mesa/src/mesa/program/prog_statevars.c

1729 lines
59 KiB
C

/*
* Mesa 3-D graphics library
*
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file prog_statevars.c
* Program state variable management.
* \author Brian Paul
*/
#include <stdio.h>
#include <stddef.h>
#include "main/glheader.h"
#include "main/context.h"
#include "main/blend.h"
#include "main/macros.h"
#include "main/fbobject.h"
#include "prog_statevars.h"
#include "prog_parameter.h"
#include "main/samplerobj.h"
#include "main/framebuffer.h"
#define ONE_DIV_SQRT_LN2 (1.201122408786449815)
static ALWAYS_INLINE void
copy_matrix(float *value, const float *m, unsigned firstRow, unsigned lastRow)
{
unsigned i, row;
assert(firstRow < 4);
assert(lastRow < 4);
for (i = 0, row = firstRow; row <= lastRow; row++) {
value[i++] = m[row + 0];
value[i++] = m[row + 4];
value[i++] = m[row + 8];
value[i++] = m[row + 12];
}
}
static ALWAYS_INLINE void
copy_matrix_transposed(float *value, const float *m, unsigned firstRow, unsigned lastRow)
{
assert(firstRow < 4);
assert(lastRow < 4);
memcpy(value, &m[firstRow * 4],
(lastRow - firstRow + 1) * 4 * sizeof(GLfloat));
}
/**
* Use the list of tokens in the state[] array to find global GL state
* and return it in <value>. Usually, four values are returned in <value>
* but matrix queries may return as many as 16 values.
* This function is used for ARB vertex/fragment programs.
* The program parser will produce the state[] values.
*/
static void
fetch_state(struct gl_context *ctx, const gl_state_index16 state[],
gl_constant_value *val)
{
GLfloat *value = &val->f;
switch (state[0]) {
case STATE_MATERIAL:
{
/* state[1] is MAT_ATTRIB_FRONT_* */
const GLuint index = (GLuint) state[1];
const struct gl_material *mat = &ctx->Light.Material;
assert(index >= MAT_ATTRIB_FRONT_AMBIENT &&
index <= MAT_ATTRIB_BACK_SHININESS);
if (index >= MAT_ATTRIB_FRONT_SHININESS) {
value[0] = mat->Attrib[index][0];
value[1] = 0.0F;
value[2] = 0.0F;
value[3] = 1.0F;
} else {
COPY_4V(value, mat->Attrib[index]);
}
return;
}
case STATE_LIGHT:
{
/* state[1] is the light number */
const GLuint ln = (GLuint) state[1];
/* state[2] is the light attribute */
const unsigned index = state[2] - STATE_AMBIENT;
assert(index < 8);
if (index != STATE_SPOT_CUTOFF)
COPY_4V(value, (float*)&ctx->Light.LightSource[ln] + index * 4);
else
value[0] = ctx->Light.LightSource[ln].SpotCutoff;
return;
}
case STATE_LIGHT_ARRAY: {
/* This must be exact because it must match the gl_LightSource layout
* in GLSL.
*/
STATIC_ASSERT(sizeof(struct gl_light_uniforms) == 29 * 4);
STATIC_ASSERT(ARRAY_SIZE(ctx->Light.LightSourceData) == 29 * MAX_LIGHTS);
/* state[1] is the index of the first value */
/* state[2] is the number of values */
assert(state[1] + state[2] <= ARRAY_SIZE(ctx->Light.LightSourceData));
memcpy(value, &ctx->Light.LightSourceData[state[1]],
state[2] * sizeof(float));
return;
}
case STATE_LIGHT_ATTENUATION_ARRAY: {
const unsigned first = state[1];
const unsigned num_lights = state[2];
for (unsigned i = 0; i < num_lights; i++) {
COPY_4V(value,
&ctx->Light.LightSource[first + i].ConstantAttenuation);
value += 4;
}
return;
}
case STATE_LIGHTMODEL_AMBIENT:
COPY_4V(value, ctx->Light.Model.Ambient);
return;
case STATE_LIGHTMODEL_SCENECOLOR:
if (state[1] == 0) {
/* front */
GLint i;
for (i = 0; i < 3; i++) {
value[i] = ctx->Light.Model.Ambient[i]
* ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
+ ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
}
value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
}
else {
/* back */
GLint i;
for (i = 0; i < 3; i++) {
value[i] = ctx->Light.Model.Ambient[i]
* ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
+ ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
}
value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
}
return;
case STATE_LIGHTPROD:
{
const GLuint ln = (GLuint) state[1];
const GLuint index = (GLuint) state[2];
const GLuint attr = (index / 2) * 4;
assert(index >= MAT_ATTRIB_FRONT_AMBIENT &&
index <= MAT_ATTRIB_BACK_SPECULAR);
for (int i = 0; i < 3; i++) {
/* We want attr to access out of bounds into the following Diffuse
* and Specular fields. This is guaranteed to work because
* STATE_LIGHT and STATE_LIGHT_ARRAY also rely on this memory
* layout.
*/
STATIC_ASSERT(offsetof(struct gl_light_uniforms, Ambient) + 16 ==
offsetof(struct gl_light_uniforms, Diffuse));
STATIC_ASSERT(offsetof(struct gl_light_uniforms, Diffuse) + 16 ==
offsetof(struct gl_light_uniforms, Specular));
value[i] = ctx->Light.LightSource[ln].Ambient[attr + i] *
ctx->Light.Material.Attrib[index][i];
}
/* [3] = material alpha */
value[3] = ctx->Light.Material.Attrib[index][3];
return;
}
case STATE_LIGHTPROD_ARRAY_FRONT: {
const unsigned first_light = state[1];
const unsigned num_lights = state[2];
for (unsigned i = 0; i < num_lights; i++) {
unsigned light = first_light + i;
for (unsigned attrib = MAT_ATTRIB_FRONT_AMBIENT;
attrib <= MAT_ATTRIB_FRONT_SPECULAR; attrib += 2) {
for (int chan = 0; chan < 3; chan++) {
/* We want offset to access out of bounds into the following
* Diffuse and Specular fields. This is guaranteed to work
* because STATE_LIGHT and STATE_LIGHT_ATTRIBS also rely
* on this memory layout.
*/
unsigned offset = (attrib / 2) * 4 + chan;
*value++ =
(&ctx->Light.LightSource[light].Ambient[0])[offset] *
ctx->Light.Material.Attrib[attrib][chan];
}
/* [3] = material alpha */
*value++ = ctx->Light.Material.Attrib[attrib][3];
}
}
return;
}
case STATE_LIGHTPROD_ARRAY_BACK: {
const unsigned first_light = state[1];
const unsigned num_lights = state[2];
for (unsigned i = 0; i < num_lights; i++) {
unsigned light = first_light + i;
for (unsigned attrib = MAT_ATTRIB_BACK_AMBIENT;
attrib <= MAT_ATTRIB_BACK_SPECULAR; attrib += 2) {
for (int chan = 0; chan < 3; chan++) {
/* We want offset to access out of bounds into the following
* Diffuse and Specular fields. This is guaranteed to work
* because STATE_LIGHT and STATE_LIGHT_ATTRIBS also rely
* on this memory layout.
*/
unsigned offset = (attrib / 2) * 4 + chan;
*value++ =
(&ctx->Light.LightSource[light].Ambient[0])[offset] *
ctx->Light.Material.Attrib[attrib][chan];
}
/* [3] = material alpha */
*value++ = ctx->Light.Material.Attrib[attrib][3];
}
}
return;
}
case STATE_LIGHTPROD_ARRAY_TWOSIDE: {
const unsigned first_light = state[1];
const unsigned num_lights = state[2];
for (unsigned i = 0; i < num_lights; i++) {
unsigned light = first_light + i;
for (unsigned attrib = MAT_ATTRIB_FRONT_AMBIENT;
attrib <= MAT_ATTRIB_BACK_SPECULAR; attrib++) {
for (int chan = 0; chan < 3; chan++) {
/* We want offset to access out of bounds into the following
* Diffuse and Specular fields. This is guaranteed to work
* because STATE_LIGHT and STATE_LIGHT_ATTRIBS also rely
* on this memory layout.
