mesa/src/intel/perf/intel_perf_query.c

1647 lines
54 KiB
C

/*
* Copyright © 2019 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <unistd.h>
#include <poll.h>
#include "common/intel_gem.h"
#include "dev/intel_debug.h"
#include "dev/intel_device_info.h"
#include "perf/intel_perf.h"
#include "perf/intel_perf_mdapi.h"
#include "perf/intel_perf_private.h"
#include "perf/intel_perf_query.h"
#include "perf/intel_perf_regs.h"
#include "drm-uapi/i915_drm.h"
#include "util/compiler.h"
#include "util/u_math.h"
#define FILE_DEBUG_FLAG DEBUG_PERFMON
#define MI_RPC_BO_SIZE (4096)
#define MI_FREQ_OFFSET_BYTES (256)
#define MI_PERF_COUNTERS_OFFSET_BYTES (260)
#define ALIGN(x, y) (((x) + (y)-1) & ~((y)-1))
#define MAP_READ (1 << 0)
#define MAP_WRITE (1 << 1)
/**
* Periodic OA samples are read() into these buffer structures via the
* i915 perf kernel interface and appended to the
* perf_ctx->sample_buffers linked list. When we process the
* results of an OA metrics query we need to consider all the periodic
* samples between the Begin and End MI_REPORT_PERF_COUNT command
* markers.
*
* 'Periodic' is a simplification as there are other automatic reports
* written by the hardware also buffered here.
*
* Considering three queries, A, B and C:
*
* Time ---->
* ________________A_________________
* | |
* | ________B_________ _____C___________
* | | | | | |
*
* And an illustration of sample buffers read over this time frame:
* [HEAD ][ ][ ][ ][ ][ ][ ][ ][TAIL ]
*
* These nodes may hold samples for query A:
* [ ][ ][ A ][ A ][ A ][ A ][ A ][ ][ ]
*
* These nodes may hold samples for query B:
* [ ][ ][ B ][ B ][ B ][ ][ ][ ][ ]
*
* These nodes may hold samples for query C:
* [ ][ ][ ][ ][ ][ C ][ C ][ C ][ ]
*
* The illustration assumes we have an even distribution of periodic
* samples so all nodes have the same size plotted against time:
*
* Note, to simplify code, the list is never empty.
*
* With overlapping queries we can see that periodic OA reports may
* relate to multiple queries and care needs to be take to keep
* track of sample buffers until there are no queries that might
* depend on their contents.
*
* We use a node ref counting system where a reference ensures that a
* node and all following nodes can't be freed/recycled until the
* reference drops to zero.
*
* E.g. with a ref of one here:
* [ 0 ][ 0 ][ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ]
*
* These nodes could be freed or recycled ("reaped"):
* [ 0 ][ 0 ]
*
* These must be preserved until the leading ref drops to zero:
* [ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ]
*
* When a query starts we take a reference on the current tail of
* the list, knowing that no already-buffered samples can possibly
* relate to the newly-started query. A pointer to this node is
* also saved in the query object's ->oa.samples_head.
*
* E.g. starting query A while there are two nodes in .sample_buffers:
* ________________A________
* |
*
* [ 0 ][ 1 ]
* ^_______ Add a reference and store pointer to node in
* A->oa.samples_head
*
* Moving forward to when the B query starts with no new buffer nodes:
* (for reference, i915 perf reads() are only done when queries finish)
* ________________A_______
* | ________B___
* | |
*
* [ 0 ][ 2 ]
* ^_______ Add a reference and store pointer to
* node in B->oa.samples_head
*
* Once a query is finished, after an OA query has become 'Ready',
* once the End OA report has landed and after we we have processed
* all the intermediate periodic samples then we drop the
* ->oa.samples_head reference we took at the start.
*
* So when the B query has finished we have:
* ________________A________
* | ______B___________
* | | |
* [ 0 ][ 1 ][ 0 ][ 0 ][ 0 ]
* ^_______ Drop B->oa.samples_head reference
*
* We still can't free these due to the A->oa.samples_head ref:
* [ 1 ][ 0 ][ 0 ][ 0 ]
*
* When the A query finishes: (note there's a new ref for C's samples_head)
* ________________A_________________
* | |
* | _____C_________
* | | |
* [ 0 ][ 0 ][ 0 ][ 0 ][ 1 ][ 0 ][ 0 ]
* ^_______ Drop A->oa.samples_head reference
*
* And we can now reap these nodes up to the C->oa.samples_head:
* [ X ][ X ][ X ][ X ]
* keeping -> [ 1 ][ 0 ][ 0 ]
*
* We reap old sample buffers each time we finish processing an OA
* query by iterating the sample_buffers list from the head until we
* find a referenced node and stop.
*
* Reaped buffers move to a perfquery.free_sample_buffers list and
* when we come to read() we first look to recycle a buffer from the
* free_sample_buffers list before allocating a new buffer.
*/
struct oa_sample_buf {
struct exec_node link;
int refcount;
int len;
uint8_t buf[I915_PERF_OA_SAMPLE_SIZE * 10];
uint32_t last_timestamp;
};
/**
* gen representation of a performance query object.
*
* NB: We want to keep this structure relatively lean considering that
* applications may expect to allocate enough objects to be able to
* query around all draw calls in a frame.
*/
struct intel_perf_query_object
{
const struct intel_perf_query_info *queryinfo;
/* See query->kind to know which state below is in use... */
union {
struct {
/**
* BO containing OA counter snapshots at query Begin/End time.
*/
void *bo;
/**
* Address of mapped of @bo
*/
void *map;
/**
* The MI_REPORT_PERF_COUNT command lets us specify a unique
* ID that will be reflected in the resulting OA report
* that's written by the GPU. This is the ID we're expecting
* in the begin report and the the end report should be
* @begin_report_id + 1.
*/
int begin_report_id;
/**
* Reference the head of the brw->perfquery.sample_buffers
* list at the time that the query started (so we only need
* to look at nodes after this point when looking for samples
* related to this query)
*
* (See struct brw_oa_sample_buf description for more details)
*/
struct exec_node *samples_head;
/**
* false while in the unaccumulated_elements list, and set to
* true when the final, end MI_RPC snapshot has been
* accumulated.
*/
bool results_accumulated;
/**
* Accumulated OA results between begin and end of the query.
*/
struct intel_perf_query_result result;
} oa;
struct {
/**
* BO containing starting and ending snapshots for the
* statistics counters.
