mesa/src/intel/compiler/brw_eu_compact.c

2687 lines
99 KiB
C

/*
* Copyright © 2012-2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file brw_eu_compact.c
*
* Instruction compaction is a feature of G45 and newer hardware that allows
* for a smaller instruction encoding.
*
* The instruction cache is on the order of 32KB, and many programs generate
* far more instructions than that. The instruction cache is built to barely
* keep up with instruction dispatch ability in cache hit cases -- L1
* instruction cache misses that still hit in the next level could limit
* throughput by around 50%.
*
* The idea of instruction compaction is that most instructions use a tiny
* subset of the GPU functionality, so we can encode what would be a 16 byte
* instruction in 8 bytes using some lookup tables for various fields.
*
*
* Instruction compaction capabilities vary subtly by generation.
*
* G45's support for instruction compaction is very limited. Jump counts on
* this generation are in units of 16-byte uncompacted instructions. As such,
* all jump targets must be 16-byte aligned. Also, all instructions must be
* naturally aligned, i.e. uncompacted instructions must be 16-byte aligned.
* A G45-only instruction, NENOP, must be used to provide padding to align
* uncompacted instructions.
*
* Gfx5 removes these restrictions and changes jump counts to be in units of
* 8-byte compacted instructions, allowing jump targets to be only 8-byte
* aligned. Uncompacted instructions can also be placed on 8-byte boundaries.
*
* Gfx6 adds the ability to compact instructions with a limited range of
* immediate values. Compactable immediates have 12 unrestricted bits, and a
* 13th bit that's replicated through the high 20 bits, to create the 32-bit
* value of DW3 in the uncompacted instruction word.
*
* On Gfx7 we can compact some control flow instructions with a small positive
* immediate in the low bits of DW3, like ENDIF with the JIP field. Other
* control flow instructions with UIP cannot be compacted, because of the
* replicated 13th bit. No control flow instructions can be compacted on Gfx6
* since the jump count field is not in DW3.
*
* break JIP/UIP
* cont JIP/UIP
* halt JIP/UIP
* if JIP/UIP
* else JIP (plus UIP on BDW+)
* endif JIP
* while JIP (must be negative)
*
* Gen 8 adds support for compacting 3-src instructions.
*
* Gfx12 reduces the number of bits that available to compacted immediates from
* 13 to 12, but improves the compaction of floating-point immediates by
* allowing the high bits to be encoded (the sign, 8-bit exponent, and the
* three most significant bits of the mantissa), rather than the lowest bits of
* the mantissa.
*/
#include "brw_eu.h"
#include "brw_shader.h"
#include "brw_disasm_info.h"
#include "dev/intel_debug.h"
static const uint32_t g45_control_index_table[32] = {
0b00000000000000000,
0b01000000000000000,
0b00110000000000000,
0b00000000000000010,
0b00100000000000000,
0b00010000000000000,
0b01000000000100000,
0b01000000100000000,
0b01010000000100000,
0b00000000100000010,
0b11000000000000000,
0b00001000100000010,
0b01001000100000000,
0b00000000100000000,
0b11000000000100000,
0b00001000100000000,
0b10110000000000000,
0b11010000000100000,
0b00110000100000000,
0b00100000100000000,
0b01000000000001000,
0b01000000000000100,
0b00111100000000000,
0b00101011000000000,
0b00110000000010000,
0b00010000100000000,
0b01000000000100100,
0b01000000000101000,
0b00110000000000110,
0b00000000000001010,
0b01010000000101000,
0b01010000000100100,
};
static const uint32_t g45_datatype_table[32] = {
0b001000000000100001,
0b001011010110101101,
0b001000001000110001,
0b001111011110111101,
0b001011010110101100,
0b001000000110101101,
0b001000000000100000,
0b010100010110110001,
0b001100011000101101,
0b001000000000100010,
0b001000001000110110,
0b010000001000110001,
0b001000001000110010,
0b011000001000110010,
0b001111011110111100,
0b001000000100101000,
0b010100011000110001,
0b001010010100101001,
0b001000001000101001,
0b010000001000110110,
0b101000001000110001,
0b001011011000101101,
0b001000000100001001,
0b001011011000101100,
0b110100011000110001,
0b001000001110111101,
0b110000001000110001,
0b011000000100101010,
0b101000001000101001,
0b001011010110001100,
0b001000000110100001,
0b001010010100001000,
};
static const uint16_t g45_subreg_table[32] = {
0b000000000000000,
0b000000010000000,
0b000001000000000,
0b000100000000000,
0b000000000100000,
0b100000000000000,
0b000000000010000,
0b001100000000000,
0b001010000000000,
0b000000100000000,
0b001000000000000,
0b000000000001000,
0b000000001000000,
0b000000000000001,
0b000010000000000,
0b000000010100000,
0b000000000000111,
0b000001000100000,
0b011000000000000,
0b000000110000000,
0b000000000000010,
0b000000000000100,
0b000000001100000,
0b000100000000010,
0b001110011000110,
0b001110100001000,
0b000110011000110,
0b000001000011000,
0b000110010000100,
0b001100000000110,
0b000000010000110,
0b000001000110000,
};
static const uint16_t g45_src_index_table[32] = {
0b000000000000,
0b010001101000,
0b010110001000,
0b011010010000,
0b001101001000,
0b010110001010,
0b010101110000,
0b011001111000,
0b001000101000,
0b000000101000,
0b010001010000,
0b111101101100,
0b010110001100,
0b010001101100,
0b011010010100,
0b010001001100,
0b001100101000,
0b000000000010,
0b111101001100,
0b011001101000,
0b010101001000,
0b000000000100,
0b000000101100,
0b010001101010,
0b000000111000,
0b010101011000,
0b000100100000,
0b010110000000,
0b010000000100,
0b010000111000,
0b000101100000,
0b111101110100,
};
static const uint32_t gfx6_control_index_table[32] = {
0b00000000000000000,
0b01000000000000000,
0b00110000000000000,
0b00000000100000000,
0b00010000000000000,
0b00001000100000000,
0b00000000100000010,
0b00000000000000010,
0b01000000100000000,
0b01010000000000000,
0b10110000000000000,
0b00100000000000000,
0b11010000000000000,
0b11000000000000000,
0b01001000100000000,
0b01000000000001000,
0b01000000000000100,
0b00000000000001000,
0b00000000000000100,
0b00111000100000000,
0b00001000100000010,
0b00110000100000000,
0b00110000000000001,
0b00100000000000001,
0b00110000000000010,
0b00110000000000101,
0b00110000000001001,
0b00110000000010000,
0b00110000000000011,
0b00110000000000100,
0b00110000100001000,
0b00100000000001001,
};
static const uint32_t gfx6_datatype_table[32] = {
0b001001110000000000,
0b001000110000100000,
0b001001110000000001,
0b001000000001100000,
0b001010110100101001,
0b001000000110101101,
0b001100011000101100,
0b001011110110101101,
0b001000000111101100,
0b001000000001100001,
0b001000110010100101,
0b001000000001000001,
0b001000001000110001,
0b001000001000101001,
0b001000000000100000,
0b001000001000110010,
0b001010010100101001,
0b001011010010100101,
0b001000000110100101,
0b001100011000101001,
0b001011011000101100,
0b001011010110100101,
0b001011110110100101,
0b001111011110111101,
0b001111011110111100,
0b001111011110111101,
0b001111011110011101,
0b001111011110111110,
0b001000000000100001,
0b001000000000100010,
0b001001111111011101,
0b001000001110111110,
};
static const uint16_t gfx6_subreg_table[32] = {
0b000000000000000,
0b000000000000100,
0b000000110000000,
0b111000000000000,
0b011110000001000,
0b000010000000000,
0b000000000010000,
0b000110000001100,
0b001000000000000,
0b000001000000000,
0b000001010010100,
0b000000001010110,
0b010000000000000,
0b110000000000000,
0b000100000000000,
0b000000010000000,
0b000000000001000,
0b100000000000000,
0b000001010000000,
0b001010000000000,
0b001100000000000,
0b000000001010100,
0b101101010010100,
0b010100000000000,
0b000000010001111,
0b011000000000000,
0b111110000000000,
0b101000000000000,
0b000000000001111,
0b000100010001111,
0b001000010001111,
0b000110000000000,
};
static const uint16_t gfx6_src_index_table[32] = {
0b000000000000,
0b010110001000,
0b010001101000,
0b001000101000,
0b011010010000,
0b000100100000,
0b010001101100,
0b010101110000,
0b011001111000,
0b001100101000,
0b010110001100,
0b001000100000,
0b010110001010,
0b000000000010,
0b010101010000,
0b010101101000,
0b111101001100,
0b111100101100,
0b011001110000,
0b010110001001,
0b010101011000,
0b001101001000,
0b010000101100,
0b010000000000,
0b001101110000,
0b001100010000,
0b001100000000,
0b010001101010,
0b001101111000,
0b000001110000,
0b001100100000,
0b001101010000,
};
static const uint32_t gfx7_control_index_table[32] = {
0b0000000000000000010,
0b0000100000000000000,
0b0000100000000000001,
0b0000100000000000010,
0b0000100000000000011,
0b0000100000000000100,
0b0000100000000000101,
0b0000100000000000111,
0b0000100000000001000,
0b0000100000000001001,
0b0000100000000001101,
0b0000110000000000000,
0b0000110000000000001,
0b0000110000000000010,
0b0000110000000000011,
0b0000110000000000100,
0b0000110000000000101,
0b0000110000000000111,
0b0000110000000001001,
0b0000110000000001101,
0b0000110000000010000,
0b0000110000100000000,
0b0001000000000000000,
0b0001000000000000010,
0b0001000000000000100,
0b0001000000100000000,
0b0010110000000000000,
0b0010110000000010000,
0b0011000000000000000,
0b0011000000100000000,
0b0101000000000000000,
0b0101000000100000000,
};
static const uint32_t gfx7_datatype_table[32] = {
0b001000000000000001,
0b001000000000100000,
0b001000000000100001,
0b001000000001100001,
0b001000000010111101,
0b001000001011111101,
0b001000001110100001,
0b001000001110100101,
0b001000001110111101,
0b001000010000100001,
0b001000110000100000,
0b001000110000100001,
0b001001010010100101,
0b001001110010100100,
0b001001110010100101,
0b001111001110111101,
0b001111011110011101,
0b001111011110111100,
0b001111011110111101,
0b001111111110111100,
0b000000001000001100,
0b001000000000111101,
0b001000000010100101,
0b001000010000100000,
0b001001010010100100,
0b001001110010000100,
0b001010010100001001,
0b001101111110111101,
0b001111111110111101,
0b001011110110101100,
0b001010010100101000,
0b001010110100101000,
};
static const uint16_t gfx7_subreg_table[32] = {
0b000000000000000,
0b000000000000001,
0b000000000001000,
0b000000000001111,
0b000000000010000,
0b000000010000000,
0b000000100000000,
0b000000110000000,
0b000001000000000,
0b000001000010000,
0b000010100000000,
0b001000000000000,
0b001000000000001,
0b001000010000001,
0b001000010000010,
0b001000010000011,
0b001000010000100,
0b001000010000111,
0b001000010001000,
0b001000010001110,
0b001000010001111,
0b001000110000000,
0b001000111101000,
0b010000000000000,
0b010000110000000,
0b011000000000000,
0b011110010000111,
0b100000000000000,
0b101000000000000,
0b110000000000000,
0b111000000000000,
0b111000000011100,
};
static const uint16_t gfx7_src_index_table[32] = {
0b000000000000,
0b000000000010,
0b000000010000,
0b000000010010,
0b000000011000,
0b000000100000,
0b000000101000,
0b000001001000,
0b000001010000,
0b000001110000,
0b000001111000,
0b001100000000,
0b001100000010,
0b001100001000,
0b001100010000,
0b001100010010,
0b001100100000,
0b001100101000,
0b001100111000,
0b001101000000,
