mesa/src/util/bitscan.h

396 lines
9.3 KiB
C++

/**************************************************************************
*
* Copyright 2008 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#ifndef BITSCAN_H
#define BITSCAN_H
#include <assert.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#if defined(_MSC_VER)
#include <intrin.h>
#endif
#if defined(__POPCNT__)
#include <popcntintrin.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
* Find first bit set in word. Least significant bit is 1.
* Return 0 if no bits set.
*/
#ifdef HAVE___BUILTIN_FFS
#define ffs __builtin_ffs
#elif defined(_MSC_VER) && (_M_IX86 || _M_ARM || _M_AMD64 || _M_IA64)
static inline
int ffs(int i)
{
unsigned long index;
if (_BitScanForward(&index, i))
return index + 1;
else
return 0;
}
#else
extern
int ffs(int i);
#endif
#ifdef HAVE___BUILTIN_FFSLL
#define ffsll __builtin_ffsll
#elif defined(_MSC_VER) && (_M_AMD64 || _M_ARM64 || _M_IA64)
static inline int
ffsll(long long int i)
{
unsigned long index;
if (_BitScanForward64(&index, i))
return index + 1;
else
return 0;
}
#else
extern int
ffsll(long long int val);
#endif
/* Destructively loop over all of the bits in a mask as in:
*
* while (mymask) {
* int i = u_bit_scan(&mymask);
* ... process element i
* }
*
*/
static inline int
u_bit_scan(unsigned *mask)
{
const int i = ffs(*mask) - 1;
*mask ^= (1u << i);
return i;
}
#define u_foreach_bit(b, dword) \
for (uint32_t __dword = (dword), b; \
((b) = ffs(__dword) - 1, __dword); \
__dword &= ~(1 << (b)))
static inline int
u_bit_scan64(uint64_t *mask)
{
const int i = ffsll(*mask) - 1;
*mask ^= (((uint64_t)1) << i);
return i;
}
#define u_foreach_bit64(b, dword) \
for (uint64_t __dword = (dword), b; \
((b) = ffsll(__dword) - 1, __dword); \
__dword &= ~(1ull << (b)))
/* Determine if an unsigned value is a power of two.
*
* \note
* Zero is treated as a power of two.
*/
static inline bool
util_is_power_of_two_or_zero(unsigned v)
{
return (v & (v - 1)) == 0;
}
/* Determine if an uint64_t value is a power of two.
*
* \note
* Zero is treated as a power of two.
*/
static inline bool
util_is_power_of_two_or_zero64(uint64_t v)
{
return (v & (v - 1)) == 0;
}
/* Determine if an unsigned value is a power of two.
*
* \note
* Zero is \b not treated as a power of two.
*/
static inline bool
util_is_power_of_two_nonzero(unsigned v)
{
/* __POPCNT__ is different from HAVE___BUILTIN_POPCOUNT. The latter
* indicates the existence of the __builtin_popcount function. The former
* indicates that _mm_popcnt_u32 exists and is a native instruction.
*
* The other alternative is to use SSE 4.2 compile-time flags. This has
* two drawbacks. First, there is currently no build infrastructure for
* SSE 4.2 (only 4.1), so that would have to be added. Second, some AMD
* CPUs support POPCNT but not SSE 4.2 (e.g., Barcelona).
*/
#ifdef __POPCNT__
return _mm_popcnt_u32(v) == 1;
#else
return v != 0 && (v & (v - 1)) == 0;
#endif
}
/* For looping over a bitmask when you want to loop over consecutive bits
* manually, for example:
*
* while (mask) {
* int start, count, i;
*
* u_bit_scan_consecutive_range(&mask, &start, &count);
*
* for (i = 0; i < count; i++)
* ... process element (start+i)
* }
*/
static inline void
u_bit_scan_consecutive_range(unsigned *mask, int *start, int *count)
{
if (*mask == 0xffffffff) {
*start = 0;
*count = 32;
*mask = 0;
return;
}
*start = ffs(*mask) - 1;
*count = ffs(~(*mask >> *start)) - 1;
*mask &= ~(((1u << *count) - 1) << *start);
}
static inline void
u_bit_scan_consecutive_range64(uint64_t *mask, int *start, int *count)
{
if (*mask == ~0ull) {
*start = 0;
*count = 64;
*mask = 0;
return;
}
*start = ffsll(*mask) - 1;
*count = ffsll(~(*mask >> *start)) - 1;
*mask &= ~(((((uint64_t)1) << *count) - 1) << *start);
}
/**
* Find last bit set in a word. The least significant bit is 1.
* Return 0 if no bits are set.