*/
void *bo;
} pipeline_stats;
};
};
struct intel_perf_context {
struct intel_perf_config *perf;
void * mem_ctx; /* ralloc context */
void * ctx; /* driver context (eg, brw_context) */
void * bufmgr;
const struct intel_device_info *devinfo;
uint32_t hw_ctx;
int drm_fd;
/* The i915 perf stream we open to setup + enable the OA counters */
int oa_stream_fd;
/* An i915 perf stream fd gives exclusive access to the OA unit that will
* report counter snapshots for a specific counter set/profile in a
* specific layout/format so we can only start OA queries that are
* compatible with the currently open fd...
*/
int current_oa_metrics_set_id;
int current_oa_format;
/* List of buffers containing OA reports */
struct exec_list sample_buffers;
/* Cached list of empty sample buffers */
struct exec_list free_sample_buffers;
int n_active_oa_queries;
int n_active_pipeline_stats_queries;
/* The number of queries depending on running OA counters which
* extends beyond brw_end_perf_query() since we need to wait until
* the last MI_RPC command has parsed by the GPU.
*
* Accurate accounting is important here as emitting an
* MI_REPORT_PERF_COUNT command while the OA unit is disabled will
* effectively hang the gpu.
*/
int n_oa_users;
/* To help catch an spurious problem with the hardware or perf
* forwarding samples, we emit each MI_REPORT_PERF_COUNT command
* with a unique ID that we can explicitly check for...
*/
int next_query_start_report_id;
/**
* An array of queries whose results haven't yet been assembled
* based on the data in buffer objects.
*
* These may be active, or have already ended. However, the
* results have not been requested.
*/
struct intel_perf_query_object **unaccumulated;
int unaccumulated_elements;
int unaccumulated_array_size;
/* The total number of query objects so we can relinquish
* our exclusive access to perf if the application deletes
* all of its objects. (NB: We only disable perf while
* there are no active queries)
*/
int n_query_instances;
int period_exponent;
};
static bool
inc_n_users(struct intel_perf_context *perf_ctx)
{
if (perf_ctx->n_oa_users == 0 &&
intel_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_ENABLE, 0) < 0)
{
return false;
}
++perf_ctx->n_oa_users;
return true;
}
static void
dec_n_users(struct intel_perf_context *perf_ctx)
{
/* Disabling the i915 perf stream will effectively disable the OA
* counters. Note it's important to be sure there are no outstanding
* MI_RPC commands at this point since they could stall the CS
* indefinitely once OACONTROL is disabled.
*/
--perf_ctx->n_oa_users;
if (perf_ctx->n_oa_users == 0 &&
intel_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_DISABLE, 0) < 0)
{
DBG("WARNING: Error disabling gen perf stream: %m\n");
}
}
void
intel_perf_close(struct intel_perf_context *perfquery,
const struct intel_perf_query_info *query)
{
if (perfquery->oa_stream_fd != -1) {
close(perfquery->oa_stream_fd);
perfquery->oa_stream_fd = -1;
}
if (query && query->kind == INTEL_PERF_QUERY_TYPE_RAW) {
struct intel_perf_query_info *raw_query =
(struct intel_perf_query_info *) query;
raw_query->oa_metrics_set_id = 0;
}
}
bool
intel_perf_open(struct intel_perf_context *perf_ctx,
int metrics_set_id,
int report_format,
int period_exponent,
int drm_fd,
uint32_t ctx_id,
bool enable)
{
uint64_t properties[DRM_I915_PERF_PROP_MAX * 2];
uint32_t p = 0;
/* Single context sampling if valid context id. */
if (ctx_id != INTEL_PERF_INVALID_CTX_ID) {
properties[p++] = DRM_I915_PERF_PROP_CTX_HANDLE;
properties[p++] = ctx_id;
}
/* Include OA reports in samples */
properties[p++] = DRM_I915_PERF_PROP_SAMPLE_OA;
properties[p++] = true;
/* OA unit configuration */
properties[p++] = DRM_I915_PERF_PROP_OA_METRICS_SET;
properties[p++] = metrics_set_id;
properties[p++] = DRM_I915_PERF_PROP_OA_FORMAT;
properties[p++] = report_format;
properties[p++] = DRM_I915_PERF_PROP_OA_EXPONENT;
properties[p++] = period_exponent;
/* If global SSEU is available, pin it to the default. This will ensure on
* Gfx11 for instance we use the full EU array. Initially when perf was
* enabled we would use only half on Gfx11 because of functional
* requirements.
*
* Temporary disable this option on Gfx12.5+, kernel doesn't appear to
* support it.
*/
if (intel_perf_has_global_sseu(perf_ctx->perf) &&
perf_ctx->devinfo->verx10 < 125) {
properties[p++] = DRM_I915_PERF_PROP_GLOBAL_SSEU;
properties[p++] = to_user_pointer(&perf_ctx->perf->sseu);
}
assert(p <= ARRAY_SIZE(properties));
struct drm_i915_perf_open_param param = {
.flags = I915_PERF_FLAG_FD_CLOEXEC |
I915_PERF_FLAG_FD_NONBLOCK |
(enable ? 0 : I915_PERF_FLAG_DISABLED),
.num_properties = p / 2,
.properties_ptr = (uintptr_t) properties,
};
int fd = intel_ioctl(drm_fd, DRM_IOCTL_I915_PERF_OPEN, &param);
if (fd == -1) {
DBG("Error opening gen perf OA stream: %m\n");
return false;
}
perf_ctx->oa_stream_fd = fd;
perf_ctx->current_oa_metrics_set_id = metrics_set_id;
perf_ctx->current_oa_format = report_format;
if (enable)
++perf_ctx->n_oa_users;
return true;
}
static uint64_t
get_metric_id(struct intel_perf_config *perf,
const struct intel_perf_query_info *query)
{
/* These queries are know not to ever change, their config ID has been
* loaded upon the first query creation. No need to look them up again.
*/
if (query->kind == INTEL_PERF_QUERY_TYPE_OA)
return query->oa_metrics_set_id;
assert(query->kind == INTEL_PERF_QUERY_TYPE_RAW);
/* Raw queries can be reprogrammed up by an external application/library.
* When a raw query is used for the first time it's id is set to a value !=
* 0. When it stops being used the id returns to 0. No need to reload the
* ID when it's already loaded.