0b001101000010,
0b001101001000,
0b001101010000,
0b001101100000,
0b001101101000,
0b001101110000,
0b001101110001,
0b001101111000,
0b010001101000,
0b010001101001,
0b010001101010,
0b010110001000,
};
static const uint32_t gfx8_control_index_table[32] = {
0b0000000000000000010,
0b0000100000000000000,
0b0000100000000000001,
0b0000100000000000010,
0b0000100000000000011,
0b0000100000000000100,
0b0000100000000000101,
0b0000100000000000111,
0b0000100000000001000,
0b0000100000000001001,
0b0000100000000001101,
0b0000110000000000000,
0b0000110000000000001,
0b0000110000000000010,
0b0000110000000000011,
0b0000110000000000100,
0b0000110000000000101,
0b0000110000000000111,
0b0000110000000001001,
0b0000110000000001101,
0b0000110000000010000,
0b0000110000100000000,
0b0001000000000000000,
0b0001000000000000010,
0b0001000000000000100,
0b0001000000100000000,
0b0010110000000000000,
0b0010110000000010000,
0b0011000000000000000,
0b0011000000100000000,
0b0101000000000000000,
0b0101000000100000000,
};
static const uint32_t gfx8_datatype_table[32] = {
0b001000000000000000001,
0b001000000000001000000,
0b001000000000001000001,
0b001000000000011000001,
0b001000000000101011101,
0b001000000010111011101,
0b001000000011101000001,
0b001000000011101000101,
0b001000000011101011101,
0b001000001000001000001,
0b001000011000001000000,
0b001000011000001000001,
0b001000101000101000101,
0b001000111000101000100,
0b001000111000101000101,
0b001011100011101011101,
0b001011101011100011101,
0b001011101011101011100,
0b001011101011101011101,
0b001011111011101011100,
0b000000000010000001100,
0b001000000000001011101,
0b001000000000101000101,
0b001000001000001000000,
0b001000101000101000100,
0b001000111000100000100,
0b001001001001000001001,
0b001010111011101011101,
0b001011111011101011101,
0b001001111001101001100,
0b001001001001001001000,
0b001001011001001001000,
};
static const uint16_t gfx8_subreg_table[32] = {
0b000000000000000,
0b000000000000001,
0b000000000001000,
0b000000000001111,
0b000000000010000,
0b000000010000000,
0b000000100000000,
0b000000110000000,
0b000001000000000,
0b000001000010000,
0b000001010000000,
0b001000000000000,
0b001000000000001,
0b001000010000001,
0b001000010000010,
0b001000010000011,
0b001000010000100,
0b001000010000111,
0b001000010001000,
0b001000010001110,
0b001000010001111,
0b001000110000000,
0b001000111101000,
0b010000000000000,
0b010000110000000,
0b011000000000000,
0b011110010000111,
0b100000000000000,
0b101000000000000,
0b110000000000000,
0b111000000000000,
0b111000000011100,
};
static const uint16_t gfx8_src_index_table[32] = {
0b000000000000,
0b000000000010,
0b000000010000,
0b000000010010,
0b000000011000,
0b000000100000,
0b000000101000,
0b000001001000,
0b000001010000,
0b000001110000,
0b000001111000,
0b001100000000,
0b001100000010,
0b001100001000,
0b001100010000,
0b001100010010,
0b001100100000,
0b001100101000,
0b001100111000,
0b001101000000,
0b001101000010,
0b001101001000,
0b001101010000,
0b001101100000,
0b001101101000,
0b001101110000,
0b001101110001,
0b001101111000,
0b010001101000,
0b010001101001,
0b010001101010,
0b010110001000,
};
static const uint32_t gfx11_datatype_table[32] = {
0b001000000000000000001,
0b001000000000001000000,
0b001000000000001000001,
0b001000000000011000001,
0b001000000000101100101,
0b001000000101111100101,
0b001000000100101000001,
0b001000000100101000101,
0b001000000100101100101,
0b001000001000001000001,
0b001000011000001000000,
0b001000011000001000001,
0b001000101000101000101,
0b001000111000101000100,
0b001000111000101000101,
0b001100100100101100101,
0b001100101100100100101,
0b001100101100101100100,
0b001100101100101100101,
0b001100111100101100100,
0b000000000010000001100,
0b001000000000001100101,
0b001000000000101000101,
0b001000001000001000000,
0b001000101000101000100,
0b001000111000100000100,
0b001001001001000001001,
0b001101111100101100101,
0b001100111100101100101,
0b001001111001101001100,
0b001001001001001001000,
0b001001011001001001000,
};
static const uint32_t gfx12_control_index_table[32] = {
0b000000000000000000100, /* (16|M0) */
0b000000000000000000011, /* (8|M0) */
0b000000010000000000000, /* (W) (1|M0) */
0b000000010000000000100, /* (W) (16|M0) */
0b000000010000000000011, /* (W) (8|M0) */
0b010000000000000000100, /* (16|M0) (ge)f0.0 */
0b000000000000000100100, /* (16|M16) */
0b010100000000000000100, /* (16|M0) (lt)f0.0 */
0b000000000000000000000, /* (1|M0) */
0b000010000000000000100, /* (16|M0) (sat) */
0b000000000000000010011, /* (8|M8) */
0b001100000000000000100, /* (16|M0) (gt)f0.0 */
0b000100000000000000100, /* (16|M0) (eq)f0.0 */
0b000100010000000000100, /* (W) (16|M0) (eq)f0.0 */
0b001000000000000000100, /* (16|M0) (ne)f0.0 */
0b000000000000100000100, /* (f0.0) (16|M0) */
0b010100000000000000011, /* (8|M0) (lt)f0.0 */
0b000000000000110000100, /* (f1.0) (16|M0) */
0b000000010000000000001, /* (W) (2|M0) */
0b000000000000101000100, /* (f0.1) (16|M0) */
0b000000000000111000100, /* (f1.1) (16|M0) */
0b010000010000000000100, /* (W) (16|M0) (ge)f0.0 */
0b000000000000000100011, /* (8|M16) */
0b000000000000000110011, /* (8|M24) */
0b010100010000000000100, /* (W) (16|M0) (lt)f0.0 */
0b010000000000000000011, /* (8|M0) (ge)f0.0 */
0b000100010000000000000, /* (W) (1|M0) (eq)f0.0 */
0b000010000000000000011, /* (8|M0) (sat) */
0b010100000000010000100, /* (16|M0) (lt)f1.0 */
0b000100000000000000011, /* (8|M0) (eq)f0.0 */
0b000001000000000000011, /* (8|M0) {AccWrEn} */
0b000000010000000100100, /* (W) (16|M16) */
};
static const uint32_t gfx12_datatype_table[32] = {
0b11010110100101010100, /* grf<1>:f grf:f grf:f */
0b00000110100101010100, /* grf<1>:f grf:f arf:ub */
0b00000010101101010100, /* grf<1>:f imm:f arf:ub */
0b01010110110101010100, /* grf<1>:f grf:f imm:f */
0b11010100100101010100, /* arf<1>:f grf:f grf:f */
0b11010010100101010100, /* grf<1>:f arf:f grf:f */
0b01010100110101010100, /* arf<1>:f grf:f imm:f */
0b00000000100000000000, /* arf<1>:ub arf:ub arf:ub */
0b11010000100101010100, /* arf<1>:f arf:f grf:f */
0b00101110110011001100, /* grf<1>:d grf:d imm:w */
0b10110110100011001100, /* grf<1>:d grf:d grf:d */
0b01010010110101010100, /* grf<1>:f arf:f imm:f */
0b10010110100001000100, /* grf<1>:ud grf:ud grf:ud */
0b01010000110101010100, /* arf<1>:f arf:f imm:f */
0b00110110110011001100, /* grf<1>:d grf:d imm:d */
0b00010110110001000100, /* grf<1>:ud grf:ud imm:ud */
0b00000111000101010100, /* grf<2>:f grf:f arf:ub */
0b00101100110011001100, /* arf<1>:d grf:d imm:w */
0b00000000100000100010, /* arf<1>:uw arf:uw arf:ub */
0b00000010100001000100, /* grf<1>:ud arf:ud arf:ub */
0b00100110110000101010, /* grf<1>:w grf:uw imm:uv */
0b00001110110000100010, /* grf<1>:uw grf:uw imm:uw */
0b10010111000001000100, /* grf<2>:ud grf:ud grf:ud */
0b00000110100101001100, /* grf<1>:d grf:f arf:ub */
0b10001100100011001100, /* arf<1>:d grf:d grf:uw */
0b00000110100001010100, /* grf<1>:f grf:ud arf:ub */
0b00101110110001001100, /* grf<1>:d grf:ud imm:w */
0b00000010100000100010, /* grf<1>:uw arf:uw arf:ub */
0b00000110100000110100, /* grf<1>:f grf:uw arf:ub */
0b00000110100000010100, /* grf<1>:f grf:ub arf:ub */
0b00000110100011010100, /* grf<1>:f grf:d arf:ub */
0b00000010100101010100, /* grf<1>:f arf:f arf:ub */
};
static const uint16_t gfx12_subreg_table[32] = {
0b000000000000000, /* .0 .0 .0 */
0b100000000000000, /* .0 .0 .16 */
0b001000000000000, /* .0 .0 .4 */
0b011000000000000, /* .0 .0 .12 */
0b000000010000000, /* .0 .4 .0 */
0b010000000000000, /* .0 .0 .8 */
0b101000000000000, /* .0 .0 .20 */
0b000000000001000, /* .8 .0 .0 */
0b000000100000000, /* .0 .8 .0 */
0b110000000000000, /* .0 .0 .24 */
0b111000000000000, /* .0 .0 .28 */
0b000001000000000, /* .0 .16 .0 */
0b000000000000100, /* .4 .0 .0 */
0b000001100000000, /* .0 .24 .0 */
0b000001010000000, /* .0 .20 .0 */
0b000000110000000, /* .0 .12 .0 */
0b000001110000000, /* .0 .28 .0 */
0b000000000011100, /* .28 .0 .0 */
0b000000000010000, /* .16 .0 .0 */
0b000000000001100, /* .12 .0 .0 */
0b000000000011000, /* .24 .0 .0 */
0b000000000010100, /* .20 .0 .0 */
0b000000000000010, /* .2 .0 .0 */
0b000000101000000, /* .0 .10 .0 */
0b000000001000000, /* .0 .2 .0 */
0b000000010000100, /* .4 .4 .0 */
0b000000001011100, /* .28 .2 .0 */
0b000000001000010, /* .2 .2 .0 */
0b000000110001100, /* .12 .12 .0 */
0b000000000100000, /* .0 .1 .0 */
0b000000001100000, /* .0 .3 .0 */
0b110001100000000, /* .0 .24 .24 */
};
static const uint16_t gfx12_src0_index_table[16] = {
0b010001100100, /* r<8;8,1> */
0b000000000000, /* r<0;1,0> */
0b010001100110, /* -r<8;8,1> */
0b010001100101, /* (abs)r<8;8,1> */
0b000000000010, /* -r<0;1,0> */
0b001000000000, /* r<2;1,0> */
0b001001000000, /* r<2;4,0> */
0b001101000000, /* r<4;4,0> */
0b001000100100, /* r<2;2,1> */
0b001100000000, /* r<4;1,0> */
0b001000100110, /* -r<2;2,1> */
0b001101000100, /* r<4;4,1> */
0b010001100111, /* -(abs)r<8;8,1> */
0b000100000000, /* r<1;1,0> */
0b000000000001, /* (abs)r<0;1,0> */
0b111100010000, /* r[a]<1,0> */
};
static const uint16_t gfx12_src1_index_table[16] = {
0b000100011001, /* r<8;8,1> */
0b000000000000, /* r<0;1,0> */
0b100100011001, /* -r<8;8,1> */
0b100000000000, /* -r<0;1,0> */
0b010100011001, /* (abs)r<8;8,1> */
0b100011010000, /* -r<4;4,0> */
0b000010000000, /* r<2;1,0> */
0b000010001001, /* r<2;2,1> */
0b100010001001, /* -r<2;2,1> */
0b000011010000, /* r<4;4,0> */
0b000011010001, /* r<4;4,1> */
0b000011000000, /* r<4;1,0> */
0b110100011001, /* -(abs)r<8;8,1> */
0b010000000000, /* (abs)r<0;1,0> */
0b110000000000, /* -(abs)r<0;1,0> */
0b100011010001, /* -r<4;4,1> */
};
static const uint16_t xehp_src0_index_table[16] = {
0b000100000000, /* r<1;1,0> */
0b000000000000, /* r<0;1,0> */
0b000100000010, /* -r<1;1,0> */
0b000100000001, /* (abs)r<1;1,0> */
0b000000000010, /* -r<0;1,0> */
0b001000000000, /* r<2;1,0> */
0b001001000000, /* r<2;4,0> */
0b001101000000, /* r<4;4,0> */
0b001100000000, /* r<4;1,0> */
0b000100000011, /* -(abs)r<1;1,0> */
0b000000000001, /* (abs)r<0;1,0> */
0b111100010000, /* r[a]<1,0> */
0b010001100000, /* r<8;8,0> */
0b000101000000, /* r<1;4,0> */
0b010001001000, /* r<8;4,2> */
0b001000000010, /* -r<2;1,0> */
};
static const uint16_t xehp_src1_index_table[16] = {
0b000001000000, /* r<1;1,0> */
0b000000000000, /* r<0;1,0> */
0b100001000000, /* -r<1;1,0> */
0b100000000000, /* -r<0;1,0> */
0b010001000000, /* (abs)r<1;1,0> */
0b100011010000, /* -r<4;4,0> */
0b000010000000, /* r<2;1,0> */
0b000011010000, /* r<4;4,0> */
0b000011000000, /* r<4;1,0> */
0b110001000000, /* -(abs)r<1;1,0> */
0b010000000000, /* (abs)r<0;1,0> */
0b110000000000, /* -(abs)r<0;1,0> */
0b000100011000, /* r<8;8,0> */
0b100010000000, /* -r<2;1,0> */
0b100000001001, /* -r<0;2,1> */
0b100001000100, /* -r[a]<1;1,0> */
};
/* This is actually the control index table for Cherryview (26 bits), but the
* only difference from Broadwell (24 bits) is that it has two extra 0-bits at
* the start.
