mesa/src/gallium/drivers/freedreno/freedreno_context.h

748 lines
25 KiB
C

/*
* Copyright (C) 2012 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#ifndef FREEDRENO_CONTEXT_H_
#define FREEDRENO_CONTEXT_H_
#include "indices/u_primconvert.h"
#include "pipe/p_context.h"
#include "util/libsync.h"
#include "util/list.h"
#include "util/slab.h"
#include "util/u_blitter.h"
#include "util/u_string.h"
#include "util/u_threaded_context.h"
#include "util/u_trace.h"
#include "freedreno_autotune.h"
#include "freedreno_gmem.h"
#include "freedreno_perfetto.h"
#include "freedreno_screen.h"
#include "freedreno_util.h"
#ifdef __cplusplus
extern "C" {
#endif
#define BORDER_COLOR_UPLOAD_SIZE (2 * PIPE_MAX_SAMPLERS * BORDERCOLOR_SIZE)
struct fd_vertex_stateobj;
struct fd_batch;
struct fd_texture_stateobj {
struct pipe_sampler_view *textures[PIPE_MAX_SAMPLERS];
unsigned num_textures;
unsigned valid_textures;
struct pipe_sampler_state *samplers[PIPE_MAX_SAMPLERS];
unsigned num_samplers;
unsigned valid_samplers;
};
struct fd_program_stateobj {
void *vs, *hs, *ds, *gs, *fs;
};
struct fd_constbuf_stateobj {
struct pipe_constant_buffer cb[PIPE_MAX_CONSTANT_BUFFERS];
uint32_t enabled_mask;
};
struct fd_shaderbuf_stateobj {
struct pipe_shader_buffer sb[PIPE_MAX_SHADER_BUFFERS];
uint32_t enabled_mask;
uint32_t writable_mask;
};
struct fd_shaderimg_stateobj {
struct pipe_image_view si[PIPE_MAX_SHADER_IMAGES];
uint32_t enabled_mask;
};
struct fd_vertexbuf_stateobj {
struct pipe_vertex_buffer vb[PIPE_MAX_ATTRIBS];
unsigned count;
uint32_t enabled_mask;
};
struct fd_vertex_stateobj {
struct pipe_vertex_element pipe[PIPE_MAX_ATTRIBS];
unsigned num_elements;
};
struct fd_stream_output_target {
struct pipe_stream_output_target base;
struct pipe_resource *offset_buf;
/* stride of the last stream out recorded to this target, for
* glDrawTransformFeedback(). */
uint32_t stride;
};
struct fd_streamout_stateobj {
struct pipe_stream_output_target *targets[PIPE_MAX_SO_BUFFERS];
/* Bitmask of stream that should be reset. */
unsigned reset;
unsigned num_targets;
/* Track offset from vtxcnt for streamout data. This counter
* is just incremented by # of vertices on each draw until
* reset or new streamout buffer bound.
*
* When we eventually have GS, the CPU won't actually know the
* number of vertices per draw, so I think we'll have to do
* something more clever.
*/
unsigned offsets[PIPE_MAX_SO_BUFFERS];
/* Pre-a6xx, the maximum number of vertices that could be recorded to this
* set of targets with the current vertex shader. a6xx and newer, hardware
* queries are used.
*/
unsigned max_tf_vtx;
/* Pre-a6xx, the number of verts written to the buffers since the last
* Begin. Used for overflow checking for SW queries.
