mesa/src/intel/isl/isl.h

2638 lines
95 KiB
C

/*
* Copyright 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/**
* @file
* @brief Intel Surface Layout
*
* Header Layout
* -------------
* The header is ordered as:
* - forward declarations
* - macros that may be overridden at compile-time for specific gens
* - enums and constants
* - structs and unions
* - functions
*/
#ifndef ISL_H
#define ISL_H
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include "c99_compat.h"
#include "util/compiler.h"
#include "util/macros.h"
#include "util/format/u_format.h"
#ifdef __cplusplus
extern "C" {
#endif
struct intel_device_info;
struct brw_image_param;
#ifndef ISL_GFX_VER
/**
* @brief Get the hardware generation of isl_device.
*
* You can define this as a compile-time constant in the CFLAGS. For example,
* `gcc -DISL_GFX_VER(dev)=9 ...`.
*/
#define ISL_GFX_VER(__dev) ((__dev)->info->ver)
#define ISL_GFX_VERX10(__dev) ((__dev)->info->verx10)
#define ISL_GFX_VER_SANITIZE(__dev)
#else
#define ISL_GFX_VER_SANITIZE(__dev) \
(assert(ISL_GFX_VER(__dev) == (__dev)->info->ver) && \
ISL_GFX_VERX10(__dev) == (__dev)->info->verx10))
#endif
#ifndef ISL_DEV_IS_G4X
#define ISL_DEV_IS_G4X(__dev) ((__dev)->info->is_g4x)
#endif
#ifndef ISL_DEV_IS_HASWELL
/**
* @brief Get the hardware generation of isl_device.
*
* You can define this as a compile-time constant in the CFLAGS. For example,
* `gcc -DISL_GFX_VER(dev)=9 ...`.
*/
#define ISL_DEV_IS_HASWELL(__dev) ((__dev)->info->is_haswell)
#endif
#ifndef ISL_DEV_IS_BAYTRAIL
#define ISL_DEV_IS_BAYTRAIL(__dev) ((__dev)->info->is_baytrail)
#endif
#ifndef ISL_DEV_USE_SEPARATE_STENCIL
/**
* You can define this as a compile-time constant in the CFLAGS. For example,
* `gcc -DISL_DEV_USE_SEPARATE_STENCIL(dev)=1 ...`.
*/
#define ISL_DEV_USE_SEPARATE_STENCIL(__dev) ((__dev)->use_separate_stencil)
#define ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(__dev)
#else
#define ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(__dev) \
(assert(ISL_DEV_USE_SEPARATE_STENCIL(__dev) == (__dev)->use_separate_stencil))
#endif
/**
* Hardware enumeration SURFACE_FORMAT.
*
* For the official list, see Broadwell PRM: Volume 2b: Command Reference:
* Enumerations: SURFACE_FORMAT.
*/
enum isl_format {
ISL_FORMAT_R32G32B32A32_FLOAT = 0,
ISL_FORMAT_R32G32B32A32_SINT = 1,
ISL_FORMAT_R32G32B32A32_UINT = 2,
ISL_FORMAT_R32G32B32A32_UNORM = 3,
ISL_FORMAT_R32G32B32A32_SNORM = 4,
ISL_FORMAT_R64G64_FLOAT = 5,
ISL_FORMAT_R32G32B32X32_FLOAT = 6,
ISL_FORMAT_R32G32B32A32_SSCALED = 7,
ISL_FORMAT_R32G32B32A32_USCALED = 8,
ISL_FORMAT_R32G32B32A32_SFIXED = 32,
ISL_FORMAT_R64G64_PASSTHRU = 33,
ISL_FORMAT_R32G32B32_FLOAT = 64,
ISL_FORMAT_R32G32B32_SINT = 65,
ISL_FORMAT_R32G32B32_UINT = 66,
ISL_FORMAT_R32G32B32_UNORM = 67,
ISL_FORMAT_R32G32B32_SNORM = 68,
ISL_FORMAT_R32G32B32_SSCALED = 69,
ISL_FORMAT_R32G32B32_USCALED = 70,
ISL_FORMAT_R32G32B32_SFIXED = 80,
ISL_FORMAT_R16G16B16A16_UNORM = 128,
ISL_FORMAT_R16G16B16A16_SNORM = 129,
ISL_FORMAT_R16G16B16A16_SINT = 130,
ISL_FORMAT_R16G16B16A16_UINT = 131,
ISL_FORMAT_R16G16B16A16_FLOAT = 132,
ISL_FORMAT_R32G32_FLOAT = 133,
ISL_FORMAT_R32G32_SINT = 134,
ISL_FORMAT_R32G32_UINT = 135,
ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS = 136,
ISL_FORMAT_X32_TYPELESS_G8X24_UINT = 137,
ISL_FORMAT_L32A32_FLOAT = 138,
ISL_FORMAT_R32G32_UNORM = 139,
ISL_FORMAT_R32G32_SNORM = 140,
ISL_FORMAT_R64_FLOAT = 141,
ISL_FORMAT_R16G16B16X16_UNORM = 142,
ISL_FORMAT_R16G16B16X16_FLOAT = 143,
ISL_FORMAT_A32X32_FLOAT = 144,
ISL_FORMAT_L32X32_FLOAT = 145,
ISL_FORMAT_I32X32_FLOAT = 146,
ISL_FORMAT_R16G16B16A16_SSCALED = 147,
ISL_FORMAT_R16G16B16A16_USCALED = 148,
ISL_FORMAT_R32G32_SSCALED = 149,
ISL_FORMAT_R32G32_USCALED = 150,
ISL_FORMAT_R32G32_FLOAT_LD = 151,
ISL_FORMAT_R32G32_SFIXED = 160,
ISL_FORMAT_R64_PASSTHRU = 161,
ISL_FORMAT_B8G8R8A8_UNORM = 192,
ISL_FORMAT_B8G8R8A8_UNORM_SRGB = 193,
ISL_FORMAT_R10G10B10A2_UNORM = 194,
ISL_FORMAT_R10G10B10A2_UNORM_SRGB = 195,
ISL_FORMAT_R10G10B10A2_UINT = 196,
ISL_FORMAT_R10G10B10_SNORM_A2_UNORM = 197,
ISL_FORMAT_R8G8B8A8_UNORM = 199,
ISL_FORMAT_R8G8B8A8_UNORM_SRGB = 200,
ISL_FORMAT_R8G8B8A8_SNORM = 201,
ISL_FORMAT_R8G8B8A8_SINT = 202,
ISL_FORMAT_R8G8B8A8_UINT = 203,
ISL_FORMAT_R16G16_UNORM = 204,
ISL_FORMAT_R16G16_SNORM = 205,
ISL_FORMAT_R16G16_SINT = 206,
ISL_FORMAT_R16G16_UINT = 207,
ISL_FORMAT_R16G16_FLOAT = 208,
ISL_FORMAT_B10G10R10A2_UNORM = 209,
ISL_FORMAT_B10G10R10A2_UNORM_SRGB = 210,
ISL_FORMAT_R11G11B10_FLOAT = 211,
ISL_FORMAT_R10G10B10_FLOAT_A2_UNORM = 213,
ISL_FORMAT_R32_SINT = 214,
ISL_FORMAT_R32_UINT = 215,
ISL_FORMAT_R32_FLOAT = 216,
ISL_FORMAT_R24_UNORM_X8_TYPELESS = 217,
ISL_FORMAT_X24_TYPELESS_G8_UINT = 218,
ISL_FORMAT_L32_UNORM = 221,
ISL_FORMAT_A32_UNORM = 222,
ISL_FORMAT_L16A16_UNORM = 223,
ISL_FORMAT_I24X8_UNORM = 224,
ISL_FORMAT_L24X8_UNORM = 225,
ISL_FORMAT_A24X8_UNORM = 226,
ISL_FORMAT_I32_FLOAT = 227,
ISL_FORMAT_L32_FLOAT = 228,
ISL_FORMAT_A32_FLOAT = 229,
ISL_FORMAT_X8B8_UNORM_G8R8_SNORM = 230,
ISL_FORMAT_A8X8_UNORM_G8R8_SNORM = 231,
ISL_FORMAT_B8X8_UNORM_G8R8_SNORM = 232,
ISL_FORMAT_B8G8R8X8_UNORM = 233,
ISL_FORMAT_B8G8R8X8_UNORM_SRGB = 234,
ISL_FORMAT_R8G8B8X8_UNORM = 235,
ISL_FORMAT_R8G8B8X8_UNORM_SRGB = 236,
ISL_FORMAT_R9G9B9E5_SHAREDEXP = 237,
ISL_FORMAT_B10G10R10X2_UNORM = 238,
ISL_FORMAT_L16A16_FLOAT = 240,
ISL_FORMAT_R32_UNORM = 241,
ISL_FORMAT_R32_SNORM = 242,
ISL_FORMAT_R10G10B10X2_USCALED = 243,
ISL_FORMAT_R8G8B8A8_SSCALED = 244,
ISL_FORMAT_R8G8B8A8_USCALED = 245,
ISL_FORMAT_R16G16_SSCALED = 246,
ISL_FORMAT_R16G16_USCALED = 247,
ISL_FORMAT_R32_SSCALED = 248,
ISL_FORMAT_R32_USCALED = 249,
ISL_FORMAT_B5G6R5_UNORM = 256,
ISL_FORMAT_B5G6R5_UNORM_SRGB = 257,
ISL_FORMAT_B5G5R5A1_UNORM = 258,
ISL_FORMAT_B5G5R5A1_UNORM_SRGB = 259,
ISL_FORMAT_B4G4R4A4_UNORM = 260,
ISL_FORMAT_B4G4R4A4_UNORM_SRGB = 261,
ISL_FORMAT_R8G8_UNORM = 262,
ISL_FORMAT_R8G8_SNORM = 263,
ISL_FORMAT_R8G8_SINT = 264,
ISL_FORMAT_R8G8_UINT = 265,
ISL_FORMAT_R16_UNORM = 266,
ISL_FORMAT_R16_SNORM = 267,
ISL_FORMAT_R16_SINT = 268,
ISL_FORMAT_R16_UINT = 269,
ISL_FORMAT_R16_FLOAT = 270,
ISL_FORMAT_A8P8_UNORM_PALETTE0 = 271,
ISL_FORMAT_A8P8_UNORM_PALETTE1 = 272,
ISL_FORMAT_I16_UNORM = 273,
ISL_FORMAT_L16_UNORM = 274,
ISL_FORMAT_A16_UNORM = 275,
ISL_FORMAT_L8A8_UNORM = 276,
ISL_FORMAT_I16_FLOAT = 277,
ISL_FORMAT_L16_FLOAT = 278,
ISL_FORMAT_A16_FLOAT = 279,
ISL_FORMAT_L8A8_UNORM_SRGB = 280,
ISL_FORMAT_R5G5_SNORM_B6_UNORM = 281,
ISL_FORMAT_B5G5R5X1_UNORM = 282,
ISL_FORMAT_B5G5R5X1_UNORM_SRGB = 283,
ISL_FORMAT_R8G8_SSCALED = 284,
ISL_FORMAT_R8G8_USCALED = 285,