*
* The low 24 bits have the same mappings on both hardware.
*/
static const uint32_t gfx8_3src_control_index_table[4] = {
0b00100000000110000000000001,
0b00000000000110000000000001,
0b00000000001000000000000001,
0b00000000001000000000100001,
};
/* This is actually the control index table for Cherryview (49 bits), but the
* only difference from Broadwell (46 bits) is that it has three extra 0-bits
* at the start.
*
* The low 44 bits have the same mappings on both hardware, and since the high
* three bits on Broadwell are zero, we can reuse Cherryview's table.
*/
static const uint64_t gfx8_3src_source_index_table[4] = {
0b0000001110010011100100111001000001111000000000000,
0b0000001110010011100100111001000001111000000000010,
0b0000001110010011100100111001000001111000000001000,
0b0000001110010011100100111001000001111000000100000,
};
static const uint64_t gfx12_3src_control_index_table[32] = {
0b000001001010010101000000000000000100, /* (16|M0) grf<1>:f :f :f :f */
0b000001001010010101000000000000000011, /* (8|M0) grf<1>:f :f :f :f */
0b000001001000010101000000000000000011, /* (8|M0) arf<1>:f :f :f :f */
0b000001001010010101000010000000000011, /* (W) (8|M0) grf<1>:f :f :f :f */
0b000001001000010101000010000000000011, /* (W) (8|M0) arf<1>:f :f :f :f */
0b000001001000010101000000000000010011, /* (8|M8) arf<1>:f :f :f :f */
0b000001001010010101000000000000010011, /* (8|M8) grf<1>:f :f :f :f */
0b000001001000010101000010000000010011, /* (W) (8|M8) arf<1>:f :f :f :f */
0b000001001010010101000010000000010011, /* (W) (8|M8) grf<1>:f :f :f :f */
0b000001001010010101000010000000000100, /* (W) (16|M0) grf<1>:f :f :f :f */
0b000001001000010101000000000000000100, /* (16|M0) arf<1>:f :f :f :f */
0b000001001010010101010000000000000100, /* (16|M0) (sat)grf<1>:f :f :f :f */
0b000001001010010101000000000000100100, /* (16|M16) grf<1>:f :f :f :f */
0b000001001000010101000010000000000100, /* (W) (16|M0) arf<1>:f :f :f :f */
0b000001001010010101000010000000000000, /* (W) (1|M0) grf<1>:f :f :f :f */
0b000001001010010101010000000000000011, /* (8|M0) (sat)grf<1>:f :f :f :f */
0b000001001000010101000010000000110011, /* (W) (8|M24) arf<1>:f :f :f :f */
0b000001001000010101000010000000100011, /* (W) (8|M16) arf<1>:f :f :f :f */
0b000001001010010101000010000000110011, /* (W) (8|M24) grf<1>:f :f :f :f */
0b000001001010010101000010000000100011, /* (W) (8|M16) grf<1>:f :f :f :f */
0b000001001000010101000000000000100011, /* (8|M16) arf<1>:f :f :f :f */
0b000001001000010101000000000000110011, /* (8|M24) arf<1>:f :f :f :f */
0b000001001010010101000000000000100011, /* (8|M16) grf<1>:f :f :f :f */
0b000001001010010101000000000000110011, /* (8|M24) grf<1>:f :f :f :f */
0b000001001000010101010000000000000100, /* (16|M0) (sat)arf<1>:f :f :f :f */
0b000001001010010101010010000000000100, /* (W) (16|M0) (sat)grf<1>:f :f :f :f */
0b000001001010010101000010000000100100, /* (W) (16|M16) grf<1>:f :f :f :f */
0b000001001010010001000010000000000000, /* (W) (1|M0) grf<1>:ud :ud :ud :ud */
0b000001001000010101000000000000100100, /* (16|M16) arf<1>:f :f :f :f */
0b000001001010010101010000000000100100, /* (16|M16) (sat)grf<1>:f :f :f :f */
0b000001001010010101000010000000000010, /* (W) (4|M0) grf<1>:f :f :f :f */
0b000001001000010101010000000000000011, /* (8|M0) (sat)arf<1>:f :f :f :f */
};
static const uint64_t xehp_3src_control_index_table[32] = {
0b0000010010100010101000000000000000100, /* (16|M0) grf<1>:f :f :f :f */
0b0000010010100010101000000000000000011, /* (8|M0) grf<1>:f :f :f :f */
0b0000010010000010101000000000000000011, /* (8|M0) arf<1>:f :f :f :f */
0b0000010010100010101000010000000000011, /* (W) (8|M0) grf<1>:f :f :f :f */
0b0000010010000010101000010000000000011, /* (W) (8|M0) arf<1>:f :f :f :f */
0b0000010010000010101000000000000010011, /* (8|M8) arf<1>:f :f :f :f */
0b0000010010100010101000000000000010011, /* (8|M8) grf<1>:f :f :f :f */
0b0000010010000010101000010000000010011, /* (W) (8|M8) arf<1>:f :f :f :f */
0b0000010010100010101000010000000010011, /* (W) (8|M8) grf<1>:f :f :f :f */
0b0000010010100010101000010000000000100, /* (W) (16|M0) grf<1>:f :f :f :f */
0b0000010010000010101000000000000000100, /* (16|M0) arf<1>:f :f :f :f */
0b0000010010100010101010000000000000100, /* (16|M0) (sat)grf<1>:f :f :f :f */
0b0000010010100010101000000000000100100, /* (16|M16) grf<1>:f :f :f :f */
0b0000010010000010101000010000000000100, /* (W) (16|M0) arf<1>:f :f :f :f */
0b0000010010100010101000010000000000000, /* (W) (1|M0) grf<1>:f :f :f :f */
0b0000010010100010101010000000000000011, /* (8|M0) (sat)grf<1>:f :f :f :f */
0b0000010010000010101000010000000100011, /* (W) (8|M16) arf<1>:f :f :f :f */
0b0000010010000010101000010000000110011, /* (W) (8|M24) arf<1>:f :f :f :f */
0b0000010010100010101000010000000100011, /* (W) (8|M16) grf<1>:f :f :f :f */
0b0000010010100010101000010000000110011, /* (W) (8|M24) grf<1>:f :f :f :f */
0b0000010010000010101000000000000110011, /* (8|M24) arf<1>:f :f :f :f */
0b0000010010000010101000000000000100011, /* (8|M16) arf<1>:f :f :f :f */
0b0000000100111110011000000000000000011, /* dpas.8x* (8|M0) grf<1>:d :d :ub :b */
0b0000000000111110011000100000000000011, /* dpas.8x* (8|M0) grf<1>:d :d :ub :ub {Atomic} */
0b0000100100111110011000100000000000011, /* dpas.8x* (8|M0) grf<1>:d :d :b :b {Atomic} */
0b0000100000111110011000100000000000011, /* dpas.8x* (8|M0) grf<1>:d :d :b :ub {Atomic} */
0b0000100100111110011000000000000000011, /* dpas.8x* (8|M0) grf<1>:d :d :b :b */
0b0000000000111110011000000000000000011, /* dpas.8x* (8|M0) grf<1>:d :d :ub :ub */
0b0000000100111110011000100000000000011, /* dpas.8x* (8|M0) grf<1>:d :d :ub :b {Atomic} */
0b0000100000111110011000000000000000011, /* dpas.8x* (8|M0) grf<1>:d :d :b :ub */
0b0000101101111010101000100000000000011, /* dpas.8x* (8|M0) grf<1>:f :f :bf :bf {Atomic} */
0b0000101101111010101000000000000000011, /* dpas.8x* (8|M0) grf<1>:f :f :bf :bf */
};
static const uint32_t gfx12_3src_source_index_table[32] = {
0b100101100001100000000, /* grf<0;0> grf<8;1> grf<0> */
0b100101100001001000010, /* arf<4;1> grf<8;1> grf<0> */
0b101101100001101000011, /* grf<8;1> grf<8;1> grf<1> */
0b100101100001101000011, /* grf<8;1> grf<8;1> grf<0> */
0b101100000000101000011, /* grf<8;1> grf<0;0> grf<1> */
0b101101100001101001011, /* -grf<8;1> grf<8;1> grf<1> */
0b101001100001101000011, /* grf<8;1> arf<8;1> grf<1> */
0b100001100001100000000, /* grf<0;0> arf<8;1> grf<0> */
0b101101100001100000000, /* grf<0;0> grf<8;1> grf<1> */
0b101101100101101000011, /* grf<8;1> grf<8;1> -grf<1> */
0b101101110001101000011, /* grf<8;1> -grf<8;1> grf<1> */
0b101100000000100000000, /* grf<0;0> grf<0;0> grf<1> */
0b100001100001101000011, /* grf<8;1> arf<8;1> grf<0> */
0b100101110001100000000, /* grf<0;0> -grf<8;1> grf<0> */
0b100101110001101000011, /* grf<8;1> -grf<8;1> grf<0> */
0b100101100001101001011, /* -grf<8;1> grf<8;1> grf<0> */
0b100100000000101000011, /* grf<8;1> grf<0;0> grf<0> */
0b100101100001100001000, /* -grf<0;0> grf<8;1> grf<0> */
0b100100000000100000000, /* grf<0;0> grf<0;0> grf<0> */
0b101101110001100000000, /* grf<0;0> -grf<8;1> grf<1> */
0b100101100101100000000, /* grf<0;0> grf<8;1> -grf<0> */
0b101001100001100000000, /* grf<0;0> arf<8;1> grf<1> */
0b100101100101101000011, /* grf<8;1> grf<8;1> -grf<0> */
0b101101100101101001011, /* -grf<8;1> grf<8;1> -grf<1> */
0b101001100001101001011, /* -grf<8;1> arf<8;1> grf<1> */
0b101101110001101001011, /* -grf<8;1> -grf<8;1> grf<1> */
0b101100010000101000011, /* grf<8;1> -grf<0;0> grf<1> */
0b101100000100101000011, /* grf<8;1> grf<0;0> -grf<1> */
0b101101100001100001000, /* -grf<0;0> grf<8;1> grf<1> */
0b101101100101100000000, /* grf<0;0> grf<8;1> -grf<1> */
0b100100000100101000011, /* grf<8;1> grf<0;0> -grf<0> */
0b101001100101101000011, /* grf<8;1> arf<8;1> -grf<1> */
};
static const uint32_t xehp_3src_source_index_table[32] = {
0b100100000001100000000, /* grf<0;0> grf<1;0> grf<0> */
0b100100000001000000001, /* arf<1;0> grf<1;0> grf<0> */
0b101100000001100000001, /* grf<1;0> grf<1;0> grf<1> */
0b100100000001100000001, /* grf<1;0> grf<1;0> grf<0> */