*/
unsigned offset = (attrib / 2) * 4 + chan;
*value++ =
(&ctx->Light.LightSource[light].Ambient[0])[offset] *
ctx->Light.Material.Attrib[attrib][chan];
}
/* [3] = material alpha */
*value++ = ctx->Light.Material.Attrib[attrib][3];
}
}
return;
}
case STATE_TEXGEN:
{
/* state[1] is the texture unit */
const GLuint unit = (GLuint) state[1];
/* state[2] is the texgen attribute */
/* Assertions for the expected memory layout. */
#define MEMBER_SIZEOF(type, member) sizeof(((type *)0)->member)
STATIC_ASSERT(MEMBER_SIZEOF(struct gl_fixedfunc_texture_unit,
EyePlane[0]) == 4 * sizeof(float));
STATIC_ASSERT(MEMBER_SIZEOF(struct gl_fixedfunc_texture_unit,
ObjectPlane[0]) == 4 * sizeof(float));
#undef MEMBER_SIZEOF
STATIC_ASSERT(STATE_TEXGEN_EYE_T - STATE_TEXGEN_EYE_S == GEN_T - GEN_S);
STATIC_ASSERT(STATE_TEXGEN_EYE_R - STATE_TEXGEN_EYE_S == GEN_R - GEN_S);
STATIC_ASSERT(STATE_TEXGEN_EYE_Q - STATE_TEXGEN_EYE_S == GEN_Q - GEN_S);
STATIC_ASSERT(offsetof(struct gl_fixedfunc_texture_unit, ObjectPlane) -
offsetof(struct gl_fixedfunc_texture_unit, EyePlane) ==
(STATE_TEXGEN_OBJECT_S - STATE_TEXGEN_EYE_S) * 4 * sizeof(float));
STATIC_ASSERT(STATE_TEXGEN_OBJECT_T - STATE_TEXGEN_OBJECT_S == GEN_T - GEN_S);
STATIC_ASSERT(STATE_TEXGEN_OBJECT_R - STATE_TEXGEN_OBJECT_S == GEN_R - GEN_S);
STATIC_ASSERT(STATE_TEXGEN_OBJECT_Q - STATE_TEXGEN_OBJECT_S == GEN_Q - GEN_S);
const float *attr = (float*)ctx->Texture.FixedFuncUnit[unit].EyePlane +
(state[2] - STATE_TEXGEN_EYE_S) * 4;
COPY_4V(value, attr);
return;
}
case STATE_TEXENV_COLOR:
{
/* state[1] is the texture unit */
const GLuint unit = (GLuint) state[1];
if (_mesa_get_clamp_fragment_color(ctx, ctx->DrawBuffer))
COPY_4V(value, ctx->Texture.FixedFuncUnit[unit].EnvColor);
else
COPY_4V(value, ctx->Texture.FixedFuncUnit[unit].EnvColorUnclamped);
}
return;
case STATE_FOG_COLOR:
if (_mesa_get_clamp_fragment_color(ctx, ctx->DrawBuffer))
COPY_4V(value, ctx->Fog.Color);
else
COPY_4V(value, ctx->Fog.ColorUnclamped);
return;
case STATE_FOG_PARAMS:
value[0] = ctx->Fog.Density;
value[1] = ctx->Fog.Start;
value[2] = ctx->Fog.End;
value[3] = 1.0f / (ctx->Fog.End - ctx->Fog.Start);
return;
case STATE_CLIPPLANE:
{
const GLuint plane = (GLuint) state[1];
COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
}
return;
case STATE_POINT_SIZE:
value[0] = ctx->Point.Size;
value[1] = ctx->Point.MinSize;
value[2] = ctx->Point.MaxSize;
value[3] = ctx->Point.Threshold;
return;
case STATE_POINT_ATTENUATION:
value[0] = ctx->Point.Params[0];
value[1] = ctx->Point.Params[1];
value[2] = ctx->Point.Params[2];
value[3] = 1.0F;
return;
/* state[0] = modelview, projection, texture, etc. */
/* state[1] = which texture matrix or program matrix */
/* state[2] = first row to fetch */
/* state[3] = last row to fetch */
case STATE_MODELVIEW_MATRIX: {
const GLmatrix *matrix = ctx->ModelviewMatrixStack.Top;
copy_matrix(value, matrix->m, state[2], state[3]);
return;
}
case STATE_MODELVIEW_MATRIX_INVERSE: {
const GLmatrix *matrix = ctx->ModelviewMatrixStack.Top;
copy_matrix(value, matrix->inv, state[2], state[3]);
return;
}
case STATE_MODELVIEW_MATRIX_TRANSPOSE: {
const GLmatrix *matrix = ctx->ModelviewMatrixStack.Top;
copy_matrix_transposed(value, matrix->m, state[2], state[3]);
return;
}
case STATE_MODELVIEW_MATRIX_INVTRANS: {
const GLmatrix *matrix = ctx->ModelviewMatrixStack.Top;
copy_matrix_transposed(value, matrix->inv, state[2], state[3]);
return;
}
case STATE_PROJECTION_MATRIX: {
const GLmatrix *matrix = ctx->ProjectionMatrixStack.Top;
copy_matrix(value, matrix->m, state[2], state[3]);
return;
}
case STATE_PROJECTION_MATRIX_INVERSE: {
GLmatrix *matrix = ctx->ProjectionMatrixStack.Top;
_math_matrix_analyse(matrix); /* make sure the inverse is up to date */
copy_matrix(value, matrix->inv, state[2], state[3]);
return;
}
case STATE_PROJECTION_MATRIX_TRANSPOSE: {
const GLmatrix *matrix = ctx->ProjectionMatrixStack.Top;
copy_matrix_transposed(value, matrix->m, state[2], state[3]);
return;
}
case STATE_PROJECTION_MATRIX_INVTRANS: {
GLmatrix *matrix = ctx->ProjectionMatrixStack.Top;
_math_matrix_analyse(matrix); /* make sure the inverse is up to date */
copy_matrix_transposed(value, matrix->inv, state[2], state[3]);
return;
}
case STATE_MVP_MATRIX: {
const GLmatrix *matrix = &ctx->_ModelProjectMatrix;
copy_matrix(value, matrix->m, state[2], state[3]);
return;
}
case STATE_MVP_MATRIX_INVERSE: {
GLmatrix *matrix = &ctx->_ModelProjectMatrix;
_math_matrix_analyse(matrix); /* make sure the inverse is up to date */
copy_matrix(value, matrix->inv, state[2], state[3]);
return;
}
case STATE_MVP_MATRIX_TRANSPOSE: {
const GLmatrix *matrix = &ctx->_ModelProjectMatrix;
copy_matrix_transposed(value, matrix->m, state[2], state[3]);
return;
}
case STATE_MVP_MATRIX_INVTRANS: {
GLmatrix *matrix = &ctx->_ModelProjectMatrix;
_math_matrix_analyse(matrix); /* make sure the inverse is up to date */
copy_matrix_transposed(value, matrix->inv, state[2], state[3]);
return;
}
case STATE_TEXTURE_MATRIX: {
const GLuint index = (GLuint) state[1];
assert(index < ARRAY_SIZE(ctx->TextureMatrixStack));
const GLmatrix *matrix = ctx->TextureMatrixStack[index].Top;
copy_matrix(value, matrix->m, state[2], state[3]);
return;
}
case STATE_TEXTURE_MATRIX_INVERSE: {
const GLuint index = (GLuint) state[1];
assert(index < ARRAY_SIZE(ctx->TextureMatrixStack));
const GLmatrix *matrix = ctx->TextureMatrixStack[index].Top;
copy_matrix(value, matrix->inv, state[2], state[3]);
return;
}
case STATE_TEXTURE_MATRIX_TRANSPOSE: {
const GLuint index = (GLuint) state[1];
assert(index < ARRAY_SIZE(ctx->TextureMatrixStack));
const GLmatrix *matrix = ctx->TextureMatrixStack[index].Top;
copy_matrix_transposed(value, matrix->m, state[2], state[3]);
return;
}
case STATE_TEXTURE_MATRIX_INVTRANS: {
const GLuint index = (GLuint) state[1];
assert(index < ARRAY_SIZE(ctx->TextureMatrixStack));
const GLmatrix *matrix = ctx->TextureMatrixStack[index].Top;