ISL_FORMAT_R16_SSCALED = 286,
ISL_FORMAT_R16_USCALED = 287,
ISL_FORMAT_P8A8_UNORM_PALETTE0 = 290,
ISL_FORMAT_P8A8_UNORM_PALETTE1 = 291,
ISL_FORMAT_A1B5G5R5_UNORM = 292,
ISL_FORMAT_A4B4G4R4_UNORM = 293,
ISL_FORMAT_L8A8_UINT = 294,
ISL_FORMAT_L8A8_SINT = 295,
ISL_FORMAT_R8_UNORM = 320,
ISL_FORMAT_R8_SNORM = 321,
ISL_FORMAT_R8_SINT = 322,
ISL_FORMAT_R8_UINT = 323,
ISL_FORMAT_A8_UNORM = 324,
ISL_FORMAT_I8_UNORM = 325,
ISL_FORMAT_L8_UNORM = 326,
ISL_FORMAT_P4A4_UNORM_PALETTE0 = 327,
ISL_FORMAT_A4P4_UNORM_PALETTE0 = 328,
ISL_FORMAT_R8_SSCALED = 329,
ISL_FORMAT_R8_USCALED = 330,
ISL_FORMAT_P8_UNORM_PALETTE0 = 331,
ISL_FORMAT_L8_UNORM_SRGB = 332,
ISL_FORMAT_P8_UNORM_PALETTE1 = 333,
ISL_FORMAT_P4A4_UNORM_PALETTE1 = 334,
ISL_FORMAT_A4P4_UNORM_PALETTE1 = 335,
ISL_FORMAT_Y8_UNORM = 336,
ISL_FORMAT_L8_UINT = 338,
ISL_FORMAT_L8_SINT = 339,
ISL_FORMAT_I8_UINT = 340,
ISL_FORMAT_I8_SINT = 341,
ISL_FORMAT_DXT1_RGB_SRGB = 384,
ISL_FORMAT_R1_UNORM = 385,
ISL_FORMAT_YCRCB_NORMAL = 386,
ISL_FORMAT_YCRCB_SWAPUVY = 387,
ISL_FORMAT_P2_UNORM_PALETTE0 = 388,
ISL_FORMAT_P2_UNORM_PALETTE1 = 389,
ISL_FORMAT_BC1_UNORM = 390,
ISL_FORMAT_BC2_UNORM = 391,
ISL_FORMAT_BC3_UNORM = 392,
ISL_FORMAT_BC4_UNORM = 393,
ISL_FORMAT_BC5_UNORM = 394,
ISL_FORMAT_BC1_UNORM_SRGB = 395,
ISL_FORMAT_BC2_UNORM_SRGB = 396,
ISL_FORMAT_BC3_UNORM_SRGB = 397,
ISL_FORMAT_MONO8 = 398,
ISL_FORMAT_YCRCB_SWAPUV = 399,
ISL_FORMAT_YCRCB_SWAPY = 400,
ISL_FORMAT_DXT1_RGB = 401,
ISL_FORMAT_FXT1 = 402,
ISL_FORMAT_R8G8B8_UNORM = 403,
ISL_FORMAT_R8G8B8_SNORM = 404,
ISL_FORMAT_R8G8B8_SSCALED = 405,
ISL_FORMAT_R8G8B8_USCALED = 406,
ISL_FORMAT_R64G64B64A64_FLOAT = 407,
ISL_FORMAT_R64G64B64_FLOAT = 408,
ISL_FORMAT_BC4_SNORM = 409,
ISL_FORMAT_BC5_SNORM = 410,
ISL_FORMAT_R16G16B16_FLOAT = 411,
ISL_FORMAT_R16G16B16_UNORM = 412,
ISL_FORMAT_R16G16B16_SNORM = 413,
ISL_FORMAT_R16G16B16_SSCALED = 414,
ISL_FORMAT_R16G16B16_USCALED = 415,
ISL_FORMAT_BC6H_SF16 = 417,
ISL_FORMAT_BC7_UNORM = 418,
ISL_FORMAT_BC7_UNORM_SRGB = 419,
ISL_FORMAT_BC6H_UF16 = 420,
ISL_FORMAT_PLANAR_420_8 = 421,
ISL_FORMAT_PLANAR_420_16 = 422,
ISL_FORMAT_R8G8B8_UNORM_SRGB = 424,
ISL_FORMAT_ETC1_RGB8 = 425,
ISL_FORMAT_ETC2_RGB8 = 426,
ISL_FORMAT_EAC_R11 = 427,
ISL_FORMAT_EAC_RG11 = 428,
ISL_FORMAT_EAC_SIGNED_R11 = 429,
ISL_FORMAT_EAC_SIGNED_RG11 = 430,
ISL_FORMAT_ETC2_SRGB8 = 431,
ISL_FORMAT_R16G16B16_UINT = 432,
ISL_FORMAT_R16G16B16_SINT = 433,
ISL_FORMAT_R32_SFIXED = 434,
ISL_FORMAT_R10G10B10A2_SNORM = 435,
ISL_FORMAT_R10G10B10A2_USCALED = 436,
ISL_FORMAT_R10G10B10A2_SSCALED = 437,
ISL_FORMAT_R10G10B10A2_SINT = 438,
ISL_FORMAT_B10G10R10A2_SNORM = 439,
ISL_FORMAT_B10G10R10A2_USCALED = 440,
ISL_FORMAT_B10G10R10A2_SSCALED = 441,
ISL_FORMAT_B10G10R10A2_UINT = 442,
ISL_FORMAT_B10G10R10A2_SINT = 443,
ISL_FORMAT_R64G64B64A64_PASSTHRU = 444,
ISL_FORMAT_R64G64B64_PASSTHRU = 445,
ISL_FORMAT_ETC2_RGB8_PTA = 448,
ISL_FORMAT_ETC2_SRGB8_PTA = 449,
ISL_FORMAT_ETC2_EAC_RGBA8 = 450,
ISL_FORMAT_ETC2_EAC_SRGB8_A8 = 451,
ISL_FORMAT_R8G8B8_UINT = 456,
ISL_FORMAT_R8G8B8_SINT = 457,
ISL_FORMAT_RAW = 511,
ISL_FORMAT_ASTC_LDR_2D_4X4_U8SRGB = 512,
ISL_FORMAT_ASTC_LDR_2D_5X4_U8SRGB = 520,
ISL_FORMAT_ASTC_LDR_2D_5X5_U8SRGB = 521,
ISL_FORMAT_ASTC_LDR_2D_6X5_U8SRGB = 529,
ISL_FORMAT_ASTC_LDR_2D_6X6_U8SRGB = 530,
ISL_FORMAT_ASTC_LDR_2D_8X5_U8SRGB = 545,
ISL_FORMAT_ASTC_LDR_2D_8X6_U8SRGB = 546,
ISL_FORMAT_ASTC_LDR_2D_8X8_U8SRGB = 548,
ISL_FORMAT_ASTC_LDR_2D_10X5_U8SRGB = 561,
ISL_FORMAT_ASTC_LDR_2D_10X6_U8SRGB = 562,
ISL_FORMAT_ASTC_LDR_2D_10X8_U8SRGB = 564,
ISL_FORMAT_ASTC_LDR_2D_10X10_U8SRGB = 566,
ISL_FORMAT_ASTC_LDR_2D_12X10_U8SRGB = 574,
ISL_FORMAT_ASTC_LDR_2D_12X12_U8SRGB = 575,
ISL_FORMAT_ASTC_LDR_2D_4X4_FLT16 = 576,
ISL_FORMAT_ASTC_LDR_2D_5X4_FLT16 = 584,
ISL_FORMAT_ASTC_LDR_2D_5X5_FLT16 = 585,
ISL_FORMAT_ASTC_LDR_2D_6X5_FLT16 = 593,
ISL_FORMAT_ASTC_LDR_2D_6X6_FLT16 = 594,
ISL_FORMAT_ASTC_LDR_2D_8X5_FLT16 = 609,
ISL_FORMAT_ASTC_LDR_2D_8X6_FLT16 = 610,
ISL_FORMAT_ASTC_LDR_2D_8X8_FLT16 = 612,
ISL_FORMAT_ASTC_LDR_2D_10X5_FLT16 = 625,
ISL_FORMAT_ASTC_LDR_2D_10X6_FLT16 = 626,
ISL_FORMAT_ASTC_LDR_2D_10X8_FLT16 = 628,
ISL_FORMAT_ASTC_LDR_2D_10X10_FLT16 = 630,
ISL_FORMAT_ASTC_LDR_2D_12X10_FLT16 = 638,
ISL_FORMAT_ASTC_LDR_2D_12X12_FLT16 = 639,
ISL_FORMAT_ASTC_HDR_2D_4X4_FLT16 = 832,
ISL_FORMAT_ASTC_HDR_2D_5X4_FLT16 = 840,
ISL_FORMAT_ASTC_HDR_2D_5X5_FLT16 = 841,
ISL_FORMAT_ASTC_HDR_2D_6X5_FLT16 = 849,
ISL_FORMAT_ASTC_HDR_2D_6X6_FLT16 = 850,
ISL_FORMAT_ASTC_HDR_2D_8X5_FLT16 = 865,
ISL_FORMAT_ASTC_HDR_2D_8X6_FLT16 = 866,
ISL_FORMAT_ASTC_HDR_2D_8X8_FLT16 = 868,
ISL_FORMAT_ASTC_HDR_2D_10X5_FLT16 = 881,
ISL_FORMAT_ASTC_HDR_2D_10X6_FLT16 = 882,
ISL_FORMAT_ASTC_HDR_2D_10X8_FLT16 = 884,
ISL_FORMAT_ASTC_HDR_2D_10X10_FLT16 = 886,
ISL_FORMAT_ASTC_HDR_2D_12X10_FLT16 = 894,
ISL_FORMAT_ASTC_HDR_2D_12X12_FLT16 = 895,
/* The formats that follow are internal to ISL and as such don't have an
* explicit number. We'll just let the C compiler assign it for us. Any
* actual hardware formats *must* come before these in the list.
*/
/* Formats for the aux-map */
ISL_FORMAT_PLANAR_420_10,
ISL_FORMAT_PLANAR_420_12,
/* Formats for auxiliary surfaces */
ISL_FORMAT_HIZ,
ISL_FORMAT_MCS_2X,
ISL_FORMAT_MCS_4X,
ISL_FORMAT_MCS_8X,
ISL_FORMAT_MCS_16X,
ISL_FORMAT_GFX7_CCS_32BPP_X,
ISL_FORMAT_GFX7_CCS_64BPP_X,
ISL_FORMAT_GFX7_CCS_128BPP_X,
ISL_FORMAT_GFX7_CCS_32BPP_Y,
ISL_FORMAT_GFX7_CCS_64BPP_Y,
ISL_FORMAT_GFX7_CCS_128BPP_Y,
ISL_FORMAT_GFX9_CCS_32BPP,
ISL_FORMAT_GFX9_CCS_64BPP,
ISL_FORMAT_GFX9_CCS_128BPP,
ISL_FORMAT_GFX12_CCS_8BPP_Y0,
ISL_FORMAT_GFX12_CCS_16BPP_Y0,
ISL_FORMAT_GFX12_CCS_32BPP_Y0,
ISL_FORMAT_GFX12_CCS_64BPP_Y0,
ISL_FORMAT_GFX12_CCS_128BPP_Y0,
/* An upper bound on the supported format enumerations */
ISL_NUM_FORMATS,
/* Hardware doesn't understand this out-of-band value */
ISL_FORMAT_UNSUPPORTED = UINT16_MAX,
};
/**
* Numerical base type for channels of isl_format.
*/
enum PACKED isl_base_type {
/** Data which takes up space but is ignored */
ISL_VOID,
/** Data in a "raw" form and cannot be easily interpreted */
ISL_RAW,
/**
* Unsigned normalized data
*
* Though stored as an integer, the data is interpreted as a floating-point
* number in the range [0, 1] where the conversion from the in-memory
* representation to float is given by \f$\frac{x}{2^{bits} - 1}\f$.
*/
ISL_UNORM,
/**
* Signed normalized data
*
* Though stored as an integer, the data is interpreted as a floating-point
* number in the range [-1, 1] where the conversion from the in-memory
* representation to float is given by
* \f$max\left(\frac{x}{2^{bits - 1} - 1}, -1\right)\f$.