*/
unsigned verts_written;
};
#define MAX_GLOBAL_BUFFERS 16
struct fd_global_bindings_stateobj {
struct pipe_resource *buf[MAX_GLOBAL_BUFFERS];
uint32_t enabled_mask;
};
/* group together the vertex and vertexbuf state.. for ease of passing
* around, and because various internal operations (gmem<->mem, etc)
* need their own vertex state:
*/
struct fd_vertex_state {
struct fd_vertex_stateobj *vtx;
struct fd_vertexbuf_stateobj vertexbuf;
};
/* global 3d pipeline dirty state: */
enum fd_dirty_3d_state {
FD_DIRTY_BLEND = BIT(0),
FD_DIRTY_RASTERIZER = BIT(1),
FD_DIRTY_ZSA = BIT(2),
FD_DIRTY_BLEND_COLOR = BIT(3),
FD_DIRTY_STENCIL_REF = BIT(4),
FD_DIRTY_SAMPLE_MASK = BIT(5),
FD_DIRTY_FRAMEBUFFER = BIT(6),
FD_DIRTY_STIPPLE = BIT(7),
FD_DIRTY_VIEWPORT = BIT(8),
FD_DIRTY_VTXSTATE = BIT(9),
FD_DIRTY_VTXBUF = BIT(10),
FD_DIRTY_MIN_SAMPLES = BIT(11),
FD_DIRTY_SCISSOR = BIT(12),
FD_DIRTY_STREAMOUT = BIT(13),
FD_DIRTY_UCP = BIT(14),
FD_DIRTY_PROG = BIT(15),
FD_DIRTY_CONST = BIT(16),
FD_DIRTY_TEX = BIT(17),
FD_DIRTY_IMAGE = BIT(18),
FD_DIRTY_SSBO = BIT(19),
/* only used by a2xx.. possibly can be removed.. */
FD_DIRTY_TEXSTATE = BIT(20),
/* fine grained state changes, for cases where state is not orthogonal
* from hw perspective:
*/
FD_DIRTY_RASTERIZER_DISCARD = BIT(24),
FD_DIRTY_BLEND_DUAL = BIT(25),
#define NUM_DIRTY_BITS 26
/* additional flag for state requires updated resource tracking: */
FD_DIRTY_RESOURCE = BIT(31),
};
/* per shader-stage dirty state: */
enum fd_dirty_shader_state {
FD_DIRTY_SHADER_PROG = BIT(0),
FD_DIRTY_SHADER_CONST = BIT(1),
FD_DIRTY_SHADER_TEX = BIT(2),
FD_DIRTY_SHADER_SSBO = BIT(3),
FD_DIRTY_SHADER_IMAGE = BIT(4),
#define NUM_DIRTY_SHADER_BITS 5
};
#define MAX_HW_SAMPLE_PROVIDERS 7
struct fd_hw_sample_provider;
struct fd_hw_sample;
struct ir3_shader_key;
struct fd_context {
struct pipe_context base;
struct threaded_context *tc;
struct list_head node; /* node in screen->context_list */
/* We currently need to serialize emitting GMEM batches, because of
* VSC state access in the context.
*
* In practice this lock should not be contended, since pipe_context
* use should be single threaded. But it is needed to protect the
* case, with batch reordering where a ctxB batch triggers flushing
* a ctxA batch
*/
simple_mtx_t gmem_lock;
struct fd_device *dev;
struct fd_screen *screen;
struct fd_pipe *pipe;
struct blitter_context *blitter dt;
void *clear_rs_state[2] dt;
struct primconvert_context *primconvert dt;
/* slab for pipe_transfer allocations: */
struct slab_child_pool transfer_pool dt;
struct slab_child_pool transfer_pool_unsync; /* for threaded_context */
struct fd_autotune autotune dt;
/**
* query related state:
*/
/*@{*/
/* slabs for fd_hw_sample and fd_hw_sample_period allocations: */
struct slab_mempool sample_pool dt;
struct slab_mempool sample_period_pool dt;
/* sample-providers for hw queries: */
const struct fd_hw_sample_provider
*hw_sample_providers[MAX_HW_SAMPLE_PROVIDERS];
/* list of active queries: */
struct list_head hw_active_queries dt;
/* sample-providers for accumulating hw queries: */
const struct fd_acc_sample_provider
*acc_sample_providers[MAX_HW_SAMPLE_PROVIDERS];
/* list of active accumulating queries: */
struct list_head acc_active_queries dt;
/*@}*/
uint8_t patch_vertices;
/* Whether we need to recheck the active_queries list next
* fd_batch_update_queries().
*/
bool update_active_queries dt;
/* Current state of pctx->set_active_query_state() (i.e. "should drawing
* be counted against non-perfcounter queries")
*/
bool active_queries dt;
/* table with PIPE_PRIM_MAX entries mapping PIPE_PRIM_x to
* DI_PT_x value to use for draw initiator. There are some
* slight differences between generation:
*/
const uint8_t *primtypes;
uint32_t primtype_mask;
/* shaders used by clear, and gmem->mem blits: */
struct fd_program_stateobj solid_prog; // TODO move to screen?
struct fd_program_stateobj solid_layered_prog;
/* shaders used by mem->gmem blits: */
struct fd_program_stateobj
blit_prog[MAX_RENDER_TARGETS]; // TODO move to screen?