*/
if (query->oa_metrics_set_id != 0) {
DBG("Raw query '%s' guid=%s using cached ID: %"PRIu64"\n",
query->name, query->guid, query->oa_metrics_set_id);
return query->oa_metrics_set_id;
}
struct intel_perf_query_info *raw_query = (struct intel_perf_query_info *)query;
if (!intel_perf_load_metric_id(perf, query->guid,
&raw_query->oa_metrics_set_id)) {
DBG("Unable to read query guid=%s ID, falling back to test config\n", query->guid);
raw_query->oa_metrics_set_id = perf->fallback_raw_oa_metric;
} else {
DBG("Raw query '%s'guid=%s loaded ID: %"PRIu64"\n",
query->name, query->guid, query->oa_metrics_set_id);
}
return query->oa_metrics_set_id;
}
static struct oa_sample_buf *
get_free_sample_buf(struct intel_perf_context *perf_ctx)
{
struct exec_node *node = exec_list_pop_head(&perf_ctx->free_sample_buffers);
struct oa_sample_buf *buf;
if (node)
buf = exec_node_data(struct oa_sample_buf, node, link);
else {
buf = ralloc_size(perf_ctx->perf, sizeof(*buf));
exec_node_init(&buf->link);
buf->refcount = 0;
}
buf->len = 0;
return buf;
}
static void
reap_old_sample_buffers(struct intel_perf_context *perf_ctx)
{
struct exec_node *tail_node =
exec_list_get_tail(&perf_ctx->sample_buffers);
struct oa_sample_buf *tail_buf =
exec_node_data(struct oa_sample_buf, tail_node, link);
/* Remove all old, unreferenced sample buffers walking forward from
* the head of the list, except always leave at least one node in
* the list so we always have a node to reference when we Begin
* a new query.
*/
foreach_list_typed_safe(struct oa_sample_buf, buf, link,
&perf_ctx->sample_buffers)
{
if (buf->refcount == 0 && buf != tail_buf) {
exec_node_remove(&buf->link);
exec_list_push_head(&perf_ctx->free_sample_buffers, &buf->link);
} else
return;
}
}
static void
free_sample_bufs(struct intel_perf_context *perf_ctx)
{
foreach_list_typed_safe(struct oa_sample_buf, buf, link,
&perf_ctx->free_sample_buffers)
ralloc_free(buf);
exec_list_make_empty(&perf_ctx->free_sample_buffers);
}
struct intel_perf_query_object *
intel_perf_new_query(struct intel_perf_context *perf_ctx, unsigned query_index)
{
const struct intel_perf_query_info *query =
&perf_ctx->perf->queries[query_index];
switch (query->kind) {
case INTEL_PERF_QUERY_TYPE_OA:
case INTEL_PERF_QUERY_TYPE_RAW:
if (perf_ctx->period_exponent == 0)
return NULL;
break;
case INTEL_PERF_QUERY_TYPE_PIPELINE:
break;
}
struct intel_perf_query_object *obj =
calloc(1, sizeof(struct intel_perf_query_object));
if (!obj)
return NULL;
obj->queryinfo = query;
perf_ctx->n_query_instances++;
return obj;
}
int
intel_perf_active_queries(struct intel_perf_context *perf_ctx,
const struct intel_perf_query_info *query)
{
assert(perf_ctx->n_active_oa_queries == 0 || perf_ctx->n_active_pipeline_stats_queries == 0);
switch (query->kind) {
case INTEL_PERF_QUERY_TYPE_OA:
case INTEL_PERF_QUERY_TYPE_RAW:
return perf_ctx->n_active_oa_queries;
break;
case INTEL_PERF_QUERY_TYPE_PIPELINE:
return perf_ctx->n_active_pipeline_stats_queries;
break;
default:
unreachable("Unknown query type");
break;
}
}
const struct intel_perf_query_info*
intel_perf_query_info(const struct intel_perf_query_object *query)
{
return query->queryinfo;
}
struct intel_perf_context *
intel_perf_new_context(void *parent)
{
struct intel_perf_context *ctx = rzalloc(parent, struct intel_perf_context);
if (! ctx)
fprintf(stderr, "%s: failed to alloc context\n", __func__);
return ctx;
}
struct intel_perf_config *
intel_perf_config(struct intel_perf_context *ctx)
{
return ctx->perf;
}
void
intel_perf_init_context(struct intel_perf_context *perf_ctx,
struct intel_perf_config *perf_cfg,
void * mem_ctx, /* ralloc context */
void * ctx, /* driver context (eg, brw_context) */
void * bufmgr, /* eg brw_bufmgr */
const struct intel_device_info *devinfo,
uint32_t hw_ctx,
int drm_fd)
{
perf_ctx->perf = perf_cfg;
perf_ctx->mem_ctx = mem_ctx;
perf_ctx->ctx = ctx;
perf_ctx->bufmgr = bufmgr;
perf_ctx->drm_fd = drm_fd;
perf_ctx->hw_ctx = hw_ctx;
perf_ctx->devinfo = devinfo;
perf_ctx->unaccumulated =
ralloc_array(mem_ctx, struct intel_perf_query_object *, 2);
perf_ctx->unaccumulated_elements = 0;
perf_ctx->unaccumulated_array_size = 2;
exec_list_make_empty(&perf_ctx->sample_buffers);
exec_list_make_empty(&perf_ctx->free_sample_buffers);
/* It's convenient to guarantee that this linked list of sample
* buffers is never empty so we add an empty head so when we
* Begin an OA query we can always take a reference on a buffer
* in this list.
*/
struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx);
exec_list_push_head(&perf_ctx->sample_buffers, &buf->link);
perf_ctx->oa_stream_fd = -1;
perf_ctx->next_query_start_report_id = 1000;
/* The period_exponent gives a sampling period as follows:
* sample_period = timestamp_period * 2^(period_exponent + 1)
*
* The timestamps increments every 80ns (HSW), ~52ns (GFX9LP) or
* ~83ns (GFX8/9).
*
* The counter overflow period is derived from the EuActive counter
* which reads a counter that increments by the number of clock
* cycles multiplied by the number of EUs. It can be calculated as:
*
* 2^(number of bits in A counter) / (n_eus * max_intel_freq * 2)
*
* (E.g. 40 EUs @ 1GHz = ~53ms)
*
* We select a sampling period inferior to that overflow period to
* ensure we cannot see more than 1 counter overflow, otherwise we
* could loose information.