*/
ISL_SNORM,
/**
* Unsigned floating-point data
*
* Unlike the standard IEEE floating-point representation, unsigned
* floating-point data has no sign bit. This saves a bit of space which is
* important if more than one float is required to represent a color value.
* As with IEEE floats, the high bits are the exponent and the low bits are
* the mantissa. The available bit sizes for unsigned floats are as
* follows:
*
* \rst
* ===== ========= =========
* Bits Mantissa Exponent
* ===== ========= =========
* 11 6 5
* 10 5 5
* ===== ========= =========
* \endrst
*
* In particular, both unsigned floating-point formats are identical to
* IEEE float16 except that the sign bit and the bottom mantissa bits are
* removed.
*/
ISL_UFLOAT,
/** Signed floating-point data
*
* Signed floating-point data is represented as standard IEEE floats with
* the usual number of mantissa and exponent bits
*
* \rst
* ===== ========= =========
* Bits Mantissa Exponent
* ===== ========= =========
* 64 52 11
* 32 23 8
* 16 10 5
* ===== ========= =========
* \endrst
*/
ISL_SFLOAT,
/**
* Unsigned fixed-point data
*
* This is a 32-bit unsigned integer that is interpreted as a 16.16
* fixed-point value.
*/
ISL_UFIXED,
/**
* Signed fixed-point data
*
* This is a 32-bit signed integer that is interpreted as a 16.16
* fixed-point value.
*/
ISL_SFIXED,
/** Unsigned integer data */
ISL_UINT,
/** Signed integer data */
ISL_SINT,
/**
* Unsigned scaled data
*
* This is data which is stored as an unsigned integer but interpreted as a
* floating-point value by the hardware. The re-interpretation is done via
* a simple unsigned integer to float cast. This is typically used as a
* vertex format.
*/
ISL_USCALED,
/**
* Signed scaled data
*
* This is data which is stored as a signed integer but interpreted as a
* floating-point value by the hardware. The re-interpretation is done via
* a simple signed integer to float cast. This is typically used as a
* vertex format.
*/
ISL_SSCALED,
};
/**
* Colorspace of isl_format.
*/
enum isl_colorspace {
ISL_COLORSPACE_NONE = 0,
ISL_COLORSPACE_LINEAR,
ISL_COLORSPACE_SRGB,
ISL_COLORSPACE_YUV,
};
/**
* Texture compression mode of isl_format.
*/
enum isl_txc {
ISL_TXC_NONE = 0,
ISL_TXC_DXT1,
ISL_TXC_DXT3,
ISL_TXC_DXT5,
ISL_TXC_FXT1,
ISL_TXC_RGTC1,
ISL_TXC_RGTC2,
ISL_TXC_BPTC,
ISL_TXC_ETC1,
ISL_TXC_ETC2,
ISL_TXC_ASTC,
/* Used for auxiliary surface formats */
ISL_TXC_HIZ,
ISL_TXC_MCS,
ISL_TXC_CCS,
};
/**
* @brief Hardware tile mode
*
* WARNING: These values differ from the hardware enum values, which are
* unstable across hardware generations.
*
* Note that legacy Y tiling is ISL_TILING_Y0 instead of ISL_TILING_Y, to
* clearly distinguish it from Yf and Ys.
*/
enum isl_tiling {
ISL_TILING_LINEAR = 0,
ISL_TILING_W,
ISL_TILING_X,
ISL_TILING_Y0, /**< Legacy Y tiling */
ISL_TILING_Yf, /**< Standard 4K tiling. The 'f' means "four". */
ISL_TILING_Ys, /**< Standard 64K tiling. The 's' means "sixty-four". */
ISL_TILING_HIZ, /**< Tiling format for HiZ surfaces */
ISL_TILING_CCS, /**< Tiling format for CCS surfaces */
ISL_TILING_GFX12_CCS, /**< Tiling format for Gfx12 CCS surfaces */
};
/**
* @defgroup Tiling Flags
* @{
*/
typedef uint32_t isl_tiling_flags_t;
#define ISL_TILING_LINEAR_BIT (1u << ISL_TILING_LINEAR)
#define ISL_TILING_W_BIT (1u << ISL_TILING_W)
#define ISL_TILING_X_BIT (1u << ISL_TILING_X)
#define ISL_TILING_Y0_BIT (1u << ISL_TILING_Y0)
#define ISL_TILING_Yf_BIT (1u << ISL_TILING_Yf)
#define ISL_TILING_Ys_BIT (1u << ISL_TILING_Ys)
#define ISL_TILING_HIZ_BIT (1u << ISL_TILING_HIZ)
#define ISL_TILING_CCS_BIT (1u << ISL_TILING_CCS)
#define ISL_TILING_GFX12_CCS_BIT (1u << ISL_TILING_GFX12_CCS)
#define ISL_TILING_ANY_MASK (~0u)
#define ISL_TILING_NON_LINEAR_MASK (~ISL_TILING_LINEAR_BIT)
/** Any Y tiling, including legacy Y tiling. */
#define ISL_TILING_ANY_Y_MASK (ISL_TILING_Y0_BIT | \
ISL_TILING_Yf_BIT | \
ISL_TILING_Ys_BIT)
/** The Skylake BSpec refers to Yf and Ys as "standard tiling formats". */
#define ISL_TILING_STD_Y_MASK (ISL_TILING_Yf_BIT | \
ISL_TILING_Ys_BIT)
/** @} */
/**
* @brief Logical dimension of surface.
*
* Note: There is no dimension for cube map surfaces. ISL interprets cube maps
* as 2D array surfaces.
*/
enum isl_surf_dim {
ISL_SURF_DIM_1D,
ISL_SURF_DIM_2D,
ISL_SURF_DIM_3D,
};
/**
* @brief Physical layout of the surface's dimensions.
*/
enum isl_dim_layout {
/**
* For details, see the G35 PRM >> Volume 1: Graphics Core >> Section
* 6.17.3: 2D Surfaces.
*
* On many gens, 1D surfaces share the same layout as 2D surfaces. From
* the G35 PRM >> Volume 1: Graphics Core >> Section 6.17.2: 1D Surfaces:
*
* One-dimensional surfaces are identical to 2D surfaces with height of
* one.
*
* @invariant isl_surf::phys_level0_sa::depth == 1
*/
ISL_DIM_LAYOUT_GFX4_2D,
/**
* For details, see the G35 PRM >> Volume 1: Graphics Core >> Section
* 6.17.5: 3D Surfaces.
*
* @invariant isl_surf::phys_level0_sa::array_len == 1
*/
ISL_DIM_LAYOUT_GFX4_3D,
/**
* Special layout used for HiZ and stencil on Sandy Bridge to work around
* the hardware's lack of mipmap support. On gfx6, HiZ and stencil buffers
* work the same as on gfx7+ except that they don't technically support
* mipmapping. That does not, however, stop us from doing it. As far as
* Sandy Bridge hardware is concerned, HiZ and stencil always operates on a
* single miplevel 2D (possibly array) image. The dimensions of that image
* are NOT minified.
*
* In order to implement HiZ and stencil on Sandy Bridge, we create one
* full-sized 2D (possibly array) image for every LOD with every image
* aligned to a page boundary. When the surface is used with the stencil
* or HiZ hardware, we manually offset to the image for the given LOD.
*
* As a memory saving measure, we pretend that the width of each miplevel
* is minified and we place LOD1 and above below LOD0 but horizontally
* adjacent to each other. When considered as full-sized images, LOD1 and
* above technically overlap. However, since we only write to part of that
* image, the hardware will never notice the overlap.
*
* This layout looks something like this:
*
* +---------+
* | |
* | |
* +---------+
* | |
* | |
* +---------+
*
* +----+ +-+ .
* | | +-+
* +----+
*
* +----+ +-+ .
* | | +-+
* +----+
*/
ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ,
/**
* For details, see the Skylake BSpec >> Memory Views >> Common Surface
* Formats >> Surface Layout and Tiling >> » 1D Surfaces.
*/
ISL_DIM_LAYOUT_GFX9_1D,
};
enum isl_aux_usage {
/** No Auxiliary surface is used */
ISL_AUX_USAGE_NONE,
/** The primary surface is a depth surface and the auxiliary surface is HiZ */
ISL_AUX_USAGE_HIZ,
/** The auxiliary surface is an MCS
*
* @invariant isl_surf::samples > 1
*/
ISL_AUX_USAGE_MCS,
/** The auxiliary surface is a fast-clear-only compression surface
*
* @invariant isl_surf::samples == 1
*/
ISL_AUX_USAGE_CCS_D,
/** The auxiliary surface provides full lossless color compression
*
* @invariant isl_surf::samples == 1
*/
ISL_AUX_USAGE_CCS_E,
/** The auxiliary surface provides full lossless color compression on
* Gfx12.
*
* @invariant isl_surf::samples == 1
*/
ISL_AUX_USAGE_GFX12_CCS_E,
/** The auxiliary surface provides full lossless media color compression
*
* @invariant isl_surf::samples == 1
*/
ISL_AUX_USAGE_MC,
/** The auxiliary surface is a HiZ surface operating in write-through mode
* and CCS is also enabled
*
* In this mode, the HiZ and CCS surfaces act as a single fused compression
* surface where resolves (but not ambiguates) operate on both surfaces at
* the same time. In this mode, the HiZ surface operates in write-through
* mode where it is only used for accelerating depth testing and not for
* actual compression. The CCS-compressed surface contains valid data at
* all times.
*
* @invariant isl_surf::samples == 1
*/
ISL_AUX_USAGE_HIZ_CCS_WT,
/** The auxiliary surface is a HiZ surface with and CCS is also enabled
*
* In this mode, the HiZ and CCS surfaces act as a single fused compression
* surface where resolves (but not ambiguates) operate on both surfaces at
* the same time. In this mode, full HiZ compression is enabled and the
* CCS-compressed main surface may not contain valid data. The only way to
* read the surface outside of the depth hardware is to do a full resolve
* which resolves both HiZ and CCS so the surface is in the pass-through
* state.
*/
ISL_AUX_USAGE_HIZ_CCS,
/** The auxiliary surface is an MCS and CCS is also enabled
*
* In this mode, we have fused MCS+CCS compression where the MCS is used
* for fast-clears and "identical samples" compression just like on Gfx7-11
* but each plane is then CCS compressed.
*
* @invariant isl_surf::samples > 1
*/
ISL_AUX_USAGE_MCS_CCS,
/** CCS auxiliary data is used to compress a stencil buffer
*
* @invariant isl_surf::samples == 1
*/
ISL_AUX_USAGE_STC_CCS,
};
/**
* Enum for keeping track of the state an auxiliary compressed surface.
*
* For any given auxiliary surface compression format (HiZ, CCS, or MCS), any
* given slice (lod + array layer) can be in one of the seven states described
* by this enum. Draw and resolve operations may cause the slice to change
* from one state to another. The six valid states are:
*
* 1) Clear: In this state, each block in the auxiliary surface contains a
* magic value that indicates that the block is in the clear state. If
* a block is in the clear state, it's values in the primary surface are
* ignored and the color of the samples in the block is taken either the
* RENDER_SURFACE_STATE packet for color or 3DSTATE_CLEAR_PARAMS for
* depth. Since neither the primary surface nor the auxiliary surface
* contains the clear value, the surface can be cleared to a different
* color by simply changing the clear color without modifying either
* surface.
*
* 2) Partial Clear: In this state, each block in the auxiliary surface
* contains either the magic clear or pass-through value. See Clear and
* Pass-through for more details.