0b101100000000100000001, /* grf<1;0> grf<0;0> grf<1> */
0b101100000001100001001, /* -grf<1;0> grf<1;0> grf<1> */
0b101000000001100000001, /* grf<1;0> arf<1;0> grf<1> */
0b101100000001100000000, /* grf<0;0> grf<1;0> grf<1> */
0b100000000001100000000, /* grf<0;0> arf<1;0> grf<0> */
0b101100000101100000001, /* grf<1;0> grf<1;0> -grf<1> */
0b101100010001100000001, /* grf<1;0> -grf<1;0> grf<1> */
0b101100000000100000000, /* grf<0;0> grf<0;0> grf<1> */
0b100000000001100000001, /* grf<1;0> arf<1;0> grf<0> */
0b100100010001100000000, /* grf<0;0> -grf<1;0> grf<0> */
0b100100010001100000001, /* grf<1;0> -grf<1;0> grf<0> */
0b100100000001100001001, /* -grf<1;0> grf<1;0> grf<0> */
0b100100000000100000001, /* grf<1;0> grf<0;0> grf<0> */
0b100100000001100001000, /* -grf<0;0> grf<1;0> grf<0> */
0b100100000000100000000, /* grf<0;0> grf<0;0> grf<0>
* dpas.*x1 grf:d grf:[ub,b] grf:[ub,b]
* dpas.*x1 grf:f grf:bf grf:bf
*/
0b101100010001100000000, /* grf<0;0> -grf<1;0> grf<1> */
0b100100000101100000000, /* grf<0;0> grf<1;0> -grf<0> */
0b101000000001100000000, /* grf<0;0> arf<1;0> grf<1> */
0b100100000101100000001, /* grf<1;0> grf<1;0> -grf<0> */
0b101100000101100001001, /* -grf<1;0> grf<1;0> -grf<1> */
0b100100010000100000000, /* dpas.*x1 grf:d grf:[u2,s2] grf:[ub,b] */
0b100100000100100000000, /* dpas.*x1 grf:d grf:[ub,b] grf:[u2,s2] */
0b100100010100100000000, /* dpas.*x1 grf:d grf:[u2,s2] grf:[u2,s2] */
0b100100001000100000000, /* dpas.*x1 grf:d grf:[u4,s4] grf:[ub,b] */
0b100100001100100000000, /* dpas.*x1 grf:d grf:[u4,s4] grf:[u2,s2] */
0b100100000010100000000, /* dpas.*x1 grf:d grf:[ub,b] grf:[u4,s4] */
0b100100001010100000000, /* dpas.*x1 grf:d grf:[u4,s4] grf:[u4,s4] */
0b100100010010100000000, /* dpas.*x1 grf:d grf:[u2,s2] grf:[u4,s4] */
};
static const uint32_t gfx12_3src_subreg_table[32] = {
0b00000000000000000000, /* .0 .0 .0 .0 */
0b00100000000000000000, /* .0 .0 .0 .4 */
0b00000000000110000000, /* .0 .12 .0 .0 */
0b10100000000000000000, /* .0 .0 .0 .20 */
0b10000000001110000000, /* .0 .28 .0 .16 */
0b01100000000000000000, /* .0 .0 .0 .12 */
0b01000000000000000000, /* .0 .0 .0 .8 */
0b00000010000000000000, /* .0 .0 .8 .0 */
0b00000001000000000000, /* .0 .0 .4 .0 */
0b11000000000000000000, /* .0 .0 .0 .24 */
0b10000000000000000000, /* .0 .0 .0 .16 */
0b11100000000000000000, /* .0 .0 .0 .28 */
0b00000110000000000000, /* .0 .0 .24 .0 */
0b00000000000010000000, /* .0 .4 .0 .0 */
0b00000100000000000000, /* .0 .0 .16 .0 */
0b00000011000000000000, /* .0 .0 .12 .0 */
0b00000101000000000000, /* .0 .0 .20 .0 */
0b00000111000000000000, /* .0 .0 .28 .0 */
0b00000000000100000000, /* .0 .8 .0 .0 */
0b00000000001000000000, /* .0 .16 .0 .0 */
0b00000000001100000000, /* .0 .24 .0 .0 */
0b00000000001010000000, /* .0 .20 .0 .0 */
0b00000000001110000000, /* .0 .28 .0 .0 */
0b11000000001110000000, /* .0 .28 .0 .24 */
0b00100000000100000000, /* .0 .8 .0 .4 */
0b00100000000110000000, /* .0 .12 .0 .4 */
0b01000000000110000000, /* .0 .12 .0 .8 */
0b10000000001100000000, /* .0 .24 .0 .16 */
0b10000000001010000000, /* .0 .20 .0 .16 */
0b01100000000010000000, /* .0 .4 .0 .12 */
0b10100000001110000000, /* .0 .28 .0 .20 */
0b01000000000010000000, /* .0 .4 .0 .8 */
};
struct compaction_state {
const struct brw_isa_info *isa;
const uint32_t *control_index_table;
const uint32_t *datatype_table;
const uint16_t *subreg_table;
const uint16_t *src0_index_table;
const uint16_t *src1_index_table;
};
static void compaction_state_init(struct compaction_state *c,
const struct brw_isa_info *isa);
static bool
set_control_index(const struct compaction_state *c,
brw_compact_inst *dst, const brw_inst *src)
{
const struct intel_device_info *devinfo = c->isa->devinfo;
uint32_t uncompacted; /* 17b/G45; 19b/IVB+; 21b/TGL+ */
if (devinfo->ver >= 12) {
uncompacted = (brw_inst_bits(src, 95, 92) << 17) | /* 4b */
(brw_inst_bits(src, 34, 34) << 16) | /* 1b */
(brw_inst_bits(src, 33, 33) << 15) | /* 1b */
(brw_inst_bits(src, 32, 32) << 14) | /* 1b */
(brw_inst_bits(src, 31, 31) << 13) | /* 1b */
(brw_inst_bits(src, 28, 28) << 12) | /* 1b */
(brw_inst_bits(src, 27, 24) << 8) | /* 4b */
(brw_inst_bits(src, 23, 22) << 6) | /* 2b */
(brw_inst_bits(src, 21, 19) << 3) | /* 3b */
(brw_inst_bits(src, 18, 16)); /* 3b */
} else if (devinfo->ver >= 8) {
uncompacted = (brw_inst_bits(src, 33, 31) << 16) | /* 3b */
(brw_inst_bits(src, 23, 12) << 4) | /* 12b */
(brw_inst_bits(src, 10, 9) << 2) | /* 2b */
(brw_inst_bits(src, 34, 34) << 1) | /* 1b */
(brw_inst_bits(src, 8, 8)); /* 1b */
} else {
uncompacted = (brw_inst_bits(src, 31, 31) << 16) | /* 1b */
(brw_inst_bits(src, 23, 8)); /* 16b */
/* On gfx7, the flag register and subregister numbers are integrated into
* the control index.
*/
if (devinfo->ver == 7)
uncompacted |= brw_inst_bits(src, 90, 89) << 17; /* 2b */
}
for (int i = 0; i < 32; i++) {
if (c->control_index_table[i] == uncompacted) {
brw_compact_inst_set_control_index(devinfo, dst, i);
return true;
}
}
return false;
}
static bool
set_datatype_index(const struct compaction_state *c, brw_compact_inst *dst,
const brw_inst *src, bool is_immediate)
{
const struct intel_device_info *devinfo = c->isa->devinfo;
uint32_t uncompacted; /* 18b/G45+; 21b/BDW+; 20b/TGL+ */
if (devinfo->ver >= 12) {
uncompacted = (brw_inst_bits(src, 91, 88) << 15) | /* 4b */
(brw_inst_bits(src, 66, 66) << 14) | /* 1b */
(brw_inst_bits(src, 50, 50) << 13) | /* 1b */
(brw_inst_bits(src, 49, 48) << 11) | /* 2b */
(brw_inst_bits(src, 47, 47) << 10) | /* 1b */
(brw_inst_bits(src, 46, 46) << 9) | /* 1b */
(brw_inst_bits(src, 43, 40) << 5) | /* 4b */
(brw_inst_bits(src, 39, 36) << 1) | /* 4b */
(brw_inst_bits(src, 35, 35)); /* 1b */
/* Src1.RegFile overlaps with the immediate, so ignore it if an immediate
* is present
*/
if (!is_immediate) {
uncompacted |= brw_inst_bits(src, 98, 98) << 19; /* 1b */
}
} else if (devinfo->ver >= 8) {
uncompacted = (brw_inst_bits(src, 63, 61) << 18) | /* 3b */
(brw_inst_bits(src, 94, 89) << 12) | /* 6b */
(brw_inst_bits(src, 46, 35)); /* 12b */
} else {
uncompacted = (brw_inst_bits(src, 63, 61) << 15) | /* 3b */
(brw_inst_bits(src, 46, 32)); /* 15b */
}
for (int i = 0; i < 32; i++) {
if (c->datatype_table[i] == uncompacted) {
brw_compact_inst_set_datatype_index(devinfo, dst, i);
return true;
}
}
return false;
}
static bool
set_subreg_index(const struct compaction_state *c, brw_compact_inst *dst,
const brw_inst *src, bool is_immediate)
{
const struct intel_device_info *devinfo = c->isa->devinfo;
uint16_t uncompacted; /* 15b */
if (devinfo->ver >= 12) {
uncompacted = (brw_inst_bits(src, 55, 51) << 0) | /* 5b */
(brw_inst_bits(src, 71, 67) << 5); /* 5b */
if (!is_immediate)
uncompacted |= brw_inst_bits(src, 103, 99) << 10; /* 5b */
} else {
uncompacted = (brw_inst_bits(src, 52, 48) << 0) | /* 5b */
(brw_inst_bits(src, 68, 64) << 5); /* 5b */
if (!is_immediate)
uncompacted |= brw_inst_bits(src, 100, 96) << 10; /* 5b */
}
for (int i = 0; i < 32; i++) {
if (c->subreg_table[i] == uncompacted) {
brw_compact_inst_set_subreg_index(devinfo, dst, i);
return true;
}
}
return false;
}
static bool
set_src0_index(const struct compaction_state *c, brw_compact_inst *dst,
const brw_inst *src)
{
const struct intel_device_info *devinfo = c->isa->devinfo;
uint16_t uncompacted; /* 12b */
int table_len;
if (devinfo->ver >= 12) {
table_len = ARRAY_SIZE(gfx12_src0_index_table);
uncompacted = (brw_inst_bits(src, 87, 84) << 8) | /* 4b */
(brw_inst_bits(src, 83, 81) << 5) | /* 3b */
(brw_inst_bits(src, 80, 80) << 4) | /* 1b */
(brw_inst_bits(src, 65, 64) << 2) | /* 2b */
(brw_inst_bits(src, 45, 44)); /* 2b */
} else {
table_len = ARRAY_SIZE(gfx8_src_index_table);
uncompacted = brw_inst_bits(src, 88, 77); /* 12b */
}
for (int i = 0; i < table_len; i++) {
if (c->src0_index_table[i] == uncompacted) {
brw_compact_inst_set_src0_index(devinfo, dst, i);
return true;
}
}
return false;
}
static bool
set_src1_index(const struct compaction_state *c, brw_compact_inst *dst,
const brw_inst *src, bool is_immediate, unsigned imm)
{
const struct intel_device_info *devinfo = c->isa->devinfo;
