gfx_level >= GFX10_3);
ms->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1);
if (ps_iter_samples > 1)
pipeline->spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
}
ms->pa_sc_aa_mask[0] = info->ms.sample_mask | ((uint32_t)info->ms.sample_mask << 16);
ms->pa_sc_aa_mask[1] = info->ms.sample_mask | ((uint32_t)info->ms.sample_mask << 16);
}
static void
gfx103_pipeline_init_vrs_state(struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_info *info)
{
struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
struct radv_multisample_state *ms = &pipeline->ms;
struct radv_vrs_state *vrs = &pipeline->vrs;
if (info->ms.sample_shading_enable ||
ps->info.ps.uses_sample_shading || ps->info.ps.reads_sample_mask_in) {
/* Disable VRS and use the rates from PS_ITER_SAMPLES if:
*
* 1) sample shading is enabled or per-sample interpolation is
* used by the fragment shader
* 2) the fragment shader reads gl_SampleMaskIn because the
* 16-bit sample coverage mask isn't enough for MSAA8x and
* 2x2 coarse shading isn't enough.
*/
vrs->pa_cl_vrs_cntl = S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_VRS_COMB_MODE_OVERRIDE);
/* Make sure sample shading is enabled even if only MSAA1x is
* used because the SAMPLE_ITER combiner is in passthrough
* mode if PS_ITER_SAMPLE is 0, and it uses the per-draw rate.
* The default VRS rate when sample shading is enabled is 1x1.
*/
if (!G_028A4C_PS_ITER_SAMPLE(ms->pa_sc_mode_cntl_1))
ms->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(1);
} else {
vrs->pa_cl_vrs_cntl = S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_VRS_COMB_MODE_PASSTHRU);
}
}
static uint32_t
si_conv_tess_prim_to_gs_out(enum tess_primitive_mode prim)
{
switch (prim) {
case TESS_PRIMITIVE_TRIANGLES:
case TESS_PRIMITIVE_QUADS:
return V_028A6C_TRISTRIP;
case TESS_PRIMITIVE_ISOLINES:
return V_028A6C_LINESTRIP;
default:
assert(0);
return 0;
}
}
static uint32_t
si_conv_gl_prim_to_gs_out(unsigned gl_prim)
{
switch (gl_prim) {
case SHADER_PRIM_POINTS:
return V_028A6C_POINTLIST;
case SHADER_PRIM_LINES:
case SHADER_PRIM_LINE_STRIP:
case SHADER_PRIM_LINES_ADJACENCY:
return V_028A6C_LINESTRIP;
case SHADER_PRIM_TRIANGLES:
case SHADER_PRIM_TRIANGLE_STRIP_ADJACENCY:
case SHADER_PRIM_TRIANGLE_STRIP:
case SHADER_PRIM_QUADS:
return V_028A6C_TRISTRIP;
default:
assert(0);
return 0;
}
}
static uint64_t
radv_dynamic_state_mask(VkDynamicState state)
{
switch (state) {
case VK_DYNAMIC_STATE_VIEWPORT:
case VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT:
return RADV_DYNAMIC_VIEWPORT;
case VK_DYNAMIC_STATE_SCISSOR:
case VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT:
return RADV_DYNAMIC_SCISSOR;
case VK_DYNAMIC_STATE_LINE_WIDTH:
return RADV_DYNAMIC_LINE_WIDTH;
case VK_DYNAMIC_STATE_DEPTH_BIAS:
return RADV_DYNAMIC_DEPTH_BIAS;
case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
return RADV_DYNAMIC_BLEND_CONSTANTS;
case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
return RADV_DYNAMIC_DEPTH_BOUNDS;
case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
return RADV_DYNAMIC_STENCIL_COMPARE_MASK;
case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
return RADV_DYNAMIC_STENCIL_WRITE_MASK;
case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
return RADV_DYNAMIC_STENCIL_REFERENCE;
case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT:
return RADV_DYNAMIC_DISCARD_RECTANGLE;
case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
return RADV_DYNAMIC_SAMPLE_LOCATIONS;
case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
return RADV_DYNAMIC_LINE_STIPPLE;
case VK_DYNAMIC_STATE_CULL_MODE:
return RADV_DYNAMIC_CULL_MODE;
case VK_DYNAMIC_STATE_FRONT_FACE:
return RADV_DYNAMIC_FRONT_FACE;
case VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY:
return RADV_DYNAMIC_PRIMITIVE_TOPOLOGY;
case VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE:
return RADV_DYNAMIC_DEPTH_TEST_ENABLE;
case VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE:
return RADV_DYNAMIC_DEPTH_WRITE_ENABLE;
case VK_DYNAMIC_STATE_DEPTH_COMPARE_OP:
return RADV_DYNAMIC_DEPTH_COMPARE_OP;
case VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE:
return RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE;
case VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE:
return RADV_DYNAMIC_STENCIL_TEST_ENABLE;
case VK_DYNAMIC_STATE_STENCIL_OP:
return RADV_DYNAMIC_STENCIL_OP;
case VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE:
return RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE;
case VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR:
return RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
case VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT:
return RADV_DYNAMIC_PATCH_CONTROL_POINTS;
case VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE:
return RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE;
case VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE:
return RADV_DYNAMIC_DEPTH_BIAS_ENABLE;
case VK_DYNAMIC_STATE_LOGIC_OP_EXT:
return RADV_DYNAMIC_LOGIC_OP;
case VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE:
return RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE;
case VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT:
return RADV_DYNAMIC_COLOR_WRITE_ENABLE;
case VK_DYNAMIC_STATE_VERTEX_INPUT_EXT:
return RADV_DYNAMIC_VERTEX_INPUT;
default:
unreachable("Unhandled dynamic state");
}
}
static bool
radv_pipeline_is_blend_enabled(const struct radv_graphics_pipeline *pipeline,
const struct radv_color_blend_info *cb_info)
{
for (uint32_t i = 0; i < cb_info->att_count; i++) {
if (cb_info->att[i].color_write_mask && cb_info->att[i].blend_enable)
return true;
}
return false;
}
static uint64_t
radv_pipeline_needed_dynamic_state(const struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_info *info)
{
bool has_color_att = radv_pipeline_has_color_attachments(&info->ri);
bool raster_enabled = !info->rs.discard_enable ||
(pipeline->dynamic_states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE);
uint64_t states = RADV_DYNAMIC_ALL;
/* Disable dynamic states that are useless to mesh shading. */
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) {
if (!raster_enabled)
return RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE;
states &= ~(RADV_DYNAMIC_VERTEX_INPUT | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE |
RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY);
}
/* If rasterization is disabled we do not care about any of the
* dynamic states, since they are all rasterization related only,
* except primitive topology, primitive restart enable, vertex
* binding stride and rasterization discard itself.
*/
if (!raster_enabled) {
return RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE |
RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE |
RADV_DYNAMIC_VERTEX_INPUT;
}
if (!info->rs.depth_bias_enable &&
!(pipeline->dynamic_states & RADV_DYNAMIC_DEPTH_BIAS_ENABLE))
states &= ~RADV_DYNAMIC_DEPTH_BIAS;
if (!info->ds.depth_bounds_test_enable &&
!(pipeline->dynamic_states & RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE))
states &= ~RADV_DYNAMIC_DEPTH_BOUNDS;
if (!info->ds.stencil_test_enable &&
!(pipeline->dynamic_states & RADV_DYNAMIC_STENCIL_TEST_ENABLE))
states &= ~(RADV_DYNAMIC_STENCIL_COMPARE_MASK | RADV_DYNAMIC_STENCIL_WRITE_MASK |
RADV_DYNAMIC_STENCIL_REFERENCE | RADV_DYNAMIC_STENCIL_OP);
if (!info->dr.count)
states &= ~RADV_DYNAMIC_DISCARD_RECTANGLE;
if (!info->ms.sample_locs_enable)
states &= ~RADV_DYNAMIC_SAMPLE_LOCATIONS;
if (!info->rs.stippled_line_enable)
states &= ~RADV_DYNAMIC_LINE_STIPPLE;
if (!radv_is_vrs_enabled(pipeline, info))
states &= ~RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
if (!has_color_att || !radv_pipeline_is_blend_enabled(pipeline, &info->cb))
states &= ~RADV_DYNAMIC_BLEND_CONSTANTS;
if (!has_color_att)
states &= ~RADV_DYNAMIC_COLOR_WRITE_ENABLE;
return states;
}
static struct radv_ia_multi_vgt_param_helpers
radv_compute_ia_multi_vgt_param_helpers(struct radv_graphics_pipeline *pipeline)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param = {0};
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL))
ia_multi_vgt_param.primgroup_size =
pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.num_tess_patches;
else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
ia_multi_vgt_param.primgroup_size = 64;
else
ia_multi_vgt_param.primgroup_size = 128; /* recommended without a GS */
/* GS requirement. */
ia_multi_vgt_param.partial_es_wave = false;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY) && pdevice->rad_info.gfx_level <= GFX8)
if (SI_GS_PER_ES / ia_multi_vgt_param.primgroup_size >= pdevice->gs_table_depth - 3)
ia_multi_vgt_param.partial_es_wave = true;
ia_multi_vgt_param.ia_switch_on_eoi = false;
if (pipeline->base.shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input)
ia_multi_vgt_param.ia_switch_on_eoi = true;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY) && pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id)
ia_multi_vgt_param.ia_switch_on_eoi = true;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) {
/* SWITCH_ON_EOI must be set if PrimID is used. */
if (pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id ||
radv_get_shader(&pipeline->base, MESA_SHADER_TESS_EVAL)->info.uses_prim_id)
ia_multi_vgt_param.ia_switch_on_eoi = true;
}
ia_multi_vgt_param.partial_vs_wave = false;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) {
/* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
if ((pdevice->rad_info.family == CHIP_TAHITI ||
pdevice->rad_info.family == CHIP_PITCAIRN ||
pdevice->rad_info.family == CHIP_BONAIRE) &&
radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
ia_multi_vgt_param.partial_vs_wave = true;
/* Needed for 028B6C_DISTRIBUTION_MODE != 0 */
if (pdevice->rad_info.has_distributed_tess) {
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
if (pdevice->rad_info.gfx_level <= GFX8)
ia_multi_vgt_param.partial_es_wave = true;
} else {
ia_multi_vgt_param.partial_vs_wave = true;
}
}
}
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
/* On these chips there is the possibility of a hang if the
* pipeline uses a GS and partial_vs_wave is not set.
*
* This mostly does not hit 4-SE chips, as those typically set
* ia_switch_on_eoi and then partial_vs_wave is set for pipelines
* with GS due to another workaround.
*
* Reproducer: https://bugs.freedesktop.org/show_bug.cgi?id=109242
*/
if (pdevice->rad_info.family == CHIP_TONGA ||
pdevice->rad_info.family == CHIP_FIJI ||
pdevice->rad_info.family == CHIP_POLARIS10 ||
pdevice->rad_info.family == CHIP_POLARIS11 ||
pdevice->rad_info.family == CHIP_POLARIS12 ||
pdevice->rad_info.family == CHIP_VEGAM) {
ia_multi_vgt_param.partial_vs_wave = true;
}
}
ia_multi_vgt_param.base =
S_028AA8_PRIMGROUP_SIZE(ia_multi_vgt_param.primgroup_size - 1) |
/* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
S_028AA8_MAX_PRIMGRP_IN_WAVE(pdevice->rad_info.gfx_level == GFX8 ? 2 : 0) |
S_030960_EN_INST_OPT_BASIC(pdevice->rad_info.gfx_level >= GFX9) |
S_030960_EN_INST_OPT_ADV(pdevice->rad_info.gfx_level >= GFX9);
return ia_multi_vgt_param;
}
static uint32_t
radv_get_attrib_stride(const VkPipelineVertexInputStateCreateInfo *vi, uint32_t attrib_binding)
{
for (uint32_t i = 0; i < vi->vertexBindingDescriptionCount; i++) {
const VkVertexInputBindingDescription *input_binding = &vi->pVertexBindingDescriptions[i];
if (input_binding->binding == attrib_binding)
return input_binding->stride;
}
return 0;
}
static struct radv_vertex_input_info
radv_pipeline_init_vertex_input_info(struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
const VkPipelineVertexInputStateCreateInfo *vi = pCreateInfo->pVertexInputState;
struct radv_vertex_input_info info = {0};
if (!(pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT)) {
/* Vertex input */
const VkPipelineVertexInputDivisorStateCreateInfoEXT *divisor_state =
vk_find_struct_const(vi->pNext, PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
uint32_t binding_input_rate = 0;
uint32_t instance_rate_divisors[MAX_VERTEX_ATTRIBS];
for (unsigned i = 0; i < vi->vertexBindingDescriptionCount; ++i) {
const VkVertexInputBindingDescription *desc = &vi->pVertexBindingDescriptions[i];
if (desc->inputRate) {
unsigned binding = vi->pVertexBindingDescriptions[i].binding;
binding_input_rate |= 1u << binding;
instance_rate_divisors[binding] = 1;
}
info.binding_stride[desc->binding] = desc->stride;
}
if (divisor_state) {
for (unsigned i = 0; i < divisor_state->vertexBindingDivisorCount; ++i) {
instance_rate_divisors[divisor_state->pVertexBindingDivisors[i].binding] =
divisor_state->pVertexBindingDivisors[i].divisor;
}
}
for (unsigned i = 0; i < vi->vertexAttributeDescriptionCount; ++i) {
const VkVertexInputAttributeDescription *desc = &vi->pVertexAttributeDescriptions[i];
const struct util_format_description *format_desc;
unsigned location = desc->location;
unsigned binding = desc->binding;
unsigned num_format, data_format;
bool post_shuffle;
if (binding_input_rate & (1u << binding)) {
info.instance_rate_inputs |= 1u << location;
info.instance_rate_divisors[location] = instance_rate_divisors[binding];
}
format_desc = vk_format_description(desc->format);
radv_translate_vertex_format(pdevice, desc->format, format_desc, &data_format, &num_format,
&post_shuffle, &info.vertex_alpha_adjust[location]);
info.vertex_attribute_formats[location] = data_format | (num_format << 4);
info.vertex_attribute_bindings[location] = desc->binding;
info.vertex_attribute_offsets[location] = desc->offset;
const struct ac_data_format_info *dfmt_info = ac_get_data_format_info(data_format);
unsigned attrib_align =
dfmt_info->chan_byte_size ? dfmt_info->chan_byte_size : dfmt_info->element_size;
/* If desc->offset is misaligned, then the buffer offset must be too. Just
* skip updating vertex_binding_align in this case.
*/
if (desc->offset % attrib_align == 0)
info.vertex_binding_align[desc->binding] =
MAX2(info.vertex_binding_align[desc->binding], attrib_align);
if (!(pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE)) {
/* From the Vulkan spec 1.2.157:
*
* "If the bound pipeline state object was created
* with the
* VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE
* dynamic state enabled then pStrides[i] specifies
* the distance in bytes between two consecutive
* elements within the corresponding buffer. In this
* case the VkVertexInputBindingDescription::stride
* state from the pipeline state object is ignored."
*
* Make sure the vertex attribute stride is zero to
* avoid computing a wrong offset if it's initialized
* to something else than zero.
*/
info.vertex_attribute_strides[location] = radv_get_attrib_stride(vi, desc->binding);
}
if (post_shuffle)
info.vertex_post_shuffle |= 1 << location;
uint32_t end = desc->offset + vk_format_get_blocksize(desc->format);
info.attrib_ends[desc->location] = end;
if (info.binding_stride[desc->binding])
info.attrib_index_offset[desc->location] =
desc->offset / info.binding_stride[desc->binding];
info.attrib_bindings[desc->location] = desc->binding;
}
}
return info;
}
static struct radv_input_assembly_info
radv_pipeline_init_input_assembly_info(struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineInputAssemblyStateCreateInfo *ia = pCreateInfo->pInputAssemblyState;
struct radv_input_assembly_info info = {0};
info.primitive_topology = si_translate_prim(ia->topology);
info.primitive_restart_enable = !!ia->primitiveRestartEnable;
return info;
}
static struct radv_tessellation_info
radv_pipeline_init_tessellation_info(struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineTessellationStateCreateInfo *ts = pCreateInfo->pTessellationState;
const VkShaderStageFlagBits tess_stages = VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT |
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
struct radv_tessellation_info info = {0};
if ((pipeline->active_stages & tess_stages) == tess_stages) {
info.patch_control_points = ts->patchControlPoints;
const VkPipelineTessellationDomainOriginStateCreateInfo *domain_origin_state =
vk_find_struct_const(ts->pNext, PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO);
if (domain_origin_state) {
info.domain_origin = domain_origin_state->domainOrigin;
}
}
return info;
}
static struct radv_viewport_info
radv_pipeline_init_viewport_info(struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineViewportStateCreateInfo *vp = pCreateInfo->pViewportState;
struct radv_viewport_info info = {0};
if (radv_is_raster_enabled(pipeline, pCreateInfo)) {
if (!(pipeline->dynamic_states & RADV_DYNAMIC_VIEWPORT)) {
typed_memcpy(info.viewports, vp->pViewports, vp->viewportCount);
}
info.viewport_count = vp->viewportCount;
if (!(pipeline->dynamic_states & RADV_DYNAMIC_SCISSOR)) {
typed_memcpy(info.scissors, vp->pScissors, vp->scissorCount);
}
info.scissor_count = vp->scissorCount;
const VkPipelineViewportDepthClipControlCreateInfoEXT *depth_clip_control =
vk_find_struct_const(vp->pNext, PIPELINE_VIEWPORT_DEPTH_CLIP_CONTROL_CREATE_INFO_EXT);
if (depth_clip_control) {
info.negative_one_to_one = !!depth_clip_control->negativeOneToOne;
}
}
return info;
}
static struct radv_rasterization_info
radv_pipeline_init_rasterization_info(struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineRasterizationStateCreateInfo *rs = pCreateInfo->pRasterizationState;
struct radv_rasterization_info info = {0};
info.discard_enable = rs->rasterizerDiscardEnable;
info.front_face = rs->frontFace;
info.cull_mode = rs->cullMode;
info.polygon_mode = si_translate_fill(rs->polygonMode);
info.depth_bias_enable = rs->depthBiasEnable;
info.depth_clamp_enable = rs->depthClampEnable;
info.line_width = rs->lineWidth;
info.depth_bias_constant_factor = rs->depthBiasConstantFactor;
info.depth_bias_clamp = rs->depthBiasClamp;
info.depth_bias_slope_factor = rs->depthBiasSlopeFactor;
info.depth_clip_disable = rs->depthClampEnable;
const VkPipelineRasterizationProvokingVertexStateCreateInfoEXT *provoking_vtx_info =
vk_find_struct_const(rs->pNext, PIPELINE_RASTERIZATION_PROVOKING_VERTEX_STATE_CREATE_INFO_EXT);
if (provoking_vtx_info &&
provoking_vtx_info->provokingVertexMode == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT) {
info.provoking_vtx_last = true;
}
const VkPipelineRasterizationConservativeStateCreateInfoEXT *conservative_raster =
vk_find_struct_const(rs->pNext, PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT);
if (conservative_raster) {
info.conservative_mode = conservative_raster->conservativeRasterizationMode;
}
const VkPipelineRasterizationLineStateCreateInfoEXT *rast_line_info =
vk_find_struct_const(rs->pNext, PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
if (rast_line_info) {
info.stippled_line_enable = rast_line_info->stippledLineEnable;
info.line_raster_mode = rast_line_info->lineRasterizationMode;
info.line_stipple_factor = rast_line_info->lineStippleFactor;
info.line_stipple_pattern = rast_line_info->lineStipplePattern;
}
const VkPipelineRasterizationDepthClipStateCreateInfoEXT *depth_clip_state =
vk_find_struct_const(rs->pNext, PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
if (depth_clip_state) {
info.depth_clip_disable = !depth_clip_state->depthClipEnable;
}
const VkPipelineRasterizationStateRasterizationOrderAMD *raster_order =
vk_find_struct_const(rs->pNext, PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD);
if (raster_order) {
info.order = raster_order->rasterizationOrder;
}
return info;
}
static struct radv_discard_rectangle_info
radv_pipeline_init_discard_rectangle_info(struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT);
struct radv_discard_rectangle_info info = {0};
if (discard_rectangle_info) {
info.mode = discard_rectangle_info->discardRectangleMode;
if (!(pipeline->dynamic_states & RADV_DYNAMIC_DISCARD_RECTANGLE)) {
typed_memcpy(info.rects, discard_rectangle_info->pDiscardRectangles,
discard_rectangle_info->discardRectangleCount);
}
info.count = discard_rectangle_info->discardRectangleCount;
}
return info;
}
static struct radv_multisample_info
radv_pipeline_init_multisample_info(struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineMultisampleStateCreateInfo *ms = pCreateInfo->pMultisampleState;
struct radv_multisample_info info = {0};
if (radv_is_raster_enabled(pipeline, pCreateInfo)) {
info.raster_samples = ms->rasterizationSamples;
info.sample_shading_enable = ms->sampleShadingEnable;
info.min_sample_shading = ms->minSampleShading;
info.alpha_to_coverage_enable = ms->alphaToCoverageEnable;
if (ms->pSampleMask) {
info.sample_mask = ms->pSampleMask[0] & 0xffff;
} else {
info.sample_mask = 0xffff;
}
const VkPipelineSampleLocationsStateCreateInfoEXT *sample_location_info =
vk_find_struct_const(ms->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
if (sample_location_info) {
/* If sampleLocationsEnable is VK_FALSE, the default sample locations are used and the
* values specified in sampleLocationsInfo are ignored.
*/
info.sample_locs_enable = sample_location_info->sampleLocationsEnable;
if (sample_location_info->sampleLocationsEnable) {
const VkSampleLocationsInfoEXT *pSampleLocationsInfo =
&sample_location_info->sampleLocationsInfo;
assert(pSampleLocationsInfo->sampleLocationsCount <= MAX_SAMPLE_LOCATIONS);
info.sample_locs_per_pixel = pSampleLocationsInfo->sampleLocationsPerPixel;
info.sample_locs_grid_size = pSampleLocationsInfo->sampleLocationGridSize;
for (uint32_t i = 0; i < pSampleLocationsInfo->sampleLocationsCount; i++) {
info.sample_locs[i] = pSampleLocationsInfo->pSampleLocations[i];
}
info.sample_locs_count = pSampleLocationsInfo->sampleLocationsCount;
}
}
} else {
info.raster_samples = VK_SAMPLE_COUNT_1_BIT;
}
return info;
}
static struct radv_depth_stencil_info
radv_pipeline_init_depth_stencil_info(struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineDepthStencilStateCreateInfo *ds = pCreateInfo->pDepthStencilState;
const VkPipelineRenderingCreateInfo *ri =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_RENDERING_CREATE_INFO);
struct radv_depth_stencil_info info = {0};
if (radv_is_raster_enabled(pipeline, pCreateInfo) &&
(ri->depthAttachmentFormat != VK_FORMAT_UNDEFINED ||
ri->stencilAttachmentFormat != VK_FORMAT_UNDEFINED)) {
info.depth_bounds_test_enable = ds->depthBoundsTestEnable;
info.depth_bounds.min = ds->minDepthBounds;
info.depth_bounds.max = ds->maxDepthBounds;
info.stencil_test_enable = ds->stencilTestEnable;
info.front.fail_op = ds->front.failOp;
info.front.pass_op = ds->front.passOp;
info.front.depth_fail_op = ds->front.depthFailOp;
info.front.compare_op = ds->front.compareOp;
info.front.compare_mask = ds->front.compareMask;
info.front.write_mask = ds->front.writeMask;
info.front.reference = ds->front.reference;
info.back.fail_op = ds->back.failOp;
info.back.pass_op = ds->back.passOp;
info.back.depth_fail_op = ds->back.depthFailOp;
info.back.compare_op = ds->back.compareOp;
info.back.compare_mask = ds->back.compareMask;
info.back.write_mask = ds->back.writeMask;
info.back.reference = ds->back.reference;
info.depth_test_enable = ds->depthTestEnable;
info.depth_write_enable = ds->depthWriteEnable;
info.depth_compare_op = ds->depthCompareOp;
}
return info;
}
static struct radv_rendering_info
radv_pipeline_init_rendering_info(struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineRenderingCreateInfo *ri =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_RENDERING_CREATE_INFO);
struct radv_rendering_info info = {0};
info.view_mask = ri->viewMask;
for (uint32_t i = 0; i < ri->colorAttachmentCount; i++) {
info.color_att_formats[i] = ri->pColorAttachmentFormats[i];
}
info.color_att_count = ri->colorAttachmentCount;
info.depth_att_format = ri->depthAttachmentFormat;
info.stencil_att_format = ri->stencilAttachmentFormat;
return info;
}
static struct radv_color_blend_info
radv_pipeline_init_color_blend_info(struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
const VkPipelineColorBlendStateCreateInfo *cb = pCreateInfo->pColorBlendState;
const VkPipelineRenderingCreateInfo *ri =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_RENDERING_CREATE_INFO);
struct radv_color_blend_info info = {0};
bool has_color_att = false;
for (uint32_t i = 0; i < ri->colorAttachmentCount; ++i) {
if (ri->pColorAttachmentFormats[i] != VK_FORMAT_UNDEFINED) {
has_color_att = true;
break;
}
}
if (radv_is_raster_enabled(pipeline, pCreateInfo) && has_color_att) {
for (uint32_t i = 0; i < cb->attachmentCount; i++) {
const VkPipelineColorBlendAttachmentState *att = &cb->pAttachments[i];
info.att[i].color_write_mask = att->colorWriteMask;
info.att[i].blend_enable = att->blendEnable;
info.att[i].color_blend_op = si_translate_blend_function(att->colorBlendOp);
info.att[i].alpha_blend_op = si_translate_blend_function(att->alphaBlendOp);
info.att[i].src_color_blend_factor =
si_translate_blend_factor(pdevice->rad_info.gfx_level, att->srcColorBlendFactor);
info.att[i].dst_color_blend_factor =
si_translate_blend_factor(pdevice->rad_info.gfx_level, att->dstColorBlendFactor);
info.att[i].src_alpha_blend_factor =
si_translate_blend_factor(pdevice->rad_info.gfx_level, att->srcAlphaBlendFactor);
info.att[i].dst_alpha_blend_factor =
si_translate_blend_factor(pdevice->rad_info.gfx_level, att->dstAlphaBlendFactor);
}
info.att_count = cb->attachmentCount;
for (uint32_t i = 0; i < 4; i++) {
info.blend_constants[i] = cb->blendConstants[i];
}
info.logic_op_enable = cb->logicOpEnable;
if (info.logic_op_enable)
info.logic_op = si_translate_blend_logic_op(cb->logicOp);
const VkPipelineColorWriteCreateInfoEXT *color_write_info =
vk_find_struct_const(cb->pNext, PIPELINE_COLOR_WRITE_CREATE_INFO_EXT);
if (color_write_info) {
for (uint32_t i = 0; i < color_write_info->attachmentCount; i++) {
info.color_write_enable |=
color_write_info->pColorWriteEnables[i] ? (0xfu << (i * 4)) : 0;
}
} else {
info.color_write_enable = 0xffffffffu;
}
}
return info;
}
static struct radv_fragment_shading_rate_info
radv_pipeline_init_fragment_shading_rate_info(struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineFragmentShadingRateStateCreateInfoKHR *shading_rate =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_FRAGMENT_SHADING_RATE_STATE_CREATE_INFO_KHR);
struct radv_fragment_shading_rate_info info = {0};
if (shading_rate && !(pipeline->dynamic_states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE)) {
info.size = shading_rate->fragmentSize;
for (int i = 0; i < 2; i++)
info.combiner_ops[i] = shading_rate->combinerOps[i];
} else {
info.size = (VkExtent2D){ 1, 1 };
info.combiner_ops[0] = VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR;
info.combiner_ops[1] = VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR;
}
return info;
}
static struct radv_graphics_pipeline_info
radv_pipeline_init_graphics_info(struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
struct radv_graphics_pipeline_info info = {0};
/* Vertex input interface structs have to be ignored if the pipeline includes a mesh shader. */
if (!(pipeline->active_stages & VK_SHADER_STAGE_MESH_BIT_NV)) {
info.vi = radv_pipeline_init_vertex_input_info(pipeline, pCreateInfo);
info.ia = radv_pipeline_init_input_assembly_info(pipeline, pCreateInfo);
}
info.ts = radv_pipeline_init_tessellation_info(pipeline, pCreateInfo);
info.vp = radv_pipeline_init_viewport_info(pipeline, pCreateInfo);
info.rs = radv_pipeline_init_rasterization_info(pipeline, pCreateInfo);
info.dr = radv_pipeline_init_discard_rectangle_info(pipeline, pCreateInfo);
info.ms = radv_pipeline_init_multisample_info(pipeline, pCreateInfo);
info.ds = radv_pipeline_init_depth_stencil_info(pipeline, pCreateInfo);
info.ri = radv_pipeline_init_rendering_info(pipeline, pCreateInfo);
info.cb = radv_pipeline_init_color_blend_info(pipeline, pCreateInfo);
info.fsr = radv_pipeline_init_fragment_shading_rate_info(pipeline, pCreateInfo);
/* VK_AMD_mixed_attachment_samples */
const VkAttachmentSampleCountInfoAMD *sample_info =
vk_find_struct_const(pCreateInfo->pNext, ATTACHMENT_SAMPLE_COUNT_INFO_AMD);
if (sample_info) {
for (uint32_t i = 0; i < sample_info->colorAttachmentCount; ++i) {
if (info.ri.color_att_formats[i] != VK_FORMAT_UNDEFINED) {
info.color_att_samples = MAX2(info.color_att_samples, sample_info->pColorAttachmentSamples[i]);
}
}
info.ds_att_samples = sample_info->depthStencilAttachmentSamples;
}
return info;
}
static void
radv_pipeline_init_input_assembly_state(struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_info *info)
{
pipeline->ia_multi_vgt_param = radv_compute_ia_multi_vgt_param_helpers(pipeline);
}
static void
radv_pipeline_init_dynamic_state(struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_info *info)
{
uint64_t needed_states = radv_pipeline_needed_dynamic_state(pipeline, info);
uint64_t states = needed_states;
pipeline->dynamic_state = default_dynamic_state;
pipeline->needed_dynamic_state = needed_states;
states &= ~pipeline->dynamic_states;
struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
if (needed_states & RADV_DYNAMIC_VIEWPORT) {
dynamic->viewport.count = info->vp.viewport_count;
if (states & RADV_DYNAMIC_VIEWPORT) {
typed_memcpy(dynamic->viewport.viewports, info->vp.viewports, info->vp.viewport_count);
for (unsigned i = 0; i < dynamic->viewport.count; i++)
radv_get_viewport_xform(&dynamic->viewport.viewports[i],
dynamic->viewport.xform[i].scale, dynamic->viewport.xform[i].translate);
}
}
if (needed_states & RADV_DYNAMIC_SCISSOR) {
dynamic->scissor.count = info->vp.scissor_count;
if (states & RADV_DYNAMIC_SCISSOR) {
typed_memcpy(dynamic->scissor.scissors, info->vp.scissors, info->vp.scissor_count);
}
}
if (states & RADV_DYNAMIC_LINE_WIDTH) {
dynamic->line_width = info->rs.line_width;
}
if (states & RADV_DYNAMIC_DEPTH_BIAS) {
dynamic->depth_bias.bias = info->rs.depth_bias_constant_factor;
dynamic->depth_bias.clamp = info->rs.depth_bias_clamp;
dynamic->depth_bias.slope = info->rs.depth_bias_slope_factor;
}
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pColorBlendState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is
* created against does not use any color attachments.