*
* 3) Compressed w/ Clear: In this state, neither the auxiliary surface
* nor the primary surface has a complete representation of the data.
* Instead, both surfaces must be used together or else rendering
* corruption may occur. Depending on the auxiliary compression format
* and the data, any given block in the primary surface may contain all,
* some, or none of the data required to reconstruct the actual sample
* values. Blocks may also be in the clear state (see Clear) and have
* their value taken from outside the surface.
*
* 4) Compressed w/o Clear: This state is identical to the state above
* except that no blocks are in the clear state. In this state, all of
* the data required to reconstruct the final sample values is contained
* in the auxiliary and primary surface and the clear value is not
* considered.
*
* 5) Resolved: In this state, the primary surface contains 100% of the
* data. The auxiliary surface is also valid so the surface can be
* validly used with or without aux enabled. The auxiliary surface may,
* however, contain non-trivial data and any update to the primary
* surface with aux disabled will cause the two to get out of sync.
*
* 6) Pass-through: In this state, the primary surface contains 100% of the
* data and every block in the auxiliary surface contains a magic value
* which indicates that the auxiliary surface should be ignored and the
* only the primary surface should be considered. Updating the primary
* surface without aux works fine and can be done repeatedly in this
* mode. Writing to a surface in pass-through mode with aux enabled may
* cause the auxiliary buffer to contain non-trivial data and no longer
* be in the pass-through state.
*
* 7) Aux Invalid: In this state, the primary surface contains 100% of the
* data and the auxiliary surface is completely bogus. Any attempt to
* use the auxiliary surface is liable to result in rendering
* corruption. The only thing that one can do to re-enable aux once
* this state is reached is to use an ambiguate pass to transition into
* the pass-through state.
*
* Drawing with or without aux enabled may implicitly cause the surface to
* transition between these states. There are also four types of auxiliary
* compression operations which cause an explicit transition which are
* described by the isl_aux_op enum below.
*
* Not all operations are valid or useful in all states. The diagram below
* contains a complete description of the states and all valid and useful
* transitions except clear.
*
* Draw w/ Aux
* +----------+
* | |
* | +-------------+ Draw w/ Aux +-------------+
* +------>| Compressed |<-------------------| Clear |
* | w/ Clear |----->----+ | |
* +-------------+ | +-------------+
* | /|\ | | |
* | | | | |
* | | +------<-----+ | Draw w/
* | | | | Clear Only
* | | Full | | +----------+
* Partial | | Resolve | \|/ | |
* Resolve | | | +-------------+ |
* | | | | Partial |<------+
* | | | | Clear |<----------+
* | | | +-------------+ |
* | | | | |
* | | +------>---------+ Full |
* | | | Resolve |
* Draw w/ aux | | Partial Fast Clear | |
* +----------+ | +--------------------------+ | |
* | | \|/ | \|/ |
* | +-------------+ Full Resolve +-------------+ |
* +------>| Compressed |------------------->| Resolved | |
* | w/o Clear |<-------------------| | |
* +-------------+ Draw w/ Aux +-------------+ |
* /|\ | | |
* | Draw | | Draw |
* | w/ Aux | | w/o Aux |
* | Ambiguate | | |
* | +--------------------------+ | |
* Draw w/o Aux | | | Draw w/o Aux |
* +----------+ | | | +----------+ |
* | | | \|/ \|/ | | |
* | +-------------+ Ambiguate +-------------+ | |
* +------>| Pass- |<-------------------| Aux |<------+ |
* +------>| through | | Invalid | |
* | +-------------+ +-------------+ |
* | | | |
* +----------+ +-----------------------------------------------------+
* Draw w/ Partial Fast Clear
* Clear Only
*
*
* While the above general theory applies to all forms of auxiliary
* compression on Intel hardware, not all states and operations are available
* on all compression types. However, each of the auxiliary states and
* operations can be fairly easily mapped onto the above diagram:
*
* HiZ: Hierarchical depth compression is capable of being in any of the
* states above. Hardware provides three HiZ operations: "Depth
* Clear", "Depth Resolve", and "HiZ Resolve" which map to "Fast
* Clear", "Full Resolve", and "Ambiguate" respectively. The
* hardware provides no HiZ partial resolve operation so the only way
* to get into the "Compressed w/o Clear" state is to render with HiZ
* when the surface is in the resolved or pass-through states.
*
* MCS: Multisample compression is technically capable of being in any of
* the states above except that most of them aren't useful. Both the
* render engine and the sampler support MCS compression and, apart
* from clear color, MCS is format-unaware so we leave the surface
* compressed 100% of the time. The hardware provides no MCS
* operations.
*
* CCS_D: Single-sample fast-clears (also called CCS_D in ISL) are one of
* the simplest forms of compression since they don't do anything
* beyond clear color tracking. They really only support three of
* the six states: Clear, Partial Clear, and Pass-through. The
* only CCS_D operation is "Resolve" which maps to a full resolve
* followed by an ambiguate.
*
* CCS_E: Single-sample render target compression (also called CCS_E in ISL)
* is capable of being in almost all of the above states. THe only
* exception is that it does not have separate resolved and pass-
* through states. Instead, the CCS_E full resolve operation does
* both a resolve and an ambiguate so it goes directly into the
* pass-through state. CCS_E also provides fast clear and partial
* resolve operations which work as described above.
*
* While it is technically possible to perform a CCS_E ambiguate, it
* is not provided by Sky Lake hardware so we choose to avoid the aux
* invalid state. If the aux invalid state were determined to be
* useful, a CCS ambiguate could be done by carefully rendering to
* the CCS and filling it with zeros.
*/
enum isl_aux_state {
#ifdef IN_UNIT_TEST
ISL_AUX_STATE_ASSERT,
#endif
ISL_AUX_STATE_CLEAR,
ISL_AUX_STATE_PARTIAL_CLEAR,
ISL_AUX_STATE_COMPRESSED_CLEAR,
ISL_AUX_STATE_COMPRESSED_NO_CLEAR,
ISL_AUX_STATE_RESOLVED,
ISL_AUX_STATE_PASS_THROUGH,
ISL_AUX_STATE_AUX_INVALID,
};
/**
* Enum which describes explicit aux transition operations.
*/
enum isl_aux_op {
#ifdef IN_UNIT_TEST
ISL_AUX_OP_ASSERT,
#endif
ISL_AUX_OP_NONE,
/** Fast Clear
*
* This operation writes the magic "clear" value to the auxiliary surface.
* This operation will safely transition any slice of a surface from any
* state to the clear state so long as the entire slice is fast cleared at
* once. A fast clear that only covers part of a slice of a surface is
* called a partial fast clear.
*/
ISL_AUX_OP_FAST_CLEAR,
/** Full Resolve
*
* This operation combines the auxiliary surface data with the primary
* surface data and writes the result to the primary. For HiZ, the docs
* call this a depth resolve. For CCS, the hardware full resolve operation
* does both a full resolve and an ambiguate so it actually takes you all
* the way to the pass-through state.
*/
ISL_AUX_OP_FULL_RESOLVE,
/** Partial Resolve
*
* This operation considers blocks which are in the "clear" state and
* writes the clear value directly into the primary or auxiliary surface.
* Once this operation completes, the surface is still compressed but no
* longer references the clear color. This operation is only available
* for CCS_E.
*/
ISL_AUX_OP_PARTIAL_RESOLVE,
/** Ambiguate
*
* This operation throws away the current auxiliary data and replaces it
* with the magic pass-through value. If an ambiguate operation is
* performed when the primary surface does not contain 100% of the data,
* data will be lost. This operation is only implemented in hardware for
* depth where it is called a HiZ resolve.
*/
ISL_AUX_OP_AMBIGUATE,
};
/* TODO(chadv): Explain */
enum isl_array_pitch_span {
ISL_ARRAY_PITCH_SPAN_FULL,
ISL_ARRAY_PITCH_SPAN_COMPACT,
};
/**
* @defgroup Surface Usage
* @{
*/
typedef uint64_t isl_surf_usage_flags_t;
#define ISL_SURF_USAGE_RENDER_TARGET_BIT (1u << 0)
#define ISL_SURF_USAGE_DEPTH_BIT (1u << 1)
#define ISL_SURF_USAGE_STENCIL_BIT (1u << 2)
#define ISL_SURF_USAGE_TEXTURE_BIT (1u << 3)
#define ISL_SURF_USAGE_CUBE_BIT (1u << 4)
#define ISL_SURF_USAGE_DISABLE_AUX_BIT (1u << 5)
#define ISL_SURF_USAGE_DISPLAY_BIT (1u << 6)
#define ISL_SURF_USAGE_DISPLAY_ROTATE_90_BIT (1u << 7)
#define ISL_SURF_USAGE_DISPLAY_ROTATE_180_BIT (1u << 8)
#define ISL_SURF_USAGE_DISPLAY_ROTATE_270_BIT (1u << 9)
#define ISL_SURF_USAGE_DISPLAY_FLIP_X_BIT (1u << 10)
#define ISL_SURF_USAGE_DISPLAY_FLIP_Y_BIT (1u << 11)
#define ISL_SURF_USAGE_STORAGE_BIT (1u << 12)
#define ISL_SURF_USAGE_HIZ_BIT (1u << 13)
#define ISL_SURF_USAGE_MCS_BIT (1u << 14)
#define ISL_SURF_USAGE_CCS_BIT (1u << 15)
#define ISL_SURF_USAGE_VERTEX_BUFFER_BIT (1u << 16)
#define ISL_SURF_USAGE_INDEX_BUFFER_BIT (1u << 17)
#define ISL_SURF_USAGE_CONSTANT_BUFFER_BIT (1u << 18)
#define ISL_SURF_USAGE_STAGING_BIT (1u << 19)
/** @} */
/**
* @defgroup Channel Mask
*
* These #define values are chosen to match the values of
* RENDER_SURFACE_STATE::Color Buffer Component Write Disables
*
* @{
*/
typedef uint8_t isl_channel_mask_t;
#define ISL_CHANNEL_BLUE_BIT (1 << 0)
#define ISL_CHANNEL_GREEN_BIT (1 << 1)
#define ISL_CHANNEL_RED_BIT (1 << 2)
#define ISL_CHANNEL_ALPHA_BIT (1 << 3)
/** @} */
/**
* @brief A channel select (also known as texture swizzle) value
*/
enum PACKED isl_channel_select {
ISL_CHANNEL_SELECT_ZERO = 0,
ISL_CHANNEL_SELECT_ONE = 1,
ISL_CHANNEL_SELECT_RED = 4,
ISL_CHANNEL_SELECT_GREEN = 5,
ISL_CHANNEL_SELECT_BLUE = 6,
ISL_CHANNEL_SELECT_ALPHA = 7,
};
/**
* Identical to VkSampleCountFlagBits.
*/
enum isl_sample_count {
ISL_SAMPLE_COUNT_1_BIT = 1u,
ISL_SAMPLE_COUNT_2_BIT = 2u,
ISL_SAMPLE_COUNT_4_BIT = 4u,
ISL_SAMPLE_COUNT_8_BIT = 8u,
ISL_SAMPLE_COUNT_16_BIT = 16u,
};
typedef uint32_t isl_sample_count_mask_t;
/**
* @brief Multisample Format
*/
enum isl_msaa_layout {
/**
* @brief Suface is single-sampled.
*/
ISL_MSAA_LAYOUT_NONE,
/**
* @brief [SNB+] Interleaved Multisample Format
*
* In this format, multiple samples are interleaved into each cacheline.
* In other words, the sample index is swizzled into the low 6 bits of the
* surface's virtual address space.