*/
int a_counter_in_bits = 32;
if (devinfo->ver >= 8)
a_counter_in_bits = 40;
uint64_t overflow_period = pow(2, a_counter_in_bits) / (perf_cfg->sys_vars.n_eus *
/* drop 1GHz freq to have units in nanoseconds */
2);
DBG("A counter overflow period: %"PRIu64"ns, %"PRIu64"ms (n_eus=%"PRIu64")\n",
overflow_period, overflow_period / 1000000ul, perf_cfg->sys_vars.n_eus);
int period_exponent = 0;
uint64_t prev_sample_period, next_sample_period;
for (int e = 0; e < 30; e++) {
prev_sample_period = 1000000000ull * pow(2, e + 1) / devinfo->timestamp_frequency;
next_sample_period = 1000000000ull * pow(2, e + 2) / devinfo->timestamp_frequency;
/* Take the previous sampling period, lower than the overflow
* period.
*/
if (prev_sample_period < overflow_period &&
next_sample_period > overflow_period)
period_exponent = e + 1;
}
perf_ctx->period_exponent = period_exponent;
if (period_exponent == 0) {
DBG("WARNING: enable to find a sampling exponent\n");
} else {
DBG("OA sampling exponent: %i ~= %"PRIu64"ms\n", period_exponent,
prev_sample_period / 1000000ul);
}
}
/**
* Add a query to the global list of "unaccumulated queries."
*
* Queries are tracked here until all the associated OA reports have
* been accumulated via accumulate_oa_reports() after the end
* MI_REPORT_PERF_COUNT has landed in query->oa.bo.
*/
static void
add_to_unaccumulated_query_list(struct intel_perf_context *perf_ctx,
struct intel_perf_query_object *obj)
{
if (perf_ctx->unaccumulated_elements >=
perf_ctx->unaccumulated_array_size)
{
perf_ctx->unaccumulated_array_size *= 1.5;
perf_ctx->unaccumulated =
reralloc(perf_ctx->mem_ctx, perf_ctx->unaccumulated,
struct intel_perf_query_object *,
perf_ctx->unaccumulated_array_size);
}
perf_ctx->unaccumulated[perf_ctx->unaccumulated_elements++] = obj;
}
/**
* Emit MI_STORE_REGISTER_MEM commands to capture all of the
* pipeline statistics for the performance query object.
*/
static void
snapshot_statistics_registers(struct intel_perf_context *ctx,
struct intel_perf_query_object *obj,
uint32_t offset_in_bytes)
{
struct intel_perf_config *perf = ctx->perf;
const struct intel_perf_query_info *query = obj->queryinfo;
const int n_counters = query->n_counters;
for (int i = 0; i < n_counters; i++) {
const struct intel_perf_query_counter *counter = &query->counters[i];
assert(counter->data_type == INTEL_PERF_COUNTER_DATA_TYPE_UINT64);
perf->vtbl.store_register_mem(ctx->ctx, obj->pipeline_stats.bo,
counter->pipeline_stat.reg, 8,
offset_in_bytes + counter->offset);
}
}
static void
snapshot_query_layout(struct intel_perf_context *perf_ctx,
struct intel_perf_query_object *query,
bool end_snapshot)
{
struct intel_perf_config *perf_cfg = perf_ctx->perf;
const struct intel_perf_query_field_layout *layout = &perf_cfg->query_layout;
uint32_t offset = end_snapshot ? align(layout->size, layout->alignment) : 0;
for (uint32_t f = 0; f < layout->n_fields; f++) {
const struct intel_perf_query_field *field =
&layout->fields[end_snapshot ? f : (layout->n_fields - 1 - f)];
switch (field->type) {
case INTEL_PERF_QUERY_FIELD_TYPE_MI_RPC:
perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo,
offset + field->location,
query->oa.begin_report_id +
(end_snapshot ? 1 : 0));
break;
case INTEL_PERF_QUERY_FIELD_TYPE_SRM_PERFCNT:
case INTEL_PERF_QUERY_FIELD_TYPE_SRM_RPSTAT:
case INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_A:
case INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_B:
case INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_C:
perf_cfg->vtbl.store_register_mem(perf_ctx->ctx, query->oa.bo,
field->mmio_offset, field->size,
offset + field->location);
break;
default:
unreachable("Invalid field type");
}
}
}
bool
intel_perf_begin_query(struct intel_perf_context *perf_ctx,
struct intel_perf_query_object *query)
{
struct intel_perf_config *perf_cfg = perf_ctx->perf;
const struct intel_perf_query_info *queryinfo = query->queryinfo;
/* XXX: We have to consider that the command parser unit that parses batch
* buffer commands and is used to capture begin/end counter snapshots isn't
* implicitly synchronized with what's currently running across other GPU
* units (such as the EUs running shaders) that the performance counters are
* associated with.
*
* The intention of performance queries is to measure the work associated
* with commands between the begin/end delimiters and so for that to be the
* case we need to explicitly synchronize the parsing of commands to capture
* Begin/End counter snapshots with what's running across other parts of the
* GPU.
*
* When the command parser reaches a Begin marker it effectively needs to
* drain everything currently running on the GPU until the hardware is idle
* before capturing the first snapshot of counters - otherwise the results
* would also be measuring the effects of earlier commands.
*
* When the command parser reaches an End marker it needs to stall until
* everything currently running on the GPU has finished before capturing the
* end snapshot - otherwise the results won't be a complete representation
* of the work.
*
* To achieve this, we stall the pipeline at pixel scoreboard (prevent any
* additional work to be processed by the pipeline until all pixels of the
* previous draw has be completed).
*
* N.B. The final results are based on deltas of counters between (inside)
* Begin/End markers so even though the total wall clock time of the
* workload is stretched by larger pipeline bubbles the bubbles themselves
* are generally invisible to the query results. Whether that's a good or a
* bad thing depends on the use case. For a lower real-time impact while
* capturing metrics then periodic sampling may be a better choice than
* INTEL_performance_query.
*
*
* This is our Begin synchronization point to drain current work on the
* GPU before we capture our first counter snapshot...