*/
if (states & RADV_DYNAMIC_BLEND_CONSTANTS) {
typed_memcpy(dynamic->blend_constants, info->cb.blend_constants, 4);
}
if (states & RADV_DYNAMIC_CULL_MODE) {
dynamic->cull_mode = info->rs.cull_mode;
}
if (states & RADV_DYNAMIC_FRONT_FACE) {
dynamic->front_face = info->rs.front_face;
}
if (states & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) {
dynamic->primitive_topology = info->ia.primitive_topology;
}
/* If there is no depthstencil attachment, then don't read
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
* no need to override the depthstencil defaults in
* radv_pipeline::dynamic_state when there is no depthstencil attachment.
*
* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pDepthStencilState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is created
* against does not use a depth/stencil attachment.
*/
if (needed_states && radv_pipeline_has_ds_attachments(&info->ri)) {
if (states & RADV_DYNAMIC_DEPTH_BOUNDS) {
dynamic->depth_bounds.min = info->ds.depth_bounds.min;
dynamic->depth_bounds.max = info->ds.depth_bounds.max;
}
if (states & RADV_DYNAMIC_STENCIL_COMPARE_MASK) {
dynamic->stencil_compare_mask.front = info->ds.front.compare_mask;
dynamic->stencil_compare_mask.back = info->ds.back.compare_mask;
}
if (states & RADV_DYNAMIC_STENCIL_WRITE_MASK) {
dynamic->stencil_write_mask.front = info->ds.front.write_mask;
dynamic->stencil_write_mask.back = info->ds.back.write_mask;
}
if (states & RADV_DYNAMIC_STENCIL_REFERENCE) {
dynamic->stencil_reference.front = info->ds.front.reference;
dynamic->stencil_reference.back = info->ds.back.reference;
}
if (states & RADV_DYNAMIC_DEPTH_TEST_ENABLE) {
dynamic->depth_test_enable = info->ds.depth_test_enable;
}
if (states & RADV_DYNAMIC_DEPTH_WRITE_ENABLE) {
dynamic->depth_write_enable = info->ds.depth_write_enable;
}
if (states & RADV_DYNAMIC_DEPTH_COMPARE_OP) {
dynamic->depth_compare_op = info->ds.depth_compare_op;
}
if (states & RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) {
dynamic->depth_bounds_test_enable = info->ds.depth_bounds_test_enable;
}
if (states & RADV_DYNAMIC_STENCIL_TEST_ENABLE) {
dynamic->stencil_test_enable = info->ds.stencil_test_enable;
}
if (states & RADV_DYNAMIC_STENCIL_OP) {
dynamic->stencil_op.front.compare_op = info->ds.front.compare_op;
dynamic->stencil_op.front.fail_op = info->ds.front.fail_op;
dynamic->stencil_op.front.pass_op = info->ds.front.pass_op;
dynamic->stencil_op.front.depth_fail_op = info->ds.front.depth_fail_op;
dynamic->stencil_op.back.compare_op = info->ds.back.compare_op;
dynamic->stencil_op.back.fail_op = info->ds.back.fail_op;
dynamic->stencil_op.back.pass_op = info->ds.back.pass_op;
dynamic->stencil_op.back.depth_fail_op = info->ds.back.depth_fail_op;
}
}
if (needed_states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
dynamic->discard_rectangle.count = info->dr.count;
if (states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
typed_memcpy(dynamic->discard_rectangle.rectangles, info->dr.rects, info->dr.count);
}
}
if (needed_states & RADV_DYNAMIC_SAMPLE_LOCATIONS) {
if (info->ms.sample_locs_enable) {
dynamic->sample_location.per_pixel = info->ms.sample_locs_per_pixel;
dynamic->sample_location.grid_size = info->ms.sample_locs_grid_size;
dynamic->sample_location.count = info->ms.sample_locs_count;
typed_memcpy(&dynamic->sample_location.locations[0], info->ms.sample_locs,
info->ms.sample_locs_count);
}
}
if (needed_states & RADV_DYNAMIC_LINE_STIPPLE) {
dynamic->line_stipple.factor = info->rs.line_stipple_factor;
dynamic->line_stipple.pattern = info->rs.line_stipple_pattern;
}
if (!(states & RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE) ||
!(states & RADV_DYNAMIC_VERTEX_INPUT))
pipeline->uses_dynamic_stride = true;
if (states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE) {
dynamic->fragment_shading_rate.size = info->fsr.size;
for (int i = 0; i < 2; i++)
dynamic->fragment_shading_rate.combiner_ops[i] = info->fsr.combiner_ops[i];
}
if (states & RADV_DYNAMIC_DEPTH_BIAS_ENABLE) {
dynamic->depth_bias_enable = info->rs.depth_bias_enable;
}
if (states & RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE) {
dynamic->primitive_restart_enable = info->ia.primitive_restart_enable;
}
if (states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE) {
dynamic->rasterizer_discard_enable = info->rs.discard_enable;
}
if (radv_pipeline_has_color_attachments(&info->ri) && states & RADV_DYNAMIC_LOGIC_OP) {
if (info->cb.logic_op_enable) {
dynamic->logic_op = info->cb.logic_op;
} else {
dynamic->logic_op = V_028808_ROP3_COPY;
}
}
if (states & RADV_DYNAMIC_COLOR_WRITE_ENABLE) {
dynamic->color_write_enable = info->cb.color_write_enable;
}
pipeline->dynamic_state.mask = states;
}
static void
radv_pipeline_init_raster_state(struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_info *info)
{
const struct radv_device *device = pipeline->base.device;
pipeline->pa_su_sc_mode_cntl =
S_028814_FACE(info->rs.front_face) |
S_028814_CULL_FRONT(!!(info->rs.cull_mode & VK_CULL_MODE_FRONT_BIT)) |
S_028814_CULL_BACK(!!(info->rs.cull_mode & VK_CULL_MODE_BACK_BIT)) |
S_028814_POLY_MODE(info->rs.polygon_mode != V_028814_X_DRAW_TRIANGLES) |
S_028814_POLYMODE_FRONT_PTYPE(info->rs.polygon_mode) |
S_028814_POLYMODE_BACK_PTYPE(info->rs.polygon_mode) |
S_028814_POLY_OFFSET_FRONT_ENABLE(info->rs.depth_bias_enable) |
S_028814_POLY_OFFSET_BACK_ENABLE(info->rs.depth_bias_enable) |
S_028814_POLY_OFFSET_PARA_ENABLE(info->rs.depth_bias_enable) |
S_028814_PROVOKING_VTX_LAST(info->rs.provoking_vtx_last);
if (device->physical_device->rad_info.gfx_level >= GFX10) {
/* It should also be set if PERPENDICULAR_ENDCAP_ENA is set. */
pipeline->pa_su_sc_mode_cntl |=
S_028814_KEEP_TOGETHER_ENABLE(info->rs.polygon_mode != V_028814_X_DRAW_TRIANGLES);
}
pipeline->pa_cl_clip_cntl =
S_028810_DX_CLIP_SPACE_DEF(!pipeline->negative_one_to_one) |
S_028810_ZCLIP_NEAR_DISABLE(info->rs.depth_clip_disable) |
S_028810_ZCLIP_FAR_DISABLE(info->rs.depth_clip_disable) |
S_028810_DX_RASTERIZATION_KILL(info->rs.discard_enable) |
S_028810_DX_LINEAR_ATTR_CLIP_ENA(1);
pipeline->uses_conservative_overestimate =
info->rs.conservative_mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT;
pipeline->depth_clamp_mode = RADV_DEPTH_CLAMP_MODE_VIEWPORT;
if (!info->rs.depth_clamp_enable) {
/* For optimal performance, depth clamping should always be enabled except if the
* application disables clamping explicitly or uses depth values outside of the [0.0, 1.0]
* range.
*/
if (info->rs.depth_clip_disable ||
device->vk.enabled_extensions.EXT_depth_range_unrestricted) {
pipeline->depth_clamp_mode = RADV_DEPTH_CLAMP_MODE_DISABLED;
} else {
pipeline->depth_clamp_mode = RADV_DEPTH_CLAMP_MODE_ZERO_TO_ONE;
}
}
}
static struct radv_depth_stencil_state
radv_pipeline_init_depth_stencil_state(struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_info *info)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
struct radv_depth_stencil_state ds_state = {0};
uint32_t db_depth_control = 0;
bool has_depth_attachment = info->ri.depth_att_format != VK_FORMAT_UNDEFINED;
bool has_stencil_attachment = info->ri.stencil_att_format != VK_FORMAT_UNDEFINED;
if (has_depth_attachment) {
/* from amdvlk: For 4xAA and 8xAA need to decompress on flush for better performance */
ds_state.db_render_override2 |= S_028010_DECOMPRESS_Z_ON_FLUSH(info->ms.raster_samples > 2);
if (pdevice->rad_info.gfx_level >= GFX10_3)
ds_state.db_render_override2 |= S_028010_CENTROID_COMPUTATION_MODE(1);
db_depth_control = S_028800_Z_ENABLE(info->ds.depth_test_enable) |
S_028800_Z_WRITE_ENABLE(info->ds.depth_write_enable) |
S_028800_ZFUNC(info->ds.depth_compare_op) |
S_028800_DEPTH_BOUNDS_ENABLE(info->ds.depth_bounds_test_enable);
}
if (has_stencil_attachment && info->ds.stencil_test_enable) {
db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1);
db_depth_control |= S_028800_STENCILFUNC(info->ds.front.compare_op);
db_depth_control |= S_028800_STENCILFUNC_BF(info->ds.back.compare_op);
}
ds_state.db_render_override |= S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) |
S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE);
if (pipeline->depth_clamp_mode == RADV_DEPTH_CLAMP_MODE_DISABLED)
ds_state.db_render_override |= S_02800C_DISABLE_VIEWPORT_CLAMP(1);
if (pdevice->rad_info.gfx_level >= GFX11) {
unsigned max_allowed_tiles_in_wave = 0;
unsigned num_samples = MAX2(radv_pipeline_color_samples(info),
radv_pipeline_depth_samples(info));
if (pdevice->rad_info.has_dedicated_vram) {
if (num_samples == 8)
max_allowed_tiles_in_wave = 7;
else if (num_samples == 4)
max_allowed_tiles_in_wave = 14;
} else {
if (num_samples == 8)
max_allowed_tiles_in_wave = 8;
}
/* TODO: We may want to disable this workaround for future chips. */
if (num_samples >= 4) {
if (max_allowed_tiles_in_wave)
max_allowed_tiles_in_wave--;
else
max_allowed_tiles_in_wave = 15;
}
ds_state.db_render_control |= S_028000_OREO_MODE(V_028000_OMODE_O_THEN_B) |
S_028000_MAX_ALLOWED_TILES_IN_WAVE(max_allowed_tiles_in_wave);
}
pipeline->db_depth_control = db_depth_control;
return ds_state;
}
static void
gfx9_get_gs_info(const struct radv_pipeline_key *key, const struct radv_pipeline *pipeline,
struct radv_pipeline_stage *stages, struct gfx9_gs_info *out)
{
const struct radv_physical_device *pdevice = pipeline->device->physical_device;
struct radv_shader_info *gs_info = &stages[MESA_SHADER_GEOMETRY].info;
struct radv_es_output_info *es_info;
bool has_tess = !!stages[MESA_SHADER_TESS_CTRL].nir;
if (pdevice->rad_info.gfx_level >= GFX9)
es_info = has_tess ? &gs_info->tes.es_info : &gs_info->vs.es_info;
else
es_info = has_tess ? &stages[MESA_SHADER_TESS_EVAL].info.tes.es_info
: &stages[MESA_SHADER_VERTEX].info.vs.es_info;
unsigned gs_num_invocations = MAX2(gs_info->gs.invocations, 1);
bool uses_adjacency;
switch (key->vs.topology) {
case V_008958_DI_PT_LINELIST_ADJ:
case V_008958_DI_PT_LINESTRIP_ADJ:
case V_008958_DI_PT_TRILIST_ADJ:
case V_008958_DI_PT_TRISTRIP_ADJ:
uses_adjacency = true;
break;
default:
uses_adjacency = false;
break;
}
/* All these are in dwords: */
/* We can't allow using the whole LDS, because GS waves compete with
* other shader stages for LDS space. */
const unsigned max_lds_size = 8 * 1024;
const unsigned esgs_itemsize = es_info->esgs_itemsize / 4;
unsigned esgs_lds_size;
/* All these are per subgroup: */
const unsigned max_out_prims = 32 * 1024;
const unsigned max_es_verts = 255;
const unsigned ideal_gs_prims = 64;
unsigned max_gs_prims, gs_prims;
unsigned min_es_verts, es_verts, worst_case_es_verts;
if (uses_adjacency || gs_num_invocations > 1)
max_gs_prims = 127 / gs_num_invocations;
else
max_gs_prims = 255;
/* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
* Make sure we don't go over the maximum value.
*/
if (gs_info->gs.vertices_out > 0) {
max_gs_prims =
MIN2(max_gs_prims, max_out_prims / (gs_info->gs.vertices_out * gs_num_invocations));
}
assert(max_gs_prims > 0);
/* If the primitive has adjacency, halve the number of vertices
* that will be reused in multiple primitives.
*/
min_es_verts = gs_info->gs.vertices_in / (uses_adjacency ? 2 : 1);
gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
/* Compute ESGS LDS size based on the worst case number of ES vertices
* needed to create the target number of GS prims per subgroup.
*/
esgs_lds_size = esgs_itemsize * worst_case_es_verts;
/* If total LDS usage is too big, refactor partitions based on ratio
* of ESGS item sizes.
*/
if (esgs_lds_size > max_lds_size) {
/* Our target GS Prims Per Subgroup was too large. Calculate
* the maximum number of GS Prims Per Subgroup that will fit
* into LDS, capped by the maximum that the hardware can support.
*/
gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), max_gs_prims);
assert(gs_prims > 0);
worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
esgs_lds_size = esgs_itemsize * worst_case_es_verts;
assert(esgs_lds_size <= max_lds_size);
}
/* Now calculate remaining ESGS information. */
if (esgs_lds_size)
es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
else
es_verts = max_es_verts;
/* Vertices for adjacency primitives are not always reused, so restore
* it for ES_VERTS_PER_SUBGRP.
*/
min_es_verts = gs_info->gs.vertices_in;
/* For normal primitives, the VGT only checks if they are past the ES
* verts per subgroup after allocating a full GS primitive and if they
* are, kick off a new subgroup. But if those additional ES verts are
* unique (e.g. not reused) we need to make sure there is enough LDS
* space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
*/
es_verts -= min_es_verts - 1;
uint32_t es_verts_per_subgroup = es_verts;
uint32_t gs_prims_per_subgroup = gs_prims;
uint32_t gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
uint32_t max_prims_per_subgroup = gs_inst_prims_in_subgroup * gs_info->gs.vertices_out;
out->lds_size = align(esgs_lds_size, 128) / 128;
out->vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(es_verts_per_subgroup) |
S_028A44_GS_PRIMS_PER_SUBGRP(gs_prims_per_subgroup) |
S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_inst_prims_in_subgroup);
out->vgt_gs_max_prims_per_subgroup = S_028A94_MAX_PRIMS_PER_SUBGROUP(max_prims_per_subgroup);
out->vgt_esgs_ring_itemsize = esgs_itemsize;
assert(max_prims_per_subgroup <= max_out_prims);
gl_shader_stage es_stage = has_tess ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
unsigned workgroup_size = ac_compute_esgs_workgroup_size(
pdevice->rad_info.gfx_level, stages[es_stage].info.wave_size,
es_verts_per_subgroup, gs_inst_prims_in_subgroup);
stages[es_stage].info.workgroup_size = workgroup_size;
stages[MESA_SHADER_GEOMETRY].info.workgroup_size = workgroup_size;
}
static void
clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts, unsigned min_verts_per_prim,
bool use_adjacency)
{
unsigned max_reuse = max_esverts - min_verts_per_prim;
if (use_adjacency)
max_reuse /= 2;
*max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
}
static unsigned
radv_get_num_input_vertices(const struct radv_pipeline_stage *stages)
{
if (stages[MESA_SHADER_GEOMETRY].nir) {
nir_shader *gs = stages[MESA_SHADER_GEOMETRY].nir;
return gs->info.gs.vertices_in;
}
if (stages[MESA_SHADER_TESS_CTRL].nir) {
nir_shader *tes = stages[MESA_SHADER_TESS_EVAL].nir;
if (tes->info.tess.point_mode)
return 1;
if (tes->info.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES)
return 2;
return 3;
}
return 3;
}
static void
gfx10_emit_ge_pc_alloc(struct radeon_cmdbuf *cs, enum amd_gfx_level gfx_level,
uint32_t oversub_pc_lines)
{
radeon_set_uconfig_reg(
cs, R_030980_GE_PC_ALLOC,
S_030980_OVERSUB_EN(oversub_pc_lines > 0) | S_030980_NUM_PC_LINES(oversub_pc_lines - 1));
}
static void
gfx10_get_ngg_ms_info(struct radv_pipeline_stage *stage, struct gfx10_ngg_info *ngg)
{
/* Special case for mesh shader workgroups.
*
* Mesh shaders don't have any real vertex input, but they can produce
* an arbitrary number of vertices and primitives (up to 256).
* We need to precisely control the number of mesh shader workgroups
* that are launched from draw calls.
*
* To achieve that, we set:
* - input primitive topology to point list
* - input vertex and primitive count to 1
* - max output vertex count and primitive amplification factor
* to the boundaries of the shader
*
* With that, in the draw call:
* - drawing 1 input vertex ~ launching 1 mesh shader workgroup
*
* In the shader:
* - base vertex ~ first workgroup index (firstTask in NV_mesh_shader)
* - input vertex id ~ workgroup id (in 1D - shader needs to calculate in 3D)
*
* Notes:
* - without GS_EN=1 PRIM_AMP_FACTOR and MAX_VERTS_PER_SUBGROUP don't seem to work
* - with GS_EN=1 we must also set VGT_GS_MAX_VERT_OUT (otherwise the GPU hangs)
* - with GS_FAST_LAUNCH=1 every lane's VGPRs are initialized to the same input vertex index
*
*/
nir_shader *ms = stage->nir;
ngg->enable_vertex_grouping = true;
ngg->esgs_ring_size = 1;
ngg->hw_max_esverts = 1;
ngg->max_gsprims = 1;
ngg->max_out_verts = ms->info.mesh.max_vertices_out;
ngg->max_vert_out_per_gs_instance = false;
ngg->ngg_emit_size = 0;
ngg->prim_amp_factor = ms->info.mesh.max_primitives_out;
ngg->vgt_esgs_ring_itemsize = 1;
unsigned min_ngg_workgroup_size =
ac_compute_ngg_workgroup_size(ngg->hw_max_esverts, ngg->max_gsprims,
ngg->max_out_verts, ngg->prim_amp_factor);
unsigned api_workgroup_size =
ac_compute_cs_workgroup_size(ms->info.workgroup_size, false, UINT32_MAX);
stage->info.workgroup_size = MAX2(min_ngg_workgroup_size, api_workgroup_size);
}
static void
gfx10_get_ngg_info(const struct radv_pipeline_key *key, struct radv_pipeline *pipeline,
struct radv_pipeline_stage *stages, struct gfx10_ngg_info *ngg)
{
const struct radv_physical_device *pdevice = pipeline->device->physical_device;
struct radv_shader_info *gs_info = &stages[MESA_SHADER_GEOMETRY].info;
struct radv_es_output_info *es_info =
stages[MESA_SHADER_TESS_CTRL].nir ? &gs_info->tes.es_info : &gs_info->vs.es_info;
unsigned gs_type = stages[MESA_SHADER_GEOMETRY].nir ? MESA_SHADER_GEOMETRY : MESA_SHADER_VERTEX;
unsigned max_verts_per_prim = radv_get_num_input_vertices(stages);
unsigned min_verts_per_prim = gs_type == MESA_SHADER_GEOMETRY ? max_verts_per_prim : 1;
unsigned gs_num_invocations = stages[MESA_SHADER_GEOMETRY].nir ? MAX2(gs_info->gs.invocations, 1) : 1;
bool uses_adjacency;
switch (key->vs.topology) {
case V_008958_DI_PT_LINELIST_ADJ:
case V_008958_DI_PT_LINESTRIP_ADJ:
case V_008958_DI_PT_TRILIST_ADJ:
case V_008958_DI_PT_TRISTRIP_ADJ:
uses_adjacency = true;
break;
default:
uses_adjacency = false;
break;
}
/* All these are in dwords: */
/* We can't allow using the whole LDS, because GS waves compete with
* other shader stages for LDS space.
*
* TODO: We should really take the shader's internal LDS use into
* account. The linker will fail if the size is greater than
* 8K dwords.
*/
const unsigned max_lds_size = 8 * 1024 - 768;
const unsigned target_lds_size = max_lds_size;
unsigned esvert_lds_size = 0;
unsigned gsprim_lds_size = 0;
/* All these are per subgroup: */
const unsigned min_esverts = pdevice->rad_info.gfx_level >= GFX10_3 ? 29 : 24;
bool max_vert_out_per_gs_instance = false;
unsigned max_esverts_base = 128;
unsigned max_gsprims_base = 128; /* default prim group size clamp */
/* Hardware has the following non-natural restrictions on the value
* of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of
* the draw:
* - at most 252 for any line input primitive type
* - at most 251 for any quad input primitive type
* - at most 251 for triangle strips with adjacency (this happens to
* be the natural limit for triangle *lists* with adjacency)
*/
max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1);
if (gs_type == MESA_SHADER_GEOMETRY) {
unsigned max_out_verts_per_gsprim = gs_info->gs.vertices_out * gs_num_invocations;
if (max_out_verts_per_gsprim <= 256) {
if (max_out_verts_per_gsprim) {
max_gsprims_base = MIN2(max_gsprims_base, 256 / max_out_verts_per_gsprim);
}
} else {
/* Use special multi-cycling mode in which each GS
* instance gets its own subgroup. Does not work with
* tessellation. */
max_vert_out_per_gs_instance = true;
max_gsprims_base = 1;
max_out_verts_per_gsprim = gs_info->gs.vertices_out;
}
esvert_lds_size = es_info->esgs_itemsize / 4;
gsprim_lds_size = (gs_info->gs.gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
} else {
/* VS and TES. */
/* LDS size for passing data from GS to ES. */
struct radv_streamout_info *so_info = stages[MESA_SHADER_TESS_CTRL].nir
? &stages[MESA_SHADER_TESS_EVAL].info.so
: &stages[MESA_SHADER_VERTEX].info.so;
if (so_info->num_outputs)
esvert_lds_size = 4 * so_info->num_outputs + 1;
/* GS stores Primitive IDs (one DWORD) into LDS at the address
* corresponding to the ES thread of the provoking vertex. All
* ES threads load and export PrimitiveID for their thread.
*/
if (!stages[MESA_SHADER_TESS_CTRL].nir && stages[MESA_SHADER_VERTEX].info.vs.outinfo.export_prim_id)
esvert_lds_size = MAX2(esvert_lds_size, 1);
}
unsigned max_gsprims = max_gsprims_base;
unsigned max_esverts = max_esverts_base;
if (esvert_lds_size)
max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
if (gsprim_lds_size)
max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency);
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
if (esvert_lds_size || gsprim_lds_size) {
/* Now that we have a rough proportionality between esverts
* and gsprims based on the primitive type, scale both of them
* down simultaneously based on required LDS space.
*
* We could be smarter about this if we knew how much vertex
* reuse to expect.
*/
unsigned lds_total = max_esverts * esvert_lds_size + max_gsprims * gsprim_lds_size;
if (lds_total > target_lds_size) {
max_esverts = max_esverts * target_lds_size / lds_total;
max_gsprims = max_gsprims * target_lds_size / lds_total;
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency);
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
}
}
/* Round up towards full wave sizes for better ALU utilization. */
if (!max_vert_out_per_gs_instance) {
unsigned orig_max_esverts;
unsigned orig_max_gsprims;
unsigned wavesize;
if (gs_type == MESA_SHADER_GEOMETRY) {
wavesize = gs_info->wave_size;
} else {
wavesize = stages[MESA_SHADER_TESS_CTRL].nir ? stages[MESA_SHADER_TESS_EVAL].info.wave_size
: stages[MESA_SHADER_VERTEX].info.wave_size;
}
do {
orig_max_esverts = max_esverts;
orig_max_gsprims = max_gsprims;
max_esverts = align(max_esverts, wavesize);
max_esverts = MIN2(max_esverts, max_esverts_base);
if (esvert_lds_size)
max_esverts =
MIN2(max_esverts, (max_lds_size - max_gsprims * gsprim_lds_size) / esvert_lds_size);
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
/* Hardware restriction: minimum value of max_esverts */
if (pdevice->rad_info.gfx_level == GFX10)
max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim);
else
max_esverts = MAX2(max_esverts, min_esverts);
max_gsprims = align(max_gsprims, wavesize);
max_gsprims = MIN2(max_gsprims, max_gsprims_base);
if (gsprim_lds_size) {
/* Don't count unusable vertices to the LDS
* size. Those are vertices above the maximum
* number of vertices that can occur in the
* workgroup, which is e.g. max_gsprims * 3
* for triangles.
*/
unsigned usable_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
max_gsprims = MIN2(max_gsprims,
(max_lds_size - usable_esverts * esvert_lds_size) / gsprim_lds_size);
}
clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency);
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
} while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
/* Verify the restriction. */
if (pdevice->rad_info.gfx_level == GFX10)
assert(max_esverts >= min_esverts - 1 + max_verts_per_prim);
else
assert(max_esverts >= min_esverts);
} else {
/* Hardware restriction: minimum value of max_esverts */
if (pdevice->rad_info.gfx_level == GFX10)
max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim);
else
max_esverts = MAX2(max_esverts, min_esverts);
}
unsigned max_out_vertices = max_vert_out_per_gs_instance ? gs_info->gs.vertices_out
: gs_type == MESA_SHADER_GEOMETRY
? max_gsprims * gs_num_invocations * gs_info->gs.vertices_out
: max_esverts;
assert(max_out_vertices <= 256);
unsigned prim_amp_factor = 1;
if (gs_type == MESA_SHADER_GEOMETRY) {
/* Number of output primitives per GS input primitive after
* GS instancing. */
prim_amp_factor = gs_info->gs.vertices_out;
}
/* On Gfx10, the GE only checks against the maximum number of ES verts
* after allocating a full GS primitive. So we need to ensure that
* whenever this check passes, there is enough space for a full
* primitive without vertex reuse.
*/
if (pdevice->rad_info.gfx_level == GFX10)
ngg->hw_max_esverts = max_esverts - max_verts_per_prim + 1;
else
ngg->hw_max_esverts = max_esverts;
ngg->max_gsprims = max_gsprims;
ngg->max_out_verts = max_out_vertices;
ngg->prim_amp_factor = prim_amp_factor;
ngg->max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
ngg->ngg_emit_size = max_gsprims * gsprim_lds_size;
ngg->enable_vertex_grouping = true;
/* Don't count unusable vertices. */
ngg->esgs_ring_size = MIN2(max_esverts, max_gsprims * max_verts_per_prim) * esvert_lds_size * 4;
if (gs_type == MESA_SHADER_GEOMETRY) {
ngg->vgt_esgs_ring_itemsize = es_info->esgs_itemsize / 4;
} else {
ngg->vgt_esgs_ring_itemsize = 1;
}
assert(ngg->hw_max_esverts >= min_esverts); /* HW limitation */
gl_shader_stage es_stage = stages[MESA_SHADER_TESS_CTRL].nir ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
unsigned workgroup_size =
ac_compute_ngg_workgroup_size(
max_esverts, max_gsprims * gs_num_invocations, max_out_vertices, prim_amp_factor);
stages[MESA_SHADER_GEOMETRY].info.workgroup_size = workgroup_size;
stages[es_stage].info.workgroup_size = workgroup_size;
}
static void
radv_pipeline_init_gs_ring_state(struct radv_graphics_pipeline *pipeline, const struct gfx9_gs_info *gs)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
unsigned num_se = pdevice->rad_info.max_se;
unsigned wave_size = 64;
unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
/* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16.
* On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
*/
unsigned gs_vertex_reuse = (pdevice->rad_info.gfx_level >= GFX8 ? 32 : 16) * num_se;
unsigned alignment = 256 * num_se;
/* The maximum size is 63.999 MB per SE. */
unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
struct radv_shader_info *gs_info = &pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info;
/* Calculate the minimum size. */
unsigned min_esgs_ring_size =
align(gs->vgt_esgs_ring_itemsize * 4 * gs_vertex_reuse * wave_size, alignment);
/* These are recommended sizes, not minimum sizes. */
unsigned esgs_ring_size =
max_gs_waves * 2 * wave_size * gs->vgt_esgs_ring_itemsize * 4 * gs_info->gs.vertices_in;
unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs_info->gs.max_gsvs_emit_size;
min_esgs_ring_size = align(min_esgs_ring_size, alignment);
esgs_ring_size = align(esgs_ring_size, alignment);
gsvs_ring_size = align(gsvs_ring_size, alignment);
if (pdevice->rad_info.gfx_level <= GFX8)
pipeline->esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
pipeline->gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
}
struct radv_shader *
radv_get_shader(const struct radv_pipeline *pipeline, gl_shader_stage stage)
{
if (stage == MESA_SHADER_VERTEX) {
if (pipeline->shaders[MESA_SHADER_VERTEX])
return pipeline->shaders[MESA_SHADER_VERTEX];
if (pipeline->shaders[MESA_SHADER_TESS_CTRL])
return pipeline->shaders[MESA_SHADER_TESS_CTRL];
if (pipeline->shaders[MESA_SHADER_GEOMETRY])
return pipeline->shaders[MESA_SHADER_GEOMETRY];
} else if (stage == MESA_SHADER_TESS_EVAL) {
if (!pipeline->shaders[MESA_SHADER_TESS_CTRL])
return NULL;
if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
return pipeline->shaders[MESA_SHADER_TESS_EVAL];
if (pipeline->shaders[MESA_SHADER_GEOMETRY])
return pipeline->shaders[MESA_SHADER_GEOMETRY];
}
return pipeline->shaders[stage];
}
static const struct radv_vs_output_info *
get_vs_output_info(const struct radv_graphics_pipeline *pipeline)
{
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
if (radv_pipeline_has_ngg(pipeline))
return &pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.vs.outinfo;
else
return &pipeline->base.gs_copy_shader->info.vs.outinfo;
else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL))
return &pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.tes.outinfo;
else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH))
return &pipeline->base.shaders[MESA_SHADER_MESH]->info.ms.outinfo;
else
return &pipeline->base.shaders[MESA_SHADER_VERTEX]->info.vs.outinfo;
}
static bool
radv_lower_viewport_to_zero(nir_shader *nir)
{
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
bool progress = false;
nir_builder b;
nir_builder_init(&b, impl);
/* There should be only one deref load for VIEWPORT after lower_io_to_temporaries. */
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic != nir_intrinsic_load_deref)
continue;
nir_variable *var = nir_intrinsic_get_var(intr, 0);
if (var->data.mode != nir_var_shader_in ||
var->data.location != VARYING_SLOT_VIEWPORT)
continue;
b.cursor = nir_before_instr(instr);
nir_ssa_def_rewrite_uses(&intr->dest.ssa, nir_imm_zero(&b, 1, 32));
progress = true;
break;
}
if (progress)
break;
}
if (progress)
nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance);
else
nir_metadata_preserve(impl, nir_metadata_all);
return progress;
}
static nir_variable *
find_layer_out_var(nir_shader *nir)
{
nir_variable *var = nir_find_variable_with_location(nir, nir_var_shader_out, VARYING_SLOT_LAYER);
if (var != NULL)
return var;
var = nir_variable_create(nir, nir_var_shader_out, glsl_int_type(), "layer id");
var->data.location = VARYING_SLOT_LAYER;
var->data.interpolation = INTERP_MODE_NONE;
return var;
}
static bool
radv_lower_multiview(nir_shader *nir)
{
/* This pass is not suitable for mesh shaders, because it can't know
* the mapping between API mesh shader invocations and output primitives.