*
* For example, suppose the surface is legacy Y tiled, is 4x multisampled,
* and its pixel format is 32bpp. Then the first cacheline is arranged
* thus:
*
* (0,0,0) (0,1,0) (0,0,1) (1,0,1)
* (1,0,0) (1,1,0) (0,1,1) (1,1,1)
*
* (0,0,2) (1,0,2) (0,0,3) (1,0,3)
* (0,1,2) (1,1,2) (0,1,3) (1,1,3)
*
* The hardware docs refer to this format with multiple terms. In
* Sandybridge, this is the only multisample format; so no term is used.
* The Ivybridge docs refer to surfaces in this format as IMS (Interleaved
* Multisample Surface). Later hardware docs additionally refer to this
* format as MSFMT_DEPTH_STENCIL (because the format is deprecated for
* color surfaces).
*
* See the Sandybridge PRM, Volume 4, Part 1, Section 2.7 "Multisampled
* Surface Behavior".
*
* See the Ivybridge PRM, Volume 1, Part 1, Section 6.18.4.1 "Interleaved
* Multisampled Surfaces".
*/
ISL_MSAA_LAYOUT_INTERLEAVED,
/**
* @brief [IVB+] Array Multisample Format
*
* In this format, the surface's physical layout resembles that of a
* 2D array surface.
*
* Suppose the multisample surface's logical extent is (w, h) and its
* sample count is N. Then surface's physical extent is the same as
* a singlesample 2D surface whose logical extent is (w, h) and array
* length is N. Array slice `i` contains the pixel values for sample
* index `i`.
*
* The Ivybridge docs refer to surfaces in this format as UMS
* (Uncompressed Multsample Layout) and CMS (Compressed Multisample
* Surface). The Broadwell docs additionally refer to this format as
* MSFMT_MSS (MSS=Multisample Surface Storage).
*
* See the Broadwell PRM, Volume 5 "Memory Views", Section "Uncompressed
* Multisample Surfaces".
*
* See the Broadwell PRM, Volume 5 "Memory Views", Section "Compressed
* Multisample Surfaces".
*/
ISL_MSAA_LAYOUT_ARRAY,
};
typedef enum {
ISL_MEMCPY = 0,
ISL_MEMCPY_BGRA8,
ISL_MEMCPY_STREAMING_LOAD,
ISL_MEMCPY_INVALID,
} isl_memcpy_type;
struct isl_device {
const struct intel_device_info *info;
bool use_separate_stencil;
bool has_bit6_swizzling;
/**
* Describes the layout of a RENDER_SURFACE_STATE structure for the
* current gen.
*/
struct {
uint8_t size;
uint8_t align;
uint8_t addr_offset;
uint8_t aux_addr_offset;
/* Rounded up to the nearest dword to simplify GPU memcpy operations. */
/* size of the state buffer used to store the clear color + extra
* additional space used by the hardware */
uint8_t clear_color_state_size;
uint8_t clear_color_state_offset;
/* size of the clear color itself - used to copy it to/from a BO */
uint8_t clear_value_size;
uint8_t clear_value_offset;
} ss;
/**
* Describes the layout of the depth/stencil/hiz commands as emitted by
* isl_emit_depth_stencil_hiz.
*/
struct {
uint8_t size;
uint8_t depth_offset;
uint8_t stencil_offset;
uint8_t hiz_offset;
} ds;
struct {
uint32_t internal;
uint32_t external;
uint32_t l1_hdc_l3_llc;
} mocs;
};
struct isl_extent2d {
union { uint32_t w, width; };
union { uint32_t h, height; };
};
struct isl_extent3d {
union { uint32_t w, width; };
union { uint32_t h, height; };
union { uint32_t d, depth; };
};
struct isl_extent4d {
union { uint32_t w, width; };
union { uint32_t h, height; };
union { uint32_t d, depth; };
union { uint32_t a, array_len; };
};
/**
* Describes a single channel of an isl_format
*/
struct isl_channel_layout {
enum isl_base_type type; /**< Channel data encoding */
uint8_t start_bit; /**< Bit at which this channel starts */
uint8_t bits; /**< Size in bits */
};
/**
* Describes the layout of an isl_format
*
* Each format has 3D block extent (width, height, depth). The block extent of
* compressed formats is that of the format's compression block. For example,
* the block extent of `ISL_FORMAT_ETC2_RGB8` is `(w=4, h=4, d=1)`. The block
* extent of uncompressed pixel formats, such as `ISL_FORMAT_R8G8B8A8_UNORM`,
* is `(w=1, h=1, d=1)`.
*/
struct isl_format_layout {
enum isl_format format; /**< Format */
uint16_t bpb; /**< Bits per block */
uint8_t bw; /**< Block width, in pixels */
uint8_t bh; /**< Block height, in pixels */
uint8_t bd; /**< Block depth, in pixels */
union {
struct {
struct isl_channel_layout r; /**< Red channel */
struct isl_channel_layout g; /**< Green channel */
struct isl_channel_layout b; /**< Blue channel */
struct isl_channel_layout a; /**< Alpha channel */
struct isl_channel_layout l; /**< Luminance channel */
struct isl_channel_layout i; /**< Intensity channel */
struct isl_channel_layout p; /**< Palette channel */
} channels;
struct isl_channel_layout channels_array[7];
};
/** Set if all channels have the same isl_base_type. Otherwise, ISL_VOID. */
enum isl_base_type uniform_channel_type;
enum isl_colorspace colorspace;
enum isl_txc txc;
};
struct isl_tile_info {
enum isl_tiling tiling;
/* The size (in bits per block) of a single surface element
*
* For surfaces with power-of-two formats, this is the same as
* isl_format_layout::bpb. For non-power-of-two formats it may be smaller.
* The logical_extent_el field is in terms of elements of this size.
*
* For example, consider ISL_FORMAT_R32G32B32_FLOAT for which
* isl_format_layout::bpb is 96 (a non-power-of-two). In this case, none
* of the tiling formats can actually hold an integer number of 96-bit
* surface elements so isl_tiling_get_info returns an isl_tile_info for a
* 32-bit element size. It is the responsibility of the caller to
* recognize that 32 != 96 ad adjust accordingly. For instance, to compute
* the width of a surface in tiles, you would do:
*
* width_tl = DIV_ROUND_UP(width_el * (format_bpb / tile_info.format_bpb),
* tile_info.logical_extent_el.width);
*/
uint32_t format_bpb;
/** The logical size of the tile in units of format_bpb size elements
*
* This field determines how a given surface is cut up into tiles. It is
* used to compute the size of a surface in tiles and can be used to
* determine the location of the tile containing any given surface element.
* The exact value of this field depends heavily on the bits-per-block of
* the format being used.
*/
struct isl_extent4d logical_extent_el;
/** The physical size of the tile in bytes and rows of bytes
*
* This field determines how the tiles of a surface are physically layed
* out in memory. The logical and physical tile extent are frequently the
* same but this is not always the case. For instance, a W-tile (which is
* always used with ISL_FORMAT_R8) has a logical size of 64el x 64el but
* its physical size is 128B x 32rows, the same as a Y-tile.
*
* @see isl_surf::row_pitch_B
*/
struct isl_extent2d phys_extent_B;
};
/**
* Metadata about a DRM format modifier.
*/
struct isl_drm_modifier_info {
uint64_t modifier;
/** Text name of the modifier */
const char *name;
/** ISL tiling implied by this modifier */
enum isl_tiling tiling;
/** ISL aux usage implied by this modifier */
enum isl_aux_usage aux_usage;
/** Whether or not this modifier supports clear color */
bool supports_clear_color;
};
/**
* @brief Input to surface initialization
*
* @invariant width >= 1
* @invariant height >= 1
* @invariant depth >= 1
* @invariant levels >= 1
* @invariant samples >= 1
* @invariant array_len >= 1
*
* @invariant if 1D then height == 1 and depth == 1 and samples == 1
* @invariant if 2D then depth == 1
* @invariant if 3D then array_len == 1 and samples == 1
*/
struct isl_surf_init_info {
enum isl_surf_dim dim;
enum isl_format format;
uint32_t width;
uint32_t height;
uint32_t depth;
uint32_t levels;
uint32_t array_len;
uint32_t samples;
/** Lower bound for isl_surf::alignment, in bytes. */
uint32_t min_alignment_B;
/**
* Exact value for isl_surf::row_pitch. Ignored if zero. isl_surf_init()
* will fail if this is misaligned or out of bounds.
*/
uint32_t row_pitch_B;
isl_surf_usage_flags_t usage;
/** Flags that alter how ISL selects isl_surf::tiling. */
isl_tiling_flags_t tiling_flags;
};
struct isl_surf {
/** Dimensionality of the surface */
enum isl_surf_dim dim;
/**
* Spatial layout of the surface in memory
*
* This is dependent on isl_surf::dim and hardware generation.
*/
enum isl_dim_layout dim_layout;
/** Spatial layout of the samples if isl_surf::samples > 1 */
enum isl_msaa_layout msaa_layout;
/** Memory tiling used by the surface */
enum isl_tiling tiling;
/**
* Base image format of the surface
*
* This need not be the same as the format specified in isl_view::format
* when a surface state is constructed. It must, however, have the same
* number of bits per pixel or else memory calculations will go wrong.
*/
enum isl_format format;
/**
* Alignment of the upper-left sample of each subimage, in units of surface
* elements.
*/
struct isl_extent3d image_alignment_el;
/**
* Logical extent of the surface's base level, in units of pixels. This is
* identical to the extent defined in isl_surf_init_info.
*/
struct isl_extent4d logical_level0_px;
/**
* Physical extent of the surface's base level, in units of physical
* surface samples.
*
* Consider isl_dim_layout as an operator that transforms a logical surface
* layout to a physical surface layout. Then
*
* logical_layout := (isl_surf::dim, isl_surf::logical_level0_px)
* isl_surf::phys_level0_sa := isl_surf::dim_layout * logical_layout
*/
struct isl_extent4d phys_level0_sa;
/** Number of miplevels in the surface */
uint32_t levels;
/**
* Number of samples in the surface
*
* @invariant samples >= 1
*/
uint32_t samples;
/** Total size of the surface, in bytes. */
uint64_t size_B;
/** Required alignment for the surface's base address. */
uint32_t alignment_B;
/**
* The interpretation of this field depends on the value of
* isl_tile_info::physical_extent_B. In particular, the width of the
* surface in tiles is row_pitch_B / isl_tile_info::physical_extent_B.width
* and the distance in bytes between vertically adjacent tiles in the image
* is given by row_pitch_B * isl_tile_info::physical_extent_B.height.
*
* For linear images where isl_tile_info::physical_extent_B.height == 1,
* this cleanly reduces to being the distance, in bytes, between vertically
* adjacent surface elements.
*
* @see isl_tile_info::phys_extent_B;
*/
uint32_t row_pitch_B;
/**
* Pitch between physical array slices, in rows of surface elements.
*/
uint32_t array_pitch_el_rows;
enum isl_array_pitch_span array_pitch_span;
/** Copy of isl_surf_init_info::usage. */
isl_surf_usage_flags_t usage;
};
struct isl_swizzle {
enum isl_channel_select r:4;
enum isl_channel_select g:4;
enum isl_channel_select b:4;
enum isl_channel_select a:4;
};
#define ISL_SWIZZLE(R, G, B, A) ((struct isl_swizzle) { \
.r = ISL_CHANNEL_SELECT_##R, \
.g = ISL_CHANNEL_SELECT_##G, \
.b = ISL_CHANNEL_SELECT_##B, \
.a = ISL_CHANNEL_SELECT_##A, \
})
#define ISL_SWIZZLE_IDENTITY ISL_SWIZZLE(RED, GREEN, BLUE, ALPHA)
struct isl_view {
/**
* Indicates the usage of the particular view
*
* Normally, this is one bit. However, for a cube map texture, it
* should be ISL_SURF_USAGE_TEXTURE_BIT | ISL_SURF_USAGE_CUBE_BIT.