if (is_immediate) {
if (devinfo->ver >= 12) {
/* src1 index takes the low 4 bits of the 12-bit compacted value */
brw_compact_inst_set_src1_index(devinfo, dst, imm & 0xf);
} else {
/* src1 index takes the high 5 bits of the 13-bit compacted value */
brw_compact_inst_set_src1_index(devinfo, dst, imm >> 8);
}
return true;
} else {
uint16_t uncompacted; /* 12b */
int table_len;
if (devinfo->ver >= 12) {
table_len = ARRAY_SIZE(gfx12_src0_index_table);
uncompacted = (brw_inst_bits(src, 121, 120) << 10) | /* 2b */
(brw_inst_bits(src, 119, 116) << 6) | /* 4b */
(brw_inst_bits(src, 115, 113) << 3) | /* 3b */
(brw_inst_bits(src, 112, 112) << 2) | /* 1b */
(brw_inst_bits(src, 97, 96)); /* 2b */
} else {
table_len = ARRAY_SIZE(gfx8_src_index_table);
uncompacted = brw_inst_bits(src, 120, 109); /* 12b */
}
for (int i = 0; i < table_len; i++) {
if (c->src1_index_table[i] == uncompacted) {
brw_compact_inst_set_src1_index(devinfo, dst, i);
return true;
}
}
}
return false;
}
static bool
set_3src_control_index(const struct intel_device_info *devinfo,
brw_compact_inst *dst, const brw_inst *src)
{
assert(devinfo->ver >= 8);
if (devinfo->verx10 >= 125) {
uint64_t uncompacted = /* 37b/XeHP+ */
(brw_inst_bits(src, 95, 92) << 33) | /* 4b */
(brw_inst_bits(src, 90, 88) << 30) | /* 3b */
(brw_inst_bits(src, 82, 80) << 27) | /* 3b */
(brw_inst_bits(src, 50, 50) << 26) | /* 1b */
(brw_inst_bits(src, 49, 48) << 24) | /* 2b */
(brw_inst_bits(src, 42, 40) << 21) | /* 3b */
(brw_inst_bits(src, 39, 39) << 20) | /* 1b */
(brw_inst_bits(src, 38, 36) << 17) | /* 3b */
(brw_inst_bits(src, 34, 34) << 16) | /* 1b */
(brw_inst_bits(src, 33, 33) << 15) | /* 1b */
(brw_inst_bits(src, 32, 32) << 14) | /* 1b */
(brw_inst_bits(src, 31, 31) << 13) | /* 1b */
(brw_inst_bits(src, 28, 28) << 12) | /* 1b */
(brw_inst_bits(src, 27, 24) << 8) | /* 4b */
(brw_inst_bits(src, 23, 23) << 7) | /* 1b */
(brw_inst_bits(src, 22, 22) << 6) | /* 1b */
(brw_inst_bits(src, 21, 19) << 3) | /* 3b */
(brw_inst_bits(src, 18, 16)); /* 3b */
for (unsigned i = 0; i < ARRAY_SIZE(xehp_3src_control_index_table); i++) {
if (xehp_3src_control_index_table[i] == uncompacted) {
brw_compact_inst_set_3src_control_index(devinfo, dst, i);
return true;
}
}
} else if (devinfo->ver >= 12) {
uint64_t uncompacted = /* 36b/TGL+ */
(brw_inst_bits(src, 95, 92) << 32) | /* 4b */
(brw_inst_bits(src, 90, 88) << 29) | /* 3b */
(brw_inst_bits(src, 82, 80) << 26) | /* 3b */
(brw_inst_bits(src, 50, 50) << 25) | /* 1b */
(brw_inst_bits(src, 48, 48) << 24) | /* 1b */
(brw_inst_bits(src, 42, 40) << 21) | /* 3b */
(brw_inst_bits(src, 39, 39) << 20) | /* 1b */
(brw_inst_bits(src, 38, 36) << 17) | /* 3b */
(brw_inst_bits(src, 34, 34) << 16) | /* 1b */
(brw_inst_bits(src, 33, 33) << 15) | /* 1b */
(brw_inst_bits(src, 32, 32) << 14) | /* 1b */
(brw_inst_bits(src, 31, 31) << 13) | /* 1b */
(brw_inst_bits(src, 28, 28) << 12) | /* 1b */
(brw_inst_bits(src, 27, 24) << 8) | /* 4b */
(brw_inst_bits(src, 23, 23) << 7) | /* 1b */
(brw_inst_bits(src, 22, 22) << 6) | /* 1b */
(brw_inst_bits(src, 21, 19) << 3) | /* 3b */
(brw_inst_bits(src, 18, 16)); /* 3b */
for (unsigned i = 0; i < ARRAY_SIZE(gfx12_3src_control_index_table); i++) {
if (gfx12_3src_control_index_table[i] == uncompacted) {
brw_compact_inst_set_3src_control_index(devinfo, dst, i);
return true;
}
}
} else {
uint32_t uncompacted = /* 24b/BDW; 26b/CHV/SKL+ */
(brw_inst_bits(src, 34, 32) << 21) | /* 3b */
(brw_inst_bits(src, 28, 8)); /* 21b */
if (devinfo->ver >= 9 || devinfo->platform == INTEL_PLATFORM_CHV) {
uncompacted |=
brw_inst_bits(src, 36, 35) << 24; /* 2b */
}
for (unsigned i = 0; i < ARRAY_SIZE(gfx8_3src_control_index_table); i++) {
if (gfx8_3src_control_index_table[i] == uncompacted) {
brw_compact_inst_set_3src_control_index(devinfo, dst, i);
return true;
}
}
}
return false;
}
static bool
set_3src_source_index(const struct intel_device_info *devinfo,
brw_compact_inst *dst, const brw_inst *src)
{
assert(devinfo->ver >= 8);
if (devinfo->ver >= 12) {
uint32_t uncompacted = /* 21b/TGL+ */
(brw_inst_bits(src, 114, 114) << 20) | /* 1b */
(brw_inst_bits(src, 113, 112) << 18) | /* 2b */
(brw_inst_bits(src, 98, 98) << 17) | /* 1b */
(brw_inst_bits(src, 97, 96) << 15) | /* 2b */
(brw_inst_bits(src, 91, 91) << 14) | /* 1b */
(brw_inst_bits(src, 87, 86) << 12) | /* 2b */
(brw_inst_bits(src, 85, 84) << 10) | /* 2b */
(brw_inst_bits(src, 83, 83) << 9) | /* 1b */
(brw_inst_bits(src, 66, 66) << 8) | /* 1b */
(brw_inst_bits(src, 65, 64) << 6) | /* 2b */
(brw_inst_bits(src, 47, 47) << 5) | /* 1b */
(brw_inst_bits(src, 46, 46) << 4) | /* 1b */
(brw_inst_bits(src, 45, 44) << 2) | /* 2b */
(brw_inst_bits(src, 43, 43) << 1) | /* 1b */
(brw_inst_bits(src, 35, 35)); /* 1b */
const uint32_t *three_src_source_index_table =
devinfo->verx10 >= 125 ?
xehp_3src_source_index_table : gfx12_3src_source_index_table;
const uint32_t three_src_source_index_table_len =
devinfo->verx10 >= 125 ? ARRAY_SIZE(xehp_3src_source_index_table) :
ARRAY_SIZE(gfx12_3src_source_index_table);
for (unsigned i = 0; i < three_src_source_index_table_len; i++) {
if (three_src_source_index_table[i] == uncompacted) {
brw_compact_inst_set_3src_source_index(devinfo, dst, i);
return true;
}
}
} else {
uint64_t uncompacted = /* 46b/BDW; 49b/CHV/SKL+ */
(brw_inst_bits(src, 83, 83) << 43) | /* 1b */
(brw_inst_bits(src, 114, 107) << 35) | /* 8b */
(brw_inst_bits(src, 93, 86) << 27) | /* 8b */
(brw_inst_bits(src, 72, 65) << 19) | /* 8b */
(brw_inst_bits(src, 55, 37)); /* 19b */
if (devinfo->ver >= 9 || devinfo->platform == INTEL_PLATFORM_CHV) {
uncompacted |=
(brw_inst_bits(src, 126, 125) << 47) | /* 2b */
(brw_inst_bits(src, 105, 104) << 45) | /* 2b */
(brw_inst_bits(src, 84, 84) << 44); /* 1b */
} else {
uncompacted |=
(brw_inst_bits(src, 125, 125) << 45) | /* 1b */
(brw_inst_bits(src, 104, 104) << 44); /* 1b */
}
for (unsigned i = 0; i < ARRAY_SIZE(gfx8_3src_source_index_table); i++) {
if (gfx8_3src_source_index_table[i] == uncompacted) {
brw_compact_inst_set_3src_source_index(devinfo, dst, i);
return true;
}
}
}
return false;
}
static bool
set_3src_subreg_index(const struct intel_device_info *devinfo,
brw_compact_inst *dst, const brw_inst *src)
{
assert(devinfo->ver >= 12);
uint32_t uncompacted = /* 20b/TGL+ */
(brw_inst_bits(src, 119, 115) << 15) | /* 5b */
(brw_inst_bits(src, 103, 99) << 10) | /* 5b */
(brw_inst_bits(src, 71, 67) << 5) | /* 5b */
(brw_inst_bits(src, 55, 51)); /* 5b */
for (unsigned i = 0; i < ARRAY_SIZE(gfx12_3src_subreg_table); i++) {
if (gfx12_3src_subreg_table[i] == uncompacted) {
brw_compact_inst_set_3src_subreg_index(devinfo, dst, i);
return true;
}
}
return false;
}
static bool
has_unmapped_bits(const struct brw_isa_info *isa, const brw_inst *src)
{
const struct intel_device_info *devinfo = isa->devinfo;
/* EOT can only be mapped on a send if the src1 is an immediate */
if ((brw_inst_opcode(isa, src) == BRW_OPCODE_SENDC ||
brw_inst_opcode(isa, src) == BRW_OPCODE_SEND) &&
brw_inst_eot(devinfo, src))
return true;
/* Check for instruction bits that don't map to any of the fields of the
* compacted instruction. The instruction cannot be compacted if any of
* them are set. They overlap with:
* - NibCtrl (bit 47 on Gfx7, bit 11 on Gfx8)
* - Dst.AddrImm[9] (bit 47 on Gfx8)
* - Src0.AddrImm[9] (bit 95 on Gfx8)
* - Imm64[27:31] (bits 91-95 on Gfx7, bit 95 on Gfx8)
* - UIP[31] (bit 95 on Gfx8)
*/
if (devinfo->ver >= 12) {
assert(!brw_inst_bits(src, 7, 7));
return false;
} else if (devinfo->ver >= 8) {
assert(!brw_inst_bits(src, 7, 7));
return brw_inst_bits(src, 95, 95) ||
brw_inst_bits(src, 47, 47) ||
brw_inst_bits(src, 11, 11);
} else {
assert(!brw_inst_bits(src, 7, 7) &&
!(devinfo->ver < 7 && brw_inst_bits(src, 90, 90)));
return brw_inst_bits(src, 95, 91) ||
brw_inst_bits(src, 47, 47);
}
}
static bool
has_3src_unmapped_bits(const struct intel_device_info *devinfo,
const brw_inst *src)
{
/* Check for three-source instruction bits that don't map to any of the
* fields of the compacted instruction. All of them seem to be reserved
* bits currently.