struct fd_program_stateobj blit_z, blit_zs;
/* Stats/counters:
*/
struct {
uint64_t prims_emitted;
uint64_t prims_generated;
uint64_t draw_calls;
uint64_t batch_total, batch_sysmem, batch_gmem, batch_nondraw,
batch_restore;
uint64_t staging_uploads, shadow_uploads;
uint64_t vs_regs, hs_regs, ds_regs, gs_regs, fs_regs;
} stats dt;
/* Counter for number of users who need sw counters (so we can
* skip collecting them when not needed)
*/
unsigned stats_users;
/* Current batch.. the rule here is that you can deref ctx->batch
* in codepaths from pipe_context entrypoints. But not in code-
* paths from fd_batch_flush() (basically, the stuff that gets
* called from GMEM code), since in those code-paths the batch
* you care about is not necessarily the same as ctx->batch.
*/
struct fd_batch *batch dt;
/* NULL if there has been rendering since last flush. Otherwise
* keeps a reference to the last fence so we can re-use it rather
* than having to flush no-op batch.
*/
struct pipe_fence_handle *last_fence dt;
/* Fence fd we are told to wait on via ->fence_server_sync() (or -1
* if none). The in-fence is transferred over to the batch on the
* next draw/blit/grid.
*
* The reason for this extra complexity is that apps will typically
* do eglWaitSyncKHR()/etc at the beginning of the frame, before the
* first draw. But mesa/st doesn't flush down framebuffer state
* change until we hit a draw, so at ->fence_server_sync() time, we
* don't yet have the correct batch. If we created a batch at that
* point, it would be the wrong one, and we'd have to flush it pre-
* maturely, causing us to stall early in the frame where we could
* be building up cmdstream.
*/
int in_fence_fd dt;
/* track last known reset status globally and per-context to
* determine if more resets occurred since then. If global reset
* count increases, it means some other context crashed. If
* per-context reset count increases, it means we crashed the
* gpu.
*/
uint32_t context_reset_count dt;
uint32_t global_reset_count dt;
/* Context sequence #, used for batch-cache key: */
uint16_t seqno;
/* Cost per draw, used in conjunction with samples-passed history to
* estimate whether GMEM or bypass is the better option.
*/
uint8_t draw_cost;
/* Are we in process of shadowing a resource? Used to detect recursion
* in transfer_map, and skip unneeded synchronization.
*/
bool in_shadow : 1 dt;
/* For catching recursion problems with blit fallback: */
bool in_blit : 1 dt;
/* points to either scissor or disabled_scissor depending on rast state: */
struct pipe_scissor_state *current_scissor dt;
struct pipe_scissor_state scissor dt;
/* we don't have a disable/enable bit for scissor, so instead we keep
* a disabled-scissor state which matches the entire bound framebuffer
* and use that when scissor is not enabled.
*/
struct pipe_scissor_state disabled_scissor dt;
/* Per vsc pipe bo's (a2xx-a5xx): */
struct fd_bo *vsc_pipe_bo[32] dt;
/* Maps generic gallium oriented fd_dirty_3d_state bits to generation
* specific bitmask of state "groups".
*/
uint32_t gen_dirty_map[NUM_DIRTY_BITS];
uint32_t gen_dirty_shader_map[PIPE_SHADER_TYPES][NUM_DIRTY_SHADER_BITS];
/* Bitmask of all possible gen_dirty bits: */
uint32_t gen_all_dirty;
/* Generation specific bitmask of dirty state groups: */
uint32_t gen_dirty;
/* which state objects need to be re-emit'd: */
enum fd_dirty_3d_state dirty dt;
/* per shader-stage dirty status: */
enum fd_dirty_shader_state dirty_shader[PIPE_SHADER_TYPES] dt;
void *compute dt;
struct pipe_blend_state *blend dt;
struct pipe_rasterizer_state *rasterizer dt;
struct pipe_depth_stencil_alpha_state *zsa dt;
struct fd_texture_stateobj tex[PIPE_SHADER_TYPES] dt;
struct fd_program_stateobj prog dt;