*/
isl_surf_usage_flags_t usage;
/**
* The format to use in the view
*
* This may differ from the format of the actual isl_surf but must have
* the same block size.
*/
enum isl_format format;
uint32_t base_level;
uint32_t levels;
/**
* Base array layer
*
* For cube maps, both base_array_layer and array_len should be
* specified in terms of 2-D layers and must be a multiple of 6.
*
* 3-D textures are effectively treated as 2-D arrays when used as a
* storage image or render target. If `usage` contains
* ISL_SURF_USAGE_RENDER_TARGET_BIT or ISL_SURF_USAGE_STORAGE_BIT then
* base_array_layer and array_len are applied. If the surface is only used
* for texturing, they are ignored.
*/
uint32_t base_array_layer;
/**
* Array Length
*
* Indicates the number of array elements starting at Base Array Layer.
*/
uint32_t array_len;
struct isl_swizzle swizzle;
};
union isl_color_value {
float f32[4];
uint32_t u32[4];
int32_t i32[4];
};
struct isl_surf_fill_state_info {
const struct isl_surf *surf;
const struct isl_view *view;
/**
* The address of the surface in GPU memory.
*/
uint64_t address;
/**
* The Memory Object Control state for the filled surface state.
*
* The exact format of this value depends on hardware generation.
*/
uint32_t mocs;
/**
* The auxilary surface or NULL if no auxilary surface is to be used.
*/
const struct isl_surf *aux_surf;
enum isl_aux_usage aux_usage;
uint64_t aux_address;
/**
* The clear color for this surface
*
* Valid values depend on hardware generation.
*/
union isl_color_value clear_color;
/**
* Send only the clear value address
*
* If set, we only pass the clear address to the GPU and it will fetch it
* from wherever it is.
*/
bool use_clear_address;
uint64_t clear_address;
/**
* Surface write disables for gfx4-5
*/
isl_channel_mask_t write_disables;
/**
* blend enable for gfx4-5
*/
bool blend_enable;
/* Intra-tile offset */
uint16_t x_offset_sa, y_offset_sa;
};
struct isl_buffer_fill_state_info {
/**
* The address of the surface in GPU memory.
*/
uint64_t address;
/**
* The size of the buffer
*/
uint64_t size_B;
/**
* The Memory Object Control state for the filled surface state.
*
* The exact format of this value depends on hardware generation.
*/
uint32_t mocs;
/**
* The format to use in the surface state
*
* This may differ from the format of the actual isl_surf but have the
* same block size.
*/
enum isl_format format;
/**
* The swizzle to use in the surface state
*/
struct isl_swizzle swizzle;
uint32_t stride_B;
};
struct isl_depth_stencil_hiz_emit_info {
/**
* The depth surface
*/
const struct isl_surf *depth_surf;
/**
* The stencil surface
*
* If separate stencil is not available, this must point to the same
* isl_surf as depth_surf.
*/
const struct isl_surf *stencil_surf;
/**
* The view into the depth and stencil surfaces.
*
* This view applies to both surfaces simultaneously.
*/
const struct isl_view *view;
/**
* The address of the depth surface in GPU memory
*/
uint64_t depth_address;
/**
* The address of the stencil surface in GPU memory
*
* If separate stencil is not available, this must have the same value as
* depth_address.
*/
uint64_t stencil_address;
/**
* The Memory Object Control state for depth and stencil buffers
*
* Both depth and stencil will get the same MOCS value. The exact format
* of this value depends on hardware generation.
*/
uint32_t mocs;
/**
* The HiZ surface or NULL if HiZ is disabled.
*/
const struct isl_surf *hiz_surf;
enum isl_aux_usage hiz_usage;
uint64_t hiz_address;
/**
* The depth clear value
*/
float depth_clear_value;
/**
* Track stencil aux usage for Gen >= 12
*/
enum isl_aux_usage stencil_aux_usage;
};
struct isl_null_fill_state_info {
struct isl_extent3d size;
uint32_t levels;
uint32_t minimum_array_element;
};
extern const struct isl_format_layout isl_format_layouts[];
extern const char isl_format_names[];
extern const uint16_t isl_format_name_offsets[];
void
isl_device_init(struct isl_device *dev,
const struct intel_device_info *info,
bool has_bit6_swizzling);
isl_sample_count_mask_t ATTRIBUTE_CONST
isl_device_get_sample_counts(struct isl_device *dev);
/**
* \return The isl_format_layout for the given isl_format
*/
static inline const struct isl_format_layout * ATTRIBUTE_CONST
isl_format_get_layout(enum isl_format fmt)
{
assert(fmt != ISL_FORMAT_UNSUPPORTED);
assert(fmt < ISL_NUM_FORMATS);
return &isl_format_layouts[fmt];
}
bool isl_format_is_valid(enum isl_format);
static inline const char * ATTRIBUTE_CONST
isl_format_get_name(enum isl_format fmt)
{
assert(fmt != ISL_FORMAT_UNSUPPORTED);
assert(fmt < ISL_NUM_FORMATS);
return isl_format_names + isl_format_name_offsets[fmt];
}
enum isl_format isl_format_for_pipe_format(enum pipe_format pf);
bool isl_format_supports_rendering(const struct intel_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_alpha_blending(const struct intel_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_sampling(const struct intel_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_filtering(const struct intel_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_vertex_fetch(const struct intel_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_typed_writes(const struct intel_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_typed_reads(const struct intel_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_ccs_d(const struct intel_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_ccs_e(const struct intel_device_info *devinfo,
enum isl_format format);
bool isl_format_supports_multisampling(const struct intel_device_info *devinfo,
enum isl_format format);
bool isl_formats_are_ccs_e_compatible(const struct intel_device_info *devinfo,
enum isl_format format1,
enum isl_format format2);
uint8_t isl_format_get_aux_map_encoding(enum isl_format format);
bool isl_format_has_unorm_channel(enum isl_format fmt) ATTRIBUTE_CONST;
bool isl_format_has_snorm_channel(enum isl_format fmt) ATTRIBUTE_CONST;
bool isl_format_has_ufloat_channel(enum isl_format fmt) ATTRIBUTE_CONST;
bool isl_format_has_sfloat_channel(enum isl_format fmt) ATTRIBUTE_CONST;
bool isl_format_has_uint_channel(enum isl_format fmt) ATTRIBUTE_CONST;
bool isl_format_has_sint_channel(enum isl_format fmt) ATTRIBUTE_CONST;
static inline bool
isl_format_has_normalized_channel(enum isl_format fmt)
{
return isl_format_has_unorm_channel(fmt) ||
isl_format_has_snorm_channel(fmt);
}
static inline bool
isl_format_has_float_channel(enum isl_format fmt)
{
return isl_format_has_ufloat_channel(fmt) ||
isl_format_has_sfloat_channel(fmt);
}
static inline bool
isl_format_has_int_channel(enum isl_format fmt)
{
return isl_format_has_uint_channel(fmt) ||
isl_format_has_sint_channel(fmt);
}
bool isl_format_has_color_component(enum isl_format fmt,
int component) ATTRIBUTE_CONST;
unsigned isl_format_get_num_channels(enum isl_format fmt);
uint32_t isl_format_get_depth_format(enum isl_format fmt, bool has_stencil);
static inline bool
isl_format_is_compressed(enum isl_format fmt)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
return fmtl->txc != ISL_TXC_NONE;
}
static inline bool
isl_format_has_bc_compression(enum isl_format fmt)
{
switch (isl_format_get_layout(fmt)->txc) {
case ISL_TXC_DXT1:
case ISL_TXC_DXT3:
case ISL_TXC_DXT5:
return true;
case ISL_TXC_NONE:
case ISL_TXC_FXT1:
case ISL_TXC_RGTC1:
case ISL_TXC_RGTC2:
case ISL_TXC_BPTC:
case ISL_TXC_ETC1:
case ISL_TXC_ETC2:
case ISL_TXC_ASTC:
return false;
case ISL_TXC_HIZ:
case ISL_TXC_MCS:
case ISL_TXC_CCS:
unreachable("Should not be called on an aux surface");
}
unreachable("bad texture compression mode");
return false;
}
static inline bool
isl_format_is_planar(enum isl_format fmt)
{
return fmt == ISL_FORMAT_PLANAR_420_8 ||
fmt == ISL_FORMAT_PLANAR_420_10 ||
fmt == ISL_FORMAT_PLANAR_420_12 ||
fmt == ISL_FORMAT_PLANAR_420_16;
}
static inline bool
isl_format_is_yuv(enum isl_format fmt)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
return fmtl->colorspace == ISL_COLORSPACE_YUV;
}
static inline bool
isl_format_block_is_1x1x1(enum isl_format fmt)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
return fmtl->bw == 1 && fmtl->bh == 1 && fmtl->bd == 1;
}
static inline bool
isl_format_is_srgb(enum isl_format fmt)
{
return isl_format_get_layout(fmt)->colorspace == ISL_COLORSPACE_SRGB;
}
enum isl_format isl_format_srgb_to_linear(enum isl_format fmt);
static inline bool
isl_format_is_rgb(enum isl_format fmt)
{
if (isl_format_is_yuv(fmt))
return false;
const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
return fmtl->channels.r.bits > 0 &&
fmtl->channels.g.bits > 0 &&
fmtl->channels.b.bits > 0 &&
fmtl->channels.a.bits == 0;
}
static inline bool
isl_format_is_rgbx(enum isl_format fmt)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
return fmtl->channels.r.bits > 0 &&
fmtl->channels.g.bits > 0 &&
fmtl->channels.b.bits > 0 &&
fmtl->channels.a.bits > 0 &&
fmtl->channels.a.type == ISL_VOID;
}
enum isl_format isl_format_rgb_to_rgba(enum isl_format rgb) ATTRIBUTE_CONST;
enum isl_format isl_format_rgb_to_rgbx(enum isl_format rgb) ATTRIBUTE_CONST;
enum isl_format isl_format_rgbx_to_rgba(enum isl_format rgb) ATTRIBUTE_CONST;
union isl_color_value
isl_color_value_swizzle_inv(union isl_color_value src,
struct isl_swizzle swizzle);
void isl_color_value_pack(const union isl_color_value *value,
enum isl_format format,
uint32_t *data_out);
void isl_color_value_unpack(union isl_color_value *value,
enum isl_format format,
const uint32_t *data_in);
bool isl_is_storage_image_format(enum isl_format fmt);
enum isl_format
isl_lower_storage_image_format(const struct intel_device_info *devinfo,
enum isl_format fmt);
/* Returns true if this hardware supports typed load/store on a format with
* the same size as the given format.
*/
bool
isl_has_matching_typed_storage_image_format(const struct intel_device_info *devinfo,
enum isl_format fmt);
static inline enum isl_tiling
isl_tiling_flag_to_enum(isl_tiling_flags_t flag)
{
assert(__builtin_popcount(flag) == 1);
return (enum isl_tiling) (__builtin_ffs(flag) - 1);
}
static inline bool
isl_tiling_is_any_y(enum isl_tiling tiling)
{
return (1u << tiling) & ISL_TILING_ANY_Y_MASK;
}
static inline bool
isl_tiling_is_std_y(enum isl_tiling tiling)
{
return (1u << tiling) & ISL_TILING_STD_Y_MASK;
}
uint32_t
isl_tiling_to_i915_tiling(enum isl_tiling tiling);
enum isl_tiling
isl_tiling_from_i915_tiling(uint32_t tiling);
/**
* Return an isl_aux_op needed to enable an access to occur in an
* isl_aux_state suitable for the isl_aux_usage.