* Needs to be handled in ac_nir_lower_ngg.
*/
if (nir->info.stage == MESA_SHADER_MESH)
return false;
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
bool progress = false;
nir_builder b;
nir_builder_init(&b, impl);
/* Iterate in reverse order since there should be only one deref store to POS after
* lower_io_to_temporaries for vertex shaders and inject the layer there. For geometry shaders,
* the layer is injected right before every emit_vertex_with_counter.
*/
nir_variable *layer = NULL;
nir_foreach_block_reverse(block, impl) {
nir_foreach_instr_reverse(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
if (nir->info.stage == MESA_SHADER_GEOMETRY) {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic != nir_intrinsic_emit_vertex_with_counter)
continue;
b.cursor = nir_before_instr(instr);
} else {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic != nir_intrinsic_store_deref)
continue;
nir_variable *var = nir_intrinsic_get_var(intr, 0);
if (var->data.mode != nir_var_shader_out || var->data.location != VARYING_SLOT_POS)
continue;
b.cursor = nir_after_instr(instr);
}
if (!layer)
layer = find_layer_out_var(nir);
nir_store_var(&b, layer, nir_load_view_index(&b), 1);
/* Update outputs_written to reflect that the pass added a new output. */
nir->info.outputs_written |= BITFIELD64_BIT(VARYING_SLOT_LAYER);
progress = true;
if (nir->info.stage == MESA_SHADER_VERTEX)
break;
}
if (nir->info.stage == MESA_SHADER_VERTEX && progress)
break;
}
if (progress)
nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance);
else
nir_metadata_preserve(impl, nir_metadata_all);
return progress;
}
static bool
radv_export_implicit_primitive_id(nir_shader *nir)
{
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
nir_builder b;
nir_builder_init(&b, impl);
b.cursor = nir_after_cf_list(&impl->body);
nir_variable *var = nir_variable_create(nir, nir_var_shader_out, glsl_int_type(), NULL);
var->data.location = VARYING_SLOT_PRIMITIVE_ID;
var->data.interpolation = INTERP_MODE_NONE;
nir_store_var(&b, var, nir_load_primitive_id(&b), 1);
/* Update outputs_written to reflect that the pass added a new output. */
nir->info.outputs_written |= BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_ID);
nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance);
return true;
}
static void
radv_link_shaders(struct radv_pipeline *pipeline,
const struct radv_pipeline_key *pipeline_key,
const struct radv_pipeline_stage *stages,
bool optimize_conservatively,
gl_shader_stage last_vgt_api_stage)
{
const struct radv_physical_device *pdevice = pipeline->device->physical_device;
nir_shader *ordered_shaders[MESA_VULKAN_SHADER_STAGES];
int shader_count = 0;
if (stages[MESA_SHADER_FRAGMENT].nir) {
ordered_shaders[shader_count++] = stages[MESA_SHADER_FRAGMENT].nir;
}
if (stages[MESA_SHADER_GEOMETRY].nir) {
ordered_shaders[shader_count++] = stages[MESA_SHADER_GEOMETRY].nir;
}
if (stages[MESA_SHADER_TESS_EVAL].nir) {
ordered_shaders[shader_count++] = stages[MESA_SHADER_TESS_EVAL].nir;
}
if (stages[MESA_SHADER_TESS_CTRL].nir) {
ordered_shaders[shader_count++] = stages[MESA_SHADER_TESS_CTRL].nir;
}
if (stages[MESA_SHADER_VERTEX].nir) {
ordered_shaders[shader_count++] = stages[MESA_SHADER_VERTEX].nir;
}
if (stages[MESA_SHADER_MESH].nir) {
ordered_shaders[shader_count++] = stages[MESA_SHADER_MESH].nir;
}
if (stages[MESA_SHADER_TASK].nir) {
ordered_shaders[shader_count++] = stages[MESA_SHADER_TASK].nir;
}
if (stages[MESA_SHADER_COMPUTE].nir) {
ordered_shaders[shader_count++] = stages[MESA_SHADER_COMPUTE].nir;
}
if (stages[MESA_SHADER_MESH].nir && stages[MESA_SHADER_FRAGMENT].nir) {
nir_shader *ps = stages[MESA_SHADER_FRAGMENT].nir;
nir_foreach_shader_in_variable(var, ps) {
/* These variables are per-primitive when used with a mesh shader. */
if (var->data.location == VARYING_SLOT_PRIMITIVE_ID ||
var->data.location == VARYING_SLOT_VIEWPORT ||
var->data.location == VARYING_SLOT_LAYER)
var->data.per_primitive = true;
}
}
bool has_geom_tess = stages[MESA_SHADER_GEOMETRY].nir || stages[MESA_SHADER_TESS_CTRL].nir;
bool merged_gs = stages[MESA_SHADER_GEOMETRY].nir && pdevice->rad_info.gfx_level >= GFX9;
if (!optimize_conservatively && shader_count > 1) {
unsigned first = ordered_shaders[shader_count - 1]->info.stage;
unsigned last = ordered_shaders[0]->info.stage;
if (ordered_shaders[0]->info.stage == MESA_SHADER_FRAGMENT &&
ordered_shaders[1]->info.has_transform_feedback_varyings)
nir_link_xfb_varyings(ordered_shaders[1], ordered_shaders[0]);
for (int i = 1; i < shader_count; ++i) {
nir_lower_io_arrays_to_elements(ordered_shaders[i], ordered_shaders[i - 1]);
nir_validate_shader(ordered_shaders[i], "after nir_lower_io_arrays_to_elements");
nir_validate_shader(ordered_shaders[i - 1], "after nir_lower_io_arrays_to_elements");
}
for (int i = 0; i < shader_count; ++i) {
nir_variable_mode mask = 0;
if (ordered_shaders[i]->info.stage != first)
mask = mask | nir_var_shader_in;
if (ordered_shaders[i]->info.stage != last)
mask = mask | nir_var_shader_out;
bool progress = false;
NIR_PASS(progress, ordered_shaders[i], nir_lower_io_to_scalar_early, mask);
if (progress) {
/* Optimize the new vector code and then remove dead vars */
NIR_PASS(_, ordered_shaders[i], nir_copy_prop);
NIR_PASS(_, ordered_shaders[i], nir_opt_shrink_vectors);
if (ordered_shaders[i]->info.stage != last) {
/* Optimize swizzled movs of load_const for
* nir_link_opt_varyings's constant propagation
*/
NIR_PASS(_, ordered_shaders[i], nir_opt_constant_folding);
/* For nir_link_opt_varyings's duplicate input opt */
NIR_PASS(_, ordered_shaders[i], nir_opt_cse);
}
/* Run copy-propagation to help remove dead
* output variables (some shaders have useless
* copies to/from an output), so compaction
* later will be more effective.
*
* This will have been done earlier but it might
* not have worked because the outputs were vector.
*/
if (ordered_shaders[i]->info.stage == MESA_SHADER_TESS_CTRL)
NIR_PASS(_, ordered_shaders[i], nir_opt_copy_prop_vars);
NIR_PASS(_, ordered_shaders[i], nir_opt_dce);
NIR_PASS(_, ordered_shaders[i], nir_remove_dead_variables,
nir_var_function_temp | nir_var_shader_in | nir_var_shader_out, NULL);
}
}
}
/* Export the primitive ID when VS or TES don't export it because it's implicit, while it's
* required for GS or MS. The primitive ID is added during lowering for NGG.
*/
if (stages[MESA_SHADER_FRAGMENT].nir &&
(stages[MESA_SHADER_FRAGMENT].nir->info.inputs_read & VARYING_BIT_PRIMITIVE_ID) &&
!(stages[last_vgt_api_stage].nir->info.outputs_written & VARYING_BIT_PRIMITIVE_ID) &&
((last_vgt_api_stage == MESA_SHADER_VERTEX && !stages[MESA_SHADER_VERTEX].info.is_ngg) ||
(last_vgt_api_stage == MESA_SHADER_TESS_EVAL && !stages[MESA_SHADER_TESS_EVAL].info.is_ngg))) {
radv_export_implicit_primitive_id(stages[last_vgt_api_stage].nir);
}
if (!optimize_conservatively) {
bool uses_xfb = last_vgt_api_stage != -1 &&
stages[last_vgt_api_stage].nir->xfb_info;
for (unsigned i = 0; i < shader_count; ++i) {
shader_info *info = &ordered_shaders[i]->info;
/* Remove exports without color attachment or writemask. */
if (info->stage == MESA_SHADER_FRAGMENT) {
bool fixup_derefs = false;
nir_foreach_variable_with_modes(var, ordered_shaders[i], nir_var_shader_out) {
int idx = var->data.location;
idx -= FRAG_RESULT_DATA0;
if (idx < 0)
continue;
unsigned col_format = (pipeline_key->ps.col_format >> (4 * idx)) & 0xf;
unsigned cb_target_mask = (pipeline_key->ps.cb_target_mask >> (4 * idx)) & 0xf;
if (col_format == V_028714_SPI_SHADER_ZERO ||
(col_format == V_028714_SPI_SHADER_32_R && !cb_target_mask &&
!pipeline_key->ps.mrt0_is_dual_src)) {
/* Remove the color export if it's unused or in presence of holes. */
info->outputs_written &= ~BITFIELD64_BIT(var->data.location);
var->data.location = 0;
var->data.mode = nir_var_shader_temp;
fixup_derefs = true;
}
}
if (fixup_derefs) {
NIR_PASS_V(ordered_shaders[i], nir_fixup_deref_modes);
NIR_PASS(_, ordered_shaders[i], nir_remove_dead_variables, nir_var_shader_temp,
NULL);
NIR_PASS(_, ordered_shaders[i], nir_opt_dce);
}
continue;
}
/* Remove PSIZ from shaders when it's not needed.
* This is typically produced by translation layers like Zink or D9VK.
*/
if (uses_xfb || !(info->outputs_written & VARYING_BIT_PSIZ))
continue;
bool next_stage_needs_psiz =
i != 0 && /* ordered_shaders is backwards, so next stage is: i - 1 */
ordered_shaders[i - 1]->info.inputs_read & VARYING_BIT_PSIZ;
bool topology_uses_psiz =
info->stage == last_vgt_api_stage &&
((info->stage == MESA_SHADER_VERTEX && pipeline_key->vs.topology == V_008958_DI_PT_POINTLIST) ||
(info->stage == MESA_SHADER_TESS_EVAL && info->tess.point_mode) ||
(info->stage == MESA_SHADER_GEOMETRY && info->gs.output_primitive == SHADER_PRIM_POINTS) ||
(info->stage == MESA_SHADER_MESH && info->mesh.primitive_type == SHADER_PRIM_POINTS));
nir_variable *psiz_var =
nir_find_variable_with_location(ordered_shaders[i], nir_var_shader_out, VARYING_SLOT_PSIZ);
if (!next_stage_needs_psiz && !topology_uses_psiz && psiz_var) {
/* Change PSIZ to a global variable which allows it to be DCE'd. */
psiz_var->data.location = 0;
psiz_var->data.mode = nir_var_shader_temp;
info->outputs_written &= ~VARYING_BIT_PSIZ;
NIR_PASS_V(ordered_shaders[i], nir_fixup_deref_modes);
NIR_PASS(_, ordered_shaders[i], nir_remove_dead_variables, nir_var_shader_temp, NULL);
NIR_PASS(_, ordered_shaders[i], nir_opt_dce);
}
}
}
/* Lower the viewport index to zero when the last vertex stage doesn't export it. */
if (stages[MESA_SHADER_FRAGMENT].nir &&
(stages[MESA_SHADER_FRAGMENT].nir->info.inputs_read & VARYING_BIT_VIEWPORT) &&
!(stages[last_vgt_api_stage].nir->info.outputs_written & VARYING_BIT_VIEWPORT)) {
NIR_PASS(_, stages[MESA_SHADER_FRAGMENT].nir, radv_lower_viewport_to_zero);
}
/* Export the layer in the last VGT stage if multiview is used. */
if (pipeline_key->has_multiview_view_index && last_vgt_api_stage != -1 &&
!(stages[last_vgt_api_stage].nir->info.outputs_written &
VARYING_BIT_LAYER)) {
nir_shader *last_vgt_shader = stages[last_vgt_api_stage].nir;
NIR_PASS(_, last_vgt_shader, radv_lower_multiview);
}
for (int i = 1; !optimize_conservatively && (i < shader_count); ++i) {
if (nir_link_opt_varyings(ordered_shaders[i], ordered_shaders[i - 1])) {
nir_validate_shader(ordered_shaders[i], "after nir_link_opt_varyings");
nir_validate_shader(ordered_shaders[i - 1], "after nir_link_opt_varyings");
NIR_PASS(_, ordered_shaders[i - 1], nir_opt_constant_folding);
NIR_PASS(_, ordered_shaders[i - 1], nir_opt_algebraic);
NIR_PASS(_, ordered_shaders[i - 1], nir_opt_dce);
}
NIR_PASS(_, ordered_shaders[i], nir_remove_dead_variables, nir_var_shader_out, NULL);
NIR_PASS(_, ordered_shaders[i - 1], nir_remove_dead_variables, nir_var_shader_in, NULL);
bool progress = nir_remove_unused_varyings(ordered_shaders[i], ordered_shaders[i - 1]);
nir_compact_varyings(ordered_shaders[i], ordered_shaders[i - 1], true);
nir_validate_shader(ordered_shaders[i], "after nir_compact_varyings");
nir_validate_shader(ordered_shaders[i - 1], "after nir_compact_varyings");
if (ordered_shaders[i]->info.stage == MESA_SHADER_MESH) {
/* nir_compact_varyings can change the location of per-vertex and per-primitive outputs */
nir_shader_gather_info(ordered_shaders[i], nir_shader_get_entrypoint(ordered_shaders[i]));
}
if (ordered_shaders[i]->info.stage == MESA_SHADER_TESS_CTRL ||
ordered_shaders[i]->info.stage == MESA_SHADER_MESH ||
(ordered_shaders[i]->info.stage == MESA_SHADER_VERTEX && has_geom_tess) ||
(ordered_shaders[i]->info.stage == MESA_SHADER_TESS_EVAL && merged_gs)) {
NIR_PASS(_, ordered_shaders[i], nir_lower_io_to_vector, nir_var_shader_out);
if (ordered_shaders[i]->info.stage == MESA_SHADER_TESS_CTRL)
NIR_PASS(_, ordered_shaders[i], nir_vectorize_tess_levels);
NIR_PASS(_, ordered_shaders[i], nir_opt_combine_stores, nir_var_shader_out);
}
if (ordered_shaders[i - 1]->info.stage == MESA_SHADER_GEOMETRY ||
ordered_shaders[i - 1]->info.stage == MESA_SHADER_TESS_CTRL ||
ordered_shaders[i - 1]->info.stage == MESA_SHADER_TESS_EVAL) {
NIR_PASS(_, ordered_shaders[i - 1], nir_lower_io_to_vector, nir_var_shader_in);
}
if (progress) {
progress = false;
NIR_PASS(progress, ordered_shaders[i], nir_lower_global_vars_to_local);
if (progress) {
ac_nir_lower_indirect_derefs(ordered_shaders[i], pdevice->rad_info.gfx_level);
/* remove dead writes, which can remove input loads */
NIR_PASS(_, ordered_shaders[i], nir_lower_vars_to_ssa);
NIR_PASS(_, ordered_shaders[i], nir_opt_dce);
}
progress = false;
NIR_PASS(progress, ordered_shaders[i - 1], nir_lower_global_vars_to_local);
if (progress) {
ac_nir_lower_indirect_derefs(ordered_shaders[i - 1], pdevice->rad_info.gfx_level);
}
}
}
}
static void
radv_set_driver_locations(struct radv_pipeline *pipeline, struct radv_pipeline_stage *stages,
gl_shader_stage last_vgt_api_stage)
{
const struct radv_physical_device *pdevice = pipeline->device->physical_device;
if (stages[MESA_SHADER_FRAGMENT].nir) {
nir_foreach_shader_out_variable(var, stages[MESA_SHADER_FRAGMENT].nir)
{
var->data.driver_location = var->data.location + var->data.index;
}
}
if (stages[MESA_SHADER_MESH].nir) {
/* ac_nir_lower_ngg ignores driver locations for mesh shaders,
* but set them to all zero just to be on the safe side.
*/
nir_foreach_shader_out_variable(var, stages[MESA_SHADER_MESH].nir) {
var->data.driver_location = 0;
}
return;
}
if (!stages[MESA_SHADER_VERTEX].nir)
return;
bool has_tess = stages[MESA_SHADER_TESS_CTRL].nir;
bool has_gs = stages[MESA_SHADER_GEOMETRY].nir;
/* Merged stage for VS and TES */
unsigned vs_info_idx = MESA_SHADER_VERTEX;
unsigned tes_info_idx = MESA_SHADER_TESS_EVAL;
if (pdevice->rad_info.gfx_level >= GFX9) {
/* These are merged into the next stage */
vs_info_idx = has_tess ? MESA_SHADER_TESS_CTRL : MESA_SHADER_GEOMETRY;
tes_info_idx = has_gs ? MESA_SHADER_GEOMETRY : MESA_SHADER_TESS_EVAL;
}
nir_foreach_shader_in_variable (var, stages[MESA_SHADER_VERTEX].nir) {
var->data.driver_location = var->data.location;
}
if (has_tess) {
nir_linked_io_var_info vs2tcs = nir_assign_linked_io_var_locations(
stages[MESA_SHADER_VERTEX].nir, stages[MESA_SHADER_TESS_CTRL].nir);
nir_linked_io_var_info tcs2tes = nir_assign_linked_io_var_locations(
stages[MESA_SHADER_TESS_CTRL].nir, stages[MESA_SHADER_TESS_EVAL].nir);
stages[MESA_SHADER_VERTEX].info.vs.num_linked_outputs = vs2tcs.num_linked_io_vars;
stages[MESA_SHADER_TESS_CTRL].info.tcs.num_linked_inputs = vs2tcs.num_linked_io_vars;
stages[MESA_SHADER_TESS_CTRL].info.tcs.num_linked_outputs = tcs2tes.num_linked_io_vars;
stages[MESA_SHADER_TESS_CTRL].info.tcs.num_linked_patch_outputs = tcs2tes.num_linked_patch_io_vars;
stages[MESA_SHADER_TESS_EVAL].info.tes.num_linked_inputs = tcs2tes.num_linked_io_vars;
stages[MESA_SHADER_TESS_EVAL].info.tes.num_linked_patch_inputs = tcs2tes.num_linked_patch_io_vars;
/* Copy data to merged stage */
stages[vs_info_idx].info.vs.num_linked_outputs = vs2tcs.num_linked_io_vars;
stages[tes_info_idx].info.tes.num_linked_inputs = tcs2tes.num_linked_io_vars;
stages[tes_info_idx].info.tes.num_linked_patch_inputs = tcs2tes.num_linked_patch_io_vars;
if (has_gs) {
nir_linked_io_var_info tes2gs = nir_assign_linked_io_var_locations(
stages[MESA_SHADER_TESS_EVAL].nir, stages[MESA_SHADER_GEOMETRY].nir);
stages[MESA_SHADER_TESS_EVAL].info.tes.num_linked_outputs = tes2gs.num_linked_io_vars;
stages[MESA_SHADER_GEOMETRY].info.gs.num_linked_inputs = tes2gs.num_linked_io_vars;
/* Copy data to merged stage */
stages[tes_info_idx].info.tes.num_linked_outputs = tes2gs.num_linked_io_vars;
}
} else if (has_gs) {
nir_linked_io_var_info vs2gs = nir_assign_linked_io_var_locations(
stages[MESA_SHADER_VERTEX].nir, stages[MESA_SHADER_GEOMETRY].nir);
stages[MESA_SHADER_VERTEX].info.vs.num_linked_outputs = vs2gs.num_linked_io_vars;
stages[MESA_SHADER_GEOMETRY].info.gs.num_linked_inputs = vs2gs.num_linked_io_vars;
/* Copy data to merged stage */
stages[vs_info_idx].info.vs.num_linked_outputs = vs2gs.num_linked_io_vars;
}
assert(last_vgt_api_stage != MESA_SHADER_NONE);
nir_foreach_shader_out_variable(var, stages[last_vgt_api_stage].nir)
{
var->data.driver_location = var->data.location;
}
}
static struct radv_pipeline_key
radv_generate_pipeline_key(const struct radv_pipeline *pipeline, VkPipelineCreateFlags flags)
{
struct radv_device *device = pipeline->device;
struct radv_pipeline_key key;
memset(&key, 0, sizeof(key));
if (flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT)
key.optimisations_disabled = 1;
key.disable_aniso_single_level = device->instance->disable_aniso_single_level &&
device->physical_device->rad_info.gfx_level < GFX8;
key.image_2d_view_of_3d = device->image_2d_view_of_3d &&
device->physical_device->rad_info.gfx_level == GFX9;
return key;
}
static struct radv_pipeline_key
radv_generate_graphics_pipeline_key(const struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_info *info,
const struct radv_blend_state *blend)
{
struct radv_device *device = pipeline->base.device;
struct radv_pipeline_key key = radv_generate_pipeline_key(&pipeline->base, pCreateInfo->flags);
key.has_multiview_view_index = !!info->ri.view_mask;
if (pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT) {
key.vs.dynamic_input_state = true;
}
/* Vertex input state */
key.vs.instance_rate_inputs = info->vi.instance_rate_inputs;
key.vs.vertex_post_shuffle = info->vi.vertex_post_shuffle;
for (uint32_t i = 0; i < MAX_VERTEX_ATTRIBS; i++) {
key.vs.instance_rate_divisors[i] = info->vi.instance_rate_divisors[i];
key.vs.vertex_attribute_formats[i] = info->vi.vertex_attribute_formats[i];
key.vs.vertex_attribute_bindings[i] = info->vi.vertex_attribute_bindings[i];
key.vs.vertex_attribute_offsets[i] = info->vi.vertex_attribute_offsets[i];
key.vs.vertex_attribute_strides[i] = info->vi.vertex_attribute_strides[i];
key.vs.vertex_alpha_adjust[i] = info->vi.vertex_alpha_adjust[i];
}
for (uint32_t i = 0; i < MAX_VBS; i++) {
key.vs.vertex_binding_align[i] = info->vi.vertex_binding_align[i];
}
key.tcs.tess_input_vertices = info->ts.patch_control_points;
if (info->ms.raster_samples > 1) {
uint32_t ps_iter_samples = radv_pipeline_get_ps_iter_samples(info);
key.ps.num_samples = info->ms.raster_samples;
key.ps.log2_ps_iter_samples = util_logbase2(ps_iter_samples);
}
key.ps.col_format = blend->spi_shader_col_format;
key.ps.cb_target_mask = blend->cb_target_mask;
key.ps.mrt0_is_dual_src = blend->mrt0_is_dual_src;
if (device->physical_device->rad_info.gfx_level < GFX8) {
key.ps.is_int8 = blend->col_format_is_int8;
key.ps.is_int10 = blend->col_format_is_int10;
}
if (device->physical_device->rad_info.gfx_level >= GFX11) {
key.ps.alpha_to_coverage_via_mrtz = info->ms.alpha_to_coverage_enable;
}
key.vs.topology = info->ia.primitive_topology;
if (device->physical_device->rad_info.gfx_level >= GFX10) {
key.vs.provoking_vtx_last = info->rs.provoking_vtx_last;
}
if (device->instance->debug_flags & RADV_DEBUG_DISCARD_TO_DEMOTE)
key.ps.lower_discard_to_demote = true;
if (device->instance->enable_mrt_output_nan_fixup)
key.ps.enable_mrt_output_nan_fixup = blend->col_format_is_float32;
key.ps.force_vrs_enabled = device->force_vrs_enabled;
if (device->instance->debug_flags & RADV_DEBUG_INVARIANT_GEOM)
key.invariant_geom = true;
key.use_ngg = device->physical_device->use_ngg;
if ((radv_is_vrs_enabled(pipeline, info) || device->force_vrs_enabled) &&
(device->physical_device->rad_info.family == CHIP_NAVI21 ||
device->physical_device->rad_info.family == CHIP_NAVI22 ||
device->physical_device->rad_info.family == CHIP_VANGOGH))
key.adjust_frag_coord_z = true;
if (device->instance->disable_sinking_load_input_fs)
key.disable_sinking_load_input_fs = true;
if (device->primitives_generated_query)
key.primitives_generated_query = true;
key.ps.has_epilog = false; /* TODO: hook up PS epilogs */
return key;
}
static uint8_t
radv_get_wave_size(struct radv_device *device, gl_shader_stage stage,
const struct radv_shader_info *info)
{
if (stage == MESA_SHADER_GEOMETRY && !info->is_ngg)
return 64;
else if (stage == MESA_SHADER_COMPUTE) {
return info->cs.subgroup_size;
} else if (stage == MESA_SHADER_FRAGMENT)
return device->physical_device->ps_wave_size;
else if (stage == MESA_SHADER_TASK)
return device->physical_device->cs_wave_size;
else
return device->physical_device->ge_wave_size;
}
static uint8_t
radv_get_ballot_bit_size(struct radv_device *device, gl_shader_stage stage,
const struct radv_shader_info *info)
{
if (stage == MESA_SHADER_COMPUTE && info->cs.subgroup_size)
return info->cs.subgroup_size;
return 64;
}
static void
radv_determine_ngg_settings(struct radv_pipeline *pipeline,
const struct radv_pipeline_key *pipeline_key,
struct radv_pipeline_stage *stages,
gl_shader_stage last_vgt_api_stage)
{
const struct radv_physical_device *pdevice = pipeline->device->physical_device;
/* Shader settings for VS or TES without GS. */
if (last_vgt_api_stage == MESA_SHADER_VERTEX ||
last_vgt_api_stage == MESA_SHADER_TESS_EVAL) {
uint64_t ps_inputs_read =
stages[MESA_SHADER_FRAGMENT].nir ? stages[MESA_SHADER_FRAGMENT].nir->info.inputs_read : 0;
gl_shader_stage es_stage = last_vgt_api_stage;
unsigned num_vertices_per_prim = si_conv_prim_to_gs_out(pipeline_key->vs.topology) + 1;
if (es_stage == MESA_SHADER_TESS_EVAL)
num_vertices_per_prim = stages[es_stage].nir->info.tess.point_mode ? 1
: stages[es_stage].nir->info.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES ? 2
: 3;
/* TODO: Enable culling for LLVM. */
stages[es_stage].info.has_ngg_culling = radv_consider_culling(
pdevice, stages[es_stage].nir, ps_inputs_read, num_vertices_per_prim, &stages[es_stage].info) &&
!radv_use_llvm_for_stage(pipeline->device, es_stage);
nir_function_impl *impl = nir_shader_get_entrypoint(stages[es_stage].nir);
stages[es_stage].info.has_ngg_early_prim_export = exec_list_is_singular(&impl->body);
/* Invocations that process an input vertex */
const struct gfx10_ngg_info *ngg_info = &stages[es_stage].info.ngg_info;
unsigned max_vtx_in = MIN2(256, ngg_info->enable_vertex_grouping ? ngg_info->hw_max_esverts : num_vertices_per_prim * ngg_info->max_gsprims);
unsigned lds_bytes_if_culling_off = 0;
/* We need LDS space when VS needs to export the primitive ID. */
if (es_stage == MESA_SHADER_VERTEX && stages[es_stage].info.vs.outinfo.export_prim_id)
lds_bytes_if_culling_off = max_vtx_in * 4u;
stages[es_stage].info.num_lds_blocks_when_not_culling =
DIV_ROUND_UP(lds_bytes_if_culling_off, pdevice->rad_info.lds_encode_granularity);
/* NGG passthrough mode should be disabled when culling and when the vertex shader exports the
* primitive ID.
*/
stages[es_stage].info.is_ngg_passthrough = stages[es_stage].info.is_ngg_passthrough &&
!stages[es_stage].info.has_ngg_culling &&
!(es_stage == MESA_SHADER_VERTEX &&
stages[es_stage].info.vs.outinfo.export_prim_id);
}
}
static void
radv_fill_shader_info_ngg(struct radv_pipeline *pipeline,
const struct radv_pipeline_key *pipeline_key,
struct radv_pipeline_stage *stages)
{
struct radv_device *device = pipeline->device;
if (pipeline_key->use_ngg) {
if (stages[MESA_SHADER_TESS_CTRL].nir) {
stages[MESA_SHADER_TESS_EVAL].info.is_ngg = true;
} else if (stages[MESA_SHADER_VERTEX].nir) {
stages[MESA_SHADER_VERTEX].info.is_ngg = true;
} else if (stages[MESA_SHADER_MESH].nir) {
stages[MESA_SHADER_MESH].info.is_ngg = true;
}
if (stages[MESA_SHADER_TESS_CTRL].nir && stages[MESA_SHADER_GEOMETRY].nir &&
stages[MESA_SHADER_GEOMETRY].nir->info.gs.invocations *
stages[MESA_SHADER_GEOMETRY].nir->info.gs.vertices_out >
256) {
/* Fallback to the legacy path if tessellation is
* enabled with extreme geometry because
* EN_MAX_VERT_OUT_PER_GS_INSTANCE doesn't work and it
* might hang.
*/
stages[MESA_SHADER_TESS_EVAL].info.is_ngg = false;
/* GFX11+ requires NGG. */
assert(device->physical_device->rad_info.gfx_level < GFX11);
}
gl_shader_stage last_xfb_stage = MESA_SHADER_VERTEX;
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
if (stages[i].nir)
last_xfb_stage = i;
}
bool uses_xfb = stages[last_xfb_stage].nir &&
stages[last_xfb_stage].nir->xfb_info;
if (!device->physical_device->use_ngg_streamout && uses_xfb) {
/* GFX11+ requires NGG. */
assert(device->physical_device->rad_info.gfx_level < GFX11);
if (stages[MESA_SHADER_TESS_CTRL].nir)
stages[MESA_SHADER_TESS_EVAL].info.is_ngg = false;
else
stages[MESA_SHADER_VERTEX].info.is_ngg = false;
}
/* Determine if the pipeline is eligible for the NGG passthrough
* mode. It can't be enabled for geometry shaders, for NGG
* streamout or for vertex shaders that export the primitive ID
* (this is checked later because we don't have the info here.)
