mesa/src/panfrost/bifrost/bi_pack.c

759 lines
27 KiB
C

/*
* Copyright (C) 2020 Collabora, Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "compiler.h"
/* This file contains the final passes of the compiler. Running after
* scheduling and RA, the IR is now finalized, so we need to emit it to actual
* bits on the wire (as well as fixup branches) */
static uint64_t
bi_pack_header(bi_clause *clause, bi_clause *next_1, bi_clause *next_2)
{
/* next_dependencies are the union of the dependencies of successors'
* dependencies */
unsigned dependency_wait = next_1 ? next_1->dependencies : 0;
dependency_wait |= next_2 ? next_2->dependencies : 0;
/* Signal barriers (slot #7) immediately. This is not optimal but good
* enough. Doing better requires extending the IR and scheduler.
*/
if (clause->message_type == BIFROST_MESSAGE_BARRIER)
dependency_wait |= BITFIELD_BIT(7);
bool staging_barrier = next_1 ? next_1->staging_barrier : false;
staging_barrier |= next_2 ? next_2->staging_barrier : 0;
struct bifrost_header header = {
.flow_control =
(next_1 == NULL && next_2 == NULL) ?
BIFROST_FLOW_END : clause->flow_control,
.terminate_discarded_threads = clause->td,
.next_clause_prefetch = clause->next_clause_prefetch && next_1,
.staging_barrier = staging_barrier,
.staging_register = clause->staging_register,
.dependency_wait = dependency_wait,
.dependency_slot = clause->scoreboard_id,
.message_type = clause->message_type,
.next_message_type = next_1 ? next_1->message_type : 0,
.flush_to_zero = clause->ftz ? BIFROST_FTZ_ALWAYS : BIFROST_FTZ_DISABLE
};
uint64_t u = 0;
memcpy(&u, &header, sizeof(header));
return u;
}
/* Assigns a slot for reading, before anything is written */
static void
bi_assign_slot_read(bi_registers *regs, bi_index src)
{
/* We only assign for registers */
if (src.type != BI_INDEX_REGISTER)
return;
/* Check if we already assigned the slot */
for (unsigned i = 0; i <= 1; ++i) {
if (regs->slot[i] == src.value && regs->enabled[i])
return;
}
if (regs->slot[2] == src.value && regs->slot23.slot2 == BIFROST_OP_READ)
return;
/* Assign it now */
for (unsigned i = 0; i <= 1; ++i) {
if (!regs->enabled[i]) {
regs->slot[i] = src.value;
regs->enabled[i] = true;
return;
}
}
if (!regs->slot23.slot3) {
regs->slot[2] = src.value;
regs->slot23.slot2 = BIFROST_OP_READ;
return;
}
bi_print_slots(regs, stderr);
unreachable("Failed to find a free slot for src");
}
static bi_registers
bi_assign_slots(bi_tuple *now, bi_tuple *prev)
{
/* We assign slots for the main register mechanism. Special ops
* use the data registers, which has its own mechanism entirely
* and thus gets skipped over here. */
bool read_dreg = now->add && bi_opcode_props[now->add->op].sr_read;
bool write_dreg = prev->add && bi_opcode_props[prev->add->op].sr_write;
/* First, assign reads */
if (now->fma)
bi_foreach_src(now->fma, src)
bi_assign_slot_read(&now->regs, (now->fma)->src[src]);
if (now->add) {
bi_foreach_src(now->add, src) {
/* This is not a real source, we shouldn't assign a
* slot for it.
