mesa/src/intel/compiler/brw_fs_register_coalesce.cpp

344 lines
11 KiB
C++

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file brw_fs_register_coalesce.cpp
*
* Implements register coalescing: Checks if the two registers involved in a
* raw move don't interfere, in which case they can both be stored in the same
* place and the MOV removed.
*
* To do this, all uses of the source of the MOV in the shader are replaced
* with the destination of the MOV. For example:
*
* add vgrf3:F, vgrf1:F, vgrf2:F
* mov vgrf4:F, vgrf3:F
* mul vgrf5:F, vgrf5:F, vgrf4:F
*
* becomes
*
* add vgrf4:F, vgrf1:F, vgrf2:F
* mul vgrf5:F, vgrf5:F, vgrf4:F
*/
#include "brw_fs.h"
#include "brw_cfg.h"
#include "brw_fs_live_variables.h"
using namespace brw;
static bool
is_nop_mov(const fs_inst *inst)
{
if (inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD) {
fs_reg dst = inst->dst;
for (int i = 0; i < inst->sources; i++) {
if (!dst.equals(inst->src[i])) {
return false;
}
dst.offset += (i < inst->header_size ? REG_SIZE :
inst->exec_size * dst.stride *
type_sz(inst->src[i].type));
}
return true;
} else if (inst->opcode == BRW_OPCODE_MOV) {
return inst->dst.equals(inst->src[0]);
}
return false;
}
static bool
is_coalesce_candidate(const fs_visitor *v, const fs_inst *inst)
{
if ((inst->opcode != BRW_OPCODE_MOV &&
inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD) ||
inst->is_partial_write() ||
inst->saturate ||
inst->src[0].file != VGRF ||
inst->src[0].negate ||
inst->src[0].abs ||
!inst->src[0].is_contiguous() ||
inst->dst.file != VGRF ||
inst->dst.type != inst->src[0].type) {
return false;
}
if (v->alloc.sizes[inst->src[0].nr] >
v->alloc.sizes[inst->dst.nr])
return false;
if (inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD) {
if (!is_coalescing_payload(v->alloc, inst)) {
return false;
}
}
return true;
}
static bool
can_coalesce_vars(const fs_live_variables &live, const cfg_t *cfg,
const bblock_t *block, const fs_inst *inst,
int dst_var, int src_var)
{
if (!live.vars_interfere(src_var, dst_var))
return true;
int dst_start = live.start[dst_var];
int dst_end = live.end[dst_var];
int src_start = live.start[src_var];
int src_end = live.end[src_var];
/* Variables interfere and one line range isn't a subset of the other. */
if ((dst_end > src_end && src_start < dst_start) ||
(src_end > dst_end && dst_start < src_start))
return false;
/* Check for a write to either register in the intersection of their live
* ranges.
*/
int start_ip = MAX2(dst_start, src_start);
int end_ip = MIN2(dst_end, src_end);
foreach_block(scan_block, cfg) {
if (scan_block->end_ip < start_ip)
continue;
int scan_ip = scan_block->start_ip - 1;
bool seen_src_write = false;
bool seen_copy = false;
foreach_inst_in_block(fs_inst, scan_inst, scan_block) {
scan_ip++;
/* Ignore anything before the intersection of the live ranges */
if (scan_ip < start_ip)
continue;
/* Ignore the copying instruction itself */
if (scan_inst == inst) {
seen_copy = true;
continue;
}
if (scan_ip > end_ip)
return true; /* registers do not interfere */
if (seen_src_write && !seen_copy) {
/* In order to satisfy the guarantee of register coalescing, we
* must ensure that the two registers always have the same value
* during the intersection of their live ranges. One way to do
* this is to simply ensure that neither is ever written apart
* from the one copy which syncs up the two registers. However,
* this can be overly conservative and only works in the case
* where the destination live range is entirely contained in the
* source live range.
*
* To handle the other case where the source is contained in the
* destination, we allow writes to the source register as long as
* they happen before the copy, in the same block as the copy, and
* the destination is never read between first such write and the
* copy. This effectively moves the write from the copy up.
*/
for (int j = 0; j < scan_inst->sources; j++) {
if (regions_overlap(scan_inst->src[j], scan_inst->size_read(j),
inst->dst, inst->size_written))
return false; /* registers interfere */
}
}
/* The MOV being coalesced had better be the only instruction which
* writes to the coalesce destination in the intersection.