*
* NOTE: If the access will invalidate the main surface, this function should
* not be called and the isl_aux_op of NONE should be used instead.
* Otherwise, an extra (but still lossless) ambiguate may occur.
*
* @invariant initial_state is possible with an isl_aux_usage compatible with
* the given usage. Two usages are compatible if it's possible to
* switch between them (e.g. CCS_E <-> CCS_D).
* @invariant fast_clear is false if the aux doesn't support fast clears.
*/
enum isl_aux_op
isl_aux_prepare_access(enum isl_aux_state initial_state,
enum isl_aux_usage usage,
bool fast_clear_supported);
/**
* Return the isl_aux_state entered after performing an isl_aux_op.
*
* @invariant initial_state is possible with the given usage.
* @invariant op is possible with the given usage.
* @invariant op must not cause HW to read from an invalid aux.
*/
enum isl_aux_state
isl_aux_state_transition_aux_op(enum isl_aux_state initial_state,
enum isl_aux_usage usage,
enum isl_aux_op op);
/**
* Return the isl_aux_state entered after performing a write.
*
* NOTE: full_surface should be true if the write covers the entire
* slice. Setting it to false in this case will still result in a
* correct (but imprecise) aux state.
*
* @invariant if usage is not ISL_AUX_USAGE_NONE, then initial_state is
* possible with the given usage.
* @invariant usage can be ISL_AUX_USAGE_NONE iff:
* * the main surface is valid, or
* * the main surface is being invalidated/replaced.
*/
enum isl_aux_state
isl_aux_state_transition_write(enum isl_aux_state initial_state,
enum isl_aux_usage usage,
bool full_surface);
bool
isl_aux_usage_has_fast_clears(enum isl_aux_usage usage);
bool
isl_aux_usage_has_compression(enum isl_aux_usage usage);
static inline bool
isl_aux_usage_has_hiz(enum isl_aux_usage usage)
{
return usage == ISL_AUX_USAGE_HIZ ||
usage == ISL_AUX_USAGE_HIZ_CCS_WT ||
usage == ISL_AUX_USAGE_HIZ_CCS;
}
static inline bool
isl_aux_usage_has_mcs(enum isl_aux_usage usage)
{
return usage == ISL_AUX_USAGE_MCS ||
usage == ISL_AUX_USAGE_MCS_CCS;
}
static inline bool
isl_aux_usage_has_ccs(enum isl_aux_usage usage)
{
return usage == ISL_AUX_USAGE_CCS_D ||
usage == ISL_AUX_USAGE_CCS_E ||
usage == ISL_AUX_USAGE_GFX12_CCS_E ||
usage == ISL_AUX_USAGE_MC ||
usage == ISL_AUX_USAGE_HIZ_CCS_WT ||
usage == ISL_AUX_USAGE_HIZ_CCS ||
usage == ISL_AUX_USAGE_MCS_CCS ||
usage == ISL_AUX_USAGE_STC_CCS;
}
static inline bool
isl_aux_state_has_valid_primary(enum isl_aux_state state)
{
return state == ISL_AUX_STATE_RESOLVED ||
state == ISL_AUX_STATE_PASS_THROUGH ||
state == ISL_AUX_STATE_AUX_INVALID;
}
static inline bool
isl_aux_state_has_valid_aux(enum isl_aux_state state)
{
return state != ISL_AUX_STATE_AUX_INVALID;
}
extern const struct isl_drm_modifier_info isl_drm_modifier_info_list[];
#define isl_drm_modifier_info_for_each(__info) \
for (const struct isl_drm_modifier_info *__info = isl_drm_modifier_info_list; \
__info->modifier != DRM_FORMAT_MOD_INVALID; \
++__info)
const struct isl_drm_modifier_info * ATTRIBUTE_CONST
isl_drm_modifier_get_info(uint64_t modifier);
static inline bool
isl_drm_modifier_has_aux(uint64_t modifier)
{
return isl_drm_modifier_get_info(modifier)->aux_usage != ISL_AUX_USAGE_NONE;
}
/** Returns the default isl_aux_state for the given modifier.
*
* If we have a modifier which supports compression, then the auxiliary data
* could be in state other than ISL_AUX_STATE_AUX_INVALID. In particular, it
* can be in any of the following:
*
* - ISL_AUX_STATE_CLEAR
* - ISL_AUX_STATE_PARTIAL_CLEAR
* - ISL_AUX_STATE_COMPRESSED_CLEAR
* - ISL_AUX_STATE_COMPRESSED_NO_CLEAR
* - ISL_AUX_STATE_RESOLVED
* - ISL_AUX_STATE_PASS_THROUGH
*
* If the modifier does not support fast-clears, then we are guaranteed
* that the surface is at least partially resolved and the first three not
* possible. We return ISL_AUX_STATE_COMPRESSED_CLEAR if the modifier
* supports fast clears and ISL_AUX_STATE_COMPRESSED_NO_CLEAR if it does not
* because they are the least common denominator of the set of possible aux
* states and will yield a valid interpretation of the aux data.
*
* For modifiers with no aux support, ISL_AUX_STATE_AUX_INVALID is returned.
*/
static inline enum isl_aux_state
isl_drm_modifier_get_default_aux_state(uint64_t modifier)
{
const struct isl_drm_modifier_info *mod_info =
isl_drm_modifier_get_info(modifier);
if (!mod_info || mod_info->aux_usage == ISL_AUX_USAGE_NONE)
return ISL_AUX_STATE_AUX_INVALID;
assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E ||
mod_info->aux_usage == ISL_AUX_USAGE_GFX12_CCS_E ||
mod_info->aux_usage == ISL_AUX_USAGE_MC);
return mod_info->supports_clear_color ? ISL_AUX_STATE_COMPRESSED_CLEAR :
ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
}
/**
* Return the modifier's score, which indicates the driver's preference for the
* modifier relative to others. A higher score is better. Zero means
* unsupported.
*
* Intended to assist selection of a modifier from an externally provided list,
* such as VkImageDrmFormatModifierListCreateInfoEXT.
*/
uint32_t
isl_drm_modifier_get_score(const struct intel_device_info *devinfo,
uint64_t modifier);
struct isl_extent2d ATTRIBUTE_CONST
isl_get_interleaved_msaa_px_size_sa(uint32_t samples);
static inline bool
isl_surf_usage_is_display(isl_surf_usage_flags_t usage)
{
return usage & ISL_SURF_USAGE_DISPLAY_BIT;
}
static inline bool
isl_surf_usage_is_depth(isl_surf_usage_flags_t usage)
{
return usage & ISL_SURF_USAGE_DEPTH_BIT;
}
static inline bool
isl_surf_usage_is_stencil(isl_surf_usage_flags_t usage)
{
return usage & ISL_SURF_USAGE_STENCIL_BIT;
}
static inline bool
isl_surf_usage_is_depth_and_stencil(isl_surf_usage_flags_t usage)
{
return (usage & ISL_SURF_USAGE_DEPTH_BIT) &&
(usage & ISL_SURF_USAGE_STENCIL_BIT);
}
static inline bool
isl_surf_usage_is_depth_or_stencil(isl_surf_usage_flags_t usage)
{
return usage & (ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT);
}
static inline bool
isl_surf_info_is_z16(const struct isl_surf_init_info *info)
{
return (info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
(info->format == ISL_FORMAT_R16_UNORM);
}
static inline bool
isl_surf_info_is_z32_float(const struct isl_surf_init_info *info)
{
return (info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
(info->format == ISL_FORMAT_R32_FLOAT);
}
static inline struct isl_extent2d
isl_extent2d(uint32_t width, uint32_t height)
{
struct isl_extent2d e = { { 0 } };
e.width = width;
e.height = height;
return e;
}
static inline struct isl_extent3d
isl_extent3d(uint32_t width, uint32_t height, uint32_t depth)
{
struct isl_extent3d e = { { 0 } };
e.width = width;
e.height = height;
e.depth = depth;
return e;
}
static inline struct isl_extent4d
isl_extent4d(uint32_t width, uint32_t height, uint32_t depth,
uint32_t array_len)
{
struct isl_extent4d e = { { 0 } };
e.width = width;
e.height = height;
e.depth = depth;
e.array_len = array_len;
return e;
}
bool isl_color_value_is_zero(union isl_color_value value,
enum isl_format format);
bool isl_color_value_is_zero_one(union isl_color_value value,
enum isl_format format);
static inline bool
isl_swizzle_is_identity(struct isl_swizzle swizzle)
{
return swizzle.r == ISL_CHANNEL_SELECT_RED &&
swizzle.g == ISL_CHANNEL_SELECT_GREEN &&
swizzle.b == ISL_CHANNEL_SELECT_BLUE &&
swizzle.a == ISL_CHANNEL_SELECT_ALPHA;
}
bool
isl_swizzle_supports_rendering(const struct intel_device_info *devinfo,
struct isl_swizzle swizzle);
struct isl_swizzle
isl_swizzle_compose(struct isl_swizzle first, struct isl_swizzle second);
struct isl_swizzle
isl_swizzle_invert(struct isl_swizzle swizzle);
uint32_t isl_mocs(const struct isl_device *dev, isl_surf_usage_flags_t usage,
bool external);
#define isl_surf_init(dev, surf, ...) \
isl_surf_init_s((dev), (surf), \
&(struct isl_surf_init_info) { __VA_ARGS__ });
bool
isl_surf_init_s(const struct isl_device *dev,
struct isl_surf *surf,
const struct isl_surf_init_info *restrict info);
void
isl_surf_get_tile_info(const struct isl_surf *surf,
struct isl_tile_info *tile_info);
bool
isl_surf_supports_ccs(const struct isl_device *dev,
const struct isl_surf *surf);
bool
isl_surf_get_hiz_surf(const struct isl_device *dev,
const struct isl_surf *surf,
struct isl_surf *hiz_surf);
bool
isl_surf_get_mcs_surf(const struct isl_device *dev,
const struct isl_surf *surf,
struct isl_surf *mcs_surf);
bool
isl_surf_get_ccs_surf(const struct isl_device *dev,
const struct isl_surf *surf,
struct isl_surf *aux_surf,
struct isl_surf *extra_aux_surf,
uint32_t row_pitch_B /**< Ignored if 0 */);
#define isl_surf_fill_state(dev, state, ...) \
isl_surf_fill_state_s((dev), (state), \
&(struct isl_surf_fill_state_info) { __VA_ARGS__ });
void
isl_surf_fill_state_s(const struct isl_device *dev, void *state,
const struct isl_surf_fill_state_info *restrict info);
#define isl_buffer_fill_state(dev, state, ...) \
isl_buffer_fill_state_s((dev), (state), \
&(struct isl_buffer_fill_state_info) { __VA_ARGS__ });
void
isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
const struct isl_buffer_fill_state_info *restrict info);
void
isl_null_fill_state_s(const struct isl_device *dev, void *state,
const struct isl_null_fill_state_info *restrict info);
#define isl_null_fill_state(dev, state, ...) \
isl_null_fill_state_s((dev), (state), \
&(struct isl_null_fill_state_info) { __VA_ARGS__ });
#define isl_emit_depth_stencil_hiz(dev, batch, ...) \
isl_emit_depth_stencil_hiz_s((dev), (batch), \
&(struct isl_depth_stencil_hiz_emit_info) { __VA_ARGS__ })
void
isl_emit_depth_stencil_hiz_s(const struct isl_device *dev, void *batch,
const struct isl_depth_stencil_hiz_emit_info *restrict info);
void
isl_surf_fill_image_param(const struct isl_device *dev,
struct brw_image_param *param,
const struct isl_surf *surf,
const struct isl_view *view);
void
isl_buffer_fill_image_param(const struct isl_device *dev,
struct brw_image_param *param,
enum isl_format format,
uint64_t size);
/**
* Alignment of the upper-left sample of each subimage, in units of surface
* elements.