*/
perf_cfg->vtbl.emit_stall_at_pixel_scoreboard(perf_ctx->ctx);
switch (queryinfo->kind) {
case INTEL_PERF_QUERY_TYPE_OA:
case INTEL_PERF_QUERY_TYPE_RAW: {
/* Opening an i915 perf stream implies exclusive access to the OA unit
* which will generate counter reports for a specific counter set with a
* specific layout/format so we can't begin any OA based queries that
* require a different counter set or format unless we get an opportunity
* to close the stream and open a new one...
*/
uint64_t metric_id = get_metric_id(perf_ctx->perf, queryinfo);
if (perf_ctx->oa_stream_fd != -1 &&
perf_ctx->current_oa_metrics_set_id != metric_id) {
if (perf_ctx->n_oa_users != 0) {
DBG("WARNING: Begin failed already using perf config=%i/%"PRIu64"\n",
perf_ctx->current_oa_metrics_set_id, metric_id);
return false;
} else
intel_perf_close(perf_ctx, queryinfo);
}
/* If the OA counters aren't already on, enable them. */
if (perf_ctx->oa_stream_fd == -1) {
assert(perf_ctx->period_exponent != 0);
if (!intel_perf_open(perf_ctx, metric_id, queryinfo->oa_format,
perf_ctx->period_exponent, perf_ctx->drm_fd,
perf_ctx->hw_ctx, false))
return false;
} else {
assert(perf_ctx->current_oa_metrics_set_id == metric_id &&
perf_ctx->current_oa_format == queryinfo->oa_format);
}
if (!inc_n_users(perf_ctx)) {
DBG("WARNING: Error enabling i915 perf stream: %m\n");
return false;
}
if (query->oa.bo) {
perf_cfg->vtbl.bo_unreference(query->oa.bo);
query->oa.bo = NULL;
}
query->oa.bo = perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr,
"perf. query OA MI_RPC bo",
MI_RPC_BO_SIZE);
#ifdef DEBUG
/* Pre-filling the BO helps debug whether writes landed. */
void *map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_WRITE);
memset(map, 0x80, MI_RPC_BO_SIZE);
perf_cfg->vtbl.bo_unmap(query->oa.bo);
#endif
query->oa.begin_report_id = perf_ctx->next_query_start_report_id;
perf_ctx->next_query_start_report_id += 2;
snapshot_query_layout(perf_ctx, query, false /* end_snapshot */);
++perf_ctx->n_active_oa_queries;
/* No already-buffered samples can possibly be associated with this query
* so create a marker within the list of sample buffers enabling us to
* easily ignore earlier samples when processing this query after
* completion.
*/
assert(!exec_list_is_empty(&perf_ctx->sample_buffers));
query->oa.samples_head = exec_list_get_tail(&perf_ctx->sample_buffers);
struct oa_sample_buf *buf =
exec_node_data(struct oa_sample_buf, query->oa.samples_head, link);
/* This reference will ensure that future/following sample
* buffers (that may relate to this query) can't be freed until
* this drops to zero.
*/
buf->refcount++;
intel_perf_query_result_clear(&query->oa.result);
query->oa.results_accumulated = false;
add_to_unaccumulated_query_list(perf_ctx, query);
break;
}
case INTEL_PERF_QUERY_TYPE_PIPELINE:
if (query->pipeline_stats.bo) {
perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo);
query->pipeline_stats.bo = NULL;
}
query->pipeline_stats.bo =
perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr,
"perf. query pipeline stats bo",
STATS_BO_SIZE);
/* Take starting snapshots. */
snapshot_statistics_registers(perf_ctx, query, 0);
++perf_ctx->n_active_pipeline_stats_queries;
break;
default:
unreachable("Unknown query type");
break;
}
return true;
}
void
intel_perf_end_query(struct intel_perf_context *perf_ctx,
struct intel_perf_query_object *query)
{
struct intel_perf_config *perf_cfg = perf_ctx->perf;
/* Ensure that the work associated with the queried commands will have
* finished before taking our query end counter readings.
*
* For more details see comment in brw_begin_perf_query for
* corresponding flush.
*/
perf_cfg->vtbl.emit_stall_at_pixel_scoreboard(perf_ctx->ctx);
switch (query->queryinfo->kind) {
case INTEL_PERF_QUERY_TYPE_OA:
case INTEL_PERF_QUERY_TYPE_RAW:
/* NB: It's possible that the query will have already been marked
* as 'accumulated' if an error was seen while reading samples
* from perf. In this case we mustn't try and emit a closing
* MI_RPC command in case the OA unit has already been disabled
*/
if (!query->oa.results_accumulated)
snapshot_query_layout(perf_ctx, query, true /* end_snapshot */);
--perf_ctx->n_active_oa_queries;
/* NB: even though the query has now ended, it can't be accumulated
* until the end MI_REPORT_PERF_COUNT snapshot has been written
* to query->oa.bo
*/
break;
case INTEL_PERF_QUERY_TYPE_PIPELINE:
snapshot_statistics_registers(perf_ctx, query,
STATS_BO_END_OFFSET_BYTES);
--perf_ctx->n_active_pipeline_stats_queries;
break;
default:
unreachable("Unknown query type");
break;
}
}
bool intel_perf_oa_stream_ready(struct intel_perf_context *perf_ctx)
{
struct pollfd pfd;
pfd.fd = perf_ctx->oa_stream_fd;
pfd.events = POLLIN;
pfd.revents = 0;
if (poll(&pfd, 1, 0) < 0) {
DBG("Error polling OA stream\n");
return false;
}
if (!(pfd.revents & POLLIN))
return false;
return true;
}
ssize_t
intel_perf_read_oa_stream(struct intel_perf_context *perf_ctx,
void* buf,
size_t nbytes)
{
return read(perf_ctx->oa_stream_fd, buf, nbytes);
}
enum OaReadStatus {
OA_READ_STATUS_ERROR,
OA_READ_STATUS_UNFINISHED,
OA_READ_STATUS_FINISHED,
};
static enum OaReadStatus
read_oa_samples_until(struct intel_perf_context *perf_ctx,
uint32_t start_timestamp,
uint32_t end_timestamp)
{
struct exec_node *tail_node =
exec_list_get_tail(&perf_ctx->sample_buffers);
struct oa_sample_buf *tail_buf =
exec_node_data(struct oa_sample_buf, tail_node, link);
uint32_t last_timestamp =
tail_buf->len == 0 ? start_timestamp : tail_buf->last_timestamp;
while (1) {
struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx);
uint32_t offset;
int len;
while ((len = read(perf_ctx->oa_stream_fd, buf->buf,
sizeof(buf->buf))) < 0 && errno == EINTR)
;
if (len <= 0) {
exec_list_push_tail(&perf_ctx->free_sample_buffers, &buf->link);
if (len == 0) {
DBG("Spurious EOF reading i915 perf samples\n");
return OA_READ_STATUS_ERROR;
}
if (errno != EAGAIN) {
DBG("Error reading i915 perf samples: %m\n");
return OA_READ_STATUS_ERROR;
}
if ((last_timestamp - start_timestamp) >= INT32_MAX)
return OA_READ_STATUS_UNFINISHED;
if ((last_timestamp - start_timestamp) <
(end_timestamp - start_timestamp))
return OA_READ_STATUS_UNFINISHED;
return OA_READ_STATUS_FINISHED;
}
buf->len = len;
exec_list_push_tail(&perf_ctx->sample_buffers, &buf->link);
/* Go through the reports and update the last timestamp. */
offset = 0;
while (offset < buf->len) {
const struct drm_i915_perf_record_header *header =
(const struct drm_i915_perf_record_header *) &buf->buf[offset];
uint32_t *report = (uint32_t *) (header + 1);
if (header->type == DRM_I915_PERF_RECORD_SAMPLE)
last_timestamp = report[1];
offset += header->size;
}
buf->last_timestamp = last_timestamp;
}
unreachable("not reached");
return OA_READ_STATUS_ERROR;
}
/**
* Try to read all the reports until either the delimiting timestamp
* or an error arises.