*/
if (devinfo->ver >= 12) {
assert(!brw_inst_bits(src, 7, 7));
} else if (devinfo->ver >= 9 || devinfo->platform == INTEL_PLATFORM_CHV) {
assert(!brw_inst_bits(src, 127, 127) &&
!brw_inst_bits(src, 7, 7));
} else {
assert(devinfo->ver >= 8);
assert(!brw_inst_bits(src, 127, 126) &&
!brw_inst_bits(src, 105, 105) &&
!brw_inst_bits(src, 84, 84) &&
!brw_inst_bits(src, 7, 7));
/* Src1Type and Src2Type, used for mixed-precision floating point */
if (brw_inst_bits(src, 36, 35))
return true;
}
return false;
}
static bool
brw_try_compact_3src_instruction(const struct intel_device_info *devinfo,
brw_compact_inst *dst, const brw_inst *src)
{
assert(devinfo->ver >= 8);
if (has_3src_unmapped_bits(devinfo, src))
return false;
#define compact(field) \
brw_compact_inst_set_3src_##field(devinfo, dst, brw_inst_3src_##field(devinfo, src))
#define compact_a16(field) \
brw_compact_inst_set_3src_##field(devinfo, dst, brw_inst_3src_a16_##field(devinfo, src))
compact(hw_opcode);
if (!set_3src_control_index(devinfo, dst, src))
return false;
if (!set_3src_source_index(devinfo, dst, src))
return false;
if (devinfo->ver >= 12) {
if (!set_3src_subreg_index(devinfo, dst, src))
return false;
compact(swsb);
compact(debug_control);
compact(dst_reg_nr);
compact(src0_reg_nr);
compact(src1_reg_nr);
compact(src2_reg_nr);
} else {
compact(dst_reg_nr);
compact_a16(src0_rep_ctrl);
compact(debug_control);
compact(saturate);
compact_a16(src1_rep_ctrl);
compact_a16(src2_rep_ctrl);
compact(src0_reg_nr);
compact(src1_reg_nr);
compact(src2_reg_nr);
compact_a16(src0_subreg_nr);
compact_a16(src1_subreg_nr);
compact_a16(src2_subreg_nr);
}
brw_compact_inst_set_3src_cmpt_control(devinfo, dst, true);
#undef compact
#undef compact_a16
return true;
}
/* On SNB through ICL, compacted instructions have 12-bits for immediate
* sources, and a 13th bit that's replicated through the high 20 bits.
*
* Effectively this means we get 12-bit integers, 0.0f, and some limited uses
* of packed vectors as compactable immediates.
*
* On TGL+, the high 12-bits of floating-point values (:f and :hf) are encoded
* rather than the low 12-bits. For signed integer the 12th bit is replicated,
* while for unsigned integers it is not.
*
* Returns the compacted immediate, or -1 if immediate cannot be compacted
*/
static int
compact_immediate(const struct intel_device_info *devinfo,
enum brw_reg_type type, unsigned imm)
{
if (devinfo->ver >= 12) {
/* 16-bit immediates need to be replicated through the 32-bit immediate
* field
*/
switch (type) {
case BRW_REGISTER_TYPE_W:
case BRW_REGISTER_TYPE_UW:
case BRW_REGISTER_TYPE_HF:
if ((imm >> 16) != (imm & 0xffff))
return -1;
break;
default:
break;
}
switch (type) {
case BRW_REGISTER_TYPE_F:
/* We get the high 12-bits as-is; rest must be zero */
if ((imm & 0xfffff) == 0)
return (imm >> 20) & 0xfff;
break;
case BRW_REGISTER_TYPE_HF:
/* We get the high 12-bits as-is; rest must be zero */
if ((imm & 0xf) == 0)
return (imm >> 4) & 0xfff;
break;
case BRW_REGISTER_TYPE_UD:
case BRW_REGISTER_TYPE_VF:
case BRW_REGISTER_TYPE_UV:
case BRW_REGISTER_TYPE_V:
/* We get the low 12-bits as-is; rest must be zero */
if ((imm & 0xfffff000) == 0)
return imm & 0xfff;
break;
case BRW_REGISTER_TYPE_UW:
/* We get the low 12-bits as-is; rest must be zero */
if ((imm & 0xf000) == 0)
return imm & 0xfff;
break;
case BRW_REGISTER_TYPE_D:
/* We get the low 11-bits as-is; 12th is replicated */
if (((int)imm >> 11) == 0 || ((int)imm >> 11) == -1)
return imm & 0xfff;
break;
case BRW_REGISTER_TYPE_W:
/* We get the low 11-bits as-is; 12th is replicated */
if (((short)imm >> 11) == 0 || ((short)imm >> 11) == -1)
return imm & 0xfff;
break;
case BRW_REGISTER_TYPE_NF:
case BRW_REGISTER_TYPE_DF:
case BRW_REGISTER_TYPE_Q:
case BRW_REGISTER_TYPE_UQ:
case BRW_REGISTER_TYPE_B:
case BRW_REGISTER_TYPE_UB:
return -1;
}
} else {
/* We get the low 12 bits as-is; 13th is replicated */
if (((int)imm >> 12) == 0 || ((int)imm >> 12 == -1)) {
return imm & 0x1fff;
}
}
return -1;
}
static int
uncompact_immediate(const struct intel_device_info *devinfo,
enum brw_reg_type type, unsigned compact_imm)
{
if (devinfo->ver >= 12) {
switch (type) {
case BRW_REGISTER_TYPE_F:
return compact_imm << 20;
case BRW_REGISTER_TYPE_HF:
return (compact_imm << 20) | (compact_imm << 4);
case BRW_REGISTER_TYPE_UD:
case BRW_REGISTER_TYPE_VF:
case BRW_REGISTER_TYPE_UV:
case BRW_REGISTER_TYPE_V:
return compact_imm;
case BRW_REGISTER_TYPE_UW:
/* Replicate */
return compact_imm << 16 | compact_imm;
case BRW_REGISTER_TYPE_D:
/* Extend the 12th bit into the high 20 bits */
return (int)(compact_imm << 20) >> 20;
case BRW_REGISTER_TYPE_W:
/* Extend the 12th bit into the high 4 bits and replicate */
return ((int)(compact_imm << 20) >> 4) |
((unsigned short)((short)(compact_imm << 4) >> 4));
case BRW_REGISTER_TYPE_NF:
case BRW_REGISTER_TYPE_DF:
case BRW_REGISTER_TYPE_Q:
case BRW_REGISTER_TYPE_UQ:
case BRW_REGISTER_TYPE_B:
case BRW_REGISTER_TYPE_UB:
unreachable("not reached");
}
} else {
/* Replicate the 13th bit into the high 19 bits */
return (int)(compact_imm << 19) >> 19;
}
unreachable("not reached");
}
static bool
has_immediate(const struct intel_device_info *devinfo, const brw_inst *inst,
enum brw_reg_type *type)
{
if (brw_inst_src0_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE) {
*type = brw_inst_src0_type(devinfo, inst);
return *type != INVALID_REG_TYPE;
} else if (brw_inst_src1_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE) {
*type = brw_inst_src1_type(devinfo, inst);
return *type != INVALID_REG_TYPE;
}
return false;
}
/**
* Applies some small changes to instruction types to increase chances of
* compaction.
*/
static brw_inst
precompact(const struct brw_isa_info *isa, brw_inst inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
/* In XeHP the compaction tables removed the entries for source regions
* <8;8,1> giving preference to <1;1,0> as the way to indicate
* sequential elements, so convert to those before compacting.
*/
if (devinfo->verx10 >= 125) {
if (brw_inst_src0_reg_file(devinfo, &inst) == BRW_GENERAL_REGISTER_FILE &&
brw_inst_src0_vstride(devinfo, &inst) > BRW_VERTICAL_STRIDE_1 &&
brw_inst_src0_vstride(devinfo, &inst) == (brw_inst_src0_width(devinfo, &inst) + 1) &&
brw_inst_src0_hstride(devinfo, &inst) == BRW_HORIZONTAL_STRIDE_1) {
brw_inst_set_src0_vstride(devinfo, &inst, BRW_VERTICAL_STRIDE_1);
brw_inst_set_src0_width(devinfo, &inst, BRW_WIDTH_1);
brw_inst_set_src0_hstride(devinfo, &inst, BRW_HORIZONTAL_STRIDE_0);
}
if (brw_inst_src1_reg_file(devinfo, &inst) == BRW_GENERAL_REGISTER_FILE &&
brw_inst_src1_vstride(devinfo, &inst) > BRW_VERTICAL_STRIDE_1 &&
brw_inst_src1_vstride(devinfo, &inst) == (brw_inst_src1_width(devinfo, &inst) + 1) &&
brw_inst_src1_hstride(devinfo, &inst) == BRW_HORIZONTAL_STRIDE_1) {
brw_inst_set_src1_vstride(devinfo, &inst, BRW_VERTICAL_STRIDE_1);
brw_inst_set_src1_width(devinfo, &inst, BRW_WIDTH_1);
brw_inst_set_src1_hstride(devinfo, &inst, BRW_HORIZONTAL_STRIDE_0);
}
}
if (brw_inst_src0_reg_file(devinfo, &inst) != BRW_IMMEDIATE_VALUE)
return inst;
/* The Bspec's section titled "Non-present Operands" claims that if src0
* is an immediate that src1's type must be the same as that of src0.
*
* The SNB+ DataTypeIndex instruction compaction tables contain mappings
* that do not follow this rule. E.g., from the IVB/HSW table:
*
* DataTypeIndex 18-Bit Mapping Mapped Meaning
* 3 001000001011111101 r:f | i:vf | a:ud | <1> | dir |
*
* And from the SNB table:
*
* DataTypeIndex 18-Bit Mapping Mapped Meaning
* 8 001000000111101100 a:w | i:w | a:ud | <1> | dir |
*
* Neither of these cause warnings from the simulator when used,
* compacted or otherwise. In fact, all compaction mappings that have an
* immediate in src0 use a:ud for src1.
*
* The GM45 instruction compaction tables do not contain mapped meanings
* so it's not clear whether it has the restriction. We'll assume it was
* lifted on SNB. (FINISHME: decode the GM45 tables and check.)
*
* Don't do any of this for 64-bit immediates, since the src1 fields
* overlap with the immediate and setting them would overwrite the
* immediate we set.
*/
if (devinfo->ver >= 6 &&
!(devinfo->platform == INTEL_PLATFORM_HSW &&
brw_inst_opcode(isa, &inst) == BRW_OPCODE_DIM) &&
!(devinfo->ver >= 8 &&
(brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_DF ||
brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_UQ ||
brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_Q))) {
brw_inst_set_src1_reg_hw_type(devinfo, &inst, 0);
}
/* Compacted instructions only have 12-bits (plus 1 for the other 20)
* for immediate values. Presumably the hardware engineers realized
* that the only useful floating-point value that could be represented
* in this format is 0.0, which can also be represented as a VF-typed
* immediate, so they gave us the previously mentioned mapping on IVB+.
*
* Strangely, we do have a mapping for imm:f in src1, so we don't need
* to do this there.
*
* If we see a 0.0:F, change the type to VF so that it can be compacted.
*
* Compaction of floating-point immediates is improved on Gfx12, thus
* removing the need for this.
*/
if (devinfo->ver < 12 &&
brw_inst_imm_ud(devinfo, &inst) == 0x0 &&
brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_F &&
brw_inst_dst_type(devinfo, &inst) == BRW_REGISTER_TYPE_F &&
brw_inst_dst_hstride(devinfo, &inst) == BRW_HORIZONTAL_STRIDE_1) {
enum brw_reg_file file = brw_inst_src0_reg_file(devinfo, &inst);
brw_inst_set_src0_file_type(devinfo, &inst, file, BRW_REGISTER_TYPE_VF);
}
/* There are no mappings for dst:d | i:d, so if the immediate is suitable
* set the types to :UD so the instruction can be compacted.