copy_matrix_transposed(value, matrix->inv, state[2], state[3]);
return;
}
case STATE_PROGRAM_MATRIX: {
const GLuint index = (GLuint) state[1];
assert(index < ARRAY_SIZE(ctx->ProgramMatrixStack));
const GLmatrix *matrix = ctx->ProgramMatrixStack[index].Top;
copy_matrix(value, matrix->m, state[2], state[3]);
return;
}
case STATE_PROGRAM_MATRIX_INVERSE: {
const GLuint index = (GLuint) state[1];
assert(index < ARRAY_SIZE(ctx->ProgramMatrixStack));
const GLmatrix *matrix = ctx->ProgramMatrixStack[index].Top;
_math_matrix_analyse((GLmatrix*)matrix); /* Be sure inverse is up to date: */
copy_matrix(value, matrix->inv, state[2], state[3]);
return;
}
case STATE_PROGRAM_MATRIX_TRANSPOSE: {
const GLuint index = (GLuint) state[1];
assert(index < ARRAY_SIZE(ctx->ProgramMatrixStack));
const GLmatrix *matrix = ctx->ProgramMatrixStack[index].Top;
copy_matrix_transposed(value, matrix->m, state[2], state[3]);
return;
}
case STATE_PROGRAM_MATRIX_INVTRANS: {
const GLuint index = (GLuint) state[1];
assert(index < ARRAY_SIZE(ctx->ProgramMatrixStack));
const GLmatrix *matrix = ctx->ProgramMatrixStack[index].Top;
_math_matrix_analyse((GLmatrix*)matrix); /* Be sure inverse is up to date: */
copy_matrix_transposed(value, matrix->inv, state[2], state[3]);
return;
}
case STATE_NUM_SAMPLES:
val[0].i = MAX2(1, _mesa_geometric_samples(ctx->DrawBuffer));
return;
case STATE_DEPTH_RANGE:
value[0] = ctx->ViewportArray[0].Near; /* near */
value[1] = ctx->ViewportArray[0].Far; /* far */
value[2] = ctx->ViewportArray[0].Far - ctx->ViewportArray[0].Near; /* far - near */
value[3] = 1.0;
return;
case STATE_FRAGMENT_PROGRAM_ENV: {
const int idx = (int) state[1];
COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
return;
}
case STATE_FRAGMENT_PROGRAM_ENV_ARRAY: {
const unsigned idx = state[1];
const unsigned bytes = state[2] * 16;
memcpy(value, ctx->FragmentProgram.Parameters[idx], bytes);
return;
}
case STATE_FRAGMENT_PROGRAM_LOCAL: {
float (*params)[4] = ctx->FragmentProgram.Current->arb.LocalParams;
if (unlikely(!params)) {
/* Local parameters haven't been allocated yet.
* ARB_fragment_program says that local parameters are
* "initially set to (0,0,0,0)." Return that.
*/
memset(value, 0, sizeof(float) * 4);
return;
}
const int idx = (int) state[1];
COPY_4V(value, params[idx]);
return;
}
case STATE_FRAGMENT_PROGRAM_LOCAL_ARRAY: {
const unsigned idx = state[1];
const unsigned bytes = state[2] * 16;
float (*params)[4] = ctx->FragmentProgram.Current->arb.LocalParams;
if (!params) {
/* Local parameters haven't been allocated yet.
* ARB_fragment_program says that local parameters are
* "initially set to (0,0,0,0)." Return that.
*/
memset(value, 0, bytes);
return;
}
memcpy(value, params[idx], bytes);
return;
}
case STATE_VERTEX_PROGRAM_ENV: {
const int idx = (int) state[1];
COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
return;
}
case STATE_VERTEX_PROGRAM_ENV_ARRAY: {
const unsigned idx = state[1];
const unsigned bytes = state[2] * 16;
memcpy(value, ctx->VertexProgram.Parameters[idx], bytes);
return;
}
case STATE_VERTEX_PROGRAM_LOCAL: {
float (*params)[4] = ctx->VertexProgram.Current->arb.LocalParams;
if (unlikely(!params)) {
/* Local parameters haven't been allocated yet.
* ARB_vertex_program says that local parameters are
* "initially set to (0,0,0,0)." Return that.
*/
memset(value, 0, sizeof(float) * 4);
return;
}
const int idx = (int) state[1];
COPY_4V(value, params[idx]);
return;
}
case STATE_VERTEX_PROGRAM_LOCAL_ARRAY: {
const unsigned idx = state[1];
const unsigned bytes = state[2] * 16;
float (*params)[4] = ctx->VertexProgram.Current->arb.LocalParams;
if (!params) {
/* Local parameters haven't been allocated yet.
* ARB_vertex_program says that local parameters are
* "initially set to (0,0,0,0)." Return that.
*/
memset(value, 0, bytes);
return;
}
memcpy(value, params[idx], bytes);
return;
}
case STATE_NORMAL_SCALE_EYESPACE:
ASSIGN_4V(value, ctx->_ModelViewInvScaleEyespace, 0, 0, 1);
return;
case STATE_CURRENT_ATTRIB:
{
const GLuint idx = (GLuint) state[1];
COPY_4V(value, ctx->Current.Attrib[idx]);
}
return;
case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
{
const GLuint idx = (GLuint) state[1];
if(ctx->Light._ClampVertexColor &&
(idx == VERT_ATTRIB_COLOR0 ||
idx == VERT_ATTRIB_COLOR1)) {
value[0] = SATURATE(ctx->Current.Attrib[idx][0]);
value[1] = SATURATE(ctx->Current.Attrib[idx][1]);
value[2] = SATURATE(ctx->Current.Attrib[idx][2]);
value[3] = SATURATE(ctx->Current.Attrib[idx][3]);
}
else
COPY_4V(value, ctx->Current.Attrib[idx]);
}
return;
case STATE_NORMAL_SCALE:
ASSIGN_4V(value,
ctx->_ModelViewInvScale,
ctx->_ModelViewInvScale,
ctx->_ModelViewInvScale,
1);
return;
case STATE_FOG_PARAMS_OPTIMIZED: {
/* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
* might be more expensive than EX2 on some hw, plus it needs
* another constant (e) anyway. Linear fog can now be done with a
* single MAD.
* linear: fogcoord * -1/(end-start) + end/(end-start)
* exp: 2^-(density/ln(2) * fogcoord)
* exp2: 2^-((density/(sqrt(ln(2))) * fogcoord)^2)
*/
float val = (ctx->Fog.End == ctx->Fog.Start)
? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
value[0] = val;
value[1] = ctx->Fog.End * -val;
value[2] = (GLfloat)(ctx->Fog.Density * M_LOG2E); /* M_LOG2E == 1/ln(2) */
value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
return;
}
case STATE_POINT_SIZE_CLAMPED:
{
/* this includes implementation dependent limits, to avoid
* another potentially necessary clamp.
* Note: for sprites, point smooth (point AA) is ignored
* and we'll clamp to MinPointSizeAA and MaxPointSize, because we
* expect drivers will want to say their minimum for AA size is 0.0
* but for non-AA it's 1.0 (because normal points with size below 1.0
* need to get rounded up to 1.0, hence never disappear). GL does
* not specify max clamp size for sprites, other than it needs to be
* at least as large as max AA size, hence use non-AA size there.