*/
static bool
read_oa_samples_for_query(struct intel_perf_context *perf_ctx,
struct intel_perf_query_object *query,
void *current_batch)
{
uint32_t *start;
uint32_t *last;
uint32_t *end;
struct intel_perf_config *perf_cfg = perf_ctx->perf;
/* We need the MI_REPORT_PERF_COUNT to land before we can start
* accumulate. */
assert(!perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) &&
!perf_cfg->vtbl.bo_busy(query->oa.bo));
/* Map the BO once here and let accumulate_oa_reports() unmap
* it. */
if (query->oa.map == NULL)
query->oa.map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_READ);
start = last = query->oa.map;
end = query->oa.map + perf_ctx->perf->query_layout.size;
if (start[0] != query->oa.begin_report_id) {
DBG("Spurious start report id=%"PRIu32"\n", start[0]);
return true;
}
if (end[0] != (query->oa.begin_report_id + 1)) {
DBG("Spurious end report id=%"PRIu32"\n", end[0]);
return true;
}
/* Read the reports until the end timestamp. */
switch (read_oa_samples_until(perf_ctx, start[1], end[1])) {
case OA_READ_STATUS_ERROR:
FALLTHROUGH; /* Let accumulate_oa_reports() deal with the error. */
case OA_READ_STATUS_FINISHED:
return true;
case OA_READ_STATUS_UNFINISHED:
return false;
}
unreachable("invalid read status");
return false;
}
void
intel_perf_wait_query(struct intel_perf_context *perf_ctx,
struct intel_perf_query_object *query,
void *current_batch)
{
struct intel_perf_config *perf_cfg = perf_ctx->perf;
struct brw_bo *bo = NULL;
switch (query->queryinfo->kind) {
case INTEL_PERF_QUERY_TYPE_OA:
case INTEL_PERF_QUERY_TYPE_RAW:
bo = query->oa.bo;
break;
case INTEL_PERF_QUERY_TYPE_PIPELINE:
bo = query->pipeline_stats.bo;
break;
default:
unreachable("Unknown query type");
break;
}
if (bo == NULL)
return;
/* If the current batch references our results bo then we need to
* flush first...
*/
if (perf_cfg->vtbl.batch_references(current_batch, bo))
perf_cfg->vtbl.batchbuffer_flush(perf_ctx->ctx, __FILE__, __LINE__);
perf_cfg->vtbl.bo_wait_rendering(bo);
}
bool
intel_perf_is_query_ready(struct intel_perf_context *perf_ctx,
struct intel_perf_query_object *query,
void *current_batch)
{
struct intel_perf_config *perf_cfg = perf_ctx->perf;
switch (query->queryinfo->kind) {
case INTEL_PERF_QUERY_TYPE_OA:
case INTEL_PERF_QUERY_TYPE_RAW:
return (query->oa.results_accumulated ||
(query->oa.bo &&
!perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) &&
!perf_cfg->vtbl.bo_busy(query->oa.bo)));
case INTEL_PERF_QUERY_TYPE_PIPELINE:
return (query->pipeline_stats.bo &&
!perf_cfg->vtbl.batch_references(current_batch, query->pipeline_stats.bo) &&
!perf_cfg->vtbl.bo_busy(query->pipeline_stats.bo));
default:
unreachable("Unknown query type");
break;
}
return false;
}
/**
* Remove a query from the global list of unaccumulated queries once
* after successfully accumulating the OA reports associated with the
* query in accumulate_oa_reports() or when discarding unwanted query
* results.
*/
static void
drop_from_unaccumulated_query_list(struct intel_perf_context *perf_ctx,
struct intel_perf_query_object *query)
{
for (int i = 0; i < perf_ctx->unaccumulated_elements; i++) {
if (perf_ctx->unaccumulated[i] == query) {
int last_elt = --perf_ctx->unaccumulated_elements;
if (i == last_elt)
perf_ctx->unaccumulated[i] = NULL;
else {
perf_ctx->unaccumulated[i] =
perf_ctx->unaccumulated[last_elt];
}
break;
}
}
/* Drop our samples_head reference so that associated periodic
* sample data buffers can potentially be reaped if they aren't
* referenced by any other queries...
*/
struct oa_sample_buf *buf =
exec_node_data(struct oa_sample_buf, query->oa.samples_head, link);
assert(buf->refcount > 0);
buf->refcount--;
query->oa.samples_head = NULL;
reap_old_sample_buffers(perf_ctx);
}
/* In general if we see anything spurious while accumulating results,
* we don't try and continue accumulating the current query, hoping
* for the best, we scrap anything outstanding, and then hope for the
* best with new queries.