*
* FINISHME: Use dst:f | imm:f on Gfx12
*/
if (devinfo->ver < 12 &&
compact_immediate(devinfo, BRW_REGISTER_TYPE_D,
brw_inst_imm_ud(devinfo, &inst)) != -1 &&
brw_inst_cond_modifier(devinfo, &inst) == BRW_CONDITIONAL_NONE &&
brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_D &&
brw_inst_dst_type(devinfo, &inst) == BRW_REGISTER_TYPE_D) {
enum brw_reg_file src_file = brw_inst_src0_reg_file(devinfo, &inst);
enum brw_reg_file dst_file = brw_inst_dst_reg_file(devinfo, &inst);
brw_inst_set_src0_file_type(devinfo, &inst, src_file, BRW_REGISTER_TYPE_UD);
brw_inst_set_dst_file_type(devinfo, &inst, dst_file, BRW_REGISTER_TYPE_UD);
}
return inst;
}
/**
* Tries to compact instruction src into dst.
*
* It doesn't modify dst unless src is compactable, which is relied on by
* brw_compact_instructions().
*/
static bool
try_compact_instruction(const struct compaction_state *c,
brw_compact_inst *dst, const brw_inst *src)
{
const struct intel_device_info *devinfo = c->isa->devinfo;
brw_compact_inst temp;
assert(brw_inst_cmpt_control(devinfo, src) == 0);
if (is_3src(c->isa, brw_inst_opcode(c->isa, src))) {
if (devinfo->ver >= 8) {
memset(&temp, 0, sizeof(temp));
if (brw_try_compact_3src_instruction(devinfo, &temp, src)) {
*dst = temp;
return true;
} else {
return false;
}
} else {
return false;
}
}
enum brw_reg_type type;
bool is_immediate = has_immediate(devinfo, src, &type);
unsigned compacted_imm = 0;
if (is_immediate) {
/* Instructions with immediates cannot be compacted on Gen < 6 */
if (devinfo->ver < 6)
return false;
compacted_imm = compact_immediate(devinfo, type,
brw_inst_imm_ud(devinfo, src));
if (compacted_imm == -1)
return false;
}
if (has_unmapped_bits(c->isa, src))
return false;
memset(&temp, 0, sizeof(temp));
#define compact(field) \
brw_compact_inst_set_##field(devinfo, &temp, brw_inst_##field(devinfo, src))
#define compact_reg(field) \
brw_compact_inst_set_##field##_reg_nr(devinfo, &temp, \
brw_inst_##field##_da_reg_nr(devinfo, src))
compact(hw_opcode);
compact(debug_control);
if (!set_control_index(c, &temp, src))
return false;
if (!set_datatype_index(c, &temp, src, is_immediate))
return false;
if (!set_subreg_index(c, &temp, src, is_immediate))
return false;
if (!set_src0_index(c, &temp, src))
return false;
if (!set_src1_index(c, &temp, src, is_immediate, compacted_imm))
return false;
if (devinfo->ver >= 12) {
compact(swsb);
compact_reg(dst);
compact_reg(src0);
if (is_immediate) {
/* src1 reg takes the high 8 bits (of the 12-bit compacted value) */
brw_compact_inst_set_src1_reg_nr(devinfo, &temp, compacted_imm >> 4);
} else {
compact_reg(src1);
}
} else {
if (devinfo->ver >= 6) {
compact(acc_wr_control);
} else {
compact(mask_control_ex);
}
if (devinfo->ver <= 6)
compact(flag_subreg_nr);
compact(cond_modifier);
compact_reg(dst);
compact_reg(src0);
if (is_immediate) {
/* src1 reg takes the low 8 bits (of the 13-bit compacted value) */
brw_compact_inst_set_src1_reg_nr(devinfo, &temp, compacted_imm & 0xff);
} else {
compact_reg(src1);
}
}
brw_compact_inst_set_cmpt_control(devinfo, &temp, true);
#undef compact
#undef compact_reg
*dst = temp;
return true;
}
bool
brw_try_compact_instruction(const struct brw_isa_info *isa,
brw_compact_inst *dst, const brw_inst *src)
{
struct compaction_state c;
compaction_state_init(&c, isa);
return try_compact_instruction(&c, dst, src);
}
static void
set_uncompacted_control(const struct compaction_state *c, brw_inst *dst,
brw_compact_inst *src)
{
const struct intel_device_info *devinfo = c->isa->devinfo;
uint32_t uncompacted =
c->control_index_table[brw_compact_inst_control_index(devinfo, src)];
if (devinfo->ver >= 12) {
brw_inst_set_bits(dst, 95, 92, (uncompacted >> 17));
brw_inst_set_bits(dst, 34, 34, (uncompacted >> 16) & 0x1);
brw_inst_set_bits(dst, 33, 33, (uncompacted >> 15) & 0x1);
brw_inst_set_bits(dst, 32, 32, (uncompacted >> 14) & 0x1);
brw_inst_set_bits(dst, 31, 31, (uncompacted >> 13) & 0x1);
brw_inst_set_bits(dst, 28, 28, (uncompacted >> 12) & 0x1);
brw_inst_set_bits(dst, 27, 24, (uncompacted >> 8) & 0xf);
brw_inst_set_bits(dst, 23, 22, (uncompacted >> 6) & 0x3);
brw_inst_set_bits(dst, 21, 19, (uncompacted >> 3) & 0x7);
brw_inst_set_bits(dst, 18, 16, (uncompacted >> 0) & 0x7);
} else if (devinfo->ver >= 8) {
brw_inst_set_bits(dst, 33, 31, (uncompacted >> 16));
brw_inst_set_bits(dst, 23, 12, (uncompacted >> 4) & 0xfff);
brw_inst_set_bits(dst, 10, 9, (uncompacted >> 2) & 0x3);
brw_inst_set_bits(dst, 34, 34, (uncompacted >> 1) & 0x1);
brw_inst_set_bits(dst, 8, 8, (uncompacted >> 0) & 0x1);
} else {
brw_inst_set_bits(dst, 31, 31, (uncompacted >> 16) & 0x1);
brw_inst_set_bits(dst, 23, 8, (uncompacted & 0xffff));
if (devinfo->ver == 7)
brw_inst_set_bits(dst, 90, 89, uncompacted >> 17);
}
}
static void
set_uncompacted_datatype(const struct compaction_state *c, brw_inst *dst,
brw_compact_inst *src)
{
const struct intel_device_info *devinfo = c->isa->devinfo;
uint32_t uncompacted =
c->datatype_table[brw_compact_inst_datatype_index(devinfo, src)];
if (devinfo->ver >= 12) {
brw_inst_set_bits(dst, 98, 98, (uncompacted >> 19));
brw_inst_set_bits(dst, 91, 88, (uncompacted >> 15) & 0xf);
brw_inst_set_bits(dst, 66, 66, (uncompacted >> 14) & 0x1);
brw_inst_set_bits(dst, 50, 50, (uncompacted >> 13) & 0x1);
brw_inst_set_bits(dst, 49, 48, (uncompacted >> 11) & 0x3);
brw_inst_set_bits(dst, 47, 47, (uncompacted >> 10) & 0x1);
brw_inst_set_bits(dst, 46, 46, (uncompacted >> 9) & 0x1);
brw_inst_set_bits(dst, 43, 40, (uncompacted >> 5) & 0xf);
brw_inst_set_bits(dst, 39, 36, (uncompacted >> 1) & 0xf);
brw_inst_set_bits(dst, 35, 35, (uncompacted >> 0) & 0x1);
} else if (devinfo->ver >= 8) {
brw_inst_set_bits(dst, 63, 61, (uncompacted >> 18));
brw_inst_set_bits(dst, 94, 89, (uncompacted >> 12) & 0x3f);
brw_inst_set_bits(dst, 46, 35, (uncompacted >> 0) & 0xfff);
} else {
brw_inst_set_bits(dst, 63, 61, (uncompacted >> 15));
brw_inst_set_bits(dst, 46, 32, (uncompacted & 0x7fff));
}
}
static void
set_uncompacted_subreg(const struct compaction_state *c, brw_inst *dst,
brw_compact_inst *src)
{
const struct intel_device_info *devinfo = c->isa->devinfo;
uint16_t uncompacted =
c->subreg_table[brw_compact_inst_subreg_index(devinfo, src)];
if (devinfo->ver >= 12) {
brw_inst_set_bits(dst, 103, 99, (uncompacted >> 10));
brw_inst_set_bits(dst, 71, 67, (uncompacted >> 5) & 0x1f);
brw_inst_set_bits(dst, 55, 51, (uncompacted >> 0) & 0x1f);
} else {
brw_inst_set_bits(dst, 100, 96, (uncompacted >> 10));
brw_inst_set_bits(dst, 68, 64, (uncompacted >> 5) & 0x1f);
brw_inst_set_bits(dst, 52, 48, (uncompacted >> 0) & 0x1f);
}
}
static void
set_uncompacted_src0(const struct compaction_state *c, brw_inst *dst,
brw_compact_inst *src)
{
const struct intel_device_info *devinfo = c->isa->devinfo;
uint32_t compacted = brw_compact_inst_src0_index(devinfo, src);
uint16_t uncompacted = c->src0_index_table[compacted];
if (devinfo->ver >= 12) {
brw_inst_set_bits(dst, 87, 84, (uncompacted >> 8));
brw_inst_set_bits(dst, 83, 81, (uncompacted >> 5) & 0x7);
brw_inst_set_bits(dst, 80, 80, (uncompacted >> 4) & 0x1);
brw_inst_set_bits(dst, 65, 64, (uncompacted >> 2) & 0x3);
brw_inst_set_bits(dst, 45, 44, (uncompacted >> 0) & 0x3);
} else {
brw_inst_set_bits(dst, 88, 77, uncompacted);
}
}
static void
set_uncompacted_src1(const struct compaction_state *c, brw_inst *dst,
brw_compact_inst *src)
{
const struct intel_device_info *devinfo = c->isa->devinfo;
uint16_t uncompacted =
c->src1_index_table[brw_compact_inst_src1_index(devinfo, src)];
if (devinfo->ver >= 12) {
brw_inst_set_bits(dst, 121, 120, (uncompacted >> 10));
brw_inst_set_bits(dst, 119, 116, (uncompacted >> 6) & 0xf);
brw_inst_set_bits(dst, 115, 113, (uncompacted >> 3) & 0x7);
brw_inst_set_bits(dst, 112, 112, (uncompacted >> 2) & 0x1);
brw_inst_set_bits(dst, 97, 96, (uncompacted >> 0) & 0x3);
} else {
brw_inst_set_bits(dst, 120, 109, uncompacted);
}
}
static void
set_uncompacted_3src_control_index(const struct compaction_state *c,
brw_inst *dst, brw_compact_inst *src)
{
const struct intel_device_info *devinfo = c->isa->devinfo;
assert(devinfo->ver >= 8);
if (devinfo->verx10 >= 125) {
uint64_t compacted = brw_compact_inst_3src_control_index(devinfo, src);
uint64_t uncompacted = xehp_3src_control_index_table[compacted];
brw_inst_set_bits(dst, 95, 92, (uncompacted >> 33));
brw_inst_set_bits(dst, 90, 88, (uncompacted >> 30) & 0x7);
brw_inst_set_bits(dst, 82, 80, (uncompacted >> 27) & 0x7);
brw_inst_set_bits(dst, 50, 50, (uncompacted >> 26) & 0x1);
brw_inst_set_bits(dst, 49, 48, (uncompacted >> 24) & 0x3);
