mesa/src/panfrost/bifrost/bi_lower_swizzle.c

272 lines
9.6 KiB
C

/*
* Copyright (C) 2020 Collabora Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "compiler.h"
#include "bi_builder.h"
/* Not all 8-bit and 16-bit instructions support all swizzles on all sources.
* These passes, intended to run after NIR->BIR but before scheduling/RA, lower
* away swizzles that cannot be represented. In the future, we should try to
* recombine swizzles where we can as an optimization.
*/
static void
bi_lower_swizzle_16(bi_context *ctx, bi_instr *ins, unsigned src)
{
/* Identity is ok */
if (ins->src[src].swizzle == BI_SWIZZLE_H01)
return;
/* TODO: Use the opcode table and be a lot more methodical about this... */
switch (ins->op) {
/* Some instructions used with 16-bit data never have swizzles */
case BI_OPCODE_CSEL_V2F16:
case BI_OPCODE_CSEL_V2I16:
case BI_OPCODE_CSEL_V2S16:
case BI_OPCODE_CSEL_V2U16:
/* Despite ostensibly being 32-bit instructions, CLPER does not
* inherently interpret the data, so it can be used for v2f16
* derivatives, which might require swizzle lowering */
case BI_OPCODE_CLPER_I32:
case BI_OPCODE_CLPER_V6_I32:
/* Similarly, CSEL.i32 consumes a boolean as a 32-bit argument. If the
* boolean is implemented as a 16-bit integer, the swizzle is needed
* for correct operation if the instruction producing the 16-bit
* boolean does not replicate to both halves of the containing 32-bit
* register. As such, we may need to lower a swizzle.
*
* This is a silly hack. Ideally, code gen would be smart enough to
* avoid this case (by replicating). In practice, silly hardware design
* decisions force our hand here.
*/
case BI_OPCODE_MUX_I32:
case BI_OPCODE_CSEL_I32:
break;
case BI_OPCODE_IADD_V2S16:
case BI_OPCODE_IADD_V2U16:
case BI_OPCODE_ISUB_V2S16:
case BI_OPCODE_ISUB_V2U16:
if (src == 0 && ins->src[src].swizzle != BI_SWIZZLE_H10)
break;
else
return;
case BI_OPCODE_LSHIFT_AND_V2I16:
case BI_OPCODE_LSHIFT_OR_V2I16:
case BI_OPCODE_LSHIFT_XOR_V2I16:
case BI_OPCODE_RSHIFT_AND_V2I16:
case BI_OPCODE_RSHIFT_OR_V2I16:
case BI_OPCODE_RSHIFT_XOR_V2I16:
if (src == 2)
return;
else
break;
/* For some reason MUX.v2i16 allows swaps but not replication */
case BI_OPCODE_MUX_V2I16:
if (ins->src[src].swizzle == BI_SWIZZLE_H10)
return;
else
break;
/* We don't want to deal with reswizzling logic in modifier prop. Move
* the swizzle outside, it's easier for clamp propagation. */
case BI_OPCODE_FCLAMP_V2F16:
{
bi_builder b = bi_init_builder(ctx, bi_after_instr(ins));
bi_index dest = ins->dest[0];
bi_index tmp = bi_temp(ctx);
ins->dest[0] = tmp;
bi_swz_v2i16_to(&b, dest, bi_replace_index(ins->src[0], tmp));
return;
}
default:
return;
}
/* First, try to apply a given swizzle to a constant to clear the
* runtime swizzle. This is less heavy-handed than ignoring the
* swizzle for scalar destinations, since it maintains
* replication of the destination.
*/
if (ins->src[src].type == BI_INDEX_CONSTANT) {
ins->src[src].value = bi_apply_swizzle(ins->src[src].value,
ins->src[src].swizzle);
ins->src[src].swizzle = BI_SWIZZLE_H01;
return;
}
/* Even if the source does not replicate, if the consuming instruction
* produces a 16-bit scalar, we can ignore the other component.