*/
if (regions_overlap(scan_inst->dst, scan_inst->size_written,
inst->dst, inst->size_written))
return false; /* registers interfere */
/* See the big comment above */
if (regions_overlap(scan_inst->dst, scan_inst->size_written,
inst->src[0], inst->size_read(0))) {
if (seen_copy || scan_block != block)
return false;
seen_src_write = true;
}
}
}
return true;
}
bool
fs_visitor::register_coalesce()
{
bool progress = false;
fs_live_variables &live = live_analysis.require();
int src_size = 0;
int channels_remaining = 0;
unsigned src_reg = ~0u, dst_reg = ~0u;
int dst_reg_offset[MAX_VGRF_SIZE];
fs_inst *mov[MAX_VGRF_SIZE];
int dst_var[MAX_VGRF_SIZE];
int src_var[MAX_VGRF_SIZE];
foreach_block_and_inst(block, fs_inst, inst, cfg) {
if (!is_coalesce_candidate(this, inst))
continue;
if (is_nop_mov(inst)) {
inst->opcode = BRW_OPCODE_NOP;
progress = true;
continue;
}
if (src_reg != inst->src[0].nr) {
src_reg = inst->src[0].nr;
src_size = alloc.sizes[inst->src[0].nr];
assert(src_size <= MAX_VGRF_SIZE);
channels_remaining = src_size;
memset(mov, 0, sizeof(mov));
dst_reg = inst->dst.nr;
}
if (dst_reg != inst->dst.nr)
continue;
if (inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD) {
for (int i = 0; i < src_size; i++) {
dst_reg_offset[i] = i;
}
mov[0] = inst;
channels_remaining -= regs_written(inst);
} else {
const int offset = inst->src[0].offset / REG_SIZE;
if (mov[offset]) {
/* This is the second time that this offset in the register has
* been set. This means, in particular, that inst->dst was
* live before this instruction and that the live ranges of
* inst->dst and inst->src[0] overlap and we can't coalesce the
* two variables. Let's ensure that doesn't happen.
*/
channels_remaining = -1;
continue;
}
for (unsigned i = 0; i < MAX2(inst->size_written / REG_SIZE, 1); i++)
dst_reg_offset[offset + i] = inst->dst.offset / REG_SIZE + i;
mov[offset] = inst;
channels_remaining -= regs_written(inst);
}
if (channels_remaining)
continue;
bool can_coalesce = true;
for (int i = 0; i < src_size; i++) {
if (dst_reg_offset[i] != dst_reg_offset[0] + i) {
/* Registers are out-of-order. */
can_coalesce = false;
src_reg = ~0u;
break;
}
dst_var[i] = live.var_from_vgrf[dst_reg] + dst_reg_offset[i];
src_var[i] = live.var_from_vgrf[src_reg] + i;
if (!can_coalesce_vars(live, cfg, block, inst, dst_var[i], src_var[i])) {
can_coalesce = false;
src_reg = ~0u;
break;
}
}
if (!can_coalesce)
continue;
progress = true;
for (int i = 0; i < src_size; i++) {
if (!mov[i])
continue;
if (mov[i]->conditional_mod == BRW_CONDITIONAL_NONE) {
mov[i]->opcode = BRW_OPCODE_NOP;
mov[i]->dst = reg_undef;
for (int j = 0; j < mov[i]->sources; j++) {
mov[i]->src[j] = reg_undef;
}
} else {
/* If we have a conditional modifier, rewrite the MOV to be a
* MOV.cmod from the coalesced register. Hopefully, cmod
* propagation will clean this up and move it to the instruction
* that writes the register. If not, this keeps things correct
* while still letting us coalesce.
*/
assert(mov[i]->opcode == BRW_OPCODE_MOV);
assert(mov[i]->sources == 1);
mov[i]->src[0] = mov[i]->dst;
mov[i]->dst = retype(brw_null_reg(), mov[i]->dst.type);
}
}
foreach_block_and_inst(block, fs_inst, scan_inst, cfg) {
if (scan_inst->dst.file == VGRF &&
scan_inst->dst.nr == src_reg) {
scan_inst->dst.nr = dst_reg;
scan_inst->dst.offset = scan_inst->dst.offset % REG_SIZE +
dst_reg_offset[scan_inst->dst.offset / REG_SIZE] * REG_SIZE;
}
for (int j = 0; j < scan_inst->sources; j++) {
if (scan_inst->src[j].file == VGRF &&
scan_inst->src[j].nr == src_reg) {
scan_inst->src[j].nr = dst_reg;
scan_inst->src[j].offset = scan_inst->src[j].offset % REG_SIZE +
dst_reg_offset[scan_inst->src[j].offset / REG_SIZE] * REG_SIZE;
}
}
}
for (int i = 0; i < src_size; i++) {
live.start[dst_var[i]] = MIN2(live.start[dst_var[i]],
live.start[src_var[i]]);
live.end[dst_var[i]] = MAX2(live.end[dst_var[i]],
live.end[src_var[i]]);
}
src_reg = ~0u;
}
if (progress) {
foreach_block_and_inst_safe (block, backend_instruction, inst, cfg) {
if (inst->opcode == BRW_OPCODE_NOP) {
inst->remove(block, true);
}
}
cfg->adjust_block_ips();
invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
}
return progress;
}