*/
if (!stages[MESA_SHADER_GEOMETRY].nir && !uses_xfb) {
if (stages[MESA_SHADER_TESS_CTRL].nir && stages[MESA_SHADER_TESS_EVAL].info.is_ngg) {
stages[MESA_SHADER_TESS_EVAL].info.is_ngg_passthrough = true;
} else if (stages[MESA_SHADER_VERTEX].nir && stages[MESA_SHADER_VERTEX].info.is_ngg) {
stages[MESA_SHADER_VERTEX].info.is_ngg_passthrough = true;
}
}
}
}
static void
radv_fill_shader_info(struct radv_pipeline *pipeline,
struct radv_pipeline_layout *pipeline_layout,
const struct radv_pipeline_key *pipeline_key,
struct radv_pipeline_stage *stages,
gl_shader_stage last_vgt_api_stage)
{
struct radv_device *device = pipeline->device;
unsigned active_stages = 0;
unsigned filled_stages = 0;
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
if (stages[i].nir)
active_stages |= (1 << i);
}
if (stages[MESA_SHADER_TESS_CTRL].nir) {
stages[MESA_SHADER_VERTEX].info.vs.as_ls = true;
}
if (stages[MESA_SHADER_GEOMETRY].nir) {
if (stages[MESA_SHADER_TESS_CTRL].nir)
stages[MESA_SHADER_TESS_EVAL].info.tes.as_es = true;
else
stages[MESA_SHADER_VERTEX].info.vs.as_es = true;
}
if (stages[MESA_SHADER_FRAGMENT].nir) {
radv_nir_shader_info_init(&stages[MESA_SHADER_FRAGMENT].info);
radv_nir_shader_info_pass(device, stages[MESA_SHADER_FRAGMENT].nir, pipeline_layout,
pipeline_key, &stages[MESA_SHADER_FRAGMENT].info);
assert(last_vgt_api_stage != MESA_SHADER_NONE);
struct radv_shader_info *pre_ps_info = &stages[last_vgt_api_stage].info;
struct radv_vs_output_info *outinfo = NULL;
if (last_vgt_api_stage == MESA_SHADER_VERTEX ||
last_vgt_api_stage == MESA_SHADER_GEOMETRY) {
outinfo = &pre_ps_info->vs.outinfo;
} else if (last_vgt_api_stage == MESA_SHADER_TESS_EVAL) {
outinfo = &pre_ps_info->tes.outinfo;
} else if (last_vgt_api_stage == MESA_SHADER_MESH) {
outinfo = &pre_ps_info->ms.outinfo;
}
/* Add PS input requirements to the output of the pre-PS stage. */
bool ps_prim_id_in = stages[MESA_SHADER_FRAGMENT].info.ps.prim_id_input;
bool ps_clip_dists_in = !!stages[MESA_SHADER_FRAGMENT].info.ps.num_input_clips_culls;
assert(outinfo);
outinfo->export_clip_dists |= ps_clip_dists_in;
if (last_vgt_api_stage == MESA_SHADER_VERTEX ||
last_vgt_api_stage == MESA_SHADER_TESS_EVAL) {
outinfo->export_prim_id |= ps_prim_id_in;
}
filled_stages |= (1 << MESA_SHADER_FRAGMENT);
}
if (device->physical_device->rad_info.gfx_level >= GFX9 &&
stages[MESA_SHADER_TESS_CTRL].nir) {
struct nir_shader *combined_nir[] = {stages[MESA_SHADER_VERTEX].nir, stages[MESA_SHADER_TESS_CTRL].nir};
radv_nir_shader_info_init(&stages[MESA_SHADER_TESS_CTRL].info);
/* Copy data to merged stage. */
stages[MESA_SHADER_TESS_CTRL].info.vs.as_ls = true;
for (int i = 0; i < 2; i++) {
radv_nir_shader_info_pass(device, combined_nir[i], pipeline_layout, pipeline_key,
&stages[MESA_SHADER_TESS_CTRL].info);
}
filled_stages |= (1 << MESA_SHADER_VERTEX);
filled_stages |= (1 << MESA_SHADER_TESS_CTRL);
}
if (device->physical_device->rad_info.gfx_level >= GFX9 &&
stages[MESA_SHADER_GEOMETRY].nir) {
gl_shader_stage pre_stage =
stages[MESA_SHADER_TESS_EVAL].nir ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
struct nir_shader *combined_nir[] = {stages[pre_stage].nir, stages[MESA_SHADER_GEOMETRY].nir};
radv_nir_shader_info_init(&stages[MESA_SHADER_GEOMETRY].info);
/* Copy data to merged stage. */
if (pre_stage == MESA_SHADER_VERTEX) {
stages[MESA_SHADER_GEOMETRY].info.vs.as_es = stages[MESA_SHADER_VERTEX].info.vs.as_es;
} else {
stages[MESA_SHADER_GEOMETRY].info.tes.as_es = stages[MESA_SHADER_TESS_EVAL].info.tes.as_es;
}
stages[MESA_SHADER_GEOMETRY].info.is_ngg = stages[pre_stage].info.is_ngg;
stages[MESA_SHADER_GEOMETRY].info.gs.es_type = pre_stage;
for (int i = 0; i < 2; i++) {
radv_nir_shader_info_pass(device, combined_nir[i], pipeline_layout, pipeline_key,
&stages[MESA_SHADER_GEOMETRY].info);
}
filled_stages |= (1 << pre_stage);
filled_stages |= (1 << MESA_SHADER_GEOMETRY);
}
active_stages ^= filled_stages;
while (active_stages) {
int i = u_bit_scan(&active_stages);
radv_nir_shader_info_init(&stages[i].info);
radv_nir_shader_info_pass(device, stages[i].nir, pipeline_layout, pipeline_key,
&stages[i].info);
}
if (stages[MESA_SHADER_COMPUTE].nir) {
unsigned subgroup_size = pipeline_key->cs.compute_subgroup_size;
unsigned req_subgroup_size = subgroup_size;
bool require_full_subgroups = pipeline_key->cs.require_full_subgroups;
if (!subgroup_size)
subgroup_size = device->physical_device->cs_wave_size;
unsigned local_size = stages[MESA_SHADER_COMPUTE].nir->info.workgroup_size[0] *
stages[MESA_SHADER_COMPUTE].nir->info.workgroup_size[1] *
stages[MESA_SHADER_COMPUTE].nir->info.workgroup_size[2];
/* Games don't always request full subgroups when they should,
* which can cause bugs if cswave32 is enabled.
*/
if (device->physical_device->cs_wave_size == 32 &&
stages[MESA_SHADER_COMPUTE].nir->info.cs.uses_wide_subgroup_intrinsics && !req_subgroup_size &&
local_size % RADV_SUBGROUP_SIZE == 0)
require_full_subgroups = true;
if (require_full_subgroups && !req_subgroup_size) {
/* don't use wave32 pretending to be wave64 */
subgroup_size = RADV_SUBGROUP_SIZE;
}
stages[MESA_SHADER_COMPUTE].info.cs.subgroup_size = subgroup_size;
}
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
if (stages[i].nir) {
stages[i].info.wave_size = radv_get_wave_size(device, i, &stages[i].info);
stages[i].info.ballot_bit_size = radv_get_ballot_bit_size(device, i, &stages[i].info);
}
}
/* PS always operates without workgroups. */
if (stages[MESA_SHADER_FRAGMENT].nir)
stages[MESA_SHADER_FRAGMENT].info.workgroup_size = stages[MESA_SHADER_FRAGMENT].info.wave_size;
if (stages[MESA_SHADER_COMPUTE].nir) {
/* Variable workgroup size is not supported by Vulkan. */
assert(!stages[MESA_SHADER_COMPUTE].nir->info.workgroup_size_variable);
stages[MESA_SHADER_COMPUTE].info.workgroup_size =
ac_compute_cs_workgroup_size(
stages[MESA_SHADER_COMPUTE].nir->info.workgroup_size, false, UINT32_MAX);
}
if (stages[MESA_SHADER_TASK].nir) {
/* Task/mesh I/O uses the task ring buffers. */
stages[MESA_SHADER_TASK].info.cs.uses_task_rings = true;
stages[MESA_SHADER_MESH].info.cs.uses_task_rings = true;
stages[MESA_SHADER_TASK].info.workgroup_size =
ac_compute_cs_workgroup_size(
stages[MESA_SHADER_TASK].nir->info.workgroup_size, false, UINT32_MAX);
}
}
static void
radv_declare_pipeline_args(struct radv_device *device, struct radv_pipeline_stage *stages,
const struct radv_pipeline_key *pipeline_key)
{
enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level;
unsigned active_stages = 0;
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
if (stages[i].nir)
active_stages |= (1 << i);
}
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
stages[i].args.is_gs_copy_shader = false;
stages[i].args.explicit_scratch_args = !radv_use_llvm_for_stage(device, i);
stages[i].args.remap_spi_ps_input = !radv_use_llvm_for_stage(device, i);
stages[i].args.load_grid_size_from_user_sgpr = device->load_grid_size_from_user_sgpr;
}
if (gfx_level >= GFX9 && stages[MESA_SHADER_TESS_CTRL].nir) {
radv_declare_shader_args(gfx_level, pipeline_key, &stages[MESA_SHADER_TESS_CTRL].info,
MESA_SHADER_TESS_CTRL, true, MESA_SHADER_VERTEX,
&stages[MESA_SHADER_TESS_CTRL].args);
stages[MESA_SHADER_TESS_CTRL].info.user_sgprs_locs = stages[MESA_SHADER_TESS_CTRL].args.user_sgprs_locs;
stages[MESA_SHADER_TESS_CTRL].info.inline_push_constant_mask =
stages[MESA_SHADER_TESS_CTRL].args.ac.inline_push_const_mask;
stages[MESA_SHADER_VERTEX].args = stages[MESA_SHADER_TESS_CTRL].args;
active_stages &= ~(1 << MESA_SHADER_VERTEX);
active_stages &= ~(1 << MESA_SHADER_TESS_CTRL);
}
if (gfx_level >= GFX9 && stages[MESA_SHADER_GEOMETRY].nir) {
gl_shader_stage pre_stage =
stages[MESA_SHADER_TESS_EVAL].nir ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
radv_declare_shader_args(gfx_level, pipeline_key, &stages[MESA_SHADER_GEOMETRY].info,
MESA_SHADER_GEOMETRY, true, pre_stage,
&stages[MESA_SHADER_GEOMETRY].args);
stages[MESA_SHADER_GEOMETRY].info.user_sgprs_locs = stages[MESA_SHADER_GEOMETRY].args.user_sgprs_locs;
stages[MESA_SHADER_GEOMETRY].info.inline_push_constant_mask =
stages[MESA_SHADER_GEOMETRY].args.ac.inline_push_const_mask;
stages[pre_stage].args = stages[MESA_SHADER_GEOMETRY].args;
active_stages &= ~(1 << pre_stage);
active_stages &= ~(1 << MESA_SHADER_GEOMETRY);
}
u_foreach_bit(i, active_stages) {
radv_declare_shader_args(gfx_level, pipeline_key, &stages[i].info, i, false,
MESA_SHADER_VERTEX, &stages[i].args);
stages[i].info.user_sgprs_locs = stages[i].args.user_sgprs_locs;
stages[i].info.inline_push_constant_mask = stages[i].args.ac.inline_push_const_mask;
}
}
static void
merge_tess_info(struct shader_info *tes_info, struct shader_info *tcs_info)
{
/* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
*
* "PointMode. Controls generation of points rather than triangles
* or lines. This functionality defaults to disabled, and is
* enabled if either shader stage includes the execution mode.
*
* and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
* PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
* and OutputVertices, it says:
*
* "One mode must be set in at least one of the tessellation
* shader stages."
*
* So, the fields can be set in either the TCS or TES, but they must
* agree if set in both. Our backend looks at TES, so bitwise-or in
* the values from the TCS.
*/
assert(tcs_info->tess.tcs_vertices_out == 0 || tes_info->tess.tcs_vertices_out == 0 ||
tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tcs_info->tess.spacing == tes_info->tess.spacing);
tes_info->tess.spacing |= tcs_info->tess.spacing;
assert(tcs_info->tess._primitive_mode == TESS_PRIMITIVE_UNSPECIFIED ||
tes_info->tess._primitive_mode == TESS_PRIMITIVE_UNSPECIFIED ||
tcs_info->tess._primitive_mode == tes_info->tess._primitive_mode);
tes_info->tess._primitive_mode |= tcs_info->tess._primitive_mode;
tes_info->tess.ccw |= tcs_info->tess.ccw;
tes_info->tess.point_mode |= tcs_info->tess.point_mode;
/* Copy the merged info back to the TCS */
tcs_info->tess.tcs_vertices_out = tes_info->tess.tcs_vertices_out;
tcs_info->tess.spacing = tes_info->tess.spacing;
tcs_info->tess._primitive_mode = tes_info->tess._primitive_mode;
tcs_info->tess.ccw = tes_info->tess.ccw;
tcs_info->tess.point_mode = tes_info->tess.point_mode;
}
static void
gather_tess_info(struct radv_device *device, struct radv_pipeline_stage *stages,
const struct radv_pipeline_key *pipeline_key)
{
merge_tess_info(&stages[MESA_SHADER_TESS_EVAL].nir->info,
&stages[MESA_SHADER_TESS_CTRL].nir->info);
unsigned tess_in_patch_size = pipeline_key->tcs.tess_input_vertices;
unsigned tess_out_patch_size = stages[MESA_SHADER_TESS_CTRL].nir->info.tess.tcs_vertices_out;
/* Number of tessellation patches per workgroup processed by the current pipeline. */
unsigned num_patches = get_tcs_num_patches(
tess_in_patch_size, tess_out_patch_size,
stages[MESA_SHADER_TESS_CTRL].info.tcs.num_linked_inputs,
stages[MESA_SHADER_TESS_CTRL].info.tcs.num_linked_outputs,
stages[MESA_SHADER_TESS_CTRL].info.tcs.num_linked_patch_outputs,
device->physical_device->hs.tess_offchip_block_dw_size, device->physical_device->rad_info.gfx_level,
device->physical_device->rad_info.family);
/* LDS size used by VS+TCS for storing TCS inputs and outputs. */
unsigned tcs_lds_size = calculate_tess_lds_size(
device->physical_device->rad_info.gfx_level, tess_in_patch_size, tess_out_patch_size,
stages[MESA_SHADER_TESS_CTRL].info.tcs.num_linked_inputs, num_patches,
stages[MESA_SHADER_TESS_CTRL].info.tcs.num_linked_outputs,
stages[MESA_SHADER_TESS_CTRL].info.tcs.num_linked_patch_outputs);
stages[MESA_SHADER_TESS_CTRL].info.num_tess_patches = num_patches;
stages[MESA_SHADER_TESS_CTRL].info.tcs.num_lds_blocks = tcs_lds_size;
stages[MESA_SHADER_TESS_CTRL].info.tcs.tes_reads_tess_factors =
!!(stages[MESA_SHADER_TESS_EVAL].nir->info.inputs_read &
(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER));
stages[MESA_SHADER_TESS_CTRL].info.tcs.tes_inputs_read = stages[MESA_SHADER_TESS_EVAL].nir->info.inputs_read;
stages[MESA_SHADER_TESS_CTRL].info.tcs.tes_patch_inputs_read =
stages[MESA_SHADER_TESS_EVAL].nir->info.patch_inputs_read;
stages[MESA_SHADER_TESS_EVAL].info.num_tess_patches = num_patches;
stages[MESA_SHADER_GEOMETRY].info.num_tess_patches = num_patches;
stages[MESA_SHADER_VERTEX].info.num_tess_patches = num_patches;
stages[MESA_SHADER_TESS_CTRL].info.tcs.tcs_vertices_out = tess_out_patch_size;
stages[MESA_SHADER_VERTEX].info.tcs.tcs_vertices_out = tess_out_patch_size;
if (!radv_use_llvm_for_stage(device, MESA_SHADER_VERTEX)) {
/* When the number of TCS input and output vertices are the same (typically 3):
* - There is an equal amount of LS and HS invocations
* - In case of merged LSHS shaders, the LS and HS halves of the shader
* always process the exact same vertex. We can use this knowledge to optimize them.
*
* We don't set tcs_in_out_eq if the float controls differ because that might
* involve different float modes for the same block and our optimizer
* doesn't handle a instruction dominating another with a different mode.
*/
stages[MESA_SHADER_VERTEX].info.vs.tcs_in_out_eq =
device->physical_device->rad_info.gfx_level >= GFX9 &&
tess_in_patch_size == tess_out_patch_size &&
stages[MESA_SHADER_VERTEX].nir->info.float_controls_execution_mode ==
stages[MESA_SHADER_TESS_CTRL].nir->info.float_controls_execution_mode;
if (stages[MESA_SHADER_VERTEX].info.vs.tcs_in_out_eq)
stages[MESA_SHADER_VERTEX].info.vs.tcs_temp_only_input_mask =
stages[MESA_SHADER_TESS_CTRL].nir->info.inputs_read &
stages[MESA_SHADER_VERTEX].nir->info.outputs_written &
~stages[MESA_SHADER_TESS_CTRL].nir->info.tess.tcs_cross_invocation_inputs_read &
~stages[MESA_SHADER_TESS_CTRL].nir->info.inputs_read_indirectly &
~stages[MESA_SHADER_VERTEX].nir->info.outputs_accessed_indirectly;
/* Copy data to TCS so it can be accessed by the backend if they are merged. */
stages[MESA_SHADER_TESS_CTRL].info.vs.tcs_in_out_eq = stages[MESA_SHADER_VERTEX].info.vs.tcs_in_out_eq;
stages[MESA_SHADER_TESS_CTRL].info.vs.tcs_temp_only_input_mask =
stages[MESA_SHADER_VERTEX].info.vs.tcs_temp_only_input_mask;
}
for (gl_shader_stage s = MESA_SHADER_VERTEX; s <= MESA_SHADER_TESS_CTRL; ++s)
stages[s].info.workgroup_size =
ac_compute_lshs_workgroup_size(device->physical_device->rad_info.gfx_level, s, num_patches,
tess_in_patch_size, tess_out_patch_size);
}
static bool
mem_vectorize_callback(unsigned align_mul, unsigned align_offset, unsigned bit_size,
unsigned num_components, nir_intrinsic_instr *low, nir_intrinsic_instr *high,
void *data)
{
if (num_components > 4)
return false;
/* >128 bit loads are split except with SMEM */
if (bit_size * num_components > 128)
return false;
uint32_t align;
if (align_offset)
align = 1 << (ffs(align_offset) - 1);
else
align = align_mul;
switch (low->intrinsic) {
case nir_intrinsic_load_global:
case nir_intrinsic_store_global:
case nir_intrinsic_store_ssbo:
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_push_constant: {
unsigned max_components;
if (align % 4 == 0)
max_components = NIR_MAX_VEC_COMPONENTS;
else if (align % 2 == 0)
max_components = 16u / bit_size;
else
max_components = 8u / bit_size;
return (align % (bit_size / 8u)) == 0 && num_components <= max_components;
}
case nir_intrinsic_load_deref:
case nir_intrinsic_store_deref:
assert(nir_deref_mode_is(nir_src_as_deref(low->src[0]), nir_var_mem_shared));
FALLTHROUGH;
case nir_intrinsic_load_shared:
case nir_intrinsic_store_shared:
if (bit_size * num_components ==
96) { /* 96 bit loads require 128 bit alignment and are split otherwise */
return align % 16 == 0;
} else if (bit_size == 16 && (align % 4)) {
/* AMD hardware can't do 2-byte aligned f16vec2 loads, but they are useful for ALU
* vectorization, because our vectorizer requires the scalar IR to already contain vectors.
*/
return (align % 2 == 0) && num_components <= 2;
} else {
if (num_components == 3) {
/* AMD hardware can't do 3-component loads except for 96-bit loads, handled above. */
return false;
}
unsigned req = bit_size * num_components;
if (req == 64 || req == 128) /* 64-bit and 128-bit loads can use ds_read2_b{32,64} */
req /= 2u;
return align % (req / 8u) == 0;
}
default:
return false;
}
return false;
}
static unsigned
lower_bit_size_callback(const nir_instr *instr, void *_)
{
struct radv_device *device = _;
enum amd_gfx_level chip = device->physical_device->rad_info.gfx_level;
if (instr->type != nir_instr_type_alu)
return 0;
nir_alu_instr *alu = nir_instr_as_alu(instr);
/* If an instruction is not scalarized by this point,
* it can be emitted as packed instruction */
if (alu->dest.dest.ssa.num_components > 1)
return 0;
if (alu->dest.dest.ssa.bit_size & (8 | 16)) {
unsigned bit_size = alu->dest.dest.ssa.bit_size;
switch (alu->op) {
case nir_op_bitfield_select:
case nir_op_imul_high:
case nir_op_umul_high:
return 32;
case nir_op_iabs:
case nir_op_imax:
case nir_op_umax:
case nir_op_imin:
case nir_op_umin:
case nir_op_ishr:
case nir_op_ushr:
case nir_op_ishl:
case nir_op_isign:
case nir_op_uadd_sat:
case nir_op_usub_sat:
return (bit_size == 8 || !(chip >= GFX8 && nir_dest_is_divergent(alu->dest.dest))) ? 32
: 0;
case nir_op_iadd_sat:
case nir_op_isub_sat:
return bit_size == 8 || !nir_dest_is_divergent(alu->dest.dest) ? 32 : 0;
default:
return 0;
}
}
if (nir_src_bit_size(alu->src[0].src) & (8 | 16)) {
unsigned bit_size = nir_src_bit_size(alu->src[0].src);
switch (alu->op) {
case nir_op_bit_count:
case nir_op_find_lsb:
case nir_op_ufind_msb:
case nir_op_i2b1:
return 32;
case nir_op_ilt:
case nir_op_ige:
case nir_op_ieq:
case nir_op_ine:
case nir_op_ult:
case nir_op_uge:
return (bit_size == 8 || !(chip >= GFX8 && nir_dest_is_divergent(alu->dest.dest))) ? 32
: 0;
default:
return 0;
}
}
return 0;
}
static uint8_t
opt_vectorize_callback(const nir_instr *instr, const void *_)
{
if (instr->type != nir_instr_type_alu)
return 0;
const struct radv_device *device = _;
enum amd_gfx_level chip = device->physical_device->rad_info.gfx_level;
if (chip < GFX9)
return 1;
const nir_alu_instr *alu = nir_instr_as_alu(instr);
const unsigned bit_size = alu->dest.dest.ssa.bit_size;
if (bit_size != 16)
return 1;
switch (alu->op) {
case nir_op_fadd:
case nir_op_fsub:
case nir_op_fmul:
case nir_op_ffma:
case nir_op_fdiv:
case nir_op_flrp:
case nir_op_fabs:
case nir_op_fneg:
case nir_op_fsat:
case nir_op_fmin:
case nir_op_fmax:
case nir_op_iabs:
case nir_op_iadd:
case nir_op_iadd_sat:
case nir_op_uadd_sat:
case nir_op_isub:
case nir_op_isub_sat:
case nir_op_usub_sat:
case nir_op_ineg:
case nir_op_imul:
case nir_op_imin:
case nir_op_imax:
case nir_op_umin:
case nir_op_umax:
return 2;
case nir_op_ishl: /* TODO: in NIR, these have 32bit shift operands */
case nir_op_ishr: /* while Radeon needs 16bit operands when vectorized */
case nir_op_ushr:
default:
return 1;
}
}
static nir_component_mask_t
non_uniform_access_callback(const nir_src *src, void *_)
{
if (src->ssa->num_components == 1)
return 0x1;
return nir_chase_binding(*src).success ? 0x2 : 0x3;
}
VkResult
radv_upload_shaders(struct radv_device *device, struct radv_pipeline *pipeline,
struct radv_shader_binary **binaries, struct radv_shader_binary *gs_copy_binary)
{
uint32_t code_size = 0;
/* Compute the total code size. */
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
struct radv_shader *shader = pipeline->shaders[i];
if (!shader)
continue;
code_size += align(shader->code_size, RADV_SHADER_ALLOC_ALIGNMENT);
}
if (pipeline->gs_copy_shader) {
code_size += align(pipeline->gs_copy_shader->code_size, RADV_SHADER_ALLOC_ALIGNMENT);
}
/* Allocate memory for all shader binaries. */
pipeline->slab = radv_pipeline_slab_create(device, pipeline, code_size);
if (!pipeline->slab)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
pipeline->slab_bo = pipeline->slab->alloc->arena->bo;
/* Upload shader binaries. */
uint64_t slab_va = radv_buffer_get_va(pipeline->slab_bo);
uint32_t slab_offset = pipeline->slab->alloc->offset;
char *slab_ptr = pipeline->slab->alloc->arena->ptr;
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
struct radv_shader *shader = pipeline->shaders[i];
if (!shader)
continue;
shader->va = slab_va + slab_offset;
void *dest_ptr = slab_ptr + slab_offset;
if (!radv_shader_binary_upload(device, binaries[i], shader, dest_ptr))
return VK_ERROR_OUT_OF_HOST_MEMORY;
slab_offset += align(shader->code_size, RADV_SHADER_ALLOC_ALIGNMENT);
}
if (pipeline->gs_copy_shader) {
pipeline->gs_copy_shader->va = slab_va + slab_offset;
void *dest_ptr = slab_ptr + slab_offset;
if (!radv_shader_binary_upload(device, gs_copy_binary, pipeline->gs_copy_shader, dest_ptr))
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
return VK_SUCCESS;
}
static bool
radv_consider_force_vrs(const struct radv_pipeline *pipeline, bool noop_fs,
const struct radv_pipeline_stage *stages,
gl_shader_stage last_vgt_api_stage)
{
struct radv_device *device = pipeline->device;
if (!device->force_vrs_enabled)
return false;
if (last_vgt_api_stage != MESA_SHADER_VERTEX &&
last_vgt_api_stage != MESA_SHADER_TESS_EVAL &&
last_vgt_api_stage != MESA_SHADER_GEOMETRY)
return false;
nir_shader *last_vgt_shader = stages[last_vgt_api_stage].nir;
if (last_vgt_shader->info.outputs_written & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE))
return false;
/* VRS has no effect if there is no pixel shader. */
if (noop_fs)
return false;
/* Do not enable if the PS uses gl_FragCoord because it breaks postprocessing in some games. */
nir_shader *fs_shader = stages[MESA_SHADER_FRAGMENT].nir;
if (fs_shader &&
BITSET_TEST(fs_shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD)) {
return false;
}
return true;
}
static nir_ssa_def *
radv_adjust_vertex_fetch_alpha(nir_builder *b,
enum radv_vs_input_alpha_adjust alpha_adjust,
nir_ssa_def *alpha)
{
if (alpha_adjust == ALPHA_ADJUST_SSCALED)
alpha = nir_f2u32(b, alpha);
/* For the integer-like cases, do a natural sign extension.
*
* For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0 and happen to contain 0, 1, 2, 3 as
* the two LSBs of the exponent.