*/
if (now->add->op == BI_OPCODE_BLEND && src == 4)
continue;
if (!(src == 0 && read_dreg))
bi_assign_slot_read(&now->regs, (now->add)->src[src]);
}
}
/* Next, assign writes. Staging writes are assigned separately, but
* +ATEST wants its destination written to both a staging register
* _and_ a regular write, because it may not generate a message */
if (prev->add && (!write_dreg || prev->add->op == BI_OPCODE_ATEST)) {
bi_index idx = prev->add->dest[0];
if (idx.type == BI_INDEX_REGISTER) {
now->regs.slot[3] = idx.value;
now->regs.slot23.slot3 = BIFROST_OP_WRITE;
}
}
if (prev->fma) {
bi_index idx = (prev->fma)->dest[0];
if (idx.type == BI_INDEX_REGISTER) {
if (now->regs.slot23.slot3) {
/* Scheduler constraint: cannot read 3 and write 2 */
assert(!now->regs.slot23.slot2);
now->regs.slot[2] = idx.value;
now->regs.slot23.slot2 = BIFROST_OP_WRITE;
} else {
now->regs.slot[3] = idx.value;
now->regs.slot23.slot3 = BIFROST_OP_WRITE;
now->regs.slot23.slot3_fma = true;
}
}
}
return now->regs;
}
static enum bifrost_reg_mode
bi_pack_register_mode(bi_registers r)
{
/* Handle idle as a special case */
if (!(r.slot23.slot2 | r.slot23.slot3))
return r.first_instruction ? BIFROST_IDLE_1 : BIFROST_IDLE;
/* Otherwise, use the LUT */
for (unsigned i = 0; i < ARRAY_SIZE(bifrost_reg_ctrl_lut); ++i) {
if (memcmp(bifrost_reg_ctrl_lut + i, &r.slot23, sizeof(r.slot23)) == 0)
return i;
}
bi_print_slots(&r, stderr);
unreachable("Invalid slot assignment");
}
static uint64_t
bi_pack_registers(bi_registers regs)
{
enum bifrost_reg_mode mode = bi_pack_register_mode(regs);
struct bifrost_regs s = { 0 };
uint64_t packed = 0;
/* Need to pack 5-bit mode as a 4-bit field. The decoder moves bit 3 to bit 4 for
* first instruction and adds 16 when reg 2 == reg 3 */
unsigned ctrl;
bool r2_equals_r3 = false;
if (regs.first_instruction) {
/* Bit 3 implicitly must be clear for first instructions.
* The affected patterns all write both ADD/FMA, but that
* is forbidden for the last instruction (whose writes are
* encoded by the first), so this does not add additional
* encoding constraints */
assert(!(mode & 0x8));
/* Move bit 4 to bit 3, since bit 3 is clear */
ctrl = (mode & 0x7) | ((mode & 0x10) >> 1);
/* If we can let r2 equal r3, we have to or the hardware raises
* INSTR_INVALID_ENC (it's unclear why). */
if (!(regs.slot23.slot2 && regs.slot23.slot3))
r2_equals_r3 = true;
} else {
/* We force r2=r3 or not for the upper bit */
ctrl = (mode & 0xF);
r2_equals_r3 = (mode & 0x10);
}
if (regs.enabled[1]) {
/* Gotta save that bit!~ Required by the 63-x trick */
assert(regs.slot[1] > regs.slot[0]);
assert(regs.enabled[0]);
/* Do the 63-x trick, see docs/disasm */
if (regs.slot[0] > 31) {
regs.slot[0] = 63 - regs.slot[0];
regs.slot[1] = 63 - regs.slot[1];
}
assert(regs.slot[0] <= 31);
assert(regs.slot[1] <= 63);
s.ctrl = ctrl;
s.reg1 = regs.slot[1];
s.reg0 = regs.slot[0];
} else {
/* slot 1 disabled, so set to zero and use slot 1 for ctrl */
s.ctrl = 0;
s.reg1 = ctrl << 2;
if (regs.enabled[0]) {
/* Bit 0 upper bit of slot 0 */
s.reg1 |= (regs.slot[0] >> 5);
/* Rest of slot 0 in usual spot */
s.reg0 = (regs.slot[0] & 0b11111);
} else {
/* Bit 1 set if slot 0 also disabled */
s.reg1 |= (1 << 1);
}
}
/* Force r2 =/!= r3 as needed */
if (r2_equals_r3) {