uint32_t bound_shader_stages dt;
struct fd_vertex_state vtx dt;
struct pipe_blend_color blend_color dt;
struct pipe_stencil_ref stencil_ref dt;
unsigned sample_mask dt;
unsigned min_samples dt;
/* local context fb state, for when ctx->batch is null: */
struct pipe_framebuffer_state framebuffer dt;
struct pipe_poly_stipple stipple dt;
struct pipe_viewport_state viewport dt;
struct pipe_scissor_state viewport_scissor dt;
struct fd_constbuf_stateobj constbuf[PIPE_SHADER_TYPES] dt;
struct fd_shaderbuf_stateobj shaderbuf[PIPE_SHADER_TYPES] dt;
struct fd_shaderimg_stateobj shaderimg[PIPE_SHADER_TYPES] dt;
struct fd_streamout_stateobj streamout dt;
struct fd_global_bindings_stateobj global_bindings dt;
struct pipe_clip_state ucp dt;
struct pipe_query *cond_query dt;
bool cond_cond dt; /* inverted rendering condition */
uint cond_mode dt;
/* Private memory is a memory space where each fiber gets its own piece of
* memory, in addition to registers. It is backed by a buffer which needs
* to be large enough to hold the contents of every possible wavefront in
* every core of the GPU. Because it allocates space via the internal
* wavefront ID which is shared between all currently executing shaders,
* the same buffer can be reused by all shaders, as long as all shaders
* sharing the same buffer use the exact same configuration. There are two
* inputs to the configuration, the amount of per-fiber space and whether
* to use the newer per-wave or older per-fiber layout. We only ever
* increase the size, and shaders with a smaller size requirement simply
* use the larger existing buffer, so that we only need to keep track of
* one buffer and its size, but we still need to keep track of per-fiber
* and per-wave buffers separately so that we never use the same buffer
* for different layouts. pvtmem[0] is for per-fiber, and pvtmem[1] is for
* per-wave.
*/
struct {
struct fd_bo *bo;
uint32_t per_fiber_size;
} pvtmem[2] dt;
/* maps per-shader-stage state plus variant key to hw
* program stateobj:
*/
struct ir3_cache *shader_cache;
struct pipe_debug_callback debug;
struct u_trace_context trace_context dt;
#ifdef HAVE_PERFETTO
struct fd_perfetto_state perfetto;
#endif
/*
* Counter to generate submit-ids
*/
uint32_t submit_count;
/* Called on rebind_resource() for any per-gen cleanup required: */
void (*rebind_resource)(struct fd_context *ctx, struct fd_resource *rsc) dt;
/* GMEM/tile handling fxns: */
void (*emit_tile_init)(struct fd_batch *batch) dt;
void (*emit_tile_prep)(struct fd_batch *batch,
const struct fd_tile *tile) dt;
void (*emit_tile_mem2gmem)(struct fd_batch *batch,
const struct fd_tile *tile) dt;
void (*emit_tile_renderprep)(struct fd_batch *batch,
const struct fd_tile *tile) dt;
void (*emit_tile)(struct fd_batch *batch, const struct fd_tile *tile) dt;
void (*emit_tile_gmem2mem)(struct fd_batch *batch,
const struct fd_tile *tile) dt;
void (*emit_tile_fini)(struct fd_batch *batch) dt; /* optional */
/* optional, for GMEM bypass: */
void (*emit_sysmem_prep)(struct fd_batch *batch) dt;
void (*emit_sysmem_fini)(struct fd_batch *batch) dt;
/* draw: */
bool (*draw_vbo)(struct fd_context *ctx, const struct pipe_draw_info *info,
unsigned drawid_offset,
const struct pipe_draw_indirect_info *indirect,
const struct pipe_draw_start_count_bias *draw,
unsigned index_offset) dt;
bool (*clear)(struct fd_context *ctx, unsigned buffers,
const union pipe_color_union *color, double depth,
unsigned stencil) dt;
/* compute: */
void (*launch_grid)(struct fd_context *ctx,
const struct pipe_grid_info *info) dt;
/* query: */
struct fd_query *(*create_query)(struct fd_context *ctx, unsigned query_type,
unsigned index);