*/
unsigned offset = alpha_adjust == ALPHA_ADJUST_SNORM ? 23u : 0u;
alpha = nir_ibfe_imm(b, alpha, offset, 2u);
/* Convert back to the right type. */
if (alpha_adjust == ALPHA_ADJUST_SNORM) {
alpha = nir_i2f32(b, alpha);
alpha = nir_fmax(b, alpha, nir_imm_float(b, -1.0f));
} else if (alpha_adjust == ALPHA_ADJUST_SSCALED) {
alpha = nir_i2f32(b, alpha);
}
return alpha;
}
static bool
radv_lower_vs_input(nir_shader *nir, const struct radv_pipeline_key *pipeline_key)
{
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
bool progress = false;
if (pipeline_key->vs.dynamic_input_state)
return false;
nir_builder b;
nir_builder_init(&b, impl);
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic != nir_intrinsic_load_input)
continue;
unsigned location = nir_intrinsic_base(intrin) - VERT_ATTRIB_GENERIC0;
enum radv_vs_input_alpha_adjust alpha_adjust = pipeline_key->vs.vertex_alpha_adjust[location];
bool post_shuffle = pipeline_key->vs.vertex_post_shuffle & (1 << location);
unsigned component = nir_intrinsic_component(intrin);
unsigned num_components = intrin->dest.ssa.num_components;
unsigned attrib_format = pipeline_key->vs.vertex_attribute_formats[location];
unsigned dfmt = attrib_format & 0xf;
unsigned nfmt = (attrib_format >> 4) & 0x7;
const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
bool is_float =
nfmt != V_008F0C_BUF_NUM_FORMAT_UINT && nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
unsigned mask = nir_ssa_def_components_read(&intrin->dest.ssa) << component;
unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
b.cursor = nir_after_instr(instr);
nir_ssa_def *channels[4];
if (post_shuffle) {
/* Expand to load 3 components because it's shuffled like X<->Z. */
intrin->num_components = MAX2(component + num_components, 3);
intrin->dest.ssa.num_components = intrin->num_components;
nir_intrinsic_set_component(intrin, 0);
num_channels = MAX2(num_channels, 3);
}
for (uint32_t i = 0; i < num_components; i++) {
unsigned idx = i + (post_shuffle ? component : 0);
if (swizzle[i + component] < num_channels) {
channels[i] = nir_channel(&b, &intrin->dest.ssa, swizzle[idx]);
} else if (i + component == 3) {
channels[i] = is_float ? nir_imm_float(&b, 1.0f) : nir_imm_int(&b, 1u);
} else {
channels[i] = nir_imm_zero(&b, 1, 32);
}
}
if (alpha_adjust != ALPHA_ADJUST_NONE && component + num_components == 4) {
unsigned idx = num_components - 1;
channels[idx] = radv_adjust_vertex_fetch_alpha(&b, alpha_adjust, channels[idx]);
}
nir_ssa_def *new_dest = nir_vec(&b, channels, num_components);
nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa, new_dest,
new_dest->parent_instr);
progress = true;
}
}
if (progress)
nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance);
else
nir_metadata_preserve(impl, nir_metadata_all);
return progress;
}
static bool
radv_lower_fs_output(nir_shader *nir, const struct radv_pipeline_key *pipeline_key)
{
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
bool progress = false;
nir_builder b;
nir_builder_init(&b, impl);
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic != nir_intrinsic_store_output)
continue;
int slot = nir_intrinsic_base(intrin) - FRAG_RESULT_DATA0;
if (slot < 0)
continue;
unsigned write_mask = nir_intrinsic_write_mask(intrin);
unsigned col_format = (pipeline_key->ps.col_format >> (4 * slot)) & 0xf;
bool is_int8 = (pipeline_key->ps.is_int8 >> slot) & 1;
bool is_int10 = (pipeline_key->ps.is_int10 >> slot) & 1;
bool enable_mrt_output_nan_fixup = (pipeline_key->ps.enable_mrt_output_nan_fixup >> slot) & 1;
bool is_16bit = intrin->src[0].ssa->bit_size == 16;
if (col_format == V_028714_SPI_SHADER_ZERO)
continue;
b.cursor = nir_before_instr(instr);
nir_ssa_def *values[4];
/* Extract the export values. */
for (unsigned i = 0; i < 4; i++) {
if (write_mask & (1 << i)) {
values[i] = nir_channel(&b, intrin->src[0].ssa, i);
} else {
values[i] = nir_ssa_undef(&b, 1, 32);
}
}
/* Replace NaN by zero (for 32-bit float formats) to fix game bugs if requested. */
if (enable_mrt_output_nan_fixup && !nir->info.internal && !is_16bit) {
u_foreach_bit(i, write_mask) {
const bool save_exact = b.exact;
b.exact = true;
nir_ssa_def *isnan = nir_fneu(&b, values[i], values[i]);
b.exact = save_exact;
values[i] = nir_bcsel(&b, isnan, nir_imm_zero(&b, 1, 32), values[i]);
}
}
if (col_format == V_028714_SPI_SHADER_FP16_ABGR ||
col_format == V_028714_SPI_SHADER_UNORM16_ABGR ||
col_format == V_028714_SPI_SHADER_SNORM16_ABGR ||
col_format == V_028714_SPI_SHADER_UINT16_ABGR ||
col_format == V_028714_SPI_SHADER_SINT16_ABGR) {
/* Convert and/or clamp the export values. */
switch (col_format) {
case V_028714_SPI_SHADER_UINT16_ABGR: {
unsigned max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
u_foreach_bit(i, write_mask) {
if (is_int8 || is_int10) {
values[i] = nir_umin(&b, values[i], i == 3 && is_int10 ? nir_imm_int(&b, 3u)
: nir_imm_int(&b, max_rgb));
} else if (is_16bit) {
values[i] = nir_u2u32(&b, values[i]);
}
}
break;
}
case V_028714_SPI_SHADER_SINT16_ABGR: {
unsigned max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
unsigned min_rgb = is_int8 ? -128 : is_int10 ? -512 : 0;
u_foreach_bit(i, write_mask) {
if (is_int8 || is_int10) {
values[i] = nir_imin(&b, values[i], i == 3 && is_int10 ? nir_imm_int(&b, 1u)
: nir_imm_int(&b, max_rgb));
values[i] = nir_imax(&b, values[i], i == 3 && is_int10 ? nir_imm_int(&b, -2u)
: nir_imm_int(&b, min_rgb));
} else if (is_16bit) {
values[i] = nir_i2i32(&b, values[i]);
}
}
break;
}
case V_028714_SPI_SHADER_UNORM16_ABGR:
case V_028714_SPI_SHADER_SNORM16_ABGR:
u_foreach_bit(i, write_mask) {
if (is_16bit) {
values[i] = nir_f2f32(&b, values[i]);
}
}
break;
default:
break;
}
/* Only nir_pack_32_2x16_split needs 16-bit inputs. */
bool input_16_bit = col_format == V_028714_SPI_SHADER_FP16_ABGR && is_16bit;
unsigned new_write_mask = 0;
/* Pack the export values. */
for (unsigned i = 0; i < 2; i++) {
bool enabled = (write_mask >> (i * 2)) & 0x3;
if (!enabled) {
values[i] = nir_ssa_undef(&b, 1, 32);
continue;
}
nir_ssa_def *src0 = values[i * 2];
nir_ssa_def *src1 = values[i * 2 + 1];
if (!(write_mask & (1 << (i * 2))))
src0 = nir_imm_zero(&b, 1, input_16_bit ? 16 : 32);
if (!(write_mask & (1 << (i * 2 + 1))))
src1 = nir_imm_zero(&b, 1, input_16_bit ? 16 : 32);
if (col_format == V_028714_SPI_SHADER_FP16_ABGR) {
if (is_16bit) {
values[i] = nir_pack_32_2x16_split(&b, src0, src1);
} else {
values[i] = nir_pack_half_2x16_split(&b, src0, src1);
}
} else if (col_format == V_028714_SPI_SHADER_UNORM16_ABGR) {
values[i] = nir_pack_unorm_2x16(&b, nir_vec2(&b, src0, src1));
} else if (col_format == V_028714_SPI_SHADER_SNORM16_ABGR) {
values[i] = nir_pack_snorm_2x16(&b, nir_vec2(&b, src0, src1));
} else if (col_format == V_028714_SPI_SHADER_UINT16_ABGR) {
values[i] = nir_pack_uint_2x16(&b, nir_vec2(&b, src0, src1));
} else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR) {
values[i] = nir_pack_sint_2x16(&b, nir_vec2(&b, src0, src1));
}
new_write_mask |= 1 << i;
}
/* Update the write mask for compressed outputs. */
nir_intrinsic_set_write_mask(intrin, new_write_mask);
intrin->num_components = util_last_bit(new_write_mask);
}
nir_ssa_def *new_src = nir_vec(&b, values, intrin->num_components);
nir_instr_rewrite_src(&intrin->instr, &intrin->src[0], nir_src_for_ssa(new_src));
progress = true;
}
}
if (progress)
nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance);
else
nir_metadata_preserve(impl, nir_metadata_all);
return progress;
}
void
radv_pipeline_stage_init(const VkPipelineShaderStageCreateInfo *sinfo,
struct radv_pipeline_stage *out_stage, gl_shader_stage stage)
{
const VkShaderModuleCreateInfo *minfo =
vk_find_struct_const(sinfo->pNext, SHADER_MODULE_CREATE_INFO);
const VkPipelineShaderStageModuleIdentifierCreateInfoEXT *iinfo =
vk_find_struct_const(sinfo->pNext, PIPELINE_SHADER_STAGE_MODULE_IDENTIFIER_CREATE_INFO_EXT);
if (sinfo->module == VK_NULL_HANDLE && !minfo && !iinfo)
return;
memset(out_stage, 0, sizeof(*out_stage));
out_stage->stage = stage;
out_stage->entrypoint = sinfo->pName;
out_stage->spec_info = sinfo->pSpecializationInfo;
out_stage->feedback.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT;
if (sinfo->module != VK_NULL_HANDLE) {
struct vk_shader_module *module = vk_shader_module_from_handle(sinfo->module);
STATIC_ASSERT(sizeof(out_stage->spirv.sha1) == sizeof(module->sha1));
out_stage->spirv.data = module->data;
out_stage->spirv.size = module->size;
out_stage->spirv.object = &module->base;
if (module->nir)
out_stage->internal_nir = module->nir;
} else if (minfo) {
out_stage->spirv.data = (const char *) minfo->pCode;
out_stage->spirv.size = minfo->codeSize;
}
vk_pipeline_hash_shader_stage(sinfo, out_stage->shader_sha1);
}
static struct radv_shader *
radv_pipeline_create_gs_copy_shader(struct radv_pipeline *pipeline,
struct radv_pipeline_stage *stages,
const struct radv_pipeline_key *pipeline_key,
const struct radv_pipeline_layout *pipeline_layout,
bool keep_executable_info, bool keep_statistic_info,
struct radv_shader_binary **gs_copy_binary)
{
struct radv_device *device = pipeline->device;
struct radv_shader_info info = {0};
if (stages[MESA_SHADER_GEOMETRY].info.vs.outinfo.export_clip_dists)
info.vs.outinfo.export_clip_dists = true;
radv_nir_shader_info_pass(device, stages[MESA_SHADER_GEOMETRY].nir, pipeline_layout, pipeline_key,
&info);
info.wave_size = 64; /* Wave32 not supported. */
info.workgroup_size = 64; /* HW VS: separate waves, no workgroups */
info.ballot_bit_size = 64;
struct radv_shader_args gs_copy_args = {0};
gs_copy_args.is_gs_copy_shader = true;
gs_copy_args.explicit_scratch_args = !radv_use_llvm_for_stage(device, MESA_SHADER_VERTEX);
radv_declare_shader_args(device->physical_device->rad_info.gfx_level, pipeline_key, &info,
MESA_SHADER_VERTEX, false, MESA_SHADER_VERTEX, &gs_copy_args);
info.user_sgprs_locs = gs_copy_args.user_sgprs_locs;
info.inline_push_constant_mask = gs_copy_args.ac.inline_push_const_mask;
return radv_create_gs_copy_shader(device, stages[MESA_SHADER_GEOMETRY].nir, &info, &gs_copy_args,
gs_copy_binary, keep_executable_info, keep_statistic_info,
pipeline_key->optimisations_disabled);
}
static void
radv_pipeline_nir_to_asm(struct radv_pipeline *pipeline, struct radv_pipeline_stage *stages,
const struct radv_pipeline_key *pipeline_key,
const struct radv_pipeline_layout *pipeline_layout,
bool keep_executable_info, bool keep_statistic_info,
gl_shader_stage last_vgt_api_stage,
struct radv_shader_binary **binaries,
struct radv_shader_binary **gs_copy_binary)
{
struct radv_device *device = pipeline->device;
unsigned active_stages = 0;
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
if (stages[i].nir)
active_stages |= (1 << i);
}
bool pipeline_has_ngg = last_vgt_api_stage != MESA_SHADER_NONE &&
stages[last_vgt_api_stage].info.is_ngg;
if (stages[MESA_SHADER_GEOMETRY].nir && !pipeline_has_ngg) {
pipeline->gs_copy_shader =
radv_pipeline_create_gs_copy_shader(pipeline, stages, pipeline_key, pipeline_layout,
keep_executable_info, keep_statistic_info,
gs_copy_binary);
}
for (int s = MESA_VULKAN_SHADER_STAGES - 1; s >= 0; s--) {
if (!(active_stages & (1 << s)) || pipeline->shaders[s])
continue;
nir_shader *shaders[2] = { stages[s].nir, NULL };
unsigned shader_count = 1;
/* On GFX9+, TES is merged with GS and VS is merged with TCS or GS. */
if (device->physical_device->rad_info.gfx_level >= GFX9 &&
(s == MESA_SHADER_TESS_CTRL || s == MESA_SHADER_GEOMETRY)) {
gl_shader_stage pre_stage;
if (s == MESA_SHADER_GEOMETRY && stages[MESA_SHADER_TESS_EVAL].nir) {
pre_stage = MESA_SHADER_TESS_EVAL;
} else {
pre_stage = MESA_SHADER_VERTEX;
}
shaders[0] = stages[pre_stage].nir;
shaders[1] = stages[s].nir;
shader_count = 2;
}
int64_t stage_start = os_time_get_nano();
pipeline->shaders[s] = radv_shader_nir_to_asm(device, &stages[s], shaders, shader_count,
pipeline_key, keep_executable_info,
keep_statistic_info, &binaries[s]);
stages[s].feedback.duration += os_time_get_nano() - stage_start;
active_stages &= ~(1 << shaders[0]->info.stage);
if (shaders[1])
active_stages &= ~(1 << shaders[1]->info.stage);
}
}
VkResult
radv_create_shaders(struct radv_pipeline *pipeline, struct radv_pipeline_layout *pipeline_layout,
struct radv_device *device, struct radv_pipeline_cache *cache,
const struct radv_pipeline_key *pipeline_key,
const VkPipelineShaderStageCreateInfo *pStages,
uint32_t stageCount,
const VkPipelineCreateFlags flags, const uint8_t *custom_hash,
const VkPipelineCreationFeedbackCreateInfo *creation_feedback,
struct radv_pipeline_shader_stack_size **stack_sizes,
uint32_t *num_stack_sizes,
gl_shader_stage *last_vgt_api_stage)
{
const char *noop_fs_entrypoint = "noop_fs";
struct radv_shader_binary *binaries[MESA_VULKAN_SHADER_STAGES] = {NULL};
struct radv_shader_binary *gs_copy_binary = NULL;
unsigned char hash[20];
bool keep_executable_info =
(flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR) ||
device->keep_shader_info;
bool keep_statistic_info = (flags & VK_PIPELINE_CREATE_CAPTURE_STATISTICS_BIT_KHR) ||
(device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) ||
device->keep_shader_info;
struct radv_pipeline_stage stages[MESA_VULKAN_SHADER_STAGES] = {0};
VkPipelineCreationFeedback pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
};
bool noop_fs = false;
VkResult result = VK_SUCCESS;
int64_t pipeline_start = os_time_get_nano();
for (uint32_t i = 0; i < stageCount; i++) {
const VkPipelineShaderStageCreateInfo *sinfo = &pStages[i];
gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
radv_pipeline_stage_init(sinfo, &stages[stage], stage);
}
for (unsigned s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
if (stages[s].stage < MESA_SHADER_FRAGMENT || stages[s].stage == MESA_SHADER_MESH)
*last_vgt_api_stage = stages[s].stage;
}
ASSERTED bool primitive_shading =
stages[MESA_SHADER_VERTEX].entrypoint || stages[MESA_SHADER_TESS_CTRL].entrypoint ||
stages[MESA_SHADER_TESS_EVAL].entrypoint || stages[MESA_SHADER_GEOMETRY].entrypoint;
ASSERTED bool mesh_shading =
stages[MESA_SHADER_MESH].entrypoint;
/* Primitive and mesh shading must not be mixed in the same pipeline. */
assert(!primitive_shading || !mesh_shading);
/* Mesh shaders are mandatory in mesh shading pipelines. */
assert(mesh_shading == !!stages[MESA_SHADER_MESH].entrypoint);
/* Mesh shaders always need NGG. */
assert(!mesh_shading || pipeline_key->use_ngg);
if (custom_hash)
memcpy(hash, custom_hash, 20);
else {
radv_hash_shaders(hash, stages, pipeline_layout, pipeline_key,
radv_get_hash_flags(device, keep_statistic_info));
}
pipeline->pipeline_hash = *(uint64_t *)hash;
bool found_in_application_cache = true;
if (!keep_executable_info &&
radv_create_shaders_from_pipeline_cache(device, cache, hash, pipeline,
stack_sizes, num_stack_sizes,
&found_in_application_cache)) {
if (found_in_application_cache)
pipeline_feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
result = VK_SUCCESS;
goto done;
}
if (flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT) {
if (found_in_application_cache)
pipeline_feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
result = VK_PIPELINE_COMPILE_REQUIRED;
goto done;
}
if (pipeline->type == RADV_PIPELINE_GRAPHICS && !stages[MESA_SHADER_FRAGMENT].entrypoint) {
nir_builder fs_b = radv_meta_init_shader(device, MESA_SHADER_FRAGMENT, "noop_fs");
stages[MESA_SHADER_FRAGMENT] = (struct radv_pipeline_stage) {
.stage = MESA_SHADER_FRAGMENT,
.internal_nir = fs_b.shader,
.entrypoint = noop_fs_entrypoint,
.feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
},
};
noop_fs = true;
}
for (unsigned s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
int64_t stage_start = os_time_get_nano();
stages[s].nir = radv_shader_spirv_to_nir(device, &stages[s], pipeline_key);
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
/* Force per-vertex VRS. */
if (radv_consider_force_vrs(pipeline, noop_fs, stages, *last_vgt_api_stage)) {
assert(*last_vgt_api_stage == MESA_SHADER_VERTEX ||
*last_vgt_api_stage == MESA_SHADER_GEOMETRY);
nir_shader *last_vgt_shader = stages[*last_vgt_api_stage].nir;
NIR_PASS(_, last_vgt_shader, radv_force_primitive_shading_rate, device);
}
bool optimize_conservatively = pipeline_key->optimisations_disabled;
/* Determine if shaders uses NGG before linking because it's needed for some NIR pass. */
radv_fill_shader_info_ngg(pipeline, pipeline_key, stages);
bool pipeline_has_ngg = (stages[MESA_SHADER_VERTEX].nir && stages[MESA_SHADER_VERTEX].info.is_ngg) ||
(stages[MESA_SHADER_TESS_EVAL].nir && stages[MESA_SHADER_TESS_EVAL].info.is_ngg) ||
(stages[MESA_SHADER_MESH].nir && stages[MESA_SHADER_MESH].info.is_ngg);
if (stages[MESA_SHADER_GEOMETRY].nir) {
unsigned nir_gs_flags = nir_lower_gs_intrinsics_per_stream;
if (pipeline_has_ngg) {
nir_gs_flags |= nir_lower_gs_intrinsics_count_primitives |
nir_lower_gs_intrinsics_count_vertices_per_primitive |
nir_lower_gs_intrinsics_overwrite_incomplete;
}
NIR_PASS(_, stages[MESA_SHADER_GEOMETRY].nir, nir_lower_gs_intrinsics, nir_gs_flags);
}
radv_link_shaders(pipeline, pipeline_key, stages, optimize_conservatively, *last_vgt_api_stage);
radv_set_driver_locations(pipeline, stages, *last_vgt_api_stage);
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (stages[i].nir) {
int64_t stage_start = os_time_get_nano();
radv_optimize_nir(stages[i].nir, optimize_conservatively, false);
/* Gather info again, information such as outputs_read can be out-of-date. */
nir_shader_gather_info(stages[i].nir, nir_shader_get_entrypoint(stages[i].nir));
radv_lower_io(device, stages[i].nir, stages[MESA_SHADER_MESH].nir);
stages[i].feedback.duration += os_time_get_nano() - stage_start;
}
}
if (stages[MESA_SHADER_TESS_CTRL].nir) {
nir_lower_patch_vertices(stages[MESA_SHADER_TESS_EVAL].nir,
stages[MESA_SHADER_TESS_CTRL].nir->info.tess.tcs_vertices_out, NULL);
gather_tess_info(device, stages, pipeline_key);
}
if (stages[MESA_SHADER_VERTEX].nir) {
NIR_PASS(_, stages[MESA_SHADER_VERTEX].nir, radv_lower_vs_input, pipeline_key);
}
if (stages[MESA_SHADER_FRAGMENT].nir && !radv_use_llvm_for_stage(device, MESA_SHADER_FRAGMENT)) {
/* TODO: Convert the LLVM backend. */
NIR_PASS(_, stages[MESA_SHADER_FRAGMENT].nir, radv_lower_fs_output, pipeline_key);
}
radv_fill_shader_info(pipeline, pipeline_layout, pipeline_key, stages, *last_vgt_api_stage);
if (pipeline_has_ngg) {
struct gfx10_ngg_info *ngg_info;
if (stages[MESA_SHADER_GEOMETRY].nir)
ngg_info = &stages[MESA_SHADER_GEOMETRY].info.ngg_info;
else if (stages[MESA_SHADER_TESS_CTRL].nir)
ngg_info = &stages[MESA_SHADER_TESS_EVAL].info.ngg_info;
else if (stages[MESA_SHADER_VERTEX].nir)
ngg_info = &stages[MESA_SHADER_VERTEX].info.ngg_info;
else if (stages[MESA_SHADER_MESH].nir)
ngg_info = &stages[MESA_SHADER_MESH].info.ngg_info;
else
unreachable("Missing NGG shader stage.");
if (*last_vgt_api_stage == MESA_SHADER_MESH)
gfx10_get_ngg_ms_info(&stages[MESA_SHADER_MESH], ngg_info);
else
gfx10_get_ngg_info(pipeline_key, pipeline, stages, ngg_info);
} else if (stages[MESA_SHADER_GEOMETRY].nir) {
struct gfx9_gs_info *gs_info = &stages[MESA_SHADER_GEOMETRY].info.gs_ring_info;
gfx9_get_gs_info(pipeline_key, pipeline, stages, gs_info);
} else {
gl_shader_stage hw_vs_api_stage =
stages[MESA_SHADER_TESS_EVAL].nir ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
stages[hw_vs_api_stage].info.workgroup_size = stages[hw_vs_api_stage].info.wave_size;
}
radv_determine_ngg_settings(pipeline, pipeline_key, stages, *last_vgt_api_stage);
radv_declare_pipeline_args(device, stages, pipeline_key);
if (stages[MESA_SHADER_FRAGMENT].nir) {
NIR_PASS(_, stages[MESA_SHADER_FRAGMENT].nir, radv_lower_fs_intrinsics,
&stages[MESA_SHADER_FRAGMENT], pipeline_key);
}
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (stages[i].nir) {
int64_t stage_start = os_time_get_nano();
/* Wave and workgroup size should already be filled. */
assert(stages[i].info.wave_size && stages[i].info.workgroup_size);
if (!radv_use_llvm_for_stage(device, i)) {
nir_lower_non_uniform_access_options options = {
.types = nir_lower_non_uniform_ubo_access | nir_lower_non_uniform_ssbo_access |
nir_lower_non_uniform_texture_access | nir_lower_non_uniform_image_access,
.callback = &non_uniform_access_callback,
.callback_data = NULL,
};
NIR_PASS(_, stages[i].nir, nir_lower_non_uniform_access, &options);
}
NIR_PASS(_, stages[i].nir, nir_lower_memory_model);
nir_load_store_vectorize_options vectorize_opts = {
.modes = nir_var_mem_ssbo | nir_var_mem_ubo | nir_var_mem_push_const |
nir_var_mem_shared | nir_var_mem_global,
.callback = mem_vectorize_callback,
.robust_modes = 0,
/* On GFX6, read2/write2 is out-of-bounds if the offset register is negative, even if
* the final offset is not.
*/
.has_shared2_amd = device->physical_device->rad_info.gfx_level >= GFX7,
};
if (device->robust_buffer_access2) {
vectorize_opts.robust_modes =
nir_var_mem_ubo | nir_var_mem_ssbo | nir_var_mem_push_const;
}
bool progress = false;
NIR_PASS(progress, stages[i].nir, nir_opt_load_store_vectorize, &vectorize_opts);
if (progress) {
NIR_PASS(_, stages[i].nir, nir_copy_prop);
NIR_PASS(_, stages[i].nir, nir_opt_shrink_stores,
!device->instance->disable_shrink_image_store);
/* Gather info again, to update whether 8/16-bit are used. */
nir_shader_gather_info(stages[i].nir, nir_shader_get_entrypoint(stages[i].nir));
}
struct radv_shader_info *info = &stages[i].info;
if (pipeline->device->physical_device->rad_info.gfx_level >= GFX9) {
if (i == MESA_SHADER_VERTEX && stages[MESA_SHADER_TESS_CTRL].nir)
info = &stages[MESA_SHADER_TESS_CTRL].info;
else if (i == MESA_SHADER_VERTEX && stages[MESA_SHADER_GEOMETRY].nir)
info = &stages[MESA_SHADER_GEOMETRY].info;
else if (i == MESA_SHADER_TESS_EVAL && stages[MESA_SHADER_GEOMETRY].nir)
info = &stages[MESA_SHADER_GEOMETRY].info;
}
NIR_PASS(_, stages[i].nir, radv_nir_lower_ycbcr_textures, pipeline_layout);
NIR_PASS_V(stages[i].nir, radv_nir_apply_pipeline_layout, device, pipeline_layout, info,
&stages[i].args);
NIR_PASS(_, stages[i].nir, nir_opt_shrink_vectors);
NIR_PASS(_, stages[i].nir, nir_lower_alu_width, opt_vectorize_callback, device);
/* lower ALU operations */
NIR_PASS(_, stages[i].nir, nir_lower_int64);
NIR_PASS(_, stages[i].nir, nir_opt_idiv_const, 8);
NIR_PASS(_, stages[i].nir, nir_lower_idiv,
&(nir_lower_idiv_options){
.imprecise_32bit_lowering = false,
.allow_fp16 = device->physical_device->rad_info.gfx_level >= GFX9,
});
nir_move_options sink_opts = nir_move_const_undef | nir_move_copies;
if (i != MESA_SHADER_FRAGMENT || !pipeline_key->disable_sinking_load_input_fs)
sink_opts |= nir_move_load_input;
NIR_PASS(_, stages[i].nir, nir_opt_sink, sink_opts);
NIR_PASS(_, stages[i].nir, nir_opt_move,
nir_move_load_input | nir_move_const_undef | nir_move_copies);
/* Lower I/O intrinsics to memory instructions. */
bool io_to_mem = radv_lower_io_to_mem(device, &stages[i], pipeline_key);
bool lowered_ngg = pipeline_has_ngg && i == *last_vgt_api_stage;
if (lowered_ngg)
radv_lower_ngg(device, &stages[i], pipeline_key);
NIR_PASS(_, stages[i].nir, ac_nir_lower_global_access);
NIR_PASS_V(stages[i].nir, radv_nir_lower_abi, device->physical_device->rad_info.gfx_level,
&stages[i].info, &stages[i].args, pipeline_key,
radv_use_llvm_for_stage(device, i));
radv_optimize_nir_algebraic(
stages[i].nir, io_to_mem || lowered_ngg || i == MESA_SHADER_COMPUTE || i == MESA_SHADER_TASK);
if (stages[i].nir->info.bit_sizes_int & (8 | 16)) {
if (device->physical_device->rad_info.gfx_level >= GFX8) {
NIR_PASS(_, stages[i].nir, nir_convert_to_lcssa, true, true);
nir_divergence_analysis(stages[i].nir);
}
if (nir_lower_bit_size(stages[i].nir, lower_bit_size_callback, device)) {
NIR_PASS(_, stages[i].nir, nir_opt_constant_folding);
}
if (device->physical_device->rad_info.gfx_level >= GFX8)
NIR_PASS(_, stages[i].nir, nir_opt_remove_phis); /* cleanup LCSSA phis */
}
if (((stages[i].nir->info.bit_sizes_int | stages[i].nir->info.bit_sizes_float) & 16) &&
device->physical_device->rad_info.gfx_level >= GFX9) {
bool separate_g16 = device->physical_device->rad_info.gfx_level >= GFX10;
struct nir_fold_tex_srcs_options fold_srcs_options[] = {
{
.sampler_dims =
~(BITFIELD_BIT(GLSL_SAMPLER_DIM_CUBE) | BITFIELD_BIT(GLSL_SAMPLER_DIM_BUF)),
.src_types = (1 << nir_tex_src_coord) | (1 << nir_tex_src_lod) |
(1 << nir_tex_src_bias) | (1 << nir_tex_src_min_lod) |
(1 << nir_tex_src_ms_index) |
(separate_g16 ? 0 : (1 << nir_tex_src_ddx) | (1 << nir_tex_src_ddy)),
.only_fold_all = true,
},
{
.sampler_dims = ~BITFIELD_BIT(GLSL_SAMPLER_DIM_CUBE),
.src_types = (1 << nir_tex_src_ddx) | (1 << nir_tex_src_ddy),
.only_fold_all = true,
},
};
struct nir_fold_16bit_tex_image_options fold_16bit_options = {
.rounding_mode = nir_rounding_mode_rtne,
.fold_tex_dest = true,
.fold_image_load_store_data = true,
.fold_srcs_options_count = separate_g16 ? 2 : 1,
.fold_srcs_options = fold_srcs_options,
};
NIR_PASS(_, stages[i].nir, nir_fold_16bit_tex_image, &fold_16bit_options);
NIR_PASS(_, stages[i].nir, nir_opt_vectorize, opt_vectorize_callback, device);
}
/* cleanup passes */
NIR_PASS(_, stages[i].nir, nir_lower_alu_width, opt_vectorize_callback, device);
NIR_PASS(_, stages[i].nir, nir_lower_load_const_to_scalar);
NIR_PASS(_, stages[i].nir, nir_copy_prop);
NIR_PASS(_, stages[i].nir, nir_opt_dce);
sink_opts |= nir_move_comparisons | nir_move_load_ubo | nir_move_load_ssbo;
NIR_PASS(_, stages[i].nir, nir_opt_sink, sink_opts);
nir_move_options move_opts = nir_move_const_undef | nir_move_load_ubo |
nir_move_load_input | nir_move_comparisons | nir_move_copies;
NIR_PASS(_, stages[i].nir, nir_opt_move, move_opts);
stages[i].feedback.duration += os_time_get_nano() - stage_start;
}
}
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (stages[i].nir) {
if (radv_can_dump_shader(device, stages[i].nir, false))
nir_print_shader(stages[i].nir, stderr);
}
}
/* Compile NIR shaders to AMD assembly. */
radv_pipeline_nir_to_asm(pipeline, stages, pipeline_key, pipeline_layout, keep_executable_info,
keep_statistic_info, *last_vgt_api_stage, binaries, &gs_copy_binary);
if (keep_executable_info) {
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
struct radv_shader *shader = pipeline->shaders[i];
if (!shader)
continue;
if (!stages[i].spirv.size)
continue;
shader->spirv = malloc(stages[i].spirv.size);
memcpy(shader->spirv, stages[i].spirv.data, stages[i].spirv.size);
shader->spirv_size = stages[i].spirv.size;
}
}
/* Upload shader binaries. */
radv_upload_shaders(device, pipeline, binaries, gs_copy_binary);
if (!keep_executable_info) {
if (pipeline->gs_copy_shader) {
assert(!binaries[MESA_SHADER_COMPUTE] && !pipeline->shaders[MESA_SHADER_COMPUTE]);
binaries[MESA_SHADER_COMPUTE] = gs_copy_binary;
pipeline->shaders[MESA_SHADER_COMPUTE] = pipeline->gs_copy_shader;
}
radv_pipeline_cache_insert_shaders(device, cache, hash, pipeline, binaries,
stack_sizes ? *stack_sizes : NULL,
num_stack_sizes ? *num_stack_sizes : 0);
if (pipeline->gs_copy_shader) {