*/
static void
discard_all_queries(struct intel_perf_context *perf_ctx)
{
while (perf_ctx->unaccumulated_elements) {
struct intel_perf_query_object *query = perf_ctx->unaccumulated[0];
query->oa.results_accumulated = true;
drop_from_unaccumulated_query_list(perf_ctx, query);
dec_n_users(perf_ctx);
}
}
/* Looks for the validity bit of context ID (dword 2) of an OA report. */
static bool
oa_report_ctx_id_valid(const struct intel_device_info *devinfo,
const uint32_t *report)
{
assert(devinfo->ver >= 8);
if (devinfo->ver == 8)
return (report[0] & (1 << 25)) != 0;
return (report[0] & (1 << 16)) != 0;
}
/**
* Accumulate raw OA counter values based on deltas between pairs of
* OA reports.
*
* Accumulation starts from the first report captured via
* MI_REPORT_PERF_COUNT (MI_RPC) by brw_begin_perf_query() until the
* last MI_RPC report requested by brw_end_perf_query(). Between these
* two reports there may also some number of periodically sampled OA
* reports collected via the i915 perf interface - depending on the
* duration of the query.
*
* These periodic snapshots help to ensure we handle counter overflow
* correctly by being frequent enough to ensure we don't miss multiple
* overflows of a counter between snapshots. For Gfx8+ the i915 perf
* snapshots provide the extra context-switch reports that let us
* subtract out the progress of counters associated with other
* contexts running on the system.
*/
static void
accumulate_oa_reports(struct intel_perf_context *perf_ctx,
struct intel_perf_query_object *query)
{
const struct intel_device_info *devinfo = perf_ctx->devinfo;
uint32_t *start;
uint32_t *last;
uint32_t *end;
struct exec_node *first_samples_node;
bool last_report_ctx_match = true;
int out_duration = 0;
assert(query->oa.map != NULL);
start = last = query->oa.map;
end = query->oa.map + perf_ctx->perf->query_layout.size;
if (start[0] != query->oa.begin_report_id) {
DBG("Spurious start report id=%"PRIu32"\n", start[0]);
goto error;
}
if (end[0] != (query->oa.begin_report_id + 1)) {
DBG("Spurious end report id=%"PRIu32"\n", end[0]);
goto error;
}
/* On Gfx12+ OA reports are sourced from per context counters, so we don't
* ever have to look at the global OA buffer. Yey \o/
*/
if (perf_ctx->devinfo->ver >= 12) {
last = start;
goto end;
}
/* See if we have any periodic reports to accumulate too... */
/* N.B. The oa.samples_head was set when the query began and
* pointed to the tail of the perf_ctx->sample_buffers list at
* the time the query started. Since the buffer existed before the
* first MI_REPORT_PERF_COUNT command was emitted we therefore know
* that no data in this particular node's buffer can possibly be
* associated with the query - so skip ahead one...
*/
first_samples_node = query->oa.samples_head->next;
foreach_list_typed_from(struct oa_sample_buf, buf, link,
&perf_ctx->sample_buffers,
first_samples_node)
{
int offset = 0;
while (offset < buf->len) {
const struct drm_i915_perf_record_header *header =
(const struct drm_i915_perf_record_header *)(buf->buf + offset);
assert(header->size != 0);
assert(header->size <= buf->len);
offset += header->size;
switch (header->type) {
case DRM_I915_PERF_RECORD_SAMPLE: {
uint32_t *report = (uint32_t *)(header + 1);
bool report_ctx_match = true;
bool add = true;
/* Ignore reports that come before the start marker.
* (Note: takes care to allow overflow of 32bit timestamps)
*/
if (intel_device_info_timebase_scale(devinfo,
report[1] - start[1]) > 5000000000) {
continue;
}
/* Ignore reports that come after the end marker.
* (Note: takes care to allow overflow of 32bit timestamps)
*/
if (intel_device_info_timebase_scale(devinfo,
report[1] - end[1]) <= 5000000000) {
goto end;
}
/* For Gfx8+ since the counters continue while other
* contexts are running we need to discount any unrelated
* deltas. The hardware automatically generates a report
* on context switch which gives us a new reference point
* to continuing adding deltas from.
*
* For Haswell we can rely on the HW to stop the progress
* of OA counters while any other context is acctive.
*/
if (devinfo->ver >= 8) {
/* Consider that the current report matches our context only if
* the report says the report ID is valid.
*/
report_ctx_match = oa_report_ctx_id_valid(devinfo, report) &&
report[2] == start[2];
if (report_ctx_match)
out_duration = 0;
else
out_duration++;
/* Only add the delta between <last, report> if the last report
* was clearly identified as our context, or if we have at most
* 1 report without a matching ID.
*
* The OA unit will sometimes label reports with an invalid
* context ID when i915 rewrites the execlist submit register
* with the same context as the one currently running. This
* happens when i915 wants to notify the HW of ringbuffer tail
* register update. We have to consider this report as part of
* our context as the 3d pipeline behind the OACS unit is still
* processing the operations started at the previous execlist
* submission.
*/
add = last_report_ctx_match && out_duration < 2;
}
if (add) {
intel_perf_query_result_accumulate(&query->oa.result,
query->queryinfo,
last, report);
} else {
/* We're not adding the delta because we've identified it's not
* for the context we filter for. We can consider that the
* query was split.
*/
query->oa.result.query_disjoint = true;
}
last = report;
last_report_ctx_match = report_ctx_match;
break;
}
case DRM_I915_PERF_RECORD_OA_BUFFER_LOST:
DBG("i915 perf: OA error: all reports lost\n");
goto error;
case DRM_I915_PERF_RECORD_OA_REPORT_LOST:
DBG("i915 perf: OA report lost\n");
break;
}
}
}
end:
intel_perf_query_result_accumulate(&query->oa.result, query->queryinfo,
last, end);
query->oa.results_accumulated = true;
drop_from_unaccumulated_query_list(perf_ctx, query);
dec_n_users(perf_ctx);
return;
error:
discard_all_queries(perf_ctx);
}
void
intel_perf_delete_query(struct intel_perf_context *perf_ctx,
struct intel_perf_query_object *query)
{
struct intel_perf_config *perf_cfg = perf_ctx->perf;
/* We can assume that the frontend waits for a query to complete
* before ever calling into here, so we don't have to worry about
* deleting an in-flight query object.