assert(regs.slot[3] == regs.slot[2] || !(regs.slot23.slot2 && regs.slot23.slot3));
if (regs.slot23.slot2)
regs.slot[3] = regs.slot[2];
else
regs.slot[2] = regs.slot[3];
} else if (!regs.first_instruction) {
/* Enforced by the encoding anyway */
assert(regs.slot[2] != regs.slot[3]);
}
s.reg2 = regs.slot[2];
s.reg3 = regs.slot[3];
s.fau_idx = regs.fau_idx;
memcpy(&packed, &s, sizeof(s));
return packed;
}
/* We must ensure slot 1 > slot 0 for the 63-x trick to function, so we fix
* this up at pack time. (Scheduling doesn't care.) */
static void
bi_flip_slots(bi_registers *regs)
{
if (regs->enabled[0] && regs->enabled[1] && regs->slot[1] < regs->slot[0]) {
unsigned temp = regs->slot[0];
regs->slot[0] = regs->slot[1];
regs->slot[1] = temp;
}
}
static inline enum bifrost_packed_src
bi_get_src_slot(bi_registers *regs, unsigned reg)
{
if (regs->slot[0] == reg && regs->enabled[0])
return BIFROST_SRC_PORT0;
else if (regs->slot[1] == reg && regs->enabled[1])
return BIFROST_SRC_PORT1;
else if (regs->slot[2] == reg && regs->slot23.slot2 == BIFROST_OP_READ)
return BIFROST_SRC_PORT2;
else
unreachable("Tried to access register with no port");
}
static inline enum bifrost_packed_src
bi_get_src_new(bi_instr *ins, bi_registers *regs, unsigned s)
{
if (!ins)
return 0;
bi_index src = ins->src[s];
if (src.type == BI_INDEX_REGISTER)
return bi_get_src_slot(regs, src.value);
else if (src.type == BI_INDEX_PASS)
return src.value;
else {
/* TODO make safer */
return BIFROST_SRC_STAGE;
}
}
static struct bi_packed_tuple
bi_pack_tuple(bi_clause *clause, bi_tuple *tuple, bi_tuple *prev, bool first_tuple, gl_shader_stage stage)
{
bi_assign_slots(tuple, prev);
tuple->regs.fau_idx = tuple->fau_idx;
tuple->regs.first_instruction = first_tuple;
bi_flip_slots(&tuple->regs);
bool sr_read = tuple->add &&
bi_opcode_props[(tuple->add)->op].sr_read;
uint64_t reg = bi_pack_registers(tuple->regs);
uint64_t fma = bi_pack_fma(tuple->fma,
bi_get_src_new(tuple->fma, &tuple->regs, 0),
bi_get_src_new(tuple->fma, &tuple->regs, 1),
bi_get_src_new(tuple->fma, &tuple->regs, 2),
bi_get_src_new(tuple->fma, &tuple->regs, 3));
uint64_t add = bi_pack_add(tuple->add,
bi_get_src_new(tuple->add, &tuple->regs, sr_read + 0),
bi_get_src_new(tuple->add, &tuple->regs, sr_read + 1),
bi_get_src_new(tuple->add, &tuple->regs, sr_read + 2),
0);
if (tuple->add) {
bi_instr *add = tuple->add;
bool sr_write = bi_opcode_props[add->op].sr_write &&
!bi_is_null(add->dest[0]);
if (sr_read && !bi_is_null(add->src[0])) {
assert(add->src[0].type == BI_INDEX_REGISTER);
clause->staging_register = add->src[0].value;
if (sr_write)
assert(bi_is_equiv(add->src[0], add->dest[0]));
} else if (sr_write) {
assert(add->dest[0].type == BI_INDEX_REGISTER);
clause->staging_register = add->dest[0].value;
}
}
struct bi_packed_tuple packed = {
.lo = reg | (fma << 35) | ((add & 0b111111) << 58),
.hi = add >> 6
};
return packed;
}
/* A block contains at most one PC-relative constant, from a terminal branch.
* Find the last instruction and if it is a relative branch, fix up the
* PC-relative constant to contain the absolute offset. This occurs at pack
* time instead of schedule time because the number of quadwords between each
* block is not known until after all other passes have finished.