pipeline->gs_copy_shader = pipeline->shaders[MESA_SHADER_COMPUTE];
pipeline->shaders[MESA_SHADER_COMPUTE] = NULL;
binaries[MESA_SHADER_COMPUTE] = NULL;
}
}
free(gs_copy_binary);
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
free(binaries[i]);
if (stages[i].nir) {
if (radv_can_dump_shader_stats(device, stages[i].nir) && pipeline->shaders[i]) {
radv_dump_shader_stats(device, pipeline, i, stderr);
}
ralloc_free(stages[i].nir);
}
}
done:
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
if (creation_feedback) {
*creation_feedback->pPipelineCreationFeedback = pipeline_feedback;
assert(stageCount == creation_feedback->pipelineStageCreationFeedbackCount);
for (uint32_t i = 0; i < stageCount; i++) {
gl_shader_stage s = vk_to_mesa_shader_stage(pStages[i].stage);
creation_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
}
}
return result;
}
static uint32_t
radv_pipeline_stage_to_user_data_0(struct radv_graphics_pipeline *pipeline, gl_shader_stage stage,
enum amd_gfx_level gfx_level)
{
bool has_gs = radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY);
bool has_tess = radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL);
bool has_ngg = radv_pipeline_has_ngg(pipeline);
switch (stage) {
case MESA_SHADER_FRAGMENT:
return R_00B030_SPI_SHADER_USER_DATA_PS_0;
case MESA_SHADER_VERTEX:
if (has_tess) {
if (gfx_level >= GFX10) {
return R_00B430_SPI_SHADER_USER_DATA_HS_0;
} else if (gfx_level == GFX9) {
return R_00B430_SPI_SHADER_USER_DATA_LS_0;
} else {
return R_00B530_SPI_SHADER_USER_DATA_LS_0;
}
}
if (has_gs) {
if (gfx_level >= GFX10) {
return R_00B230_SPI_SHADER_USER_DATA_GS_0;
} else {
return R_00B330_SPI_SHADER_USER_DATA_ES_0;
}
}
if (has_ngg)
return R_00B230_SPI_SHADER_USER_DATA_GS_0;
return R_00B130_SPI_SHADER_USER_DATA_VS_0;
case MESA_SHADER_GEOMETRY:
return gfx_level == GFX9 ? R_00B330_SPI_SHADER_USER_DATA_ES_0
: R_00B230_SPI_SHADER_USER_DATA_GS_0;
case MESA_SHADER_COMPUTE:
case MESA_SHADER_TASK:
return R_00B900_COMPUTE_USER_DATA_0;
case MESA_SHADER_TESS_CTRL:
return gfx_level == GFX9 ? R_00B430_SPI_SHADER_USER_DATA_LS_0
: R_00B430_SPI_SHADER_USER_DATA_HS_0;
case MESA_SHADER_TESS_EVAL:
if (has_gs) {
return gfx_level >= GFX10 ? R_00B230_SPI_SHADER_USER_DATA_GS_0
: R_00B330_SPI_SHADER_USER_DATA_ES_0;
} else if (has_ngg) {
return R_00B230_SPI_SHADER_USER_DATA_GS_0;
} else {
return R_00B130_SPI_SHADER_USER_DATA_VS_0;
}
case MESA_SHADER_MESH:
assert(has_ngg);
return R_00B230_SPI_SHADER_USER_DATA_GS_0;
default:
unreachable("unknown shader");
}
}
struct radv_bin_size_entry {
unsigned bpp;
VkExtent2D extent;
};
static VkExtent2D
radv_gfx9_compute_bin_size(const struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_info *info)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
static const struct radv_bin_size_entry color_size_table[][3][9] = {
{
/* One RB / SE */
{
/* One shader engine */
{0, {128, 128}},
{1, {64, 128}},
{2, {32, 128}},
{3, {16, 128}},
{17, {0, 0}},
{UINT_MAX, {0, 0}},
},
{
/* Two shader engines */
{0, {128, 128}},
{2, {64, 128}},
{3, {32, 128}},
{5, {16, 128}},
{17, {0, 0}},
{UINT_MAX, {0, 0}},
},
{
/* Four shader engines */
{0, {128, 128}},
{3, {64, 128}},
{5, {16, 128}},
{17, {0, 0}},
{UINT_MAX, {0, 0}},
},
},
{
/* Two RB / SE */
{
/* One shader engine */
{0, {128, 128}},
{2, {64, 128}},
{3, {32, 128}},
{5, {16, 128}},
{33, {0, 0}},
{UINT_MAX, {0, 0}},
},
{
/* Two shader engines */
{0, {128, 128}},
{3, {64, 128}},
{5, {32, 128}},
{9, {16, 128}},
{33, {0, 0}},
{UINT_MAX, {0, 0}},
},
{
/* Four shader engines */
{0, {256, 256}},
{2, {128, 256}},
{3, {128, 128}},
{5, {64, 128}},
{9, {16, 128}},
{33, {0, 0}},
{UINT_MAX, {0, 0}},
},
},
{
/* Four RB / SE */
{
/* One shader engine */
{0, {128, 256}},
{2, {128, 128}},
{3, {64, 128}},
{5, {32, 128}},
{9, {16, 128}},
{33, {0, 0}},
{UINT_MAX, {0, 0}},
},
{
/* Two shader engines */
{0, {256, 256}},
{2, {128, 256}},
{3, {128, 128}},
{5, {64, 128}},
{9, {32, 128}},
{17, {16, 128}},
{33, {0, 0}},
{UINT_MAX, {0, 0}},
},
{
/* Four shader engines */
{0, {256, 512}},
{2, {256, 256}},
{3, {128, 256}},
{5, {128, 128}},
{9, {64, 128}},
{17, {16, 128}},
{33, {0, 0}},
{UINT_MAX, {0, 0}},
},
},
};
static const struct radv_bin_size_entry ds_size_table[][3][9] = {
{
// One RB / SE
{
// One shader engine
{0, {128, 256}},
{2, {128, 128}},
{4, {64, 128}},
{7, {32, 128}},
{13, {16, 128}},
{49, {0, 0}},
{UINT_MAX, {0, 0}},
},
{
// Two shader engines
{0, {256, 256}},
{2, {128, 256}},
{4, {128, 128}},
{7, {64, 128}},
{13, {32, 128}},
{25, {16, 128}},
{49, {0, 0}},
{UINT_MAX, {0, 0}},
},
{
// Four shader engines
{0, {256, 512}},
{2, {256, 256}},
{4, {128, 256}},
{7, {128, 128}},
{13, {64, 128}},
{25, {16, 128}},
{49, {0, 0}},
{UINT_MAX, {0, 0}},
},
},
{
// Two RB / SE
{
// One shader engine
{0, {256, 256}},
{2, {128, 256}},
{4, {128, 128}},
{7, {64, 128}},
{13, {32, 128}},
{25, {16, 128}},
{97, {0, 0}},
{UINT_MAX, {0, 0}},
},
{
// Two shader engines
{0, {256, 512}},
{2, {256, 256}},
{4, {128, 256}},
{7, {128, 128}},
{13, {64, 128}},
{25, {32, 128}},
{49, {16, 128}},
{97, {0, 0}},
{UINT_MAX, {0, 0}},
},
{
// Four shader engines
{0, {512, 512}},
{2, {256, 512}},
{4, {256, 256}},
{7, {128, 256}},
{13, {128, 128}},
{25, {64, 128}},
{49, {16, 128}},
{97, {0, 0}},
{UINT_MAX, {0, 0}},
},
},
{
// Four RB / SE
{
// One shader engine
{0, {256, 512}},
{2, {256, 256}},
{4, {128, 256}},
{7, {128, 128}},
{13, {64, 128}},
{25, {32, 128}},
{49, {16, 128}},
{UINT_MAX, {0, 0}},
},
{
// Two shader engines
{0, {512, 512}},
{2, {256, 512}},
{4, {256, 256}},
{7, {128, 256}},
{13, {128, 128}},
{25, {64, 128}},
{49, {32, 128}},
{97, {16, 128}},
{UINT_MAX, {0, 0}},
},
{
// Four shader engines
{0, {512, 512}},
{4, {256, 512}},
{7, {256, 256}},
{13, {128, 256}},
{25, {128, 128}},
{49, {64, 128}},
{97, {16, 128}},
{UINT_MAX, {0, 0}},
},
},
};
VkExtent2D extent = {512, 512};
unsigned log_num_rb_per_se =
util_logbase2_ceil(pdevice->rad_info.max_render_backends / pdevice->rad_info.max_se);
unsigned log_num_se = util_logbase2_ceil(pdevice->rad_info.max_se);
unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->ms.pa_sc_aa_config);
unsigned ps_iter_samples = 1u << G_028804_PS_ITER_SAMPLES(pipeline->ms.db_eqaa);
unsigned effective_samples = total_samples;
unsigned color_bytes_per_pixel = 0;
for (unsigned i = 0; i < info->ri.color_att_count; i++) {
if (!info->cb.att[i].color_write_mask)
continue;
if (info->ri.color_att_formats[i] == VK_FORMAT_UNDEFINED)
continue;
color_bytes_per_pixel += vk_format_get_blocksize(info->ri.color_att_formats[i]);
}
/* MSAA images typically don't use all samples all the time. */
if (effective_samples >= 2 && ps_iter_samples <= 1)
effective_samples = 2;
color_bytes_per_pixel *= effective_samples;
const struct radv_bin_size_entry *color_entry = color_size_table[log_num_rb_per_se][log_num_se];
while (color_entry[1].bpp <= color_bytes_per_pixel)
++color_entry;
extent = color_entry->extent;
if (radv_pipeline_has_ds_attachments(&info->ri)) {
/* Coefficients taken from AMDVLK */
unsigned depth_coeff = info->ri.depth_att_format != VK_FORMAT_UNDEFINED ? 5 : 0;
unsigned stencil_coeff = info->ri.stencil_att_format != VK_FORMAT_UNDEFINED ? 1 : 0;
unsigned ds_bytes_per_pixel = 4 * (depth_coeff + stencil_coeff) * total_samples;
const struct radv_bin_size_entry *ds_entry = ds_size_table[log_num_rb_per_se][log_num_se];
while (ds_entry[1].bpp <= ds_bytes_per_pixel)
++ds_entry;
if (ds_entry->extent.width * ds_entry->extent.height < extent.width * extent.height)
extent = ds_entry->extent;
}
return extent;
}
static VkExtent2D
radv_gfx10_compute_bin_size(const struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_info *info)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
VkExtent2D extent = {512, 512};
const unsigned db_tag_size = 64;
const unsigned db_tag_count = 312;
const unsigned color_tag_size = 1024;
const unsigned color_tag_count = 31;
const unsigned fmask_tag_size = 256;
const unsigned fmask_tag_count = 44;
const unsigned rb_count = pdevice->rad_info.max_render_backends;
const unsigned pipe_count = MAX2(rb_count, pdevice->rad_info.num_tcc_blocks);
const unsigned db_tag_part = (db_tag_count * rb_count / pipe_count) * db_tag_size * pipe_count;
const unsigned color_tag_part =
(color_tag_count * rb_count / pipe_count) * color_tag_size * pipe_count;
const unsigned fmask_tag_part =
(fmask_tag_count * rb_count / pipe_count) * fmask_tag_size * pipe_count;
const unsigned total_samples =
1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->ms.pa_sc_aa_config);
const unsigned samples_log = util_logbase2_ceil(total_samples);
unsigned color_bytes_per_pixel = 0;
unsigned fmask_bytes_per_pixel = 0;
for (unsigned i = 0; i < info->ri.color_att_count; i++) {
if (!info->cb.att[i].color_write_mask)
continue;
if (info->ri.color_att_formats[i] == VK_FORMAT_UNDEFINED)
continue;
color_bytes_per_pixel += vk_format_get_blocksize(info->ri.color_att_formats[i]);
if (total_samples > 1) {
assert(samples_log <= 3);
const unsigned fmask_array[] = {0, 1, 1, 4};
fmask_bytes_per_pixel += fmask_array[samples_log];
}
}
color_bytes_per_pixel *= total_samples;
color_bytes_per_pixel = MAX2(color_bytes_per_pixel, 1);
const unsigned color_pixel_count_log = util_logbase2(color_tag_part / color_bytes_per_pixel);
extent.width = 1ull << ((color_pixel_count_log + 1) / 2);
extent.height = 1ull << (color_pixel_count_log / 2);
if (fmask_bytes_per_pixel) {
const unsigned fmask_pixel_count_log = util_logbase2(fmask_tag_part / fmask_bytes_per_pixel);
const VkExtent2D fmask_extent =
(VkExtent2D){.width = 1ull << ((fmask_pixel_count_log + 1) / 2),
.height = 1ull << (color_pixel_count_log / 2)};
if (fmask_extent.width * fmask_extent.height < extent.width * extent.height)
extent = fmask_extent;
}
if (radv_pipeline_has_ds_attachments(&info->ri)) {
/* Coefficients taken from AMDVLK */
unsigned depth_coeff = info->ri.depth_att_format != VK_FORMAT_UNDEFINED ? 5 : 0;
unsigned stencil_coeff = info->ri.stencil_att_format != VK_FORMAT_UNDEFINED ? 1 : 0;
unsigned db_bytes_per_pixel = (depth_coeff + stencil_coeff) * total_samples;
const unsigned db_pixel_count_log = util_logbase2(db_tag_part / db_bytes_per_pixel);
const VkExtent2D db_extent = (VkExtent2D){.width = 1ull << ((db_pixel_count_log + 1) / 2),
.height = 1ull << (color_pixel_count_log / 2)};
if (db_extent.width * db_extent.height < extent.width * extent.height)
extent = db_extent;
}
extent.width = MAX2(extent.width, 128);
extent.height = MAX2(extent.width, 64);
return extent;
}
static void
radv_pipeline_init_disabled_binning_state(struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_info *info)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
uint32_t pa_sc_binner_cntl_0 = S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_LEGACY_SC) |
S_028C44_DISABLE_START_OF_PRIM(1);
if (pdevice->rad_info.gfx_level >= GFX10) {
unsigned min_bytes_per_pixel = 0;
for (unsigned i = 0; i < info->ri.color_att_count; i++) {
if (!info->cb.att[i].color_write_mask)
continue;
if (info->ri.color_att_formats[i] == VK_FORMAT_UNDEFINED)
continue;
unsigned bytes = vk_format_get_blocksize(info->ri.color_att_formats[i]);
if (!min_bytes_per_pixel || bytes < min_bytes_per_pixel)
min_bytes_per_pixel = bytes;
}
pa_sc_binner_cntl_0 =
S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_NEW_SC) | S_028C44_BIN_SIZE_X(0) |
S_028C44_BIN_SIZE_Y(0) | S_028C44_BIN_SIZE_X_EXTEND(2) | /* 128 */
S_028C44_BIN_SIZE_Y_EXTEND(min_bytes_per_pixel <= 4 ? 2 : 1) | /* 128 or 64 */
S_028C44_DISABLE_START_OF_PRIM(1);
}
pipeline->binning.pa_sc_binner_cntl_0 = pa_sc_binner_cntl_0;
}
struct radv_binning_settings
radv_get_binning_settings(const struct radv_physical_device *pdev)
{
struct radv_binning_settings settings;
if (pdev->rad_info.has_dedicated_vram) {
if (pdev->rad_info.max_render_backends > 4) {
settings.context_states_per_bin = 1;
settings.persistent_states_per_bin = 1;
} else {
settings.context_states_per_bin = 3;
settings.persistent_states_per_bin = 8;
}
settings.fpovs_per_batch = 63;
} else {
/* The context states are affected by the scissor bug. */
settings.context_states_per_bin = 6;
/* 32 causes hangs for RAVEN. */
settings.persistent_states_per_bin = 16;
settings.fpovs_per_batch = 63;
}
if (pdev->rad_info.has_gfx9_scissor_bug)
settings.context_states_per_bin = 1;
return settings;
}
static void
radv_pipeline_init_binning_state(struct radv_graphics_pipeline *pipeline,
const struct radv_blend_state *blend,
const struct radv_graphics_pipeline_info *info)
{
const struct radv_device *device = pipeline->base.device;
if (device->physical_device->rad_info.gfx_level < GFX9)
return;
VkExtent2D bin_size;
if (device->physical_device->rad_info.gfx_level >= GFX10) {
bin_size = radv_gfx10_compute_bin_size(pipeline, info);
} else if (device->physical_device->rad_info.gfx_level == GFX9) {
bin_size = radv_gfx9_compute_bin_size(pipeline, info);
} else
unreachable("Unhandled generation for binning bin size calculation");
if (device->pbb_allowed && bin_size.width && bin_size.height) {
struct radv_binning_settings settings = radv_get_binning_settings(device->physical_device);
const uint32_t pa_sc_binner_cntl_0 =
S_028C44_BINNING_MODE(V_028C44_BINNING_ALLOWED) |
S_028C44_BIN_SIZE_X(bin_size.width == 16) | S_028C44_BIN_SIZE_Y(bin_size.height == 16) |
S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(MAX2(bin_size.width, 32)) - 5) |
S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(MAX2(bin_size.height, 32)) - 5) |
S_028C44_CONTEXT_STATES_PER_BIN(settings.context_states_per_bin - 1) |
S_028C44_PERSISTENT_STATES_PER_BIN(settings.persistent_states_per_bin - 1) |
S_028C44_DISABLE_START_OF_PRIM(1) |
S_028C44_FPOVS_PER_BATCH(settings.fpovs_per_batch) | S_028C44_OPTIMAL_BIN_SELECTION(1);
pipeline->binning.pa_sc_binner_cntl_0 = pa_sc_binner_cntl_0;
} else
radv_pipeline_init_disabled_binning_state(pipeline, info);
}
static void
radv_pipeline_emit_depth_stencil_state(struct radeon_cmdbuf *ctx_cs,
const struct radv_depth_stencil_state *ds_state)
{
radeon_set_context_reg(ctx_cs, R_028000_DB_RENDER_CONTROL, ds_state->db_render_control);
radeon_set_context_reg_seq(ctx_cs, R_02800C_DB_RENDER_OVERRIDE, 2);
radeon_emit(ctx_cs, ds_state->db_render_override);
radeon_emit(ctx_cs, ds_state->db_render_override2);
}
static void
radv_pipeline_emit_blend_state(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline,
const struct radv_blend_state *blend)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
radeon_set_context_reg_seq(ctx_cs, R_028780_CB_BLEND0_CONTROL, 8);
radeon_emit_array(ctx_cs, blend->cb_blend_control, 8);
radeon_set_context_reg(ctx_cs, R_028B70_DB_ALPHA_TO_MASK, blend->db_alpha_to_mask);
if (pdevice->rad_info.has_rbplus) {
radeon_set_context_reg_seq(ctx_cs, R_028760_SX_MRT0_BLEND_OPT, 8);
radeon_emit_array(ctx_cs, blend->sx_mrt_blend_opt, 8);
}
radeon_set_context_reg(ctx_cs, R_028714_SPI_SHADER_COL_FORMAT, blend->spi_shader_col_format);
radeon_set_context_reg(ctx_cs, R_02823C_CB_SHADER_MASK, blend->cb_shader_mask);
}
static void
radv_pipeline_emit_raster_state(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_info *info)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
const VkConservativeRasterizationModeEXT mode = info->rs.conservative_mode;
uint32_t pa_sc_conservative_rast = S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1);
if (pdevice->rad_info.gfx_level >= GFX9) {
/* Conservative rasterization. */
if (mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) {
pa_sc_conservative_rast = S_028C4C_PREZ_AA_MASK_ENABLE(1) | S_028C4C_POSTZ_AA_MASK_ENABLE(1) |
S_028C4C_CENTROID_SAMPLE_OVERRIDE(1);
if (mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT) {
pa_sc_conservative_rast |=
S_028C4C_OVER_RAST_ENABLE(1) | S_028C4C_OVER_RAST_SAMPLE_SELECT(0) |
S_028C4C_UNDER_RAST_ENABLE(0) | S_028C4C_UNDER_RAST_SAMPLE_SELECT(1) |
S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(1);
} else {
assert(mode == VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT);
pa_sc_conservative_rast |=
S_028C4C_OVER_RAST_ENABLE(0) | S_028C4C_OVER_RAST_SAMPLE_SELECT(1) |
S_028C4C_UNDER_RAST_ENABLE(1) | S_028C4C_UNDER_RAST_SAMPLE_SELECT(0) |
S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(0);
}
}
radeon_set_context_reg(ctx_cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
pa_sc_conservative_rast);
}
}
static void
radv_pipeline_emit_multisample_state(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
const struct radv_multisample_state *ms = &pipeline->ms;
radeon_set_context_reg_seq(ctx_cs, R_028C38_PA_SC_AA_MASK_X0Y0_X1Y0, 2);
radeon_emit(ctx_cs, ms->pa_sc_aa_mask[0]);
radeon_emit(ctx_cs, ms->pa_sc_aa_mask[1]);
radeon_set_context_reg(ctx_cs, R_028804_DB_EQAA, ms->db_eqaa);
radeon_set_context_reg(ctx_cs, R_028BE0_PA_SC_AA_CONFIG, ms->pa_sc_aa_config);
radeon_set_context_reg_seq(ctx_cs, R_028A48_PA_SC_MODE_CNTL_0, 2);
radeon_emit(ctx_cs, ms->pa_sc_mode_cntl_0);
radeon_emit(ctx_cs, ms->pa_sc_mode_cntl_1);
/* The exclusion bits can be set to improve rasterization efficiency
* if no sample lies on the pixel boundary (-8 sample offset). It's
* currently always TRUE because the driver doesn't support 16 samples.
*/
bool exclusion = pdevice->rad_info.gfx_level >= GFX7;
radeon_set_context_reg(
ctx_cs, R_02882C_PA_SU_PRIM_FILTER_CNTL,
S_02882C_XMAX_RIGHT_EXCLUSION(exclusion) | S_02882C_YMAX_BOTTOM_EXCLUSION(exclusion));
}
static void
radv_pipeline_emit_vgt_gs_mode(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
const struct radv_shader *vs = pipeline->base.shaders[MESA_SHADER_TESS_EVAL]
? pipeline->base.shaders[MESA_SHADER_TESS_EVAL]
: pipeline->base.shaders[MESA_SHADER_VERTEX];
unsigned vgt_primitiveid_en = 0;
uint32_t vgt_gs_mode = 0;
if (radv_pipeline_has_ngg(pipeline))
return;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
const struct radv_shader *gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY];
vgt_gs_mode = ac_vgt_gs_mode(gs->info.gs.vertices_out, pdevice->rad_info.gfx_level);
} else if (outinfo->export_prim_id || vs->info.uses_prim_id) {
vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A);
vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(1);
}
radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN, vgt_primitiveid_en);
radeon_set_context_reg(ctx_cs, R_028A40_VGT_GS_MODE, vgt_gs_mode);
}
static void
radv_pipeline_emit_hw_vs(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_graphics_pipeline *pipeline, const struct radv_shader *shader)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
uint64_t va = radv_shader_get_va(shader);
radeon_set_sh_reg_seq(cs, R_00B120_SPI_SHADER_PGM_LO_VS, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B124_MEM_BASE(va >> 40));
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
unsigned clip_dist_mask, cull_dist_mask, total_mask;
clip_dist_mask = outinfo->clip_dist_mask;
cull_dist_mask = outinfo->cull_dist_mask;
total_mask = clip_dist_mask | cull_dist_mask;
bool misc_vec_ena = outinfo->writes_pointsize || outinfo->writes_layer ||
outinfo->writes_viewport_index || outinfo->writes_primitive_shading_rate;
unsigned spi_vs_out_config, nparams;
/* VS is required to export at least one param. */
nparams = MAX2(outinfo->param_exports, 1);
spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
if (pdevice->rad_info.gfx_level >= GFX10) {
spi_vs_out_config |= S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0);
}
radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG, spi_vs_out_config);
radeon_set_context_reg(
ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT,
S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
: V_02870C_SPI_SHADER_NONE) |
S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
: V_02870C_SPI_SHADER_NONE) |
S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
: V_02870C_SPI_SHADER_NONE));
radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL,
S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
S_02881C_USE_VTX_VRS_RATE(outinfo->writes_primitive_shading_rate) |
S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) |
S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) |
total_mask << 8 | clip_dist_mask);
if (pdevice->rad_info.gfx_level <= GFX8)
radeon_set_context_reg(ctx_cs, R_028AB4_VGT_REUSE_OFF, outinfo->writes_viewport_index);
unsigned late_alloc_wave64, cu_mask;
ac_compute_late_alloc(&pdevice->rad_info, false, false, shader->config.scratch_bytes_per_wave > 0,
&late_alloc_wave64, &cu_mask);
if (pdevice->rad_info.gfx_level >= GFX7) {
if (pdevice->rad_info.gfx_level >= GFX10) {
ac_set_reg_cu_en(cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
S_00B118_CU_EN(cu_mask) | S_00B118_WAVE_LIMIT(0x3F),
C_00B118_CU_EN, 0, &pdevice->rad_info,
(void*)gfx10_set_sh_reg_idx3);
} else {
radeon_set_sh_reg_idx(pdevice, cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS, 3,
S_00B118_CU_EN(cu_mask) | S_00B118_WAVE_LIMIT(0x3F));
}
radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(late_alloc_wave64));
}
if (pdevice->rad_info.gfx_level >= GFX10) {
uint32_t oversub_pc_lines = late_alloc_wave64 ? pdevice->rad_info.pc_lines / 4 : 0;
gfx10_emit_ge_pc_alloc(cs, pdevice->rad_info.gfx_level, oversub_pc_lines);
}
}
static void
radv_pipeline_emit_hw_es(struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline,
const struct radv_shader *shader)
{
uint64_t va = radv_shader_get_va(shader);
radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
}
static void
radv_pipeline_emit_hw_ls(struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline,
const struct radv_shader *shader)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
unsigned num_lds_blocks = pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_lds_blocks;
uint64_t va = radv_shader_get_va(shader);
uint32_t rsrc2 = shader->config.rsrc2;
radeon_set_sh_reg(cs, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
rsrc2 |= S_00B52C_LDS_SIZE(num_lds_blocks);
if (pdevice->rad_info.gfx_level == GFX7 && pdevice->rad_info.family != CHIP_HAWAII)
radeon_set_sh_reg(cs, R_00B52C_SPI_SHADER_PGM_RSRC2_LS, rsrc2);
radeon_set_sh_reg_seq(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2);
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, rsrc2);
}
static void
radv_pipeline_emit_hw_ngg(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_graphics_pipeline *pipeline,
const struct radv_shader *shader)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
uint64_t va = radv_shader_get_va(shader);
gl_shader_stage es_type =
radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH) ? MESA_SHADER_MESH :
radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL) ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
struct radv_shader *es = pipeline->base.shaders[es_type];
const struct gfx10_ngg_info *ngg_state = &shader->info.ngg_info;
radeon_set_sh_reg(cs, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
unsigned clip_dist_mask, cull_dist_mask, total_mask;
clip_dist_mask = outinfo->clip_dist_mask;
cull_dist_mask = outinfo->cull_dist_mask;
total_mask = clip_dist_mask | cull_dist_mask;
bool misc_vec_ena = outinfo->writes_pointsize || outinfo->writes_layer ||
outinfo->writes_viewport_index || outinfo->writes_primitive_shading_rate;
bool es_enable_prim_id = outinfo->export_prim_id || (es && es->info.uses_prim_id);
bool break_wave_at_eoi = false;
unsigned ge_cntl;
if (es_type == MESA_SHADER_TESS_EVAL) {
struct radv_shader *gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY];
if (es_enable_prim_id || (gs && gs->info.uses_prim_id))
break_wave_at_eoi = true;
}
bool no_pc_export = outinfo->param_exports == 0 && outinfo->prim_param_exports == 0;
unsigned num_params = MAX2(outinfo->param_exports, 1);
unsigned num_prim_params = outinfo->prim_param_exports;
radeon_set_context_reg(
ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG,
S_0286C4_VS_EXPORT_COUNT(num_params - 1) |
S_0286C4_PRIM_EXPORT_COUNT(num_prim_params) |
S_0286C4_NO_PC_EXPORT(no_pc_export));
unsigned idx_format = V_028708_SPI_SHADER_1COMP;
if (outinfo->writes_layer_per_primitive ||
outinfo->writes_viewport_index_per_primitive ||
outinfo->writes_primitive_shading_rate_per_primitive)
idx_format = V_028708_SPI_SHADER_2COMP;
radeon_set_context_reg(ctx_cs, R_028708_SPI_SHADER_IDX_FORMAT,
S_028708_IDX0_EXPORT_FORMAT(idx_format));
radeon_set_context_reg(
ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT,
S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
: V_02870C_SPI_SHADER_NONE) |
S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
: V_02870C_SPI_SHADER_NONE) |
S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
: V_02870C_SPI_SHADER_NONE));
radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL,
S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
S_02881C_USE_VTX_VRS_RATE(outinfo->writes_primitive_shading_rate) |
S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) |
S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) |
total_mask << 8 | clip_dist_mask);
radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN,
S_028A84_PRIMITIVEID_EN(es_enable_prim_id) |
S_028A84_NGG_DISABLE_PROVOK_REUSE(outinfo->export_prim_id));
radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
ngg_state->vgt_esgs_ring_itemsize);
/* NGG specific registers. */
struct radv_shader *gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY];
uint32_t gs_num_invocations = gs ? gs->info.gs.invocations : 1;
if (pdevice->rad_info.gfx_level < GFX11) {
radeon_set_context_reg(
ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL,
S_028A44_ES_VERTS_PER_SUBGRP(ngg_state->hw_max_esverts) |
S_028A44_GS_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) |
S_028A44_GS_INST_PRIMS_IN_SUBGRP(ngg_state->max_gsprims * gs_num_invocations));
}
radeon_set_context_reg(ctx_cs, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
S_0287FC_MAX_VERTS_PER_SUBGROUP(ngg_state->max_out_verts));
radeon_set_context_reg(ctx_cs, R_028B4C_GE_NGG_SUBGRP_CNTL,
S_028B4C_PRIM_AMP_FACTOR(ngg_state->prim_amp_factor) |
S_028B4C_THDS_PER_SUBGRP(0)); /* for fast launch */
radeon_set_context_reg(
ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT,
S_028B90_CNT(gs_num_invocations) | S_028B90_ENABLE(gs_num_invocations > 1) |
S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(ngg_state->max_vert_out_per_gs_instance));
if (pdevice->rad_info.gfx_level >= GFX11) {
ge_cntl = S_03096C_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) |
S_03096C_VERTS_PER_SUBGRP(ngg_state->enable_vertex_grouping
? ngg_state->hw_max_esverts
: 256) | /* 256 = disable vertex grouping */
S_03096C_BREAK_PRIMGRP_AT_EOI(break_wave_at_eoi) |
S_03096C_PRIM_GRP_SIZE_GFX11(256);
} else {
ge_cntl = S_03096C_PRIM_GRP_SIZE_GFX10(ngg_state->max_gsprims) |
S_03096C_VERT_GRP_SIZE(ngg_state->enable_vertex_grouping
? ngg_state->hw_max_esverts
: 256) | /* 256 = disable vertex grouping */
S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
}
/* Bug workaround for a possible hang with non-tessellation cases.
* Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0
*
* Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5
*/
if (pdevice->rad_info.gfx_level == GFX10 &&
!radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL) && ngg_state->hw_max_esverts != 256) {
ge_cntl &= C_03096C_VERT_GRP_SIZE;
if (ngg_state->hw_max_esverts > 5) {
ge_cntl |= S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts - 5);
}
}
radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL, ge_cntl);
unsigned late_alloc_wave64, cu_mask;
ac_compute_late_alloc(&pdevice->rad_info, true, shader->info.has_ngg_culling,
shader->config.scratch_bytes_per_wave > 0, &late_alloc_wave64, &cu_mask);
if (pdevice->rad_info.gfx_level >= GFX11) {
/* TODO: figure out how S_00B204_CU_EN_GFX11 interacts with ac_set_reg_cu_en */
gfx10_set_sh_reg_idx3(cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
S_00B21C_CU_EN(cu_mask) | S_00B21C_WAVE_LIMIT(0x3F));
gfx10_set_sh_reg_idx3(
cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
S_00B204_CU_EN_GFX11(0x1) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64));
} else if (pdevice->rad_info.gfx_level >= GFX10) {
ac_set_reg_cu_en(cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
S_00B21C_CU_EN(cu_mask) | S_00B21C_WAVE_LIMIT(0x3F),
C_00B21C_CU_EN, 0, &pdevice->rad_info, (void*)gfx10_set_sh_reg_idx3);
ac_set_reg_cu_en(cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64),
C_00B204_CU_EN_GFX10, 16, &pdevice->rad_info,
(void*)gfx10_set_sh_reg_idx3);
} else {
radeon_set_sh_reg_idx(
pdevice, cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3,
S_00B21C_CU_EN(cu_mask) | S_00B21C_WAVE_LIMIT(0x3F));
radeon_set_sh_reg_idx(
pdevice, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3,
S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64));
}
uint32_t oversub_pc_lines = late_alloc_wave64 ? pdevice->rad_info.pc_lines / 4 : 0;
if (shader->info.has_ngg_culling) {
unsigned oversub_factor = 2;
if (outinfo->param_exports > 4)
oversub_factor = 4;
else if (outinfo->param_exports > 2)
oversub_factor = 3;
oversub_pc_lines *= oversub_factor;
}
gfx10_emit_ge_pc_alloc(cs, pdevice->rad_info.gfx_level, oversub_pc_lines);
}
static void
radv_pipeline_emit_hw_hs(struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline,
const struct radv_shader *shader)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
uint64_t va = radv_shader_get_va(shader);
if (pdevice->rad_info.gfx_level >= GFX9) {
if (pdevice->rad_info.gfx_level >= GFX10) {
radeon_set_sh_reg(cs, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
} else {
radeon_set_sh_reg(cs, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
}
radeon_set_sh_reg_seq(cs, R_00B428_SPI_SHADER_PGM_RSRC1_HS, 2);
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
} else {
radeon_set_sh_reg_seq(cs, R_00B420_SPI_SHADER_PGM_LO_HS, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B424_MEM_BASE(va >> 40));
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
}
}
static void
radv_pipeline_emit_vertex_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_graphics_pipeline *pipeline)
{
struct radv_shader *vs;
/* Skip shaders merged into HS/GS */
vs = pipeline->base.shaders[MESA_SHADER_VERTEX];
if (!vs)
return;
if (vs->info.vs.as_ls)
radv_pipeline_emit_hw_ls(cs, pipeline, vs);
else if (vs->info.vs.as_es)
radv_pipeline_emit_hw_es(cs, pipeline, vs);
else if (vs->info.is_ngg)
radv_pipeline_emit_hw_ngg(ctx_cs, cs, pipeline, vs);
else
radv_pipeline_emit_hw_vs(ctx_cs, cs, pipeline, vs);
}
static void
radv_pipeline_emit_tess_shaders(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_graphics_pipeline *pipeline)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
struct radv_shader *tes, *tcs;
tcs = pipeline->base.shaders[MESA_SHADER_TESS_CTRL];
tes = pipeline->base.shaders[MESA_SHADER_TESS_EVAL];
if (tes) {
if (tes->info.is_ngg) {
radv_pipeline_emit_hw_ngg(ctx_cs, cs, pipeline, tes);
} else if (tes->info.tes.as_es)
radv_pipeline_emit_hw_es(cs, pipeline, tes);
else
radv_pipeline_emit_hw_vs(ctx_cs, cs, pipeline, tes);
}
radv_pipeline_emit_hw_hs(cs, pipeline, tcs);
if (pdevice->rad_info.gfx_level >= GFX10 &&
!radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY) && !radv_pipeline_has_ngg(pipeline)) {
radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL,
S_028A44_ES_VERTS_PER_SUBGRP(250) | S_028A44_GS_PRIMS_PER_SUBGRP(126) |
S_028A44_GS_INST_PRIMS_IN_SUBGRP(126));
}
}
static void
radv_pipeline_emit_tess_state(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_info *info)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
struct radv_shader *tes = radv_get_shader(&pipeline->base, MESA_SHADER_TESS_EVAL);
unsigned type = 0, partitioning = 0, topology = 0, distribution_mode = 0;
unsigned num_tcs_input_cp, num_tcs_output_cp, num_patches;
unsigned ls_hs_config;
num_tcs_input_cp = info->ts.patch_control_points;
num_tcs_output_cp =
pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.tcs.tcs_vertices_out; // TCS VERTICES OUT
num_patches = pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.num_tess_patches;
ls_hs_config = S_028B58_NUM_PATCHES(num_patches) | S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) |
S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
if (pdevice->rad_info.gfx_level >= GFX7) {
radeon_set_context_reg_idx(ctx_cs, R_028B58_VGT_LS_HS_CONFIG, 2, ls_hs_config);
} else {
radeon_set_context_reg(ctx_cs, R_028B58_VGT_LS_HS_CONFIG, ls_hs_config);
}
switch (tes->info.tes._primitive_mode) {
case TESS_PRIMITIVE_TRIANGLES:
type = V_028B6C_TESS_TRIANGLE;
break;
case TESS_PRIMITIVE_QUADS:
type = V_028B6C_TESS_QUAD;
break;
case TESS_PRIMITIVE_ISOLINES:
type = V_028B6C_TESS_ISOLINE;
break;
default:
break;
}
switch (tes->info.tes.spacing) {
case TESS_SPACING_EQUAL:
partitioning = V_028B6C_PART_INTEGER;
break;
case TESS_SPACING_FRACTIONAL_ODD:
partitioning = V_028B6C_PART_FRAC_ODD;
break;
case TESS_SPACING_FRACTIONAL_EVEN:
partitioning = V_028B6C_PART_FRAC_EVEN;
break;
default:
break;
}
bool ccw = tes->info.tes.ccw;
if (info->ts.domain_origin != VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT)
ccw = !ccw;
if (tes->info.tes.point_mode)
topology = V_028B6C_OUTPUT_POINT;
else if (tes->info.tes._primitive_mode == TESS_PRIMITIVE_ISOLINES)
topology = V_028B6C_OUTPUT_LINE;
else if (ccw)
topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
else
topology = V_028B6C_OUTPUT_TRIANGLE_CW;
if (pdevice->rad_info.has_distributed_tess) {
if (pdevice->rad_info.family == CHIP_FIJI || pdevice->rad_info.family >= CHIP_POLARIS10)
distribution_mode = V_028B6C_TRAPEZOIDS;
else
distribution_mode = V_028B6C_DONUTS;
} else
distribution_mode = V_028B6C_NO_DIST;
radeon_set_context_reg(ctx_cs, R_028B6C_VGT_TF_PARAM,
S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) |
S_028B6C_TOPOLOGY(topology) |
S_028B6C_DISTRIBUTION_MODE(distribution_mode));
}
static void
radv_pipeline_emit_hw_gs(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_graphics_pipeline *pipeline, const struct radv_shader *gs)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
const struct gfx9_gs_info *gs_state = &gs->info.gs_ring_info;
unsigned gs_max_out_vertices;
const uint8_t *num_components;
uint8_t max_stream;
unsigned offset;
uint64_t va;
gs_max_out_vertices = gs->info.gs.vertices_out;
max_stream = gs->info.gs.max_stream;
num_components = gs->info.gs.num_stream_output_components;
offset = num_components[0] * gs_max_out_vertices;
radeon_set_context_reg_seq(ctx_cs, R_028A60_VGT_GSVS_RING_OFFSET_1, 3);
radeon_emit(ctx_cs, offset);
if (max_stream >= 1)
offset += num_components[1] * gs_max_out_vertices;
radeon_emit(ctx_cs, offset);
if (max_stream >= 2)
offset += num_components[2] * gs_max_out_vertices;
radeon_emit(ctx_cs, offset);
if (max_stream >= 3)
offset += num_components[3] * gs_max_out_vertices;
radeon_set_context_reg(ctx_cs, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
radeon_set_context_reg_seq(ctx_cs, R_028B5C_VGT_GS_VERT_ITEMSIZE, 4);
radeon_emit(ctx_cs, num_components[0]);
radeon_emit(ctx_cs, (max_stream >= 1) ? num_components[1] : 0);
radeon_emit(ctx_cs, (max_stream >= 2) ? num_components[2] : 0);
radeon_emit(ctx_cs, (max_stream >= 3) ? num_components[3] : 0);
uint32_t gs_num_invocations = gs->info.gs.invocations;
radeon_set_context_reg(
ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT,
S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0));
radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
gs_state->vgt_esgs_ring_itemsize);
va = radv_shader_get_va(gs);
if (pdevice->rad_info.gfx_level >= GFX9) {
if (pdevice->rad_info.gfx_level >= GFX10) {
radeon_set_sh_reg(cs, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
} else {
radeon_set_sh_reg(cs, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
}
radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
radeon_emit(cs, gs->config.rsrc1);
radeon_emit(cs, gs->config.rsrc2 | S_00B22C_LDS_SIZE(gs_state->lds_size));
radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, gs_state->vgt_gs_onchip_cntl);
radeon_set_context_reg(ctx_cs, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
gs_state->vgt_gs_max_prims_per_subgroup);
} else {
radeon_set_sh_reg_seq(cs, R_00B220_SPI_SHADER_PGM_LO_GS, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B224_MEM_BASE(va >> 40));
radeon_emit(cs, gs->config.rsrc1);
radeon_emit(cs, gs->config.rsrc2);
}
if (pdevice->rad_info.gfx_level >= GFX10) {
ac_set_reg_cu_en(cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F),
C_00B21C_CU_EN, 0, &pdevice->rad_info,
(void*)gfx10_set_sh_reg_idx3);
ac_set_reg_cu_en(cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0),
C_00B204_CU_EN_GFX10, 16, &pdevice->rad_info,
(void*)gfx10_set_sh_reg_idx3);
} else if (pdevice->rad_info.gfx_level >= GFX7) {
radeon_set_sh_reg_idx(
pdevice, cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3,
S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F));
if (pdevice->rad_info.gfx_level >= GFX10) {
radeon_set_sh_reg_idx(
pdevice, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3,
S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0));
}
}
radv_pipeline_emit_hw_vs(ctx_cs, cs, pipeline, pipeline->base.gs_copy_shader);
}
static void
radv_pipeline_emit_geometry_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_graphics_pipeline *pipeline)
{
struct radv_shader *gs;
gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY];
if (!gs)
return;
if (gs->info.is_ngg)
radv_pipeline_emit_hw_ngg(ctx_cs, cs, pipeline, gs);
else
radv_pipeline_emit_hw_gs(ctx_cs, cs, pipeline, gs);
radeon_set_context_reg(ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT, gs->info.gs.vertices_out);
}
static void
radv_pipeline_emit_mesh_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_graphics_pipeline *pipeline)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
struct radv_shader *ms = pipeline->base.shaders[MESA_SHADER_MESH];
if (!ms)
return;
radv_pipeline_emit_hw_ngg(ctx_cs, cs, pipeline, ms);
radeon_set_context_reg(ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT, ms->info.workgroup_size);
radeon_set_uconfig_reg_idx(pdevice, ctx_cs,
R_030908_VGT_PRIMITIVE_TYPE, 1, V_008958_DI_PT_POINTLIST);
}
static uint32_t
offset_to_ps_input(uint32_t offset, bool flat_shade, bool explicit, bool float16)
{
uint32_t ps_input_cntl;
if (offset <= AC_EXP_PARAM_OFFSET_31) {
ps_input_cntl = S_028644_OFFSET(offset);
if (flat_shade || explicit)
ps_input_cntl |= S_028644_FLAT_SHADE(1);
if (explicit) {
/* Force parameter cache to be read in passthrough
* mode.
*/
ps_input_cntl |= S_028644_OFFSET(1 << 5);
}
if (float16) {
ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) | S_028644_ATTR0_VALID(1);
}
} else {
/* The input is a DEFAULT_VAL constant. */
assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 && offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
ps_input_cntl = S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(offset);
}
return ps_input_cntl;
}
static void
single_slot_to_ps_input(const struct radv_vs_output_info *outinfo,
unsigned slot, uint32_t *ps_input_cntl, unsigned *ps_offset,
bool skip_undef, bool use_default_0, bool flat_shade)
{
unsigned vs_offset = outinfo->vs_output_param_offset[slot];
if (vs_offset == AC_EXP_PARAM_UNDEFINED) {
if (skip_undef)
return;
else if (use_default_0)
vs_offset = AC_EXP_PARAM_DEFAULT_VAL_0000;
else
unreachable("vs_offset should not be AC_EXP_PARAM_UNDEFINED.");
}
ps_input_cntl[*ps_offset] = offset_to_ps_input(vs_offset, flat_shade, false, false);
++(*ps_offset);
}
static void
input_mask_to_ps_inputs(const struct radv_vs_output_info *outinfo, const struct radv_shader *ps,
uint32_t input_mask, uint32_t *ps_input_cntl, unsigned *ps_offset)
{
u_foreach_bit(i, input_mask) {
unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i];
if (vs_offset == AC_EXP_PARAM_UNDEFINED) {
ps_input_cntl[*ps_offset] = S_028644_OFFSET(0x20);
++(*ps_offset);
continue;
}
bool flat_shade = !!(ps->info.ps.flat_shaded_mask & (1u << *ps_offset));
bool explicit = !!(ps->info.ps.explicit_shaded_mask & (1u << *ps_offset));
bool float16 = !!(ps->info.ps.float16_shaded_mask & (1u << *ps_offset));
ps_input_cntl[*ps_offset] = offset_to_ps_input(vs_offset, flat_shade, explicit, float16);
++(*ps_offset);
}
}
static void
radv_pipeline_emit_ps_inputs(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline)
{
struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
bool mesh = radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH);
uint32_t ps_input_cntl[32];
unsigned ps_offset = 0;
if (ps->info.ps.prim_id_input && !mesh)
single_slot_to_ps_input(outinfo, VARYING_SLOT_PRIMITIVE_ID, ps_input_cntl, &ps_offset,
true, false, true);
if (ps->info.ps.layer_input && !mesh)
single_slot_to_ps_input(outinfo, VARYING_SLOT_LAYER, ps_input_cntl, &ps_offset,
false, true, true);
if (ps->info.ps.viewport_index_input && !mesh)
single_slot_to_ps_input(outinfo, VARYING_SLOT_VIEWPORT, ps_input_cntl, &ps_offset,
false, false, true);
if (ps->info.ps.has_pcoord)
ps_input_cntl[ps_offset++] = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20);
if (ps->info.ps.num_input_clips_culls) {
single_slot_to_ps_input(outinfo, VARYING_SLOT_CLIP_DIST0, ps_input_cntl, &ps_offset,
true, false, false);
if (ps->info.ps.num_input_clips_culls > 4)
single_slot_to_ps_input(outinfo, VARYING_SLOT_CLIP_DIST1, ps_input_cntl, &ps_offset,
true, false, false);
}
input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_mask,
ps_input_cntl, &ps_offset);
/* Per-primitive PS inputs: the HW needs these to be last. */
if (ps->info.ps.prim_id_input && mesh)
single_slot_to_ps_input(outinfo, VARYING_SLOT_PRIMITIVE_ID, ps_input_cntl, &ps_offset,
true, false, false);
if (ps->info.ps.layer_input && mesh)
single_slot_to_ps_input(outinfo, VARYING_SLOT_LAYER, ps_input_cntl, &ps_offset,
false, true, false);
if (ps->info.ps.viewport_index_input && mesh)
single_slot_to_ps_input(outinfo, VARYING_SLOT_VIEWPORT, ps_input_cntl, &ps_offset,
false, false, false);
input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_per_primitive_mask,
ps_input_cntl, &ps_offset);
if (ps_offset) {
radeon_set_context_reg_seq(ctx_cs, R_028644_SPI_PS_INPUT_CNTL_0, ps_offset);
for (unsigned i = 0; i < ps_offset; i++) {
radeon_emit(ctx_cs, ps_input_cntl[i]);
}
}
}
static uint32_t
radv_compute_db_shader_control(const struct radv_physical_device *pdevice,
const struct radv_graphics_pipeline *pipeline,
const struct radv_shader *ps)
{
unsigned conservative_z_export = V_02880C_EXPORT_ANY_Z;
unsigned z_order;
if (ps->info.ps.early_fragment_test || !ps->info.ps.writes_memory)
z_order = V_02880C_EARLY_Z_THEN_LATE_Z;
else
z_order = V_02880C_LATE_Z;
if (ps->info.ps.depth_layout == FRAG_DEPTH_LAYOUT_GREATER)
conservative_z_export = V_02880C_EXPORT_GREATER_THAN_Z;
else if (ps->info.ps.depth_layout == FRAG_DEPTH_LAYOUT_LESS)
conservative_z_export = V_02880C_EXPORT_LESS_THAN_Z;
bool disable_rbplus = pdevice->rad_info.has_rbplus && !pdevice->rad_info.rbplus_allowed;
/* It shouldn't be needed to export gl_SampleMask when MSAA is disabled
* but this appears to break Project Cars (DXVK). See
* https://bugs.freedesktop.org/show_bug.cgi?id=109401
*/
bool mask_export_enable = ps->info.ps.writes_sample_mask;
return S_02880C_Z_EXPORT_ENABLE(ps->info.ps.writes_z) |
S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(ps->info.ps.writes_stencil) |
S_02880C_KILL_ENABLE(!!ps->info.ps.can_discard) |
S_02880C_MASK_EXPORT_ENABLE(mask_export_enable) |
S_02880C_CONSERVATIVE_Z_EXPORT(conservative_z_export) | S_02880C_Z_ORDER(z_order) |
S_02880C_DEPTH_BEFORE_SHADER(ps->info.ps.early_fragment_test) |
S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(ps->info.ps.post_depth_coverage) |
S_02880C_EXEC_ON_HIER_FAIL(ps->info.ps.writes_memory) |
S_02880C_EXEC_ON_NOOP(ps->info.ps.writes_memory) |
S_02880C_DUAL_QUAD_DISABLE(disable_rbplus);
}
static void
radv_pipeline_emit_fragment_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_graphics_pipeline *pipeline)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
struct radv_shader *ps;
bool param_gen;
uint64_t va;
assert(pipeline->base.shaders[MESA_SHADER_FRAGMENT]);
ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
va = radv_shader_get_va(ps);
radeon_set_sh_reg_seq(cs, R_00B020_SPI_SHADER_PGM_LO_PS, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B024_MEM_BASE(va >> 40));
radeon_emit(cs, ps->config.rsrc1);
radeon_emit(cs, ps->config.rsrc2);
radeon_set_context_reg(ctx_cs, R_02880C_DB_SHADER_CONTROL,
radv_compute_db_shader_control(pdevice, pipeline, ps));
radeon_set_context_reg_seq(ctx_cs, R_0286CC_SPI_PS_INPUT_ENA, 2);
radeon_emit(ctx_cs, ps->config.spi_ps_input_ena);
radeon_emit(ctx_cs, ps->config.spi_ps_input_addr);
/* Workaround when there are no PS inputs but LDS is used. */
param_gen = pdevice->rad_info.gfx_level >= GFX11 &&
!ps->info.ps.num_interp && ps->config.lds_size;
radeon_set_context_reg(
ctx_cs, R_0286D8_SPI_PS_IN_CONTROL,
S_0286D8_NUM_INTERP(ps->info.ps.num_interp) |
S_0286D8_NUM_PRIM_INTERP(ps->info.ps.num_prim_interp) |
S_0286D8_PS_W32_EN(ps->info.wave_size == 32) |
S_0286D8_PARAM_GEN(param_gen));
radeon_set_context_reg(ctx_cs, R_0286E0_SPI_BARYC_CNTL, pipeline->spi_baryc_cntl);
radeon_set_context_reg(
ctx_cs, R_028710_SPI_SHADER_Z_FORMAT,
ac_get_spi_shader_z_format(ps->info.ps.writes_z, ps->info.ps.writes_stencil,
ps->info.ps.writes_sample_mask, false));
}
static void
radv_pipeline_emit_vgt_vertex_reuse(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
if (pdevice->rad_info.family < CHIP_POLARIS10 || pdevice->rad_info.gfx_level >= GFX10)
return;
unsigned vtx_reuse_depth = 30;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL) &&
radv_get_shader(&pipeline->base, MESA_SHADER_TESS_EVAL)->info.tes.spacing ==
TESS_SPACING_FRACTIONAL_ODD) {
vtx_reuse_depth = 14;
}
radeon_set_context_reg(ctx_cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
S_028C58_VTX_REUSE_DEPTH(vtx_reuse_depth));
}
static void
radv_pipeline_emit_vgt_shader_config(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
uint32_t stages = 0;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) {
stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1);
else if (radv_pipeline_has_ngg(pipeline))
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS);
else
stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
} else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1);
} else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) {
assert(!radv_pipeline_has_ngg_passthrough(pipeline));
stages |= S_028B54_GS_EN(1) | S_028B54_GS_FAST_LAUNCH(1);
if (pipeline->base.shaders[MESA_SHADER_MESH]->info.ms.needs_ms_scratch_ring)
stages |= S_028B54_NGG_WAVE_ID_EN(1);
} else if (radv_pipeline_has_ngg(pipeline)) {
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL);
}
if (radv_pipeline_has_ngg(pipeline)) {
stages |= S_028B54_PRIMGEN_EN(1);
if (pipeline->streamout_shader)
stages |= S_028B54_NGG_WAVE_ID_EN(1);
if (radv_pipeline_has_ngg_passthrough(pipeline)) {
stages |= S_028B54_PRIMGEN_PASSTHRU_EN(1);
if (pdevice->rad_info.family >= CHIP_NAVI23)
stages |= S_028B54_PRIMGEN_PASSTHRU_NO_MSG(1);
}
} else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
}
if (pdevice->rad_info.gfx_level >= GFX9)
stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
if (pdevice->rad_info.gfx_level >= GFX10) {
uint8_t hs_size = 64, gs_size = 64, vs_size = 64;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL))
hs_size = pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.wave_size;
if (pipeline->base.shaders[MESA_SHADER_GEOMETRY]) {
vs_size = gs_size = pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.wave_size;
if (radv_pipeline_has_gs_copy_shader(&pipeline->base))
vs_size = pipeline->base.gs_copy_shader->info.wave_size;
} else if (pipeline->base.shaders[MESA_SHADER_TESS_EVAL])
vs_size = pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.wave_size;
else if (pipeline->base.shaders[MESA_SHADER_VERTEX])
vs_size = pipeline->base.shaders[MESA_SHADER_VERTEX]->info.wave_size;
else if (pipeline->base.shaders[MESA_SHADER_MESH])
vs_size = gs_size = pipeline->base.shaders[MESA_SHADER_MESH]->info.wave_size;
if (radv_pipeline_has_ngg(pipeline)) {
assert(!radv_pipeline_has_gs_copy_shader(&pipeline->base));
gs_size = vs_size;
}
/* legacy GS only supports Wave64 */
stages |= S_028B54_HS_W32_EN(hs_size == 32 ? 1 : 0) |
S_028B54_GS_W32_EN(gs_size == 32 ? 1 : 0) |
S_028B54_VS_W32_EN(vs_size == 32 ? 1 : 0);
}
radeon_set_context_reg(ctx_cs, R_028B54_VGT_SHADER_STAGES_EN, stages);
}
static void
radv_pipeline_emit_cliprect_rule(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline_info *info)
{
uint32_t cliprect_rule = 0;
if (!info->dr.count) {
cliprect_rule = 0xffff;
} else {
for (unsigned i = 0; i < (1u << MAX_DISCARD_RECTANGLES); ++i) {
/* Interpret i as a bitmask, and then set the bit in
* the mask if that combination of rectangles in which
* the pixel is contained should pass the cliprect
* test.
*/
unsigned relevant_subset = i & ((1u << info->dr.count) - 1);
if (info->dr.mode == VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT && !relevant_subset)
continue;
if (info->dr.mode == VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT && relevant_subset)
continue;
cliprect_rule |= 1u << i;
}
}
radeon_set_context_reg(ctx_cs, R_02820C_PA_SC_CLIPRECT_RULE, cliprect_rule);
}
static void
gfx10_pipeline_emit_ge_cntl(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline)
{
bool break_wave_at_eoi = false;
unsigned primgroup_size;
unsigned vertgroup_size = 256; /* 256 = disable vertex grouping */
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) {
primgroup_size = pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.num_tess_patches;
} else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
const struct gfx9_gs_info *gs_state =
&pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.gs_ring_info;
unsigned vgt_gs_onchip_cntl = gs_state->vgt_gs_onchip_cntl;
primgroup_size = G_028A44_GS_PRIMS_PER_SUBGRP(vgt_gs_onchip_cntl);
} else {
primgroup_size = 128; /* recommended without a GS and tess */
}
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) {
if (pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id ||
radv_get_shader(&pipeline->base, MESA_SHADER_TESS_EVAL)->info.uses_prim_id)
break_wave_at_eoi = true;
}
radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL,
S_03096C_PRIM_GRP_SIZE_GFX10(primgroup_size) |
S_03096C_VERT_GRP_SIZE(vertgroup_size) |
S_03096C_PACKET_TO_ONE_PA(0) /* line stipple */ |
S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi));
}
static void
radv_pipeline_emit_vgt_gs_out(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline,
uint32_t vgt_gs_out_prim_type)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
if (pdevice->rad_info.gfx_level >= GFX11) {
radeon_set_uconfig_reg(ctx_cs, R_030998_VGT_GS_OUT_PRIM_TYPE, vgt_gs_out_prim_type);
} else {
radeon_set_context_reg(ctx_cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, vgt_gs_out_prim_type);
}
}
static void
gfx103_pipeline_emit_vgt_draw_payload_cntl(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_info *info)
{
const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
bool enable_vrs = radv_is_vrs_enabled(pipeline, info);
/* Enables the second channel of the primitive export instruction.
* This channel contains: VRS rate x, y, viewport and layer.
*/
bool enable_prim_payload =
outinfo &&
(outinfo->writes_viewport_index_per_primitive ||
outinfo->writes_layer_per_primitive ||
outinfo->writes_primitive_shading_rate_per_primitive);
radeon_set_context_reg(ctx_cs, R_028A98_VGT_DRAW_PAYLOAD_CNTL,
S_028A98_EN_VRS_RATE(enable_vrs) |
S_028A98_EN_PRIM_PAYLOAD(enable_prim_payload));
}
static bool
gfx103_pipeline_vrs_coarse_shading(const struct radv_graphics_pipeline *pipeline)
{
struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
struct radv_device *device = pipeline->base.device;
if (device->instance->debug_flags & RADV_DEBUG_NO_VRS_FLAT_SHADING)
return false;
if (!ps->info.ps.allow_flat_shading)
return false;
return true;
}
static void
gfx103_pipeline_emit_vrs_state(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_info *info)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
uint32_t mode = V_028064_VRS_COMB_MODE_PASSTHRU;
uint8_t rate_x = 0, rate_y = 0;
bool enable_vrs = radv_is_vrs_enabled(pipeline, info);
if (!enable_vrs && gfx103_pipeline_vrs_coarse_shading(pipeline)) {
/* When per-draw VRS is not enabled at all, try enabling VRS coarse shading 2x2 if the driver
* determined that it's safe to enable.
*/
mode = V_028064_VRS_COMB_MODE_OVERRIDE;
rate_x = rate_y = 1;
} else if (!radv_is_static_vrs_enabled(pipeline, info) && pipeline->force_vrs_per_vertex &&
get_vs_output_info(pipeline)->writes_primitive_shading_rate) {
/* Otherwise, if per-draw VRS is not enabled statically, try forcing per-vertex VRS if
* requested by the user. Note that vkd3d-proton always has to declare VRS as dynamic because
* in DX12 it's fully dynamic.
*/
radeon_set_context_reg(ctx_cs, R_028848_PA_CL_VRS_CNTL,
S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_VRS_COMB_MODE_OVERRIDE) |
S_028848_VERTEX_RATE_COMBINER_MODE(V_028848_VRS_COMB_MODE_OVERRIDE));
/* If the shader is using discard, turn off coarse shading because discard at 2x2 pixel
* granularity degrades quality too much. MIN allows sample shading but not coarse shading.