void (*query_prepare)(struct fd_batch *batch, uint32_t num_tiles) dt;
void (*query_prepare_tile)(struct fd_batch *batch, uint32_t n,
struct fd_ringbuffer *ring) dt;
void (*query_update_batch)(struct fd_batch *batch, bool disable_all) dt;
/* blitter: */
bool (*blit)(struct fd_context *ctx, const struct pipe_blit_info *info) dt;
void (*clear_ubwc)(struct fd_batch *batch, struct fd_resource *rsc) dt;
/* uncompress resource, if necessary, to use as the specified format: */
void (*validate_format)(struct fd_context *ctx, struct fd_resource *rsc,
enum pipe_format format) dt;
/* handling for barriers: */
void (*framebuffer_barrier)(struct fd_context *ctx) dt;
/* logger: */
void (*record_timestamp)(struct fd_ringbuffer *ring, struct fd_bo *bo,
unsigned offset);
uint64_t (*ts_to_ns)(uint64_t ts);
/*
* Common pre-cooked VBO state (used for a3xx and later):
*/
/* for clear/gmem->mem vertices, and mem->gmem */
struct pipe_resource *solid_vbuf;
/* for mem->gmem tex coords: */
struct pipe_resource *blit_texcoord_vbuf;
/* vertex state for solid_vbuf:
* - solid_vbuf / 12 / R32G32B32_FLOAT
*/
struct fd_vertex_state solid_vbuf_state;
/* vertex state for blit_prog:
* - blit_texcoord_vbuf / 8 / R32G32_FLOAT
* - solid_vbuf / 12 / R32G32B32_FLOAT
*/
struct fd_vertex_state blit_vbuf_state;
/*
* Info about state of previous draw, for state that comes from
* pipe_draw_info (ie. not part of a CSO). This allows us to
* skip some register emit when the state doesn't change from
* draw-to-draw
*/
struct {
bool dirty; /* last draw state unknown */
bool primitive_restart;
uint32_t index_start;
uint32_t instance_start;
uint32_t restart_index;
uint32_t streamout_mask;
/* some state changes require a different shader variant. Keep
* track of this so we know when we need to re-emit shader state
* due to variant change. See ir3_fixup_shader_state()
*
* (used for a3xx+, NULL otherwise)
*/
struct ir3_shader_key *key;
} last dt;
};
static inline struct fd_context *
fd_context(struct pipe_context *pctx)
{
return (struct fd_context *)pctx;
}
static inline struct fd_stream_output_target *
fd_stream_output_target(struct pipe_stream_output_target *target)
{
return (struct fd_stream_output_target *)target;
}
/**
* Does the dirty state require resource tracking, ie. in general
* does it reference some resource. There are some special cases:
*
* - FD_DIRTY_CONST can reference a resource, but cb0 is handled
* specially as if it is not a user-buffer, we expect it to be
* coming from const_uploader, so we can make some assumptions
* that future transfer_map will be UNSYNCRONIZED
* - FD_DIRTY_ZSA controls how the framebuffer is accessed
* - FD_DIRTY_BLEND needs to update GMEM reason
*
* TODO if we can make assumptions that framebuffer state is bound
* first, before blend/zsa/etc state we can move some of the ZSA/
* BLEND state handling from draw time to bind time. I think this
* is true of mesa/st, perhaps we can just document it to be a
* frontend requirement?
*/
static inline bool
fd_context_dirty_resource(enum fd_dirty_3d_state dirty)
{
return dirty & (FD_DIRTY_FRAMEBUFFER | FD_DIRTY_ZSA | FD_DIRTY_BLEND |
FD_DIRTY_SSBO | FD_DIRTY_IMAGE | FD_DIRTY_VTXBUF |
FD_DIRTY_TEX | FD_DIRTY_STREAMOUT);
}
#ifdef __cplusplus
#define or_dirty(d, mask) \
do { \
decltype(mask) _d = (d); \
d = (decltype(mask))(_d | (mask)); \
} while (0)
#else
#define or_dirty(d, mask) \
do { \
d |= (mask); \
} while (0)
#endif
/* Mark specified non-shader-stage related state as dirty: */
static inline void
fd_context_dirty(struct fd_context *ctx, enum fd_dirty_3d_state dirty) assert_dt
{
assert(util_is_power_of_two_nonzero(dirty));
STATIC_ASSERT(ffs(dirty) <= ARRAY_SIZE(ctx->gen_dirty_map));
ctx->gen_dirty |= ctx->gen_dirty_map[ffs(dirty) - 1];