*/
static void
bi_assign_branch_offset(bi_context *ctx, bi_block *block)
{
if (list_is_empty(&block->clauses))
return;
bi_clause *clause = list_last_entry(&block->clauses, bi_clause, link);
bi_instr *br = bi_last_instr_in_clause(clause);
if (!br->branch_target)
return;
/* Put it in the high place */
int32_t qwords = bi_block_offset(ctx, clause, br->branch_target);
int32_t bytes = qwords * 16;
/* Copy so we can toy with the sign without undefined behaviour */
uint32_t raw = 0;
memcpy(&raw, &bytes, sizeof(raw));
/* Clear off top bits for A1/B1 bits */
raw &= ~0xF0000000;
/* Put in top 32-bits */
assert(clause->pcrel_idx < 8);
clause->constants[clause->pcrel_idx] |= ((uint64_t) raw) << 32ull;
}
static void
bi_pack_constants(unsigned tuple_count, uint64_t *constants,
unsigned word_idx, unsigned constant_words, bool ec0_packed,
struct util_dynarray *emission)
{
unsigned index = (word_idx << 1) + ec0_packed;
/* Do more constants follow */
bool more = (word_idx + 1) < constant_words;
/* Indexed first by tuple count and second by constant word number,
* indicates the position in the clause */
unsigned pos_lookup[8][3] = {
{ 0 },
{ 1 },
{ 3 },
{ 2, 5 },
{ 4, 8 },
{ 7, 11, 14 },
{ 6, 10, 13 },
{ 9, 12 }
};
/* Compute the pos, and check everything is reasonable */
assert((tuple_count - 1) < 8);
assert(word_idx < 3);
unsigned pos = pos_lookup[tuple_count - 1][word_idx];
assert(pos != 0 || (tuple_count == 1 && word_idx == 0));
struct bifrost_fmt_constant quad = {
.pos = pos,
.tag = more ? BIFROST_FMTC_CONSTANTS : BIFROST_FMTC_FINAL,
.imm_1 = constants[index + 0] >> 4,
.imm_2 = constants[index + 1] >> 4,
};
util_dynarray_append(emission, struct bifrost_fmt_constant, quad);
}
uint8_t
bi_pack_literal(enum bi_clause_subword literal)
{
assert(literal >= BI_CLAUSE_SUBWORD_LITERAL_0);
assert(literal <= BI_CLAUSE_SUBWORD_LITERAL_7);
return (literal - BI_CLAUSE_SUBWORD_LITERAL_0);
}
static inline uint8_t
bi_clause_upper(unsigned val,
struct bi_packed_tuple *tuples,
ASSERTED unsigned tuple_count)
{
assert(val < tuple_count);
/* top 3-bits of 78-bits is tuple >> 75 == (tuple >> 64) >> 11 */
struct bi_packed_tuple tuple = tuples[val];
return (tuple.hi >> 11);
}
uint8_t
bi_pack_upper(enum bi_clause_subword upper,
struct bi_packed_tuple *tuples,
ASSERTED unsigned tuple_count)
{
assert(upper >= BI_CLAUSE_SUBWORD_UPPER_0);
assert(upper <= BI_CLAUSE_SUBWORD_UPPER_7);
return bi_clause_upper(upper - BI_CLAUSE_SUBWORD_UPPER_0, tuples,
tuple_count);
}
uint64_t
bi_pack_tuple_bits(enum bi_clause_subword idx,
struct bi_packed_tuple *tuples,
ASSERTED unsigned tuple_count,
unsigned offset, unsigned nbits)
{
assert(idx >= BI_CLAUSE_SUBWORD_TUPLE_0);
assert(idx <= BI_CLAUSE_SUBWORD_TUPLE_7);
unsigned val = (idx - BI_CLAUSE_SUBWORD_TUPLE_0);
assert(val < tuple_count);
struct bi_packed_tuple tuple = tuples[val];
assert(offset + nbits < 78);
assert(nbits <= 64);
/* (X >> start) & m
* = (((hi << 64) | lo) >> start) & m
* = (((hi << 64) >> start) | (lo >> start)) & m
* = { ((hi << (64 - start)) | (lo >> start)) & m if start <= 64
* { ((hi >> (start - 64)) | (lo >> start)) & m if start >= 64
* = { ((hi << (64 - start)) & m) | ((lo >> start) & m) if start <= 64
* { ((hi >> (start - 64)) & m) | ((lo >> start) & m) if start >= 64
*
* By setting m = 2^64 - 1, we justify doing the respective shifts as
* 64-bit integers. Zero special cased to avoid undefined behaviour.