*/
GLfloat minImplSize;
GLfloat maxImplSize;
if (ctx->Point.PointSprite) {
minImplSize = ctx->Const.MinPointSizeAA;
maxImplSize = ctx->Const.MaxPointSize;
}
else if (ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) {
minImplSize = ctx->Const.MinPointSizeAA;
maxImplSize = ctx->Const.MaxPointSizeAA;
}
else {
minImplSize = ctx->Const.MinPointSize;
maxImplSize = ctx->Const.MaxPointSize;
}
value[0] = ctx->Point.Size;
value[1] = ctx->Point.MinSize >= minImplSize ? ctx->Point.MinSize : minImplSize;
value[2] = ctx->Point.MaxSize <= maxImplSize ? ctx->Point.MaxSize : maxImplSize;
value[3] = ctx->Point.Threshold;
}
return;
case STATE_LIGHT_SPOT_DIR_NORMALIZED:
{
/* here, state[1] is the light number */
/* pre-normalize spot dir */
const GLuint ln = (GLuint) state[1];
COPY_3V(value, ctx->Light.Light[ln]._NormSpotDirection);
value[3] = ctx->Light.LightSource[ln]._CosCutoff;
}
return;
case STATE_LIGHT_POSITION:
{
const GLuint ln = (GLuint) state[1];
COPY_4V(value, ctx->Light.Light[ln]._Position);
}
return;
case STATE_LIGHT_POSITION_ARRAY: {
const unsigned first = state[1];
const unsigned num_lights = state[2];
for (unsigned i = 0; i < num_lights; i++) {
COPY_4V(value, ctx->Light.Light[first + i]._Position);
value += 4;
}
return;
}
case STATE_LIGHT_POSITION_NORMALIZED:
{
const GLuint ln = (GLuint) state[1];
float p[4];
COPY_4V(p, ctx->Light.Light[ln]._Position);
NORMALIZE_3FV(p);
COPY_4V(value, p);
}
return;
case STATE_LIGHT_POSITION_NORMALIZED_ARRAY: {
const unsigned first = state[1];
const unsigned num_lights = state[2];
for (unsigned i = 0; i < num_lights; i++) {
float p[4];
COPY_4V(p, ctx->Light.Light[first + i]._Position);
NORMALIZE_3FV(p);
COPY_4V(value, p);
value += 4;
}
return;
}
case STATE_LIGHT_HALF_VECTOR:
{
const GLuint ln = (GLuint) state[1];
GLfloat p[3];
/* Compute infinite half angle vector:
* halfVector = normalize(normalize(lightPos) + (0, 0, 1))
* light.EyePosition.w should be 0 for infinite lights.
*/
COPY_3V(p, ctx->Light.Light[ln]._Position);
NORMALIZE_3FV(p);
ADD_3V(p, p, ctx->_EyeZDir);
NORMALIZE_3FV(p);
COPY_3V(value, p);
value[3] = 1.0;
}
return;
case STATE_PT_SCALE:
value[0] = ctx->Pixel.RedScale;
value[1] = ctx->Pixel.GreenScale;
value[2] = ctx->Pixel.BlueScale;
value[3] = ctx->Pixel.AlphaScale;
return;
case STATE_PT_BIAS:
value[0] = ctx->Pixel.RedBias;
value[1] = ctx->Pixel.GreenBias;
value[2] = ctx->Pixel.BlueBias;
value[3] = ctx->Pixel.AlphaBias;
return;
case STATE_FB_SIZE:
value[0] = (GLfloat) (ctx->DrawBuffer->Width - 1);
value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1);
value[2] = 0.0F;
value[3] = 0.0F;
return;
case STATE_FB_WPOS_Y_TRANSFORM:
/* A driver may negate this conditional by using ZW swizzle
* instead of XY (based on e.g. some other state). */
if (!ctx->DrawBuffer->FlipY) {
/* Identity (XY) followed by flipping Y upside down (ZW). */
value[0] = 1.0F;
value[1] = 0.0F;
value[2] = -1.0F;
value[3] = _mesa_geometric_height(ctx->DrawBuffer);
} else {
/* Flipping Y upside down (XY) followed by identity (ZW). */
value[0] = -1.0F;
value[1] = _mesa_geometric_height(ctx->DrawBuffer);
value[2] = 1.0F;
value[3] = 0.0F;
}
return;
case STATE_FB_PNTC_Y_TRANSFORM:
{
bool flip_y = (ctx->Point.SpriteOrigin == GL_UPPER_LEFT) ^
(ctx->Const.PointCoordOriginUpperLeft) ^
(ctx->DrawBuffer->FlipY);
value[0] = flip_y ? -1.0F : 1.0F;
value[1] = flip_y ? 1.0F : 0.0F;
value[2] = 0.0F;
value[3] = 0.0F;
}
return;
case STATE_TCS_PATCH_VERTICES_IN:
val[0].i = ctx->TessCtrlProgram.patch_vertices;
return;
case STATE_TES_PATCH_VERTICES_IN:
if (ctx->TessCtrlProgram._Current)
val[0].i = ctx->TessCtrlProgram._Current->info.tess.tcs_vertices_out;
else
val[0].i = ctx->TessCtrlProgram.patch_vertices;
return;
case STATE_ADVANCED_BLENDING_MODE:
val[0].i = _mesa_get_advanced_blend_sh_constant(
ctx->Color.BlendEnabled, ctx->Color._AdvancedBlendMode);
return;
case STATE_ALPHA_REF:
value[0] = ctx->Color.AlphaRefUnclamped;
return;
case STATE_CLIP_INTERNAL:
{
const GLuint plane = (GLuint) state[1];
COPY_4V(value, ctx->Transform._ClipUserPlane[plane]);
}
return;
case STATE_ATOMIC_COUNTER_OFFSET:
{
const GLuint counter = (GLuint) state[1];
val[0].i = ctx->AtomicBufferBindings[counter].Offset % ctx->Const.ShaderStorageBufferOffsetAlignment;
}
return;
}
}
unsigned
_mesa_program_state_value_size(const gl_state_index16 state[STATE_LENGTH])
{
if (state[0] == STATE_LIGHT && state[2] == STATE_SPOT_CUTOFF)
return 1;
/* Everything else is packed into vec4s */
return 4;
}
/**
* Return a bitmask of the Mesa state flags (_NEW_* values) which would
* indicate that the given context state may have changed.
* The bitmask is used during validation to determine if we need to update
* vertex/fragment program parameters (like "state.material.color") when
* some GL state has changed.
