mesa/src/vulkan/runtime/vk_sync.c

403 lines
12 KiB
C

/*
* Copyright © 2021 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "vk_sync.h"
#include <assert.h>
#include <string.h>
#include "util/debug.h"
#include "util/macros.h"
#include "util/os_time.h"
#include "vk_alloc.h"
#include "vk_device.h"
#include "vk_log.h"
static void
vk_sync_type_validate(const struct vk_sync_type *type)
{
assert(type->init);
assert(type->finish);
assert(type->features & (VK_SYNC_FEATURE_BINARY |
VK_SYNC_FEATURE_TIMELINE));
if (type->features & VK_SYNC_FEATURE_TIMELINE) {
assert(type->features & VK_SYNC_FEATURE_GPU_WAIT);
assert(type->features & VK_SYNC_FEATURE_CPU_WAIT);
assert(type->features & VK_SYNC_FEATURE_CPU_SIGNAL);
assert(type->features & (VK_SYNC_FEATURE_WAIT_BEFORE_SIGNAL |
VK_SYNC_FEATURE_WAIT_PENDING));
assert(type->signal);
assert(type->get_value);
}
if (!(type->features & VK_SYNC_FEATURE_BINARY)) {
assert(!(type->features & (VK_SYNC_FEATURE_GPU_MULTI_WAIT |
VK_SYNC_FEATURE_CPU_RESET)));
assert(!type->import_sync_file);
assert(!type->export_sync_file);
}
if (type->features & VK_SYNC_FEATURE_CPU_WAIT) {
assert(type->wait || type->wait_many);
} else {
assert(!(type->features & (VK_SYNC_FEATURE_WAIT_ANY |
VK_SYNC_FEATURE_WAIT_PENDING)));
}
if (type->features & VK_SYNC_FEATURE_GPU_MULTI_WAIT)
assert(type->features & VK_SYNC_FEATURE_GPU_WAIT);
if (type->features & VK_SYNC_FEATURE_CPU_RESET)
assert(type->reset);
if (type->features & VK_SYNC_FEATURE_CPU_SIGNAL)
assert(type->signal);
}
VkResult
vk_sync_init(struct vk_device *device,
struct vk_sync *sync,
const struct vk_sync_type *type,
enum vk_sync_flags flags,
uint64_t initial_value)
{
vk_sync_type_validate(type);
if (flags & VK_SYNC_IS_TIMELINE)
assert(type->features & VK_SYNC_FEATURE_TIMELINE);
else
assert(type->features & VK_SYNC_FEATURE_BINARY);
assert(type->size >= sizeof(*sync));
memset(sync, 0, type->size);
sync->type = type;
sync->flags = flags;
return type->init(device, sync, initial_value);
}
void
vk_sync_finish(struct vk_device *device,
struct vk_sync *sync)
{
sync->type->finish(device, sync);
}
VkResult
vk_sync_create(struct vk_device *device,
const struct vk_sync_type *type,
enum vk_sync_flags flags,
uint64_t initial_value,
struct vk_sync **sync_out)
{
struct vk_sync *sync;
sync = vk_alloc(&device->alloc, type->size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (sync == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
VkResult result = vk_sync_init(device, sync, type, flags, initial_value);
if (result != VK_SUCCESS) {
vk_free(&device->alloc, sync);
return result;
}
*sync_out = sync;
return VK_SUCCESS;
}
void
vk_sync_destroy(struct vk_device *device,
struct vk_sync *sync)
{
vk_sync_finish(device, sync);
vk_free(&device->alloc, sync);
}
VkResult
vk_sync_signal(struct vk_device *device,
struct vk_sync *sync,
uint64_t value)
{
assert(sync->type->features & VK_SYNC_FEATURE_CPU_SIGNAL);
if (sync->flags & VK_SYNC_IS_TIMELINE)
assert(value > 0);
else
assert(value == 0);
return sync->type->signal(device, sync, value);
}
VkResult
vk_sync_get_value(struct vk_device *device,
struct vk_sync *sync,
uint64_t *value)
{
assert(sync->flags & VK_SYNC_IS_TIMELINE);
return sync->type->get_value(device, sync, value);
}
VkResult
vk_sync_reset(struct vk_device *device,
struct vk_sync *sync)
{
assert(sync->type->features & VK_SYNC_FEATURE_CPU_RESET);