*/
uint64_t lo = (tuple.lo >> offset);
uint64_t hi = (offset == 0) ? 0
: (offset > 64) ? (tuple.hi >> (offset - 64))
: (tuple.hi << (64 - offset));
return (lo | hi) & ((1ULL << nbits) - 1);
}
static inline uint16_t
bi_pack_lu(enum bi_clause_subword word,
struct bi_packed_tuple *tuples,
ASSERTED unsigned tuple_count)
{
return (word >= BI_CLAUSE_SUBWORD_UPPER_0) ?
bi_pack_upper(word, tuples, tuple_count) :
bi_pack_literal(word);
}
uint8_t
bi_pack_sync(enum bi_clause_subword t1,
enum bi_clause_subword t2,
enum bi_clause_subword t3,
struct bi_packed_tuple *tuples,
ASSERTED unsigned tuple_count,
bool z)
{
uint8_t sync =
(bi_pack_lu(t3, tuples, tuple_count) << 0) |
(bi_pack_lu(t2, tuples, tuple_count) << 3);
if (t1 == BI_CLAUSE_SUBWORD_Z)
sync |= z << 6;
else
sync |= bi_pack_literal(t1) << 6;
return sync;
}
static inline uint64_t
bi_pack_t_ec(enum bi_clause_subword word,
struct bi_packed_tuple *tuples,
ASSERTED unsigned tuple_count,
uint64_t ec0)
{
if (word == BI_CLAUSE_SUBWORD_CONSTANT)
return ec0;
else
return bi_pack_tuple_bits(word, tuples, tuple_count, 0, 60);
}
static uint32_t
bi_pack_subwords_56(enum bi_clause_subword t,
struct bi_packed_tuple *tuples,
ASSERTED unsigned tuple_count,
uint64_t header, uint64_t ec0,
unsigned tuple_subword)
{
switch (t) {
case BI_CLAUSE_SUBWORD_HEADER:
return (header & ((1 << 30) - 1));
case BI_CLAUSE_SUBWORD_RESERVED:
return 0;
case BI_CLAUSE_SUBWORD_CONSTANT:
return (ec0 >> 15) & ((1 << 30) - 1);
default:
return bi_pack_tuple_bits(t, tuples, tuple_count, tuple_subword * 15, 30);
}
}
static uint16_t
bi_pack_subword(enum bi_clause_subword t, unsigned format,
struct bi_packed_tuple *tuples,
ASSERTED unsigned tuple_count,
uint64_t header, uint64_t ec0, unsigned m0,
unsigned tuple_subword)
{
switch (t) {
case BI_CLAUSE_SUBWORD_HEADER:
return header >> 30;
case BI_CLAUSE_SUBWORD_M:
return m0;
case BI_CLAUSE_SUBWORD_CONSTANT:
return (format == 5 || format == 10) ?
(ec0 & ((1 << 15) - 1)) :
(ec0 >> (15 + 30));
case BI_CLAUSE_SUBWORD_UPPER_23:
return (bi_clause_upper(2, tuples, tuple_count) << 12) |
(bi_clause_upper(3, tuples, tuple_count) << 9);
case BI_CLAUSE_SUBWORD_UPPER_56:
return (bi_clause_upper(5, tuples, tuple_count) << 12) |
(bi_clause_upper(6, tuples, tuple_count) << 9);
case BI_CLAUSE_SUBWORD_UPPER_0 ... BI_CLAUSE_SUBWORD_UPPER_7:
return bi_pack_upper(t, tuples, tuple_count) << 12;
default:
return bi_pack_tuple_bits(t, tuples, tuple_count, tuple_subword * 15, 15);
}
}
/* EC0 is 60-bits (bottom 4 already shifted off) */
void
bi_pack_format(struct util_dynarray *emission,
unsigned index,
struct bi_packed_tuple *tuples,
ASSERTED unsigned tuple_count,
uint64_t header, uint64_t ec0,
unsigned m0, bool z)
{
struct bi_clause_format format = bi_clause_formats[index];
uint8_t sync = bi_pack_sync(format.tag_1, format.tag_2, format.tag_3,
tuples, tuple_count, z);
uint64_t s0_s3 = bi_pack_t_ec(format.s0_s3, tuples, tuple_count, ec0);
uint16_t s4 = bi_pack_subword(format.s4, format.format, tuples, tuple_count, header, ec0, m0, 4);
uint32_t s5_s6 = bi_pack_subwords_56(format.s5_s6,
tuples, tuple_count, header, ec0,
(format.format == 2 || format.format == 7) ? 0 : 3);
uint64_t s7 = bi_pack_subword(format.s7, format.format, tuples, tuple_count, header, ec0, m0, 2);
/* Now that subwords are packed, split into 64-bit halves and emit */
uint64_t lo = sync | ((s0_s3 & ((1ull << 56) - 1)) << 8);