*/
struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
mode = ps->info.ps.can_discard ? V_028064_VRS_COMB_MODE_MIN : V_028064_VRS_COMB_MODE_PASSTHRU;
}
if (pdevice->rad_info.gfx_level >= GFX11) {
radeon_set_context_reg(ctx_cs, R_0283D0_PA_SC_VRS_OVERRIDE_CNTL,
S_0283D0_VRS_OVERRIDE_RATE_COMBINER_MODE(mode) |
S_0283D0_VRS_RATE((rate_x << 2) | rate_y));
} else {
radeon_set_context_reg(ctx_cs, R_028064_DB_VRS_OVERRIDE_CNTL,
S_028064_VRS_OVERRIDE_RATE_COMBINER_MODE(mode) |
S_028064_VRS_OVERRIDE_RATE_X(rate_x) |
S_028064_VRS_OVERRIDE_RATE_Y(rate_y));
}
}
static void
radv_pipeline_emit_pm4(struct radv_graphics_pipeline *pipeline,
const struct radv_blend_state *blend,
const struct radv_depth_stencil_state *ds_state,
uint32_t vgt_gs_out_prim_type,
const struct radv_graphics_pipeline_info *info)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
struct radeon_cmdbuf *ctx_cs = &pipeline->base.ctx_cs;
struct radeon_cmdbuf *cs = &pipeline->base.cs;
cs->max_dw = 64;
ctx_cs->max_dw = 256;
cs->buf = malloc(4 * (cs->max_dw + ctx_cs->max_dw));
ctx_cs->buf = cs->buf + cs->max_dw;
radv_pipeline_emit_depth_stencil_state(ctx_cs, ds_state);
radv_pipeline_emit_blend_state(ctx_cs, pipeline, blend);
radv_pipeline_emit_raster_state(ctx_cs, pipeline, info);
radv_pipeline_emit_multisample_state(ctx_cs, pipeline);
radv_pipeline_emit_vgt_gs_mode(ctx_cs, pipeline);
radv_pipeline_emit_vertex_shader(ctx_cs, cs, pipeline);
radv_pipeline_emit_mesh_shader(ctx_cs, cs, pipeline);
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) {
radv_pipeline_emit_tess_shaders(ctx_cs, cs, pipeline);
radv_pipeline_emit_tess_state(ctx_cs, pipeline, info);
}
radv_pipeline_emit_geometry_shader(ctx_cs, cs, pipeline);
radv_pipeline_emit_fragment_shader(ctx_cs, cs, pipeline);
radv_pipeline_emit_ps_inputs(ctx_cs, pipeline);
radv_pipeline_emit_vgt_vertex_reuse(ctx_cs, pipeline);
radv_pipeline_emit_vgt_shader_config(ctx_cs, pipeline);
radv_pipeline_emit_cliprect_rule(ctx_cs, info);
radv_pipeline_emit_vgt_gs_out(ctx_cs, pipeline, vgt_gs_out_prim_type);
if (pdevice->rad_info.gfx_level >= GFX10 && !radv_pipeline_has_ngg(pipeline))
gfx10_pipeline_emit_ge_cntl(ctx_cs, pipeline);
if (pdevice->rad_info.gfx_level >= GFX10_3) {
gfx103_pipeline_emit_vgt_draw_payload_cntl(ctx_cs, pipeline, info);
gfx103_pipeline_emit_vrs_state(ctx_cs, pipeline, info);
}
pipeline->base.ctx_cs_hash = _mesa_hash_data(ctx_cs->buf, ctx_cs->cdw * 4);
assert(ctx_cs->cdw <= ctx_cs->max_dw);
assert(cs->cdw <= cs->max_dw);
}
static void
radv_pipeline_init_vertex_input_state(struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_info *info)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
const struct radv_shader_info *vs_info = &radv_get_shader(&pipeline->base, MESA_SHADER_VERTEX)->info;
for (uint32_t i = 0; i < MAX_VERTEX_ATTRIBS; i++) {
pipeline->attrib_ends[i] = info->vi.attrib_ends[i];
pipeline->attrib_index_offset[i] = info->vi.attrib_index_offset[i];
pipeline->attrib_bindings[i] = info->vi.attrib_bindings[i];
}
for (uint32_t i = 0; i < MAX_VBS; i++) {
pipeline->binding_stride[i] = info->vi.binding_stride[i];
}
pipeline->use_per_attribute_vb_descs = vs_info->vs.use_per_attribute_vb_descs;
pipeline->last_vertex_attrib_bit = util_last_bit(vs_info->vs.vb_desc_usage_mask);
if (pipeline->base.shaders[MESA_SHADER_VERTEX])
pipeline->next_vertex_stage = MESA_SHADER_VERTEX;
else if (pipeline->base.shaders[MESA_SHADER_TESS_CTRL])
pipeline->next_vertex_stage = MESA_SHADER_TESS_CTRL;
else
pipeline->next_vertex_stage = MESA_SHADER_GEOMETRY;
if (pipeline->next_vertex_stage == MESA_SHADER_VERTEX) {
const struct radv_shader *vs_shader = pipeline->base.shaders[MESA_SHADER_VERTEX];
pipeline->can_use_simple_input = vs_shader->info.is_ngg == pdevice->use_ngg &&
vs_shader->info.wave_size == pdevice->ge_wave_size;
} else {
pipeline->can_use_simple_input = false;
}
if (vs_info->vs.dynamic_inputs)
pipeline->vb_desc_usage_mask = BITFIELD_MASK(pipeline->last_vertex_attrib_bit);
else
pipeline->vb_desc_usage_mask = vs_info->vs.vb_desc_usage_mask;
pipeline->vb_desc_alloc_size = util_bitcount(pipeline->vb_desc_usage_mask) * 16;
}
static struct radv_shader *
radv_pipeline_get_streamout_shader(struct radv_graphics_pipeline *pipeline)
{
int i;
for (i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
struct radv_shader *shader = radv_get_shader(&pipeline->base, i);
if (shader && shader->info.so.num_outputs > 0)
return shader;
}
return NULL;
}
static bool
radv_shader_need_indirect_descriptor_sets(struct radv_pipeline *pipeline, gl_shader_stage stage)
{
struct radv_userdata_info *loc =
radv_lookup_user_sgpr(pipeline, stage, AC_UD_INDIRECT_DESCRIPTOR_SETS);
return loc->sgpr_idx != -1;
}
static void
radv_pipeline_init_shader_stages_state(struct radv_graphics_pipeline *pipeline)
{
struct radv_device *device = pipeline->base.device;
for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
bool shader_exists = !!pipeline->base.shaders[i];
if (shader_exists || i < MESA_SHADER_COMPUTE) {
/* We need this info for some stages even when the shader doesn't exist. */
pipeline->base.user_data_0[i] = radv_pipeline_stage_to_user_data_0(
pipeline, i, device->physical_device->rad_info.gfx_level);
if (shader_exists)
pipeline->base.need_indirect_descriptor_sets |=
radv_shader_need_indirect_descriptor_sets(&pipeline->base, i);
}
}
gl_shader_stage first_stage =
radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH) ? MESA_SHADER_MESH : MESA_SHADER_VERTEX;
struct radv_userdata_info *loc =
radv_lookup_user_sgpr(&pipeline->base, first_stage, AC_UD_VS_BASE_VERTEX_START_INSTANCE);
if (loc->sgpr_idx != -1) {
pipeline->vtx_base_sgpr = pipeline->base.user_data_0[first_stage];
pipeline->vtx_base_sgpr += loc->sgpr_idx * 4;
pipeline->vtx_emit_num = loc->num_sgprs;
pipeline->uses_drawid =
radv_get_shader(&pipeline->base, first_stage)->info.vs.needs_draw_id;
pipeline->uses_baseinstance =
radv_get_shader(&pipeline->base, first_stage)->info.vs.needs_base_instance;
assert(first_stage != MESA_SHADER_MESH || !pipeline->uses_baseinstance);
}
}
static uint32_t
radv_pipeline_init_vgt_gs_out(struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_info *info)
{
uint32_t gs_out;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
gs_out =
si_conv_gl_prim_to_gs_out(pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim);
} else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) {
if (pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.tes.point_mode) {
gs_out = V_028A6C_POINTLIST;
} else {
gs_out = si_conv_tess_prim_to_gs_out(
pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.tes._primitive_mode);
}
} else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) {
gs_out =
si_conv_gl_prim_to_gs_out(pipeline->base.shaders[MESA_SHADER_MESH]->info.ms.output_prim);
} else {
gs_out = si_conv_prim_to_gs_out(info->ia.primitive_topology);
}
return gs_out;
}
static void
radv_pipeline_init_extra(struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_create_info *extra,
struct radv_blend_state *blend_state,
struct radv_depth_stencil_state *ds_state,
const struct radv_graphics_pipeline_info *info,
uint32_t *vgt_gs_out_prim_type)
{
if (extra->custom_blend_mode == V_028808_CB_ELIMINATE_FAST_CLEAR ||
extra->custom_blend_mode == V_028808_CB_FMASK_DECOMPRESS ||
extra->custom_blend_mode == V_028808_CB_DCC_DECOMPRESS_GFX8 ||
extra->custom_blend_mode == V_028808_CB_DCC_DECOMPRESS_GFX11 ||
extra->custom_blend_mode == V_028808_CB_RESOLVE) {
/* According to the CB spec states, CB_SHADER_MASK should be set to enable writes to all four
* channels of MRT0.
*/
blend_state->cb_shader_mask = 0xf;
if (extra->custom_blend_mode == V_028808_CB_RESOLVE)
pipeline->cb_color_control |= S_028808_DISABLE_DUAL_QUAD(1);
pipeline->cb_color_control &= C_028808_MODE;
pipeline->cb_color_control |= S_028808_MODE(extra->custom_blend_mode);
}
if (extra->use_rectlist) {
struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
dynamic->primitive_topology = V_008958_DI_PT_RECTLIST;
*vgt_gs_out_prim_type = V_028A6C_TRISTRIP;
if (radv_pipeline_has_ngg(pipeline))
*vgt_gs_out_prim_type = V_028A6C_RECTLIST;
pipeline->rast_prim = *vgt_gs_out_prim_type;
}
if (radv_pipeline_has_ds_attachments(&info->ri)) {
ds_state->db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear);
ds_state->db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear);
ds_state->db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->resummarize_enable);
ds_state->db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->depth_compress_disable);
ds_state->db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->stencil_compress_disable);
}
}
void
radv_pipeline_init(struct radv_device *device, struct radv_pipeline *pipeline,
enum radv_pipeline_type type)
{
vk_object_base_init(&device->vk, &pipeline->base, VK_OBJECT_TYPE_PIPELINE);
pipeline->device = device;
pipeline->type = type;
}
static VkResult
radv_graphics_pipeline_init(struct radv_graphics_pipeline *pipeline, struct radv_device *device,
struct radv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra)
{
RADV_FROM_HANDLE(radv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
VkResult result;
pipeline->last_vgt_api_stage = MESA_SHADER_NONE;
/* Mark all states declared dynamic at pipeline creation. */
if (pCreateInfo->pDynamicState) {
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
for (uint32_t s = 0; s < count; s++) {
pipeline->dynamic_states |=
radv_dynamic_state_mask(pCreateInfo->pDynamicState->pDynamicStates[s]);
}
}
/* Mark all active stages at pipeline creation. */
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
const VkPipelineShaderStageCreateInfo *sinfo = &pCreateInfo->pStages[i];
pipeline->active_stages |= sinfo->stage;
}
struct radv_graphics_pipeline_info info = radv_pipeline_init_graphics_info(pipeline, pCreateInfo);
struct radv_blend_state blend = radv_pipeline_init_blend_state(pipeline, pCreateInfo, &info);
const VkPipelineCreationFeedbackCreateInfo *creation_feedback =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
struct radv_pipeline_key key =
radv_generate_graphics_pipeline_key(pipeline, pCreateInfo, &info, &blend);
result = radv_create_shaders(&pipeline->base, pipeline_layout, device, cache, &key, pCreateInfo->pStages,
pCreateInfo->stageCount, pCreateInfo->flags, NULL,
creation_feedback, NULL, NULL, &pipeline->last_vgt_api_stage);
if (result != VK_SUCCESS)
return result;
pipeline->spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
uint32_t vgt_gs_out_prim_type = radv_pipeline_init_vgt_gs_out(pipeline, &info);
radv_pipeline_init_multisample_state(pipeline, &blend, &info, vgt_gs_out_prim_type);
if (!radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH))
radv_pipeline_init_input_assembly_state(pipeline, &info);
radv_pipeline_init_dynamic_state(pipeline, &info);
pipeline->negative_one_to_one = info.vp.negative_one_to_one;
radv_pipeline_init_raster_state(pipeline, &info);
struct radv_depth_stencil_state ds_state =
radv_pipeline_init_depth_stencil_state(pipeline, &info);
if (device->physical_device->rad_info.gfx_level >= GFX10_3)
gfx103_pipeline_init_vrs_state(pipeline, &info);
/* Ensure that some export memory is always allocated, for two reasons:
*
* 1) Correctness: The hardware ignores the EXEC mask if no export
* memory is allocated, so KILL and alpha test do not work correctly
* without this.
* 2) Performance: Every shader needs at least a NULL export, even when
* it writes no color/depth output. The NULL export instruction
* stalls without this setting.
*
* Don't add this to CB_SHADER_MASK.
*
* GFX10 supports pixel shaders without exports by setting both the
* color and Z formats to SPI_SHADER_ZERO. The hw will skip export
* instructions if any are present.
*/
struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
if ((device->physical_device->rad_info.gfx_level <= GFX9 || ps->info.ps.can_discard) &&
!blend.spi_shader_col_format) {
if (!ps->info.ps.writes_z && !ps->info.ps.writes_stencil && !ps->info.ps.writes_sample_mask)
blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
}
pipeline->col_format = blend.spi_shader_col_format;
pipeline->cb_target_mask = blend.cb_target_mask;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY) && !radv_pipeline_has_ngg(pipeline)) {
struct radv_shader *gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY];
radv_pipeline_init_gs_ring_state(pipeline, &gs->info.gs_ring_info);
}
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) {
pipeline->tess_patch_control_points = info.ts.patch_control_points;
}
if (!radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH))
radv_pipeline_init_vertex_input_state(pipeline, &info);
radv_pipeline_init_binning_state(pipeline, &blend, &info);
radv_pipeline_init_shader_stages_state(pipeline);
radv_pipeline_init_scratch(device, &pipeline->base);
/* Find the last vertex shader stage that eventually uses streamout. */
pipeline->streamout_shader = radv_pipeline_get_streamout_shader(pipeline);
pipeline->is_ngg = radv_pipeline_has_ngg(pipeline);
pipeline->has_ngg_culling =
pipeline->is_ngg &&
pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.has_ngg_culling;
pipeline->force_vrs_per_vertex =
pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.force_vrs_per_vertex;
pipeline->uses_user_sample_locations = info.ms.sample_locs_enable;
pipeline->rast_prim = vgt_gs_out_prim_type;
if (!(pipeline->dynamic_states & RADV_DYNAMIC_LINE_WIDTH)) {
pipeline->line_width = info.rs.line_width;
}
pipeline->base.push_constant_size = pipeline_layout->push_constant_size;
pipeline->base.dynamic_offset_count = pipeline_layout->dynamic_offset_count;
if (extra) {
radv_pipeline_init_extra(pipeline, extra, &blend, &ds_state, &info, &vgt_gs_out_prim_type);
}
radv_pipeline_emit_pm4(pipeline, &blend, &ds_state, vgt_gs_out_prim_type, &info);
return result;
}
static VkResult
radv_graphics_pipeline_create_nonlegacy(VkDevice _device, VkPipelineCache _cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
struct radv_graphics_pipeline *pipeline;
VkResult result;
pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
radv_pipeline_init(device, &pipeline->base, RADV_PIPELINE_GRAPHICS);
result = radv_graphics_pipeline_init(pipeline, device, cache, pCreateInfo, extra);
if (result != VK_SUCCESS) {
radv_pipeline_destroy(device, &pipeline->base, pAllocator);
return result;
}
*pPipeline = radv_pipeline_to_handle(&pipeline->base);
return VK_SUCCESS;
}
/* This is a wrapper for radv_graphics_pipeline_create_nonlegacy that does all legacy conversions
* for the VkGraphicsPipelineCreateInfo data. */
VkResult
radv_graphics_pipeline_create(VkDevice _device, VkPipelineCache _cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline)
{
VkGraphicsPipelineCreateInfo create_info = *pCreateInfo;
VkPipelineRenderingCreateInfo rendering_create_info;
VkFormat color_formats[MAX_RTS];
VkAttachmentSampleCountInfoAMD sample_info;
VkSampleCountFlagBits samples[MAX_RTS];
if (pCreateInfo->renderPass != VK_NULL_HANDLE) {
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
rendering_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO;
rendering_create_info.pNext = create_info.pNext;
create_info.pNext = &rendering_create_info;
rendering_create_info.viewMask = subpass->view_mask;
VkFormat ds_format =
subpass->depth_stencil_attachment
? pass->attachments[subpass->depth_stencil_attachment->attachment].format
: VK_FORMAT_UNDEFINED;
rendering_create_info.depthAttachmentFormat =
vk_format_has_depth(ds_format) ? ds_format : VK_FORMAT_UNDEFINED;
rendering_create_info.stencilAttachmentFormat =
vk_format_has_stencil(ds_format) ? ds_format : VK_FORMAT_UNDEFINED;
rendering_create_info.colorAttachmentCount = subpass->color_count;
rendering_create_info.pColorAttachmentFormats = color_formats;
for (unsigned i = 0; i < rendering_create_info.colorAttachmentCount; ++i) {
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
color_formats[i] = pass->attachments[subpass->color_attachments[i].attachment].format;
else
color_formats[i] = VK_FORMAT_UNDEFINED;
}
create_info.renderPass = VK_NULL_HANDLE;
sample_info.sType = VK_STRUCTURE_TYPE_ATTACHMENT_SAMPLE_COUNT_INFO_AMD;
sample_info.pNext = create_info.pNext;
create_info.pNext = &sample_info;
sample_info.colorAttachmentCount = rendering_create_info.colorAttachmentCount;
sample_info.pColorAttachmentSamples = samples;
for (unsigned i = 0; i < sample_info.colorAttachmentCount; ++i) {
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
samples[i] = pass->attachments[subpass->color_attachments[i].attachment].samples;
} else
samples[i] = 1;
}
sample_info.depthStencilAttachmentSamples = subpass->depth_sample_count;
}
return radv_graphics_pipeline_create_nonlegacy(_device, _cache, &create_info, extra, pAllocator,
pPipeline);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_CreateGraphicsPipelines(VkDevice _device, VkPipelineCache pipelineCache, uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines)
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
VkResult r;
r = radv_graphics_pipeline_create(_device, pipelineCache, &pCreateInfos[i], NULL, pAllocator,
&pPipelines[i]);
if (r != VK_SUCCESS) {
result = r;
pPipelines[i] = VK_NULL_HANDLE;
if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT)
break;
}
}
for (; i < count; ++i)
pPipelines[i] = VK_NULL_HANDLE;
return result;
}
void
radv_pipeline_emit_hw_cs(const struct radv_physical_device *pdevice, struct radeon_cmdbuf *cs,
const struct radv_shader *shader)
{
uint64_t va = radv_shader_get_va(shader);
radeon_set_sh_reg(cs, R_00B830_COMPUTE_PGM_LO, va >> 8);
radeon_set_sh_reg_seq(cs, R_00B848_COMPUTE_PGM_RSRC1, 2);
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
if (pdevice->rad_info.gfx_level >= GFX10) {
radeon_set_sh_reg(cs, R_00B8A0_COMPUTE_PGM_RSRC3, shader->config.rsrc3);
}
}
void
radv_pipeline_emit_compute_state(const struct radv_physical_device *pdevice,
struct radeon_cmdbuf *cs, const struct radv_shader *shader)
{
unsigned threads_per_threadgroup;
unsigned threadgroups_per_cu = 1;
unsigned waves_per_threadgroup;
unsigned max_waves_per_sh = 0;
/* Calculate best compute resource limits. */
threads_per_threadgroup =
shader->info.cs.block_size[0] * shader->info.cs.block_size[1] * shader->info.cs.block_size[2];
waves_per_threadgroup = DIV_ROUND_UP(threads_per_threadgroup, shader->info.wave_size);
if (pdevice->rad_info.gfx_level >= GFX10 && waves_per_threadgroup == 1)
threadgroups_per_cu = 2;
radeon_set_sh_reg(
cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
ac_get_compute_resource_limits(&pdevice->rad_info, waves_per_threadgroup,
max_waves_per_sh, threadgroups_per_cu));
radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(shader->info.cs.block_size[0]));
radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(shader->info.cs.block_size[1]));
radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(shader->info.cs.block_size[2]));
}
static void
radv_compute_generate_pm4(struct radv_compute_pipeline *pipeline)
{
struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
struct radv_shader *shader = pipeline->base.shaders[MESA_SHADER_COMPUTE];
struct radeon_cmdbuf *cs = &pipeline->base.cs;
cs->max_dw = pdevice->rad_info.gfx_level >= GFX10 ? 19 : 16;
cs->buf = malloc(cs->max_dw * 4);
radv_pipeline_emit_hw_cs(pdevice, cs, shader);
radv_pipeline_emit_compute_state(pdevice, cs, shader);
assert(pipeline->base.cs.cdw <= pipeline->base.cs.max_dw);
}
static struct radv_pipeline_key
radv_generate_compute_pipeline_key(struct radv_compute_pipeline *pipeline,
const VkComputePipelineCreateInfo *pCreateInfo)
{
const VkPipelineShaderStageCreateInfo *stage = &pCreateInfo->stage;
struct radv_pipeline_key key = radv_generate_pipeline_key(&pipeline->base, pCreateInfo->flags);
const VkPipelineShaderStageRequiredSubgroupSizeCreateInfo *subgroup_size =
vk_find_struct_const(stage->pNext,
PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO);
if (subgroup_size) {
assert(subgroup_size->requiredSubgroupSize == 32 ||
subgroup_size->requiredSubgroupSize == 64);
key.cs.compute_subgroup_size = subgroup_size->requiredSubgroupSize;
} else if (stage->flags & VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT) {
key.cs.require_full_subgroups = true;
}
return key;
}
VkResult
radv_compute_pipeline_create(VkDevice _device, VkPipelineCache _cache,
const VkComputePipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, const uint8_t *custom_hash,
struct radv_pipeline_shader_stack_size *rt_stack_sizes,
uint32_t rt_group_count, VkPipeline *pPipeline)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
RADV_FROM_HANDLE(radv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
struct radv_compute_pipeline *pipeline;
VkResult result;
pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL) {
free(rt_stack_sizes);
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
}
radv_pipeline_init(device, &pipeline->base, RADV_PIPELINE_COMPUTE);
pipeline->rt_stack_sizes = rt_stack_sizes;
pipeline->group_count = rt_group_count;
const VkPipelineCreationFeedbackCreateInfo *creation_feedback =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
struct radv_pipeline_key key = radv_generate_compute_pipeline_key(pipeline, pCreateInfo);
UNUSED gl_shader_stage last_vgt_api_stage = MESA_SHADER_NONE;
result = radv_create_shaders(&pipeline->base, pipeline_layout, device, cache, &key, &pCreateInfo->stage,
1, pCreateInfo->flags, custom_hash, creation_feedback,
&pipeline->rt_stack_sizes, &pipeline->group_count,
&last_vgt_api_stage);
if (result != VK_SUCCESS) {
radv_pipeline_destroy(device, &pipeline->base, pAllocator);
return result;
}
pipeline->base.user_data_0[MESA_SHADER_COMPUTE] = R_00B900_COMPUTE_USER_DATA_0;
pipeline->base.need_indirect_descriptor_sets |=
radv_shader_need_indirect_descriptor_sets(&pipeline->base, MESA_SHADER_COMPUTE);
radv_pipeline_init_scratch(device, &pipeline->base);
pipeline->base.push_constant_size = pipeline_layout->push_constant_size;
pipeline->base.dynamic_offset_count = pipeline_layout->dynamic_offset_count;
if (device->physical_device->rad_info.has_cs_regalloc_hang_bug) {
struct radv_shader *compute_shader = pipeline->base.shaders[MESA_SHADER_COMPUTE];
unsigned *cs_block_size = compute_shader->info.cs.block_size;
pipeline->cs_regalloc_hang_bug = cs_block_size[0] * cs_block_size[1] * cs_block_size[2] > 256;
}
radv_compute_generate_pm4(pipeline);
*pPipeline = radv_pipeline_to_handle(&pipeline->base);
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_CreateComputePipelines(VkDevice _device, VkPipelineCache pipelineCache, uint32_t count,
const VkComputePipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines)
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
VkResult r;
r = radv_compute_pipeline_create(_device, pipelineCache, &pCreateInfos[i], pAllocator, NULL,
NULL, 0, &pPipelines[i]);
if (r != VK_SUCCESS) {
result = r;
pPipelines[i] = VK_NULL_HANDLE;
if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT)
break;
}
}
for (; i < count; ++i)
pPipelines[i] = VK_NULL_HANDLE;
return result;
}
static uint32_t
radv_get_executable_count(struct radv_pipeline *pipeline)
{
uint32_t ret = 0;
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (!pipeline->shaders[i])
continue;
if (i == MESA_SHADER_GEOMETRY &&
!radv_pipeline_has_ngg(radv_pipeline_to_graphics(pipeline))) {
ret += 2u;
} else {
ret += 1u;
}
}
return ret;
}
static struct radv_shader *
radv_get_shader_from_executable_index(struct radv_pipeline *pipeline, int index,
gl_shader_stage *stage)
{
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (!pipeline->shaders[i])
continue;
if (!index) {
*stage = i;
return pipeline->shaders[i];
}
--index;
if (i == MESA_SHADER_GEOMETRY &&
!radv_pipeline_has_ngg(radv_pipeline_to_graphics(pipeline))) {
if (!index) {
*stage = i;
return pipeline->gs_copy_shader;
}
--index;
}
}
*stage = -1;
return NULL;
}
/* Basically strlcpy (which does not exist on linux) specialized for
* descriptions. */
static void
desc_copy(char *desc, const char *src)
{
int len = strlen(src);
assert(len < VK_MAX_DESCRIPTION_SIZE);
memcpy(desc, src, len);
memset(desc + len, 0, VK_MAX_DESCRIPTION_SIZE - len);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetPipelineExecutablePropertiesKHR(VkDevice _device, const VkPipelineInfoKHR *pPipelineInfo,
uint32_t *pExecutableCount,
VkPipelineExecutablePropertiesKHR *pProperties)
{
RADV_FROM_HANDLE(radv_pipeline, pipeline, pPipelineInfo->pipeline);
const uint32_t total_count = radv_get_executable_count(pipeline);
if (!pProperties) {
*pExecutableCount = total_count;
return VK_SUCCESS;
}
const uint32_t count = MIN2(total_count, *pExecutableCount);
for (unsigned i = 0, executable_idx = 0; i < MESA_VULKAN_SHADER_STAGES && executable_idx < count; ++i) {
if (!pipeline->shaders[i])
continue;
pProperties[executable_idx].stages = mesa_to_vk_shader_stage(i);
const char *name = NULL;
const char *description = NULL;
switch (i) {
case MESA_SHADER_VERTEX:
name = "Vertex Shader";
description = "Vulkan Vertex Shader";
break;
case MESA_SHADER_TESS_CTRL:
if (!pipeline->shaders[MESA_SHADER_VERTEX]) {
pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT;
name = "Vertex + Tessellation Control Shaders";
description = "Combined Vulkan Vertex and Tessellation Control Shaders";
} else {
name = "Tessellation Control Shader";
description = "Vulkan Tessellation Control Shader";
}
break;
case MESA_SHADER_TESS_EVAL:
name = "Tessellation Evaluation Shader";
description = "Vulkan Tessellation Evaluation Shader";
break;
case MESA_SHADER_GEOMETRY:
if (pipeline->shaders[MESA_SHADER_TESS_CTRL] && !pipeline->shaders[MESA_SHADER_TESS_EVAL]) {
pProperties[executable_idx].stages |= VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
name = "Tessellation Evaluation + Geometry Shaders";
description = "Combined Vulkan Tessellation Evaluation and Geometry Shaders";
} else if (!pipeline->shaders[MESA_SHADER_TESS_CTRL] && !pipeline->shaders[MESA_SHADER_VERTEX]) {
pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT;
name = "Vertex + Geometry Shader";
description = "Combined Vulkan Vertex and Geometry Shaders";
} else {
name = "Geometry Shader";
description = "Vulkan Geometry Shader";
}
break;
case MESA_SHADER_FRAGMENT:
name = "Fragment Shader";
description = "Vulkan Fragment Shader";
break;
case MESA_SHADER_COMPUTE:
name = "Compute Shader";
description = "Vulkan Compute Shader";
break;
case MESA_SHADER_MESH:
name = "Mesh Shader";
description = "Vulkan Mesh Shader";
break;
case MESA_SHADER_TASK:
name = "Task Shader";
description = "Vulkan Task Shader";
break;
}
pProperties[executable_idx].subgroupSize = pipeline->shaders[i]->info.wave_size;
desc_copy(pProperties[executable_idx].name, name);
desc_copy(pProperties[executable_idx].description, description);
++executable_idx;
if (i == MESA_SHADER_GEOMETRY &&
!radv_pipeline_has_ngg(radv_pipeline_to_graphics(pipeline))) {
assert(pipeline->gs_copy_shader);
if (executable_idx >= count)
break;
pProperties[executable_idx].stages = VK_SHADER_STAGE_GEOMETRY_BIT;
pProperties[executable_idx].subgroupSize = 64;
desc_copy(pProperties[executable_idx].name, "GS Copy Shader");
desc_copy(pProperties[executable_idx].description,
"Extra shader stage that loads the GS output ringbuffer into the rasterizer");
++executable_idx;
}
}
VkResult result = *pExecutableCount < total_count ? VK_INCOMPLETE : VK_SUCCESS;
*pExecutableCount = count;
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetPipelineExecutableStatisticsKHR(VkDevice _device,
const VkPipelineExecutableInfoKHR *pExecutableInfo,
uint32_t *pStatisticCount,
VkPipelineExecutableStatisticKHR *pStatistics)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline);
gl_shader_stage stage;
struct radv_shader *shader =
radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage);
const struct radv_physical_device *pdevice = device->physical_device;
unsigned lds_increment = pdevice->rad_info.gfx_level >= GFX11 && stage == MESA_SHADER_FRAGMENT
? 1024 : pdevice->rad_info.lds_encode_granularity;
unsigned max_waves = radv_get_max_waves(device, shader, stage);
VkPipelineExecutableStatisticKHR *s = pStatistics;
VkPipelineExecutableStatisticKHR *end = s + (pStatistics ? *pStatisticCount : 0);
VkResult result = VK_SUCCESS;
if (s < end) {
desc_copy(s->name, "Driver pipeline hash");
desc_copy(s->description, "Driver pipeline hash used by RGP");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = pipeline->pipeline_hash;
}
++s;
if (s < end) {
desc_copy(s->name, "SGPRs");
desc_copy(s->description, "Number of SGPR registers allocated per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.num_sgprs;
}
++s;
if (s < end) {
desc_copy(s->name, "VGPRs");
desc_copy(s->description, "Number of VGPR registers allocated per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.num_vgprs;
}
++s;
if (s < end) {
desc_copy(s->name, "Spilled SGPRs");
desc_copy(s->description, "Number of SGPR registers spilled per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.spilled_sgprs;
}
++s;
if (s < end) {
desc_copy(s->name, "Spilled VGPRs");
desc_copy(s->description, "Number of VGPR registers spilled per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.spilled_vgprs;
}
++s;
if (s < end) {
desc_copy(s->name, "Code size");
desc_copy(s->description, "Code size in bytes");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->exec_size;
}
++s;
if (s < end) {
desc_copy(s->name, "LDS size");
desc_copy(s->description, "LDS size in bytes per workgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.lds_size * lds_increment;
}
++s;
if (s < end) {
desc_copy(s->name, "Scratch size");
desc_copy(s->description, "Private memory in bytes per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.scratch_bytes_per_wave;
}
++s;
if (s < end) {
desc_copy(s->name, "Subgroups per SIMD");
desc_copy(s->description, "The maximum number of subgroups in flight on a SIMD unit");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = max_waves;
}
++s;
if (shader->statistics) {
for (unsigned i = 0; i < aco_num_statistics; i++) {
const struct aco_compiler_statistic_info *info = &aco_statistic_infos[i];
if (s < end) {
desc_copy(s->name, info->name);
desc_copy(s->description, info->desc);
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->statistics[i];
}
++s;
}
}
if (!pStatistics)
*pStatisticCount = s - pStatistics;
else if (s > end) {
*pStatisticCount = end - pStatistics;
result = VK_INCOMPLETE;
} else {
*pStatisticCount = s - pStatistics;
}
return result;
}
static VkResult
radv_copy_representation(void *data, size_t *data_size, const char *src)
{
size_t total_size = strlen(src) + 1;
if (!data) {
*data_size = total_size;
return VK_SUCCESS;
}
size_t size = MIN2(total_size, *data_size);
memcpy(data, src, size);
if (size)
*((char *)data + size - 1) = 0;
return size < total_size ? VK_INCOMPLETE : VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetPipelineExecutableInternalRepresentationsKHR(
VkDevice _device, const VkPipelineExecutableInfoKHR *pExecutableInfo,
uint32_t *pInternalRepresentationCount,
VkPipelineExecutableInternalRepresentationKHR *pInternalRepresentations)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline);
gl_shader_stage stage;
struct radv_shader *shader =
radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage);
VkPipelineExecutableInternalRepresentationKHR *p = pInternalRepresentations;
VkPipelineExecutableInternalRepresentationKHR *end =
p + (pInternalRepresentations ? *pInternalRepresentationCount : 0);
VkResult result = VK_SUCCESS;
/* optimized NIR */
if (p < end) {
p->isText = true;
desc_copy(p->name, "NIR Shader(s)");
desc_copy(p->description, "The optimized NIR shader(s)");
if (radv_copy_representation(p->pData, &p->dataSize, shader->nir_string) != VK_SUCCESS)
result = VK_INCOMPLETE;
}
++p;
/* backend IR */
if (p < end) {
p->isText = true;
if (radv_use_llvm_for_stage(device, stage)) {
desc_copy(p->name, "LLVM IR");
desc_copy(p->description, "The LLVM IR after some optimizations");
} else {
desc_copy(p->name, "ACO IR");
desc_copy(p->description, "The ACO IR after some optimizations");
}
if (radv_copy_representation(p->pData, &p->dataSize, shader->ir_string) != VK_SUCCESS)
result = VK_INCOMPLETE;
}
++p;
/* Disassembler */
if (p < end && shader->disasm_string) {
p->isText = true;
desc_copy(p->name, "Assembly");
desc_copy(p->description, "Final Assembly");
if (radv_copy_representation(p->pData, &p->dataSize, shader->disasm_string) != VK_SUCCESS)
result = VK_INCOMPLETE;
}
++p;
if (!pInternalRepresentations)
*pInternalRepresentationCount = p - pInternalRepresentations;
else if (p > end) {
result = VK_INCOMPLETE;
*pInternalRepresentationCount = end - pInternalRepresentations;
} else {
*pInternalRepresentationCount = p - pInternalRepresentations;
}
return result;
}