*/
if (ins->dest[0].swizzle == BI_SWIZZLE_H00 &&
ins->src[src].swizzle == BI_SWIZZLE_H00)
{
ins->src[src].swizzle = BI_SWIZZLE_H01;
return;
}
/* Lower it away */
bi_builder b = bi_init_builder(ctx, bi_before_instr(ins));
ins->src[src] = bi_replace_index(ins->src[src],
bi_swz_v2i16(&b, ins->src[src]));
ins->src[src].swizzle = BI_SWIZZLE_H01;
}
static bool
bi_swizzle_replicates_8(enum bi_swizzle swz)
{
switch (swz) {
case BI_SWIZZLE_B0000:
case BI_SWIZZLE_B1111:
case BI_SWIZZLE_B2222:
case BI_SWIZZLE_B3333:
return true;
default:
return false;
}
}
static bool
bi_swizzle_replicates_16(enum bi_swizzle swz)
{
switch (swz) {
case BI_SWIZZLE_H00:
case BI_SWIZZLE_H11:
return true;
default:
/* If a swizzle replicates every 8-bits, it also replicates
* every 16-bits, so allow 8-bit replicating swizzles.
*/
return bi_swizzle_replicates_8(swz);
}
}
static bool
bi_instr_replicates(bi_instr *I, BITSET_WORD *replicates_16)
{
switch (I->op) {
/* Instructions that construct vectors have replicated output if their
* sources are identical. Check this case first.
*/
case BI_OPCODE_MKVEC_V2I16:
case BI_OPCODE_V2F16_TO_V2S16:
case BI_OPCODE_V2F16_TO_V2U16:
case BI_OPCODE_V2F32_TO_V2F16:
case BI_OPCODE_V2S16_TO_V2F16:
case BI_OPCODE_V2S8_TO_V2F16:
case BI_OPCODE_V2S8_TO_V2S16:
case BI_OPCODE_V2U16_TO_V2F16:
case BI_OPCODE_V2U8_TO_V2F16:
case BI_OPCODE_V2U8_TO_V2U16:
return bi_is_value_equiv(I->src[0], I->src[1]);
/* 16-bit transcendentals are defined to output zero in their
* upper half, so they do not replicate
*/
case BI_OPCODE_FRCP_F16:
case BI_OPCODE_FRSQ_F16:
return false;
/* Not sure, be conservative, we don't use these.. */
case BI_OPCODE_VN_ASST1_F16:
case BI_OPCODE_FPCLASS_F16:
case BI_OPCODE_FPOW_SC_DET_F16:
return false;
default:
break;
}
/* Replication analysis only makes sense for ALU instructions */
if (bi_opcode_props[I->op].message != BIFROST_MESSAGE_NONE)
return false;
/* We only analyze 16-bit instructions for 16-bit replication. We could
* maybe do better.
*/
if (bi_opcode_props[I->op].size != BI_SIZE_16)
return false;
bi_foreach_src(I, s) {
if (bi_is_null(I->src[s]))
continue;
/* Replicated swizzles */
if (bi_swizzle_replicates_16(I->src[s].swizzle))
continue;
/* Replicated values */
if (bi_is_ssa(I->src[s]) &&
BITSET_TEST(replicates_16, I->src[s].value))
continue;
/* Replicated constants */
if (I->src[s].type == BI_INDEX_CONSTANT &&
(I->src[s].value & 0xFFFF) == (I->src[s].value >> 16))
continue;
return false;
}
return true;
}
void
bi_lower_swizzle(bi_context *ctx)
{
bi_foreach_instr_global_safe(ctx, ins) {
bi_foreach_src(ins, s) {
if (!bi_is_null(ins->src[s]))
bi_lower_swizzle_16(ctx, ins, s);
}
}
/* Now that we've lowered swizzles, clean up the mess */
BITSET_WORD *replicates_16 = calloc(sizeof(bi_index), ctx->ssa_alloc);
bi_foreach_instr_global(ctx, ins) {
if (bi_is_ssa(ins->dest[0]) && bi_instr_replicates(ins, replicates_16))
BITSET_SET(replicates_16, ins->dest[0].value);
if (ins->op == BI_OPCODE_SWZ_V2I16 && bi_is_ssa(ins->src[0]) &&
BITSET_TEST(replicates_16, ins->src[0].value)) {
ins->op = BI_OPCODE_MOV_I32;
ins->src[0].swizzle = BI_SWIZZLE_H01;
}
/* The above passes rely on replicating destinations. For
* Valhall, we will want to optimize this. For now, default
* to Bifrost compatible behaviour.
*/
ins->dest[0].swizzle = BI_SWIZZLE_H01;
}
free(replicates_16);
}