*/
GLbitfield
_mesa_program_state_flags(const gl_state_index16 state[STATE_LENGTH])
{
switch (state[0]) {
case STATE_MATERIAL:
return _NEW_MATERIAL;
case STATE_LIGHTPROD:
case STATE_LIGHTPROD_ARRAY_FRONT:
case STATE_LIGHTPROD_ARRAY_BACK:
case STATE_LIGHTPROD_ARRAY_TWOSIDE:
case STATE_LIGHTMODEL_SCENECOLOR:
return _NEW_LIGHT_CONSTANTS | _NEW_MATERIAL;
case STATE_LIGHT:
case STATE_LIGHT_ARRAY:
case STATE_LIGHT_ATTENUATION_ARRAY:
case STATE_LIGHTMODEL_AMBIENT:
case STATE_LIGHT_SPOT_DIR_NORMALIZED:
case STATE_LIGHT_POSITION:
case STATE_LIGHT_POSITION_ARRAY:
case STATE_LIGHT_POSITION_NORMALIZED:
case STATE_LIGHT_POSITION_NORMALIZED_ARRAY:
case STATE_LIGHT_HALF_VECTOR:
return _NEW_LIGHT_CONSTANTS;
case STATE_TEXGEN:
return _NEW_TEXTURE_STATE;
case STATE_TEXENV_COLOR:
return _NEW_TEXTURE_STATE | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
case STATE_FOG_COLOR:
return _NEW_FOG | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
case STATE_FOG_PARAMS:
case STATE_FOG_PARAMS_OPTIMIZED:
return _NEW_FOG;
case STATE_CLIPPLANE:
return _NEW_TRANSFORM;
case STATE_POINT_SIZE:
case STATE_POINT_ATTENUATION:
return _NEW_POINT;
case STATE_MODELVIEW_MATRIX:
case STATE_MODELVIEW_MATRIX_INVERSE:
case STATE_MODELVIEW_MATRIX_TRANSPOSE:
case STATE_MODELVIEW_MATRIX_INVTRANS:
case STATE_NORMAL_SCALE_EYESPACE:
case STATE_NORMAL_SCALE:
return _NEW_MODELVIEW;
case STATE_PROJECTION_MATRIX:
case STATE_PROJECTION_MATRIX_INVERSE:
case STATE_PROJECTION_MATRIX_TRANSPOSE:
case STATE_PROJECTION_MATRIX_INVTRANS:
return _NEW_PROJECTION;
case STATE_MVP_MATRIX:
case STATE_MVP_MATRIX_INVERSE:
case STATE_MVP_MATRIX_TRANSPOSE:
case STATE_MVP_MATRIX_INVTRANS:
return _NEW_MODELVIEW | _NEW_PROJECTION;
case STATE_TEXTURE_MATRIX:
case STATE_TEXTURE_MATRIX_INVERSE:
case STATE_TEXTURE_MATRIX_TRANSPOSE:
case STATE_TEXTURE_MATRIX_INVTRANS:
return _NEW_TEXTURE_MATRIX;
case STATE_PROGRAM_MATRIX:
case STATE_PROGRAM_MATRIX_INVERSE:
case STATE_PROGRAM_MATRIX_TRANSPOSE:
case STATE_PROGRAM_MATRIX_INVTRANS:
return _NEW_TRACK_MATRIX;
case STATE_NUM_SAMPLES:
case STATE_FB_SIZE:
case STATE_FB_WPOS_Y_TRANSFORM:
return _NEW_BUFFERS;
case STATE_FB_PNTC_Y_TRANSFORM:
return _NEW_BUFFERS | _NEW_POINT;
case STATE_DEPTH_RANGE:
return _NEW_VIEWPORT;
case STATE_FRAGMENT_PROGRAM_ENV:
case STATE_FRAGMENT_PROGRAM_ENV_ARRAY:
case STATE_FRAGMENT_PROGRAM_LOCAL:
case STATE_FRAGMENT_PROGRAM_LOCAL_ARRAY:
case STATE_VERTEX_PROGRAM_ENV:
case STATE_VERTEX_PROGRAM_ENV_ARRAY:
case STATE_VERTEX_PROGRAM_LOCAL:
case STATE_VERTEX_PROGRAM_LOCAL_ARRAY:
return _NEW_PROGRAM;
case STATE_CURRENT_ATTRIB:
return _NEW_CURRENT_ATTRIB;
case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
return _NEW_CURRENT_ATTRIB | _NEW_LIGHT_STATE | _NEW_BUFFERS;
case STATE_POINT_SIZE_CLAMPED:
return _NEW_POINT | _NEW_MULTISAMPLE;
case STATE_PT_SCALE:
case STATE_PT_BIAS:
return _NEW_PIXEL;
case STATE_ADVANCED_BLENDING_MODE:
case STATE_ALPHA_REF:
return _NEW_COLOR;
case STATE_CLIP_INTERNAL:
return _NEW_TRANSFORM | _NEW_PROJECTION;
/* Needs to return any nonzero value to trigger constant updating */
case STATE_ATOMIC_COUNTER_OFFSET:
return _NEW_PROGRAM_CONSTANTS;
case STATE_TCS_PATCH_VERTICES_IN:
case STATE_TES_PATCH_VERTICES_IN:
case STATE_INTERNAL_DRIVER:
return 0; /* internal driver state */
case STATE_NOT_STATE_VAR:
return 0;
default:
_mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
return 0;
}
}
static void
append(char *dst, const char *src)
{
while (*dst)
dst++;
while (*src)
*dst++ = *src++;
*dst = 0;
}
/**
* Convert token 'k' to a string, append it onto 'dst' string.
*/
static void
append_token(char *dst, gl_state_index k)
{
switch (k) {
case STATE_MATERIAL:
append(dst, "material");
break;
case STATE_LIGHT:
append(dst, "light");
break;
case STATE_LIGHT_ARRAY:
append(dst, "light.array");
break;
case STATE_LIGHT_ATTENUATION_ARRAY:
append(dst, "light.attenuation");
break;
case STATE_LIGHTMODEL_AMBIENT:
append(dst, "lightmodel.ambient");
break;
case STATE_LIGHTMODEL_SCENECOLOR:
break;
case STATE_LIGHTPROD:
append(dst, "lightprod");
break;
case STATE_LIGHTPROD_ARRAY_FRONT:
append(dst, "lightprod.array.front");
break;
case STATE_LIGHTPROD_ARRAY_BACK:
append(dst, "lightprod.array.back");
break;
case STATE_LIGHTPROD_ARRAY_TWOSIDE:
append(dst, "lightprod.array.twoside");
break;
case STATE_TEXGEN:
append(dst, "texgen");
break;
case STATE_FOG_COLOR:
append(dst, "fog.color");
break;
case STATE_FOG_PARAMS:
append(dst, "fog.params");
break;
case STATE_CLIPPLANE:
append(dst, "clip");
break;
case STATE_POINT_SIZE:
append(dst, "point.size");
break;
case STATE_POINT_ATTENUATION:
append(dst, "point.attenuation");
break;
case STATE_MODELVIEW_MATRIX:
append(dst, "matrix.modelview.");
break;
case STATE_MODELVIEW_MATRIX_INVERSE:
append(dst, "matrix.modelview.inverse.");
break;
case STATE_MODELVIEW_MATRIX_TRANSPOSE:
append(dst, "matrix.modelview.transpose.");
break;
case STATE_MODELVIEW_MATRIX_INVTRANS:
append(dst, "matrix.modelview.invtrans.");
break;
case STATE_PROJECTION_MATRIX:
append(dst, "matrix.projection.");
break;
case STATE_PROJECTION_MATRIX_INVERSE:
append(dst, "matrix.projection.inverse.");
break;
case STATE_PROJECTION_MATRIX_TRANSPOSE:
append(dst, "matrix.projection.transpose.");
break;
case STATE_PROJECTION_MATRIX_INVTRANS:
append(dst, "matrix.projection.invtrans.");
break;
case STATE_MVP_MATRIX:
append(dst, "matrix.mvp.");
break;
case STATE_MVP_MATRIX_INVERSE:
append(dst, "matrix.mvp.inverse.");
break;
case STATE_MVP_MATRIX_TRANSPOSE:
append(dst, "matrix.mvp.transpose.");
break;
case STATE_MVP_MATRIX_INVTRANS:
append(dst, "matrix.mvp.invtrans.");
break;
case STATE_TEXTURE_MATRIX:
append(dst, "matrix.texture");
break;
case STATE_TEXTURE_MATRIX_INVERSE:
append(dst, "matrix.texture.inverse");
break;
case STATE_TEXTURE_MATRIX_TRANSPOSE:
append(dst, "matrix.texture.transpose");
break;
case STATE_TEXTURE_MATRIX_INVTRANS:
append(dst, "matrix.texture.invtrans");
break;
case STATE_PROGRAM_MATRIX:
append(dst, "matrix.program");
break;
case STATE_PROGRAM_MATRIX_INVERSE:
append(dst, "matrix.program.inverse");
break;
case STATE_PROGRAM_MATRIX_TRANSPOSE:
append(dst, "matrix.program.transpose");
break;
case STATE_PROGRAM_MATRIX_INVTRANS:
append(dst, "matrix.program.invtrans");
break;
break;
case STATE_AMBIENT:
append(dst, "ambient");
break;
case STATE_DIFFUSE:
append(dst, "diffuse");
break;
case STATE_SPECULAR:
append(dst, "specular");
break;
case STATE_EMISSION:
append(dst, "emission");
break;
case STATE_SHININESS:
append(dst, "shininess");
break;
case STATE_HALF_VECTOR:
append(dst, "half");
break;
case STATE_POSITION:
append(dst, "position");
break;
case STATE_ATTENUATION:
append(dst, "attenuation");
break;
case STATE_SPOT_DIRECTION:
append(dst, "spot.direction");
break;
case STATE_SPOT_CUTOFF:
append(dst, "spot.cutoff");
break;
case STATE_TEXGEN_EYE_S:
append(dst, "eye.s");
break;
case STATE_TEXGEN_EYE_T:
append(dst, "eye.t");
break;
case STATE_TEXGEN_EYE_R:
append(dst, "eye.r");