uint64_t hi = (s0_s3 >> 56) | ((uint64_t) s4 << 4) | ((uint64_t) s5_s6 << 19) | ((uint64_t) s7 << 49);
util_dynarray_append(emission, uint64_t, lo);
util_dynarray_append(emission, uint64_t, hi);
}
static void
bi_pack_clause(bi_context *ctx, bi_clause *clause,
bi_clause *next_1, bi_clause *next_2,
struct util_dynarray *emission, gl_shader_stage stage)
{
struct bi_packed_tuple ins[8] = { 0 };
for (unsigned i = 0; i < clause->tuple_count; ++i) {
unsigned prev = ((i == 0) ? clause->tuple_count : i) - 1;
ins[i] = bi_pack_tuple(clause, &clause->tuples[i],
&clause->tuples[prev], i == 0, stage);
}
bool ec0_packed = bi_ec0_packed(clause->tuple_count);
if (ec0_packed)
clause->constant_count = MAX2(clause->constant_count, 1);
unsigned constant_quads =
DIV_ROUND_UP(clause->constant_count - (ec0_packed ? 1 : 0), 2);
uint64_t header = bi_pack_header(clause, next_1, next_2);
uint64_t ec0 = (clause->constants[0] >> 4);
unsigned m0 = (clause->pcrel_idx == 0) ? 4 : 0;
unsigned counts[8] = {
1, 2, 3, 3, 4, 5, 5, 6
};
unsigned indices[8][6] = {
{ 1 },
{ 0, 2 },
{ 0, 3, 4 },
{ 0, 3, 6 },
{ 0, 3, 7, 8 },
{ 0, 3, 5, 9, 10 },
{ 0, 3, 5, 9, 11 },
{ 0, 3, 5, 9, 12, 13 },
};
unsigned count = counts[clause->tuple_count - 1];
for (unsigned pos = 0; pos < count; ++pos) {
ASSERTED unsigned idx = indices[clause->tuple_count - 1][pos];
assert(bi_clause_formats[idx].pos == pos);
assert((bi_clause_formats[idx].tag_1 == BI_CLAUSE_SUBWORD_Z) ==
(pos == count - 1));
/* Whether to end the clause immediately after the last tuple */
bool z = (constant_quads == 0);
bi_pack_format(emission, indices[clause->tuple_count - 1][pos],
ins, clause->tuple_count, header, ec0, m0,
z);
}
/* Pack the remaining constants */
for (unsigned pos = 0; pos < constant_quads; ++pos) {
bi_pack_constants(clause->tuple_count, clause->constants,
pos, constant_quads, ec0_packed, emission);
}
}
static void
bi_collect_blend_ret_addr(bi_context *ctx, struct util_dynarray *emission,
const bi_clause *clause)
{
/* No need to collect return addresses when we're in a blend shader. */
if (ctx->inputs->is_blend)
return;
const bi_tuple *tuple = &clause->tuples[clause->tuple_count - 1];
const bi_instr *ins = tuple->add;
if (!ins || ins->op != BI_OPCODE_BLEND)
return;
unsigned loc = tuple->regs.fau_idx - BIR_FAU_BLEND_0;
assert(loc < ARRAY_SIZE(ctx->info.bifrost->blend));
assert(!ctx->info.bifrost->blend[loc].return_offset);
ctx->info.bifrost->blend[loc].return_offset =
util_dynarray_num_elements(emission, uint8_t);
assert(!(ctx->info.bifrost->blend[loc].return_offset & 0x7));
}
unsigned
bi_pack(bi_context *ctx, struct util_dynarray *emission)
{
unsigned previous_size = emission->size;
bi_foreach_block(ctx, block) {
bi_assign_branch_offset(ctx, block);
bi_foreach_clause_in_block(block, clause) {
bool is_last = (clause->link.next == &block->clauses);
/* Get the succeeding clauses, either two successors of
* the block for the last clause in the block or just
* the next clause within the block */
bi_clause *next = NULL, *next_2 = NULL;
if (is_last) {
next = bi_next_clause(ctx, block->successors[0], NULL);
next_2 = bi_next_clause(ctx, block->successors[1], NULL);
} else {
next = bi_next_clause(ctx, block, clause);
}
previous_size = emission->size;
bi_pack_clause(ctx, clause, next, next_2, emission, ctx->stage);
if (!is_last)
bi_collect_blend_ret_addr(ctx, emission, clause);
}
}
return emission->size - previous_size;
}