if (fd_context_dirty_resource(dirty))
or_dirty(dirty, FD_DIRTY_RESOURCE);
or_dirty(ctx->dirty, dirty);
}
static inline void
fd_context_dirty_shader(struct fd_context *ctx, enum pipe_shader_type shader,
enum fd_dirty_shader_state dirty) assert_dt
{
const enum fd_dirty_3d_state map[] = {
FD_DIRTY_PROG, FD_DIRTY_CONST, FD_DIRTY_TEX,
FD_DIRTY_SSBO, FD_DIRTY_IMAGE,
};
/* Need to update the table above if these shift: */
STATIC_ASSERT(FD_DIRTY_SHADER_PROG == BIT(0));
STATIC_ASSERT(FD_DIRTY_SHADER_CONST == BIT(1));
STATIC_ASSERT(FD_DIRTY_SHADER_TEX == BIT(2));
STATIC_ASSERT(FD_DIRTY_SHADER_SSBO == BIT(3));
STATIC_ASSERT(FD_DIRTY_SHADER_IMAGE == BIT(4));
assert(util_is_power_of_two_nonzero(dirty));
assert(ffs(dirty) <= ARRAY_SIZE(map));
ctx->gen_dirty |= ctx->gen_dirty_shader_map[shader][ffs(dirty) - 1];
or_dirty(ctx->dirty_shader[shader], dirty);
fd_context_dirty(ctx, map[ffs(dirty) - 1]);
}
/* mark all state dirty: */
static inline void
fd_context_all_dirty(struct fd_context *ctx) assert_dt
{
ctx->last.dirty = true;
ctx->dirty = (enum fd_dirty_3d_state) ~0;
/* NOTE: don't use ~0 for gen_dirty, because the gen specific
* emit code will loop over all the bits:
*/
ctx->gen_dirty = ctx->gen_all_dirty;
for (unsigned i = 0; i < PIPE_SHADER_TYPES; i++)
ctx->dirty_shader[i] = (enum fd_dirty_shader_state) ~0;
}
static inline void
fd_context_all_clean(struct fd_context *ctx) assert_dt
{
ctx->last.dirty = false;
ctx->dirty = (enum fd_dirty_3d_state)0;
ctx->gen_dirty = 0;
for (unsigned i = 0; i < PIPE_SHADER_TYPES; i++) {
/* don't mark compute state as clean, since it is not emitted
* during normal draw call. The places that call _all_dirty(),
* it is safe to mark compute state dirty as well, but the
* inverse is not true.
*/
if (i == PIPE_SHADER_COMPUTE)
continue;
ctx->dirty_shader[i] = (enum fd_dirty_shader_state)0;
}
}
/**
* Add mapping between global dirty bit and generation specific dirty
* bit.
*/
static inline void
fd_context_add_map(struct fd_context *ctx, enum fd_dirty_3d_state dirty,
uint32_t gen_dirty)
{
u_foreach_bit (b, dirty) {
ctx->gen_dirty_map[b] |= gen_dirty;
}
ctx->gen_all_dirty |= gen_dirty;
}
/**
* Add mapping between shader stage specific dirty bit and generation
* specific dirty bit
*/
static inline void
fd_context_add_shader_map(struct fd_context *ctx, enum pipe_shader_type shader,
enum fd_dirty_shader_state dirty, uint32_t gen_dirty)
{
u_foreach_bit (b, dirty) {
ctx->gen_dirty_shader_map[shader][b] |= gen_dirty;
}
ctx->gen_all_dirty |= gen_dirty;
}
static inline struct pipe_scissor_state *
fd_context_get_scissor(struct fd_context *ctx) assert_dt
{
return ctx->current_scissor;
}
static inline bool
fd_supported_prim(struct fd_context *ctx, unsigned prim)
{
return (1 << prim) & ctx->primtype_mask;
}
void fd_context_switch_from(struct fd_context *ctx) assert_dt;
void fd_context_switch_to(struct fd_context *ctx,
struct fd_batch *batch) assert_dt;
struct fd_batch *fd_context_batch(struct fd_context *ctx) assert_dt;
struct fd_batch *fd_context_batch_locked(struct fd_context *ctx) assert_dt;
void fd_context_setup_common_vbos(struct fd_context *ctx);
void fd_context_cleanup_common_vbos(struct fd_context *ctx);
void fd_emit_string(struct fd_ringbuffer *ring, const char *string, int len);
void fd_emit_string5(struct fd_ringbuffer *ring, const char *string, int len);
struct pipe_context *fd_context_init(struct fd_context *ctx,
struct pipe_screen *pscreen,
const uint8_t *primtypes, void *priv,
unsigned flags);
struct pipe_context *fd_context_init_tc(struct pipe_context *pctx,
unsigned flags);
void fd_context_destroy(struct pipe_context *pctx) assert_dt;
#ifdef __cplusplus
}
#endif
#endif /* FREEDRENO_CONTEXT_H_ */