break;
case STATE_TEXGEN_EYE_Q:
append(dst, "eye.q");
break;
case STATE_TEXGEN_OBJECT_S:
append(dst, "object.s");
break;
case STATE_TEXGEN_OBJECT_T:
append(dst, "object.t");
break;
case STATE_TEXGEN_OBJECT_R:
append(dst, "object.r");
break;
case STATE_TEXGEN_OBJECT_Q:
append(dst, "object.q");
break;
case STATE_TEXENV_COLOR:
append(dst, "texenv");
break;
case STATE_NUM_SAMPLES:
append(dst, "numsamples");
break;
case STATE_DEPTH_RANGE:
append(dst, "depth.range");
break;
case STATE_VERTEX_PROGRAM_ENV:
case STATE_FRAGMENT_PROGRAM_ENV:
append(dst, "env");
break;
case STATE_VERTEX_PROGRAM_ENV_ARRAY:
case STATE_FRAGMENT_PROGRAM_ENV_ARRAY:
append(dst, "env.range");
break;
case STATE_VERTEX_PROGRAM_LOCAL:
case STATE_FRAGMENT_PROGRAM_LOCAL:
append(dst, "local");
break;
case STATE_VERTEX_PROGRAM_LOCAL_ARRAY:
case STATE_FRAGMENT_PROGRAM_LOCAL_ARRAY:
append(dst, "local.range");
break;
case STATE_CURRENT_ATTRIB:
append(dst, "current");
break;
case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
append(dst, "currentAttribMaybeVPClamped");
break;
case STATE_NORMAL_SCALE_EYESPACE:
append(dst, "normalScaleEyeSpace");
break;
case STATE_NORMAL_SCALE:
append(dst, "normalScale");
break;
case STATE_FOG_PARAMS_OPTIMIZED:
append(dst, "fogParamsOptimized");
break;
case STATE_POINT_SIZE_CLAMPED:
append(dst, "pointSizeClamped");
break;
case STATE_LIGHT_SPOT_DIR_NORMALIZED:
append(dst, "lightSpotDirNormalized");
break;
case STATE_LIGHT_POSITION:
append(dst, "light.position");
break;
case STATE_LIGHT_POSITION_ARRAY:
append(dst, "light.position.array");
break;
case STATE_LIGHT_POSITION_NORMALIZED:
append(dst, "light.position.normalized");
break;
case STATE_LIGHT_POSITION_NORMALIZED_ARRAY:
append(dst, "light.position.normalized.array");
break;
case STATE_LIGHT_HALF_VECTOR:
append(dst, "lightHalfVector");
break;
case STATE_PT_SCALE:
append(dst, "PTscale");
break;
case STATE_PT_BIAS:
append(dst, "PTbias");
break;
case STATE_FB_SIZE:
append(dst, "FbSize");
break;
case STATE_FB_WPOS_Y_TRANSFORM:
append(dst, "FbWposYTransform");
break;
case STATE_FB_PNTC_Y_TRANSFORM:
append(dst, "PntcYTransform");
break;
case STATE_ADVANCED_BLENDING_MODE:
append(dst, "AdvancedBlendingMode");
break;
case STATE_ALPHA_REF:
append(dst, "alphaRef");
break;
case STATE_CLIP_INTERNAL:
append(dst, "clipInternal");
break;
case STATE_ATOMIC_COUNTER_OFFSET:
append(dst, "counterOffset");
break;
default:
/* probably STATE_INTERNAL_DRIVER+i (driver private state) */
append(dst, "driverState");
}
}
static void
append_index(char *dst, GLint index, bool structure)
{
char s[20];
sprintf(s, "[%d]%s", index, structure ? "." : "");
append(dst, s);
}
/**
* Make a string from the given state vector.
* For example, return "state.matrix.texture[2].inverse".
* Use free() to deallocate the string.
*/
char *
_mesa_program_state_string(const gl_state_index16 state[STATE_LENGTH])
{
char str[1000] = "";
char tmp[30];
append(str, "state.");
append_token(str, state[0]);
switch (state[0]) {
case STATE_LIGHT:
append_index(str, state[1], true); /* light number [i]. */
append_token(str, state[2]); /* coefficients */
break;
case STATE_LIGHTMODEL_AMBIENT:
break;
case STATE_LIGHTMODEL_SCENECOLOR:
if (state[1] == 0) {
append(str, "lightmodel.front.scenecolor");
}
else {
append(str, "lightmodel.back.scenecolor");
}
break;
case STATE_LIGHTPROD:
append_index(str, state[1], false); /* light number [i] */
append_index(str, state[2], false);
break;
case STATE_TEXGEN:
append_index(str, state[1], true); /* tex unit [i] */
append_token(str, state[2]); /* plane coef */
break;
case STATE_TEXENV_COLOR:
append_index(str, state[1], true); /* tex unit [i] */
append(str, "color");
break;
case STATE_CLIPPLANE:
append_index(str, state[1], true); /* plane [i] */
append(str, "plane");
break;
case STATE_MODELVIEW_MATRIX:
case STATE_MODELVIEW_MATRIX_INVERSE:
case STATE_MODELVIEW_MATRIX_TRANSPOSE:
case STATE_MODELVIEW_MATRIX_INVTRANS:
case STATE_PROJECTION_MATRIX:
case STATE_PROJECTION_MATRIX_INVERSE:
case STATE_PROJECTION_MATRIX_TRANSPOSE:
case STATE_PROJECTION_MATRIX_INVTRANS:
case STATE_MVP_MATRIX:
case STATE_MVP_MATRIX_INVERSE:
case STATE_MVP_MATRIX_TRANSPOSE:
case STATE_MVP_MATRIX_INVTRANS:
case STATE_TEXTURE_MATRIX:
case STATE_TEXTURE_MATRIX_INVERSE:
case STATE_TEXTURE_MATRIX_TRANSPOSE:
case STATE_TEXTURE_MATRIX_INVTRANS:
case STATE_PROGRAM_MATRIX:
case STATE_PROGRAM_MATRIX_INVERSE:
case STATE_PROGRAM_MATRIX_TRANSPOSE:
case STATE_PROGRAM_MATRIX_INVTRANS:
{
/* state[0] = modelview, projection, texture, etc. */
/* state[1] = which texture matrix or program matrix */
/* state[2] = first row to fetch */
/* state[3] = last row to fetch */
const gl_state_index mat = state[0];
const GLuint index = (GLuint) state[1];
const GLuint firstRow = (GLuint) state[2];
const GLuint lastRow = (GLuint) state[3];
if (index ||
(mat >= STATE_TEXTURE_MATRIX &&
mat <= STATE_PROGRAM_MATRIX_INVTRANS))
append_index(str, index, true);
if (firstRow == lastRow)
sprintf(tmp, "row[%d]", firstRow);
else
sprintf(tmp, "row[%d..%d]", firstRow, lastRow);
append(str, tmp);
}
break;
case STATE_LIGHT_ARRAY:
case STATE_LIGHT_ATTENUATION_ARRAY:
case STATE_FRAGMENT_PROGRAM_ENV_ARRAY:
case STATE_FRAGMENT_PROGRAM_LOCAL_ARRAY:
case STATE_VERTEX_PROGRAM_ENV_ARRAY:
case STATE_VERTEX_PROGRAM_LOCAL_ARRAY:
case STATE_LIGHTPROD_ARRAY_FRONT:
case STATE_LIGHTPROD_ARRAY_BACK:
case STATE_LIGHTPROD_ARRAY_TWOSIDE:
case STATE_LIGHT_POSITION_ARRAY:
case STATE_LIGHT_POSITION_NORMALIZED_ARRAY:
sprintf(tmp, "[%d..%d]", state[1], state[1] + state[2] - 1);
append(str, tmp);
break;
case STATE_MATERIAL:
case STATE_FRAGMENT_PROGRAM_ENV:
case STATE_FRAGMENT_PROGRAM_LOCAL:
case STATE_VERTEX_PROGRAM_ENV:
case STATE_VERTEX_PROGRAM_LOCAL:
case STATE_CURRENT_ATTRIB:
case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
case STATE_LIGHT_SPOT_DIR_NORMALIZED:
case STATE_LIGHT_POSITION:
case STATE_LIGHT_POSITION_NORMALIZED:
case STATE_LIGHT_HALF_VECTOR:
case STATE_CLIP_INTERNAL:
case STATE_ATOMIC_COUNTER_OFFSET:
append_index(str, state[1], false);
break;
case STATE_POINT_SIZE:
case STATE_POINT_ATTENUATION:
case STATE_FOG_PARAMS:
case STATE_FOG_COLOR:
case STATE_NUM_SAMPLES:
case STATE_DEPTH_RANGE:
case STATE_NORMAL_SCALE_EYESPACE:
case STATE_NORMAL_SCALE:
case STATE_FOG_PARAMS_OPTIMIZED:
case STATE_POINT_SIZE_CLAMPED:
case STATE_PT_SCALE:
case STATE_PT_BIAS:
case STATE_FB_SIZE:
case STATE_FB_WPOS_Y_TRANSFORM:
case STATE_FB_PNTC_Y_TRANSFORM:
case STATE_TCS_PATCH_VERTICES_IN:
case STATE_TES_PATCH_VERTICES_IN:
case STATE_ADVANCED_BLENDING_MODE:
case STATE_ALPHA_REF:
break;
case STATE_NOT_STATE_VAR:
append(str, "not_state");
break;
default:
_mesa_problem(NULL, "Invalid state in _mesa_program_state_string: %d", state[0]);
break;
}
return strdup(str);
}
/**
* Loop over all the parameters in a parameter list. If the parameter
* is a GL state reference, look up the current value of that state
* variable and put it into the parameter's Value[4] array.