assert(!(sync->flags & VK_SYNC_IS_TIMELINE));
return sync->type->reset(device, sync);
}
VkResult vk_sync_move(struct vk_device *device,
struct vk_sync *dst,
struct vk_sync *src)
{
assert(!(dst->flags & VK_SYNC_IS_TIMELINE));
assert(!(src->flags & VK_SYNC_IS_TIMELINE));
assert(dst->type == src->type);
return src->type->move(device, dst, src);
}
static void
assert_valid_wait(struct vk_sync *sync,
uint64_t wait_value,
enum vk_sync_wait_flags wait_flags)
{
assert(sync->type->features & VK_SYNC_FEATURE_CPU_WAIT);
if (!(sync->flags & VK_SYNC_IS_TIMELINE))
assert(wait_value == 0);
if (wait_flags & VK_SYNC_WAIT_PENDING)
assert(sync->type->features & VK_SYNC_FEATURE_WAIT_PENDING);
}
static uint64_t
get_max_abs_timeout_ns(void)
{
static int max_timeout_ms = -1;
if (max_timeout_ms < 0)
max_timeout_ms = env_var_as_unsigned("MESA_VK_MAX_TIMEOUT", 0);
if (max_timeout_ms == 0)
return UINT64_MAX;
else
return os_time_get_absolute_timeout(max_timeout_ms * 1000000ull);
}
static VkResult
__vk_sync_wait(struct vk_device *device,
struct vk_sync *sync,
uint64_t wait_value,
enum vk_sync_wait_flags wait_flags,
uint64_t abs_timeout_ns)
{
assert_valid_wait(sync, wait_value, wait_flags);
/* This doesn't make sense for a single wait */
assert(!(wait_flags & VK_SYNC_WAIT_ANY));
if (sync->type->wait) {
return sync->type->wait(device, sync, wait_value,
wait_flags, abs_timeout_ns);
} else {
struct vk_sync_wait wait = {
.sync = sync,
.stage_mask = ~(VkPipelineStageFlags2)0,
.wait_value = wait_value,
};
return sync->type->wait_many(device, 1, &wait, wait_flags,
abs_timeout_ns);
}
}
VkResult
vk_sync_wait(struct vk_device *device,
struct vk_sync *sync,
uint64_t wait_value,
enum vk_sync_wait_flags wait_flags,
uint64_t abs_timeout_ns)
{
uint64_t max_abs_timeout_ns = get_max_abs_timeout_ns();
if (abs_timeout_ns > max_abs_timeout_ns) {
VkResult result =
__vk_sync_wait(device, sync, wait_value, wait_flags,
max_abs_timeout_ns);
if (unlikely(result == VK_TIMEOUT))
return vk_device_set_lost(device, "Maximum timeout exceeded!");
return result;
} else {
return __vk_sync_wait(device, sync, wait_value, wait_flags,
abs_timeout_ns);
}
}
static bool
can_wait_many(uint32_t wait_count,
const struct vk_sync_wait *waits,
enum vk_sync_wait_flags wait_flags)
{
if (waits[0].sync->type->wait_many == NULL)
return false;
if ((wait_flags & VK_SYNC_WAIT_ANY) &&
!(waits[0].sync->type->features & VK_SYNC_FEATURE_WAIT_ANY))
return false;
for (uint32_t i = 0; i < wait_count; i++) {
assert_valid_wait(waits[i].sync, waits[i].wait_value, wait_flags);
if (waits[i].sync->type != waits[0].sync->type)
return false;
}
return true;
}
static VkResult
__vk_sync_wait_many(struct vk_device *device,
uint32_t wait_count,
const struct vk_sync_wait *waits,
enum vk_sync_wait_flags wait_flags,
uint64_t abs_timeout_ns)
{
if (wait_count == 0)
return VK_SUCCESS;
if (wait_count == 1) {
return __vk_sync_wait(device, waits[0].sync, waits[0].wait_value,
wait_flags & ~VK_SYNC_WAIT_ANY, abs_timeout_ns);
}
if (can_wait_many(wait_count, waits, wait_flags)) {
return waits[0].sync->type->wait_many(device, wait_count, waits,
wait_flags, abs_timeout_ns);
} else if (wait_flags & VK_SYNC_WAIT_ANY) {
/* If we have multiple syncs and they don't support wait_any or they're
* not all the same type, there's nothing better we can do than spin.