*/
switch (query->queryinfo->kind) {
case INTEL_PERF_QUERY_TYPE_OA:
case INTEL_PERF_QUERY_TYPE_RAW:
if (query->oa.bo) {
if (!query->oa.results_accumulated) {
drop_from_unaccumulated_query_list(perf_ctx, query);
dec_n_users(perf_ctx);
}
perf_cfg->vtbl.bo_unreference(query->oa.bo);
query->oa.bo = NULL;
}
query->oa.results_accumulated = false;
break;
case INTEL_PERF_QUERY_TYPE_PIPELINE:
if (query->pipeline_stats.bo) {
perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo);
query->pipeline_stats.bo = NULL;
}
break;
default:
unreachable("Unknown query type");
break;
}
/* As an indication that the INTEL_performance_query extension is no
* longer in use, it's a good time to free our cache of sample
* buffers and close any current i915-perf stream.
*/
if (--perf_ctx->n_query_instances == 0) {
free_sample_bufs(perf_ctx);
intel_perf_close(perf_ctx, query->queryinfo);
}
free(query);
}
static int
get_oa_counter_data(struct intel_perf_context *perf_ctx,
struct intel_perf_query_object *query,
size_t data_size,
uint8_t *data)
{
struct intel_perf_config *perf_cfg = perf_ctx->perf;
const struct intel_perf_query_info *queryinfo = query->queryinfo;
int n_counters = queryinfo->n_counters;
int written = 0;
for (int i = 0; i < n_counters; i++) {
const struct intel_perf_query_counter *counter = &queryinfo->counters[i];
uint64_t *out_uint64;
float *out_float;
size_t counter_size = intel_perf_query_counter_get_size(counter);
if (counter_size) {
switch (counter->data_type) {
case INTEL_PERF_COUNTER_DATA_TYPE_UINT64:
out_uint64 = (uint64_t *)(data + counter->offset);
*out_uint64 =
counter->oa_counter_read_uint64(perf_cfg, queryinfo,
&query->oa.result);
break;
case INTEL_PERF_COUNTER_DATA_TYPE_FLOAT:
out_float = (float *)(data + counter->offset);
*out_float =
counter->oa_counter_read_float(perf_cfg, queryinfo,
&query->oa.result);
break;
default:
/* So far we aren't using uint32, double or bool32... */
unreachable("unexpected counter data type");
}
if (counter->offset + counter_size > written)
written = counter->offset + counter_size;
}
}
return written;
}
static int
get_pipeline_stats_data(struct intel_perf_context *perf_ctx,
struct intel_perf_query_object *query,
size_t data_size,
uint8_t *data)
{
struct intel_perf_config *perf_cfg = perf_ctx->perf;
const struct intel_perf_query_info *queryinfo = query->queryinfo;
int n_counters = queryinfo->n_counters;
uint8_t *p = data;
uint64_t *start = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->pipeline_stats.bo, MAP_READ);
uint64_t *end = start + (STATS_BO_END_OFFSET_BYTES / sizeof(uint64_t));
for (int i = 0; i < n_counters; i++) {
const struct intel_perf_query_counter *counter = &queryinfo->counters[i];
uint64_t value = end[i] - start[i];
if (counter->pipeline_stat.numerator !=
counter->pipeline_stat.denominator) {
value *= counter->pipeline_stat.numerator;
value /= counter->pipeline_stat.denominator;
}
*((uint64_t *)p) = value;
p += 8;
}
perf_cfg->vtbl.bo_unmap(query->pipeline_stats.bo);
return p - data;
}
void
intel_perf_get_query_data(struct intel_perf_context *perf_ctx,
struct intel_perf_query_object *query,
void *current_batch,
int data_size,
unsigned *data,
unsigned *bytes_written)
{
struct intel_perf_config *perf_cfg = perf_ctx->perf;
int written = 0;
switch (query->queryinfo->kind) {
case INTEL_PERF_QUERY_TYPE_OA:
case INTEL_PERF_QUERY_TYPE_RAW:
if (!query->oa.results_accumulated) {
/* Due to the sampling frequency of the OA buffer by the i915-perf
* driver, there can be a 5ms delay between the Mesa seeing the query
* complete and i915 making all the OA buffer reports available to us.
* We need to wait for all the reports to come in before we can do
* the post processing removing unrelated deltas.
* There is a i915-perf series to address this issue, but it's
* not been merged upstream yet.
*/
while (!read_oa_samples_for_query(perf_ctx, query, current_batch))
;
uint32_t *begin_report = query->oa.map;
uint32_t *end_report = query->oa.map + perf_cfg->query_layout.size;
intel_perf_query_result_accumulate_fields(&query->oa.result,
query->queryinfo,
begin_report,
end_report,
true /* no_oa_accumulate */);
accumulate_oa_reports(perf_ctx, query);
assert(query->oa.results_accumulated);
perf_cfg->vtbl.bo_unmap(query->oa.bo);
query->oa.map = NULL;
}
if (query->queryinfo->kind == INTEL_PERF_QUERY_TYPE_OA) {
written = get_oa_counter_data(perf_ctx, query, data_size, (uint8_t *)data);
} else {
const struct intel_device_info *devinfo = perf_ctx->devinfo;
written = intel_perf_query_result_write_mdapi((uint8_t *)data, data_size,
devinfo, query->queryinfo,
&query->oa.result);
}
break;
case INTEL_PERF_QUERY_TYPE_PIPELINE:
written = get_pipeline_stats_data(perf_ctx, query, data_size, (uint8_t *)data);
break;
default:
unreachable("Unknown query type");
break;
}
if (bytes_written)
*bytes_written = written;
}
void
intel_perf_dump_query_count(struct intel_perf_context *perf_ctx)
{
DBG("Queries: (Open queries = %d, OA users = %d)\n",
perf_ctx->n_active_oa_queries, perf_ctx->n_oa_users);
}
void
intel_perf_dump_query(struct intel_perf_context *ctx,
struct intel_perf_query_object *obj,
void *current_batch)
{
switch (obj->queryinfo->kind) {
case INTEL_PERF_QUERY_TYPE_OA:
case INTEL_PERF_QUERY_TYPE_RAW:
DBG("BO: %-4s OA data: %-10s %-15s\n",
obj->oa.bo ? "yes," : "no,",
intel_perf_is_query_ready(ctx, obj, current_batch) ? "ready," : "not ready,",
obj->oa.results_accumulated ? "accumulated" : "not accumulated");
break;
case INTEL_PERF_QUERY_TYPE_PIPELINE:
DBG("BO: %-4s\n",
obj->pipeline_stats.bo ? "yes" : "no");
break;
default:
unreachable("Unknown query type");
break;
}
}