* Other parameter types never change or are explicitly set by the user
* with glUniform() or glProgramParameter(), etc.
* This would be called at glBegin time.
*/
void
_mesa_load_state_parameters(struct gl_context *ctx,
struct gl_program_parameter_list *paramList)
{
if (!paramList)
return;
int last = paramList->LastStateVarIndex;
for (int i = paramList->FirstStateVarIndex; i <= last; i++) {
unsigned pvo = paramList->Parameters[i].ValueOffset;
fetch_state(ctx, paramList->Parameters[i].StateIndexes,
paramList->ParameterValues + pvo);
}
}
void
_mesa_upload_state_parameters(struct gl_context *ctx,
struct gl_program_parameter_list *paramList,
uint32_t *dst)
{
int last = paramList->LastStateVarIndex;
for (int i = paramList->FirstStateVarIndex; i <= last; i++) {
unsigned pvo = paramList->Parameters[i].ValueOffset;
fetch_state(ctx, paramList->Parameters[i].StateIndexes,
(gl_constant_value*)(dst + pvo));
}
}
/* Merge consecutive state vars into one for the state vars that allow
* multiple vec4s.
*
* This should be done after shader compilation, so that drivers don't
* have to deal with multi-slot state parameters in their backends.
* It's only meant to optimize _mesa_load/upload_state_parameters.
*/
void
_mesa_optimize_state_parameters(struct gl_constants *consts,
struct gl_program_parameter_list *list)
{
for (int first_param = list->FirstStateVarIndex;
first_param < (int)list->NumParameters; first_param++) {
int last_param = first_param;
int param_diff = 0;
switch (list->Parameters[first_param].StateIndexes[0]) {
case STATE_MODELVIEW_MATRIX:
case STATE_MODELVIEW_MATRIX_INVERSE:
case STATE_MODELVIEW_MATRIX_TRANSPOSE:
case STATE_MODELVIEW_MATRIX_INVTRANS:
case STATE_PROJECTION_MATRIX:
case STATE_PROJECTION_MATRIX_INVERSE:
case STATE_PROJECTION_MATRIX_TRANSPOSE:
case STATE_PROJECTION_MATRIX_INVTRANS:
case STATE_MVP_MATRIX:
case STATE_MVP_MATRIX_INVERSE:
case STATE_MVP_MATRIX_TRANSPOSE:
case STATE_MVP_MATRIX_INVTRANS:
case STATE_TEXTURE_MATRIX:
case STATE_TEXTURE_MATRIX_INVERSE:
case STATE_TEXTURE_MATRIX_TRANSPOSE:
case STATE_TEXTURE_MATRIX_INVTRANS:
case STATE_PROGRAM_MATRIX:
case STATE_PROGRAM_MATRIX_INVERSE:
case STATE_PROGRAM_MATRIX_TRANSPOSE:
case STATE_PROGRAM_MATRIX_INVTRANS:
/* Skip unaligned state vars. */
if (list->Parameters[first_param].Size % 4)
break;
/* Search for adjacent state vars that refer to adjacent rows. */
for (int i = first_param + 1; i < (int)list->NumParameters; i++) {
if (list->Parameters[i].StateIndexes[0] ==
list->Parameters[i - 1].StateIndexes[0] &&
list->Parameters[i].StateIndexes[1] ==
list->Parameters[i - 1].StateIndexes[1] &&
list->Parameters[i].StateIndexes[2] == /* FirstRow */
list->Parameters[i - 1].StateIndexes[3] + 1 && /* LastRow + 1 */
list->Parameters[i].Size == 4) {
last_param = i;
continue;
}
break; /* The adjacent state var is incompatible. */
}
if (last_param > first_param) {
int first_vec = list->Parameters[first_param].StateIndexes[2];
int last_vec = list->Parameters[last_param].StateIndexes[3];
assert(first_vec < last_vec);
assert(last_vec - first_vec == last_param - first_param);
/* Update LastRow. */
list->Parameters[first_param].StateIndexes[3] = last_vec;
list->Parameters[first_param].Size = (last_vec - first_vec + 1) * 4;
param_diff = last_param - first_param;
}
break;
case STATE_LIGHT:
/* Skip trimmed state vars. (this shouldn't occur though) */
if (list->Parameters[first_param].Size !=
_mesa_program_state_value_size(list->Parameters[first_param].StateIndexes))
break;
/* Search for light attributes that are adjacent in memory. */
for (int i = first_param + 1; i < (int)list->NumParameters; i++) {
if (list->Parameters[i].StateIndexes[0] == STATE_LIGHT &&
/* Consecutive attributes of the same light: */
((list->Parameters[i].StateIndexes[1] ==
list->Parameters[i - 1].StateIndexes[1] &&
list->Parameters[i].StateIndexes[2] ==
list->Parameters[i - 1].StateIndexes[2] + 1) ||
/* Consecutive attributes between 2 lights: */
/* SPOT_CUTOFF should have only 1 component, which isn't true
* with unpacked uniform storage. */
(consts->PackedDriverUniformStorage &&
list->Parameters[i].StateIndexes[1] ==
list->Parameters[i - 1].StateIndexes[1] + 1 &&
list->Parameters[i].StateIndexes[2] == STATE_AMBIENT &&
list->Parameters[i - 1].StateIndexes[2] == STATE_SPOT_CUTOFF))) {
last_param = i;
continue;
}
break; /* The adjacent state var is incompatible. */
}
if (last_param > first_param) {
/* Convert the state var to STATE_LIGHT_ARRAY. */
list->Parameters[first_param].StateIndexes[0] = STATE_LIGHT_ARRAY;
/* Set the offset in floats. */
list->Parameters[first_param].StateIndexes[1] =
list->Parameters[first_param].StateIndexes[1] * /* light index */
sizeof(struct gl_light_uniforms) / 4 +
(list->Parameters[first_param].StateIndexes[2] - STATE_AMBIENT) * 4;
/* Set the real size in floats that we will upload (memcpy). */
list->Parameters[first_param].StateIndexes[2] =
_mesa_program_state_value_size(list->Parameters[last_param].StateIndexes) +
list->Parameters[last_param].ValueOffset -
list->Parameters[first_param].ValueOffset;
/* Set the allocated size, which can be aligned to 4 components. */
list->Parameters[first_param].Size =
list->Parameters[last_param].Size +
list->Parameters[last_param].ValueOffset -
list->Parameters[first_param].ValueOffset;
param_diff = last_param - first_param;
break; /* all done */
}
/* We were not able to convert light attributes to STATE_LIGHT_ARRAY.