*/
do {
for (uint32_t i = 0; i < wait_count; i++) {
VkResult result = __vk_sync_wait(device, waits[i].sync,
waits[i].wait_value,
wait_flags & ~VK_SYNC_WAIT_ANY,
0 /* abs_timeout_ns */);
if (result != VK_TIMEOUT)
return result;
}
} while (os_time_get_nano() < abs_timeout_ns);
return VK_TIMEOUT;
} else {
for (uint32_t i = 0; i < wait_count; i++) {
VkResult result = __vk_sync_wait(device, waits[i].sync,
waits[i].wait_value,
wait_flags, abs_timeout_ns);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
}
VkResult
vk_sync_wait_many(struct vk_device *device,
uint32_t wait_count,
const struct vk_sync_wait *waits,
enum vk_sync_wait_flags wait_flags,
uint64_t abs_timeout_ns)
{
uint64_t max_abs_timeout_ns = get_max_abs_timeout_ns();
if (abs_timeout_ns > max_abs_timeout_ns) {
VkResult result =
__vk_sync_wait_many(device, wait_count, waits, wait_flags,
max_abs_timeout_ns);
if (unlikely(result == VK_TIMEOUT))
return vk_device_set_lost(device, "Maximum timeout exceeded!");
return result;
} else {
return __vk_sync_wait_many(device, wait_count, waits, wait_flags,
abs_timeout_ns);
}
}
VkResult
vk_sync_import_opaque_fd(struct vk_device *device,
struct vk_sync *sync,
int fd)
{
VkResult result = sync->type->import_opaque_fd(device, sync, fd);
if (unlikely(result != VK_SUCCESS))
return result;
sync->flags |= VK_SYNC_IS_SHAREABLE |
VK_SYNC_IS_SHARED;
return VK_SUCCESS;
}
VkResult
vk_sync_export_opaque_fd(struct vk_device *device,
struct vk_sync *sync,
int *fd)
{
assert(sync->flags & VK_SYNC_IS_SHAREABLE);
VkResult result = sync->type->export_opaque_fd(device, sync, fd);
if (unlikely(result != VK_SUCCESS))
return result;
sync->flags |= VK_SYNC_IS_SHARED;
return VK_SUCCESS;
}
VkResult
vk_sync_import_sync_file(struct vk_device *device,
struct vk_sync *sync,
int sync_file)
{
assert(!(sync->flags & VK_SYNC_IS_TIMELINE));
/* Silently handle negative file descriptors in case the driver doesn't
* want to bother.
*/
if (sync_file < 0 && sync->type->signal)
return sync->type->signal(device, sync, 0);
return sync->type->import_sync_file(device, sync, sync_file);
}
VkResult
vk_sync_export_sync_file(struct vk_device *device,
struct vk_sync *sync,
int *sync_file)
{
assert(!(sync->flags & VK_SYNC_IS_TIMELINE));
return sync->type->export_sync_file(device, sync, sync_file);
}