* Essentially ffs() in the reverse direction.
*/
static inline unsigned
util_last_bit(unsigned u)
{
#if defined(HAVE___BUILTIN_CLZ)
return u == 0 ? 0 : 32 - __builtin_clz(u);
#elif defined(_MSC_VER) && (_M_IX86 || _M_ARM || _M_AMD64 || _M_IA64)
unsigned long index;
if (_BitScanReverse(&index, u))
return index + 1;
else
return 0;
#else
unsigned r = 0;
while (u) {
r++;
u >>= 1;
}
return r;
#endif
}
/**
* Find last bit set in a word. The least significant bit is 1.
* Return 0 if no bits are set.
* Essentially ffsll() in the reverse direction.
*/
static inline unsigned
util_last_bit64(uint64_t u)
{
#if defined(HAVE___BUILTIN_CLZLL)
return u == 0 ? 0 : 64 - __builtin_clzll(u);
#elif defined(_MSC_VER) && (_M_AMD64 || _M_ARM64 || _M_IA64)
unsigned long index;
if (_BitScanReverse64(&index, u))
return index + 1;
else
return 0;
#else
unsigned r = 0;
while (u) {
r++;
u >>= 1;
}
return r;
#endif
}
/**
* Find last bit in a word that does not match the sign bit. The least
* significant bit is 1.
* Return 0 if no bits are set.
*/
static inline unsigned
util_last_bit_signed(int i)
{
if (i >= 0)
return util_last_bit(i);
else
return util_last_bit(~(unsigned)i);
}
/* Returns a bitfield in which the first count bits starting at start are
* set.
*/
static inline unsigned
u_bit_consecutive(unsigned start, unsigned count)
{
assert(start + count <= 32);
if (count == 32)
return ~0;
return ((1u << count) - 1) << start;
}
static inline uint64_t
u_bit_consecutive64(unsigned start, unsigned count)
{
assert(start + count <= 64);
if (count == 64)
return ~(uint64_t)0;
return (((uint64_t)1 << count) - 1) << start;
}
/**
* Return number of bits set in n.
*/
static inline unsigned
util_bitcount(unsigned n)
{
#if defined(HAVE___BUILTIN_POPCOUNT)
return __builtin_popcount(n);
#else
/* K&R classic bitcount.
*
* For each iteration, clear the LSB from the bitfield.
* Requires only one iteration per set bit, instead of
* one iteration per bit less than highest set bit.
*/
unsigned bits;
for (bits = 0; n; bits++) {
n &= n - 1;
}
return bits;
#endif
}
/**
* Return the number of bits set in n using the native popcnt instruction.
* The caller is responsible for ensuring that popcnt is supported by the CPU.
*
* gcc doesn't use it if -mpopcnt or -march= that has popcnt is missing.
*
*/
static inline unsigned
util_popcnt_inline_asm(unsigned n)
{
#if defined(USE_X86_64_ASM) || defined(USE_X86_ASM)
uint32_t out;
__asm volatile("popcnt %1, %0" : "=r"(out) : "r"(n));
return out;
#else
/* We should never get here by accident, but I'm sure it'll happen. */
return util_bitcount(n);
#endif
}
static inline unsigned
util_bitcount64(uint64_t n)
{
#ifdef HAVE___BUILTIN_POPCOUNTLL
return __builtin_popcountll(n);
#else
return util_bitcount(n) + util_bitcount(n >> 32);
#endif
}
/**
* Widens the given bit mask by a multiplier, meaning that it will
* replicate each bit by that amount.
*
* For example:
* 0b101 widened by 2 will become: 0b110011
*
* This is typically used in shader I/O to transform a 64-bit
* writemask to a 32-bit writemask.
*/
static inline uint32_t
util_widen_mask(uint32_t mask, unsigned multiplier)
{
uint32_t new_mask = 0;
u_foreach_bit(i, mask)
new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
return new_mask;
}
#ifdef __cplusplus
}
/* util_bitcount has large measurable overhead (~2%), so it's recommended to
* use the POPCNT instruction via inline assembly if the CPU supports it.
*/
enum util_popcnt {
POPCNT_NO,
POPCNT_YES,
};
/* Convenient function to select popcnt through a C++ template argument.
* This should be used as part of larger functions that are optimized
* as a whole.
*/
template<util_popcnt POPCNT> inline unsigned
util_bitcount_fast(unsigned n)
{
if (POPCNT == POPCNT_YES)
return util_popcnt_inline_asm(n);
else
return util_bitcount(n);
}
#endif /* __cplusplus */
#endif /* BITSCAN_H */