* Another occuring pattern is light attentuation vectors placed back
* to back. Find them.
*/
if (list->Parameters[first_param].StateIndexes[2] == STATE_ATTENUATION) {
for (int i = first_param + 1; i < (int)list->NumParameters; i++) {
if (list->Parameters[i].StateIndexes[0] == STATE_LIGHT &&
/* Consecutive light: */
list->Parameters[i].StateIndexes[1] ==
list->Parameters[i - 1].StateIndexes[1] + 1 &&
/* Same attribute: */
list->Parameters[i].StateIndexes[2] ==
list->Parameters[i - 1].StateIndexes[2]) {
last_param = i;
continue;
}
break; /* The adjacent state var is incompatible. */
}
if (last_param > first_param) {
param_diff = last_param - first_param;
/* Convert the state var to STATE_LIGHT_ATTENUATION_ARRAY. */
list->Parameters[first_param].StateIndexes[0] =
STATE_LIGHT_ATTENUATION_ARRAY;
/* Keep the light index the same. */
/* Set the number of lights. */
unsigned size = param_diff + 1;
list->Parameters[first_param].StateIndexes[2] = size;
list->Parameters[first_param].Size = size * 4;
break; /* all done */
}
}
break;
case STATE_VERTEX_PROGRAM_ENV:
case STATE_VERTEX_PROGRAM_LOCAL:
case STATE_FRAGMENT_PROGRAM_ENV:
case STATE_FRAGMENT_PROGRAM_LOCAL:
if (list->Parameters[first_param].Size != 4)
break;
/* Search for adjacent mergeable state vars. */
for (int i = first_param + 1; i < (int)list->NumParameters; i++) {
if (list->Parameters[i].StateIndexes[0] ==
list->Parameters[i - 1].StateIndexes[0] &&
list->Parameters[i].StateIndexes[1] ==
list->Parameters[i - 1].StateIndexes[1] + 1 &&
list->Parameters[i].Size == 4) {
last_param = i;
continue;
}
break; /* The adjacent state var is incompatible. */
}
if (last_param > first_param) {
/* Set STATE_xxx_RANGE. */
STATIC_ASSERT(STATE_VERTEX_PROGRAM_ENV + 1 ==
STATE_VERTEX_PROGRAM_ENV_ARRAY);
STATIC_ASSERT(STATE_VERTEX_PROGRAM_LOCAL + 1 ==
STATE_VERTEX_PROGRAM_LOCAL_ARRAY);
STATIC_ASSERT(STATE_FRAGMENT_PROGRAM_ENV + 1 ==
STATE_FRAGMENT_PROGRAM_ENV_ARRAY);
STATIC_ASSERT(STATE_FRAGMENT_PROGRAM_LOCAL + 1 ==
STATE_FRAGMENT_PROGRAM_LOCAL_ARRAY);
list->Parameters[first_param].StateIndexes[0]++;
param_diff = last_param - first_param;
/* Set the size. */
unsigned size = param_diff + 1;
list->Parameters[first_param].StateIndexes[2] = size;
list->Parameters[first_param].Size = size * 4;
}
break;
case STATE_LIGHTPROD: {
if (list->Parameters[first_param].Size != 4)
break;
gl_state_index16 state = STATE_NOT_STATE_VAR;
unsigned num_lights = 0;
for (unsigned state_iter = STATE_LIGHTPROD_ARRAY_FRONT;
state_iter <= STATE_LIGHTPROD_ARRAY_TWOSIDE; state_iter++) {
unsigned num_attribs, base_attrib, attrib_incr;
if (state_iter == STATE_LIGHTPROD_ARRAY_FRONT) {
num_attribs = 3;
base_attrib = MAT_ATTRIB_FRONT_AMBIENT;
attrib_incr = 2;
} else if (state_iter == STATE_LIGHTPROD_ARRAY_BACK) {
num_attribs = 3;
base_attrib = MAT_ATTRIB_BACK_AMBIENT;
attrib_incr = 2;
} else if (state_iter == STATE_LIGHTPROD_ARRAY_TWOSIDE) {
num_attribs = 6;
base_attrib = MAT_ATTRIB_FRONT_AMBIENT;
attrib_incr = 1;
}
/* Find all attributes for one light. */
while (first_param + (num_lights + 1) * num_attribs <=
list->NumParameters &&
(state == STATE_NOT_STATE_VAR || state == state_iter)) {
unsigned i = 0, base = first_param + num_lights * num_attribs;
/* Consecutive light indices: */
if (list->Parameters[first_param].StateIndexes[1] + num_lights ==
list->Parameters[base].StateIndexes[1]) {
for (i = 0; i < num_attribs; i++) {
if (list->Parameters[base + i].StateIndexes[0] ==
STATE_LIGHTPROD &&
list->Parameters[base + i].Size == 4 &&
/* Equal light indices: */
list->Parameters[base + i].StateIndexes[1] ==
list->Parameters[base + 0].StateIndexes[1] &&
/* Consecutive attributes: */
list->Parameters[base + i].StateIndexes[2] ==
base_attrib + i * attrib_incr)
continue;
break;
}
}
if (i == num_attribs) {
/* Accept all parameters for merging. */
state = state_iter;
last_param = base + num_attribs - 1;
num_lights++;
} else {
break;
}
}
}
if (last_param > first_param) {
param_diff = last_param - first_param;
list->Parameters[first_param].StateIndexes[0] = state;
list->Parameters[first_param].StateIndexes[2] = num_lights;
list->Parameters[first_param].Size = (param_diff + 1) * 4;
}
break;
}
case STATE_LIGHT_POSITION:
case STATE_LIGHT_POSITION_NORMALIZED:
if (list->Parameters[first_param].Size != 4)
break;
for (int i = first_param + 1; i < (int)list->NumParameters; i++) {
if (list->Parameters[i].StateIndexes[0] ==
list->Parameters[i - 1].StateIndexes[0] &&
/* Consecutive light: */
list->Parameters[i].StateIndexes[1] ==
list->Parameters[i - 1].StateIndexes[1] + 1) {
last_param = i;
continue;
}
break; /* The adjacent state var is incompatible. */
}
if (last_param > first_param) {
param_diff = last_param - first_param;
/* Convert the state var to STATE_LIGHT_POSITION_*ARRAY. */
STATIC_ASSERT(STATE_LIGHT_POSITION + 1 ==
STATE_LIGHT_POSITION_ARRAY);
STATIC_ASSERT(STATE_LIGHT_POSITION_NORMALIZED + 1 ==
STATE_LIGHT_POSITION_NORMALIZED_ARRAY);
list->Parameters[first_param].StateIndexes[0]++;
/* Keep the light index the same. */
unsigned size = param_diff + 1;
/* Set the number of lights. */
list->Parameters[first_param].StateIndexes[2] = size;
list->Parameters[first_param].Size = size * 4;
}
}
if (param_diff) {
/* Update the name. */
free((void*)list->Parameters[first_param].Name);
list->Parameters[first_param].Name =
_mesa_program_state_string(list->Parameters[first_param].StateIndexes);
/* Free names that we are going to overwrite. */
for (int i = first_param + 1; i <= last_param; i++)
free((char*)list->Parameters[i].Name);
/* Remove the merged state vars. */
if (last_param + 1 < list->NumParameters) {
memmove(&list->Parameters[first_param + 1],
&list->Parameters[last_param + 1],
sizeof(list->Parameters[0]) *
(list->NumParameters - last_param - 1));
}
list->NumParameters -= param_diff;
}
}
_mesa_recompute_parameter_bounds(list);
}