*/
static inline struct isl_extent3d
isl_surf_get_image_alignment_el(const struct isl_surf *surf)
{
return surf->image_alignment_el;
}
/**
* Alignment of the upper-left sample of each subimage, in units of surface
* samples.
*/
static inline struct isl_extent3d
isl_surf_get_image_alignment_sa(const struct isl_surf *surf)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
return isl_extent3d(fmtl->bw * surf->image_alignment_el.w,
fmtl->bh * surf->image_alignment_el.h,
fmtl->bd * surf->image_alignment_el.d);
}
/**
* Logical extent of level 0 in units of surface elements.
*/
static inline struct isl_extent4d
isl_surf_get_logical_level0_el(const struct isl_surf *surf)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
return isl_extent4d(DIV_ROUND_UP(surf->logical_level0_px.w, fmtl->bw),
DIV_ROUND_UP(surf->logical_level0_px.h, fmtl->bh),
DIV_ROUND_UP(surf->logical_level0_px.d, fmtl->bd),
surf->logical_level0_px.a);
}
/**
* Physical extent of level 0 in units of surface elements.
*/
static inline struct isl_extent4d
isl_surf_get_phys_level0_el(const struct isl_surf *surf)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
return isl_extent4d(DIV_ROUND_UP(surf->phys_level0_sa.w, fmtl->bw),
DIV_ROUND_UP(surf->phys_level0_sa.h, fmtl->bh),
DIV_ROUND_UP(surf->phys_level0_sa.d, fmtl->bd),
surf->phys_level0_sa.a);
}
/**
* Pitch between vertically adjacent surface elements, in bytes.
*/
static inline uint32_t
isl_surf_get_row_pitch_B(const struct isl_surf *surf)
{
return surf->row_pitch_B;
}
/**
* Pitch between vertically adjacent surface elements, in units of surface elements.
*/
static inline uint32_t
isl_surf_get_row_pitch_el(const struct isl_surf *surf)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
assert(surf->row_pitch_B % (fmtl->bpb / 8) == 0);
return surf->row_pitch_B / (fmtl->bpb / 8);
}
/**
* Pitch between physical array slices, in rows of surface elements.
*/
static inline uint32_t
isl_surf_get_array_pitch_el_rows(const struct isl_surf *surf)
{
return surf->array_pitch_el_rows;
}
/**
* Pitch between physical array slices, in units of surface elements.
*/
static inline uint32_t
isl_surf_get_array_pitch_el(const struct isl_surf *surf)
{
return isl_surf_get_array_pitch_el_rows(surf) *
isl_surf_get_row_pitch_el(surf);
}
/**
* Pitch between physical array slices, in rows of surface samples.
*/
static inline uint32_t
isl_surf_get_array_pitch_sa_rows(const struct isl_surf *surf)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
return fmtl->bh * isl_surf_get_array_pitch_el_rows(surf);
}
/**
* Pitch between physical array slices, in bytes.
*/
static inline uint32_t
isl_surf_get_array_pitch(const struct isl_surf *surf)
{
return isl_surf_get_array_pitch_sa_rows(surf) * surf->row_pitch_B;
}
/**
* Calculate the offset, in units of surface samples, to a subimage in the
* surface.
*
* @invariant level < surface levels
* @invariant logical_array_layer < logical array length of surface
* @invariant logical_z_offset_px < logical depth of surface at level
*/
void
isl_surf_get_image_offset_sa(const struct isl_surf *surf,
uint32_t level,
uint32_t logical_array_layer,
uint32_t logical_z_offset_px,
uint32_t *x_offset_sa,
uint32_t *y_offset_sa,
uint32_t *z_offset_sa,
uint32_t *array_offset);
/**
* Calculate the offset, in units of surface elements, to a subimage in the
* surface.
*
* @invariant level < surface levels
* @invariant logical_array_layer < logical array length of surface
* @invariant logical_z_offset_px < logical depth of surface at level
*/
void
isl_surf_get_image_offset_el(const struct isl_surf *surf,
uint32_t level,
uint32_t logical_array_layer,
uint32_t logical_z_offset_px,
uint32_t *x_offset_el,
uint32_t *y_offset_el,
uint32_t *z_offset_el,
uint32_t *array_offset);
/**
* Calculate the offset, in bytes and intratile surface samples, to a
* subimage in the surface.
*
* This is equivalent to calling isl_surf_get_image_offset_el, passing the
* result to isl_tiling_get_intratile_offset_el, and converting the tile
* offsets to samples.
*
* @invariant level < surface levels
* @invariant logical_array_layer < logical array length of surface
* @invariant logical_z_offset_px < logical depth of surface at level
*/
void
isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf,
uint32_t level,
uint32_t logical_array_layer,
uint32_t logical_z_offset_px,
uint32_t *offset_B,
uint32_t *x_offset_sa,
uint32_t *y_offset_sa);
/**
* Calculate the offset, in bytes and intratile surface elements, to a
* subimage in the surface.
*
* This is equivalent to calling isl_surf_get_image_offset_el, passing the
* result to isl_tiling_get_intratile_offset_el.
*
* @invariant level < surface levels
* @invariant logical_array_layer < logical array length of surface
* @invariant logical_z_offset_px < logical depth of surface at level
*/
void
isl_surf_get_image_offset_B_tile_el(const struct isl_surf *surf,
uint32_t level,
uint32_t logical_array_layer,
uint32_t logical_z_offset_px,
uint32_t *offset_B,
uint32_t *x_offset_el,
uint32_t *y_offset_el);
/**
* Calculate the range in bytes occupied by a subimage, to the nearest tile.
*
* The range returned will be the smallest memory range in which the give
* subimage fits, rounded to even tiles. Intel images do not usually have a
* direct subimage -> range mapping so the range returned may contain data
* from other sub-images. The returned range is a half-open interval where
* all of the addresses within the subimage are < end_tile_B.
*
* @invariant level < surface levels
* @invariant logical_array_layer < logical array length of surface
* @invariant logical_z_offset_px < logical depth of surface at level
*/
void
isl_surf_get_image_range_B_tile(const struct isl_surf *surf,
uint32_t level,
uint32_t logical_array_layer,
uint32_t logical_z_offset_px,
uint32_t *start_tile_B,
uint32_t *end_tile_B);
/**
* Create an isl_surf that represents a particular subimage in the surface.
*
* The newly created surface will have a single miplevel and array slice. The
* surface lives at the returned byte and intratile offsets, in samples.
*
* It is safe to call this function with surf == image_surf.
*
* @invariant level < surface levels
* @invariant logical_array_layer < logical array length of surface
* @invariant logical_z_offset_px < logical depth of surface at level
*/
void
isl_surf_get_image_surf(const struct isl_device *dev,
const struct isl_surf *surf,
uint32_t level,
uint32_t logical_array_layer,
uint32_t logical_z_offset_px,
struct isl_surf *image_surf,
uint32_t *offset_B,
uint32_t *x_offset_sa,
uint32_t *y_offset_sa);
/**
* @brief Calculate the intratile offsets to a surface.
*
* In @a base_address_offset return the offset from the base of the surface to
* the base address of the first tile of the subimage. In @a x_offset_B and
* @a y_offset_rows, return the offset, in units of bytes and rows, from the
* tile's base to the subimage's first surface element. The x and y offsets
* are intratile offsets; that is, they do not exceed the boundary of the
* surface's tiling format.
*/
void
isl_tiling_get_intratile_offset_el(enum isl_tiling tiling,
uint32_t bpb,
uint32_t row_pitch_B,
uint32_t array_pitch_el_rows,
uint32_t total_x_offset_el,
uint32_t total_y_offset_el,
uint32_t total_z_offset_el,
uint32_t total_array_offset,
uint32_t *base_address_offset,
uint32_t *x_offset_el,
uint32_t *y_offset_el,
uint32_t *z_offset_el,
uint32_t *array_offset);
static inline void
isl_tiling_get_intratile_offset_sa(enum isl_tiling tiling,
enum isl_format format,
uint32_t row_pitch_B,
uint32_t array_pitch_el_rows,
uint32_t total_x_offset_sa,
uint32_t total_y_offset_sa,
uint32_t total_z_offset_sa,
uint32_t total_array_offset,
uint32_t *base_address_offset,
uint32_t *x_offset_sa,
uint32_t *y_offset_sa,
uint32_t *z_offset_sa,
uint32_t *array_offset)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(format);
/* For computing the intratile offsets, we actually want a strange unit
* which is samples for multisampled surfaces but elements for compressed
* surfaces.
*/
assert(total_x_offset_sa % fmtl->bw == 0);
assert(total_y_offset_sa % fmtl->bh == 0);
const uint32_t total_x_offset_el = total_x_offset_sa / fmtl->bw;
const uint32_t total_y_offset_el = total_y_offset_sa / fmtl->bh;
const uint32_t total_z_offset_el = total_z_offset_sa / fmtl->bd;
isl_tiling_get_intratile_offset_el(tiling, fmtl->bpb, row_pitch_B,
array_pitch_el_rows,
total_x_offset_el,
total_y_offset_el,
total_z_offset_el,
total_array_offset,
base_address_offset,
x_offset_sa, y_offset_sa,
z_offset_sa, array_offset);
*x_offset_sa *= fmtl->bw;
*y_offset_sa *= fmtl->bh;
*z_offset_sa *= fmtl->bd;
}
/**
* @brief Get value of 3DSTATE_DEPTH_BUFFER.SurfaceFormat
*
* @pre surf->usage has ISL_SURF_USAGE_DEPTH_BIT
* @pre surf->format must be a valid format for depth surfaces
*/
uint32_t
isl_surf_get_depth_format(const struct isl_device *dev,
const struct isl_surf *surf);
/**
* @brief performs a copy from linear to tiled surface
*
*/
void
isl_memcpy_linear_to_tiled(uint32_t xt1, uint32_t xt2,
uint32_t yt1, uint32_t yt2,
char *dst, const char *src,
uint32_t dst_pitch, int32_t src_pitch,
bool has_swizzling,
enum isl_tiling tiling,
isl_memcpy_type copy_type);
/**
* @brief performs a copy from tiled to linear surface
*
*/
void
isl_memcpy_tiled_to_linear(uint32_t xt1, uint32_t xt2,
uint32_t yt1, uint32_t yt2,
char *dst, const char *src,
int32_t dst_pitch, uint32_t src_pitch,
bool has_swizzling,
enum isl_tiling tiling,
isl_memcpy_type copy_type);
/**
* @brief computes the tile_w (in bytes) and tile_h (in rows) of
* different tiling patterns.
*/
static inline void
isl_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
uint32_t *tile_w, uint32_t *tile_h)
{
switch (tiling) {
case ISL_TILING_X:
*tile_w = 512;
*tile_h = 8;
break;
case ISL_TILING_Y0:
*tile_w = 128;
*tile_h = 32;
break;
case ISL_TILING_LINEAR:
*tile_w = cpp;
*tile_h = 1;
break;
default:
unreachable("not reached");
}
}
/**
* @brief Computes masks that may be used to select the bits of the X
* and Y coordinates that indicate the offset within a tile. If the BO is
* untiled, the masks are set to 0.
*/
static inline void
isl_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
uint32_t *mask_x, uint32_t *mask_y)
{
uint32_t tile_w_bytes, tile_h;
isl_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
*mask_x = tile_w_bytes / cpp - 1;
*mask_y = tile_h - 1;
}
#ifdef __cplusplus
}
#endif
#endif /* ISL_H */