brw_inst_set_bits(dst, 42, 40, (uncompacted >> 21) & 0x7);
brw_inst_set_bits(dst, 39, 39, (uncompacted >> 20) & 0x1);
brw_inst_set_bits(dst, 38, 36, (uncompacted >> 17) & 0x7);
brw_inst_set_bits(dst, 34, 34, (uncompacted >> 16) & 0x1);
brw_inst_set_bits(dst, 33, 33, (uncompacted >> 15) & 0x1);
brw_inst_set_bits(dst, 32, 32, (uncompacted >> 14) & 0x1);
brw_inst_set_bits(dst, 31, 31, (uncompacted >> 13) & 0x1);
brw_inst_set_bits(dst, 28, 28, (uncompacted >> 12) & 0x1);
brw_inst_set_bits(dst, 27, 24, (uncompacted >> 8) & 0xf);
brw_inst_set_bits(dst, 23, 23, (uncompacted >> 7) & 0x1);
brw_inst_set_bits(dst, 22, 22, (uncompacted >> 6) & 0x1);
brw_inst_set_bits(dst, 21, 19, (uncompacted >> 3) & 0x7);
brw_inst_set_bits(dst, 18, 16, (uncompacted >> 0) & 0x7);
} else if (devinfo->ver >= 12) {
uint64_t compacted = brw_compact_inst_3src_control_index(devinfo, src);
uint64_t uncompacted = gfx12_3src_control_index_table[compacted];
brw_inst_set_bits(dst, 95, 92, (uncompacted >> 32));
brw_inst_set_bits(dst, 90, 88, (uncompacted >> 29) & 0x7);
brw_inst_set_bits(dst, 82, 80, (uncompacted >> 26) & 0x7);
brw_inst_set_bits(dst, 50, 50, (uncompacted >> 25) & 0x1);
brw_inst_set_bits(dst, 48, 48, (uncompacted >> 24) & 0x1);
brw_inst_set_bits(dst, 42, 40, (uncompacted >> 21) & 0x7);
brw_inst_set_bits(dst, 39, 39, (uncompacted >> 20) & 0x1);
brw_inst_set_bits(dst, 38, 36, (uncompacted >> 17) & 0x7);
brw_inst_set_bits(dst, 34, 34, (uncompacted >> 16) & 0x1);
brw_inst_set_bits(dst, 33, 33, (uncompacted >> 15) & 0x1);
brw_inst_set_bits(dst, 32, 32, (uncompacted >> 14) & 0x1);
brw_inst_set_bits(dst, 31, 31, (uncompacted >> 13) & 0x1);
brw_inst_set_bits(dst, 28, 28, (uncompacted >> 12) & 0x1);
brw_inst_set_bits(dst, 27, 24, (uncompacted >> 8) & 0xf);
brw_inst_set_bits(dst, 23, 23, (uncompacted >> 7) & 0x1);
brw_inst_set_bits(dst, 22, 22, (uncompacted >> 6) & 0x1);
brw_inst_set_bits(dst, 21, 19, (uncompacted >> 3) & 0x7);
brw_inst_set_bits(dst, 18, 16, (uncompacted >> 0) & 0x7);
} else {
uint32_t compacted = brw_compact_inst_3src_control_index(devinfo, src);
uint32_t uncompacted = gfx8_3src_control_index_table[compacted];
brw_inst_set_bits(dst, 34, 32, (uncompacted >> 21) & 0x7);
brw_inst_set_bits(dst, 28, 8, (uncompacted >> 0) & 0x1fffff);
if (devinfo->ver >= 9 || devinfo->platform == INTEL_PLATFORM_CHV)
brw_inst_set_bits(dst, 36, 35, (uncompacted >> 24) & 0x3);
}
}
static void
set_uncompacted_3src_source_index(const struct intel_device_info *devinfo,
brw_inst *dst, brw_compact_inst *src)
{
assert(devinfo->ver >= 8);
uint32_t compacted = brw_compact_inst_3src_source_index(devinfo, src);
if (devinfo->ver >= 12) {
const uint32_t *three_src_source_index_table =
devinfo->verx10 >= 125 ?
xehp_3src_source_index_table : gfx12_3src_source_index_table;
uint32_t uncompacted = three_src_source_index_table[compacted];
brw_inst_set_bits(dst, 114, 114, (uncompacted >> 20));
brw_inst_set_bits(dst, 113, 112, (uncompacted >> 18) & 0x3);
brw_inst_set_bits(dst, 98, 98, (uncompacted >> 17) & 0x1);
brw_inst_set_bits(dst, 97, 96, (uncompacted >> 15) & 0x3);
brw_inst_set_bits(dst, 91, 91, (uncompacted >> 14) & 0x1);
brw_inst_set_bits(dst, 87, 86, (uncompacted >> 12) & 0x3);
brw_inst_set_bits(dst, 85, 84, (uncompacted >> 10) & 0x3);
brw_inst_set_bits(dst, 83, 83, (uncompacted >> 9) & 0x1);
brw_inst_set_bits(dst, 66, 66, (uncompacted >> 8) & 0x1);
brw_inst_set_bits(dst, 65, 64, (uncompacted >> 6) & 0x3);
brw_inst_set_bits(dst, 47, 47, (uncompacted >> 5) & 0x1);
brw_inst_set_bits(dst, 46, 46, (uncompacted >> 4) & 0x1);
brw_inst_set_bits(dst, 45, 44, (uncompacted >> 2) & 0x3);
brw_inst_set_bits(dst, 43, 43, (uncompacted >> 1) & 0x1);
brw_inst_set_bits(dst, 35, 35, (uncompacted >> 0) & 0x1);
} else {
uint64_t uncompacted = gfx8_3src_source_index_table[compacted];
brw_inst_set_bits(dst, 83, 83, (uncompacted >> 43) & 0x1);
brw_inst_set_bits(dst, 114, 107, (uncompacted >> 35) & 0xff);
brw_inst_set_bits(dst, 93, 86, (uncompacted >> 27) & 0xff);
brw_inst_set_bits(dst, 72, 65, (uncompacted >> 19) & 0xff);
brw_inst_set_bits(dst, 55, 37, (uncompacted >> 0) & 0x7ffff);
if (devinfo->ver >= 9 || devinfo->platform == INTEL_PLATFORM_CHV) {
brw_inst_set_bits(dst, 126, 125, (uncompacted >> 47) & 0x3);
brw_inst_set_bits(dst, 105, 104, (uncompacted >> 45) & 0x3);
brw_inst_set_bits(dst, 84, 84, (uncompacted >> 44) & 0x1);
} else {
brw_inst_set_bits(dst, 125, 125, (uncompacted >> 45) & 0x1);
brw_inst_set_bits(dst, 104, 104, (uncompacted >> 44) & 0x1);
}
}
}
static void
set_uncompacted_3src_subreg_index(const struct intel_device_info *devinfo,
brw_inst *dst, brw_compact_inst *src)
{
assert(devinfo->ver >= 12);
uint32_t compacted = brw_compact_inst_3src_subreg_index(devinfo, src);
uint32_t uncompacted = gfx12_3src_subreg_table[compacted];
brw_inst_set_bits(dst, 119, 115, (uncompacted >> 15));
brw_inst_set_bits(dst, 103, 99, (uncompacted >> 10) & 0x1f);
brw_inst_set_bits(dst, 71, 67, (uncompacted >> 5) & 0x1f);
brw_inst_set_bits(dst, 55, 51, (uncompacted >> 0) & 0x1f);
}
static void
brw_uncompact_3src_instruction(const struct compaction_state *c,
brw_inst *dst, brw_compact_inst *src)
{
const struct intel_device_info *devinfo = c->isa->devinfo;
assert(devinfo->ver >= 8);
#define uncompact(field) \
brw_inst_set_3src_##field(devinfo, dst, brw_compact_inst_3src_##field(devinfo, src))
#define uncompact_a16(field) \
brw_inst_set_3src_a16_##field(devinfo, dst, brw_compact_inst_3src_##field(devinfo, src))
uncompact(hw_opcode);
if (devinfo->ver >= 12) {
set_uncompacted_3src_control_index(c, dst, src);
set_uncompacted_3src_source_index(devinfo, dst, src);
set_uncompacted_3src_subreg_index(devinfo, dst, src);
uncompact(debug_control);
uncompact(swsb);
uncompact(dst_reg_nr);
uncompact(src0_reg_nr);
uncompact(src1_reg_nr);
uncompact(src2_reg_nr);
} else {
set_uncompacted_3src_control_index(c, dst, src);
set_uncompacted_3src_source_index(devinfo, dst, src);
uncompact(dst_reg_nr);
uncompact_a16(src0_rep_ctrl);
uncompact(debug_control);
uncompact(saturate);
uncompact_a16(src1_rep_ctrl);
uncompact_a16(src2_rep_ctrl);
uncompact(src0_reg_nr);
uncompact(src1_reg_nr);
uncompact(src2_reg_nr);
uncompact_a16(src0_subreg_nr);
uncompact_a16(src1_subreg_nr);
uncompact_a16(src2_subreg_nr);
}
brw_inst_set_3src_cmpt_control(devinfo, dst, false);
#undef uncompact
#undef uncompact_a16
}
static void
uncompact_instruction(const struct compaction_state *c, brw_inst *dst,
brw_compact_inst *src)
{
const struct intel_device_info *devinfo = c->isa->devinfo;
memset(dst, 0, sizeof(*dst));
if (devinfo->ver >= 8 &&
is_3src(c->isa, brw_opcode_decode(c->isa,
brw_compact_inst_3src_hw_opcode(devinfo, src)))) {
brw_uncompact_3src_instruction(c, dst, src);
return;
}
#define uncompact(field) \
brw_inst_set_##field(devinfo, dst, brw_compact_inst_##field(devinfo, src))
#define uncompact_reg(field) \
brw_inst_set_##field##_da_reg_nr(devinfo, dst, \
brw_compact_inst_##field##_reg_nr(devinfo, src))
uncompact(hw_opcode);
uncompact(debug_control);
set_uncompacted_control(c, dst, src);
set_uncompacted_datatype(c, dst, src);
set_uncompacted_subreg(c, dst, src);
set_uncompacted_src0(c, dst, src);
enum brw_reg_type type;
if (has_immediate(devinfo, dst, &type)) {
unsigned imm = uncompact_immediate(devinfo, type,
brw_compact_inst_imm(devinfo, src));
brw_inst_set_imm_ud(devinfo, dst, imm);
} else {
set_uncompacted_src1(c, dst, src);
uncompact_reg(src1);
}
if (devinfo->ver >= 12) {
uncompact(swsb);
uncompact_reg(dst);
uncompact_reg(src0);
} else {
if (devinfo->ver >= 6) {
uncompact(acc_wr_control);
} else {
uncompact(mask_control_ex);
}
uncompact(cond_modifier);
if (devinfo->ver <= 6)
uncompact(flag_subreg_nr);
uncompact_reg(dst);
uncompact_reg(src0);
}
brw_inst_set_cmpt_control(devinfo, dst, false);
#undef uncompact
#undef uncompact_reg
}
void
brw_uncompact_instruction(const struct brw_isa_info *isa,
brw_inst *dst, brw_compact_inst *src)
{
struct compaction_state c;
compaction_state_init(&c, isa);
uncompact_instruction(&c, dst, src);
}
void
brw_debug_compact_uncompact(const struct brw_isa_info *isa,
brw_inst *orig,
brw_inst *uncompacted)
{
fprintf(stderr, "Instruction compact/uncompact changed (gen%d):\n",
isa->devinfo->ver);
fprintf(stderr, " before: ");
brw_disassemble_inst(stderr, isa, orig, true, 0, NULL);
fprintf(stderr, " after: ");
brw_disassemble_inst(stderr, isa, uncompacted, false, 0, NULL);
uint32_t *before_bits = (uint32_t *)orig;
uint32_t *after_bits = (uint32_t *)uncompacted;
fprintf(stderr, " changed bits:\n");
for (int i = 0; i < 128; i++) {
uint32_t before = before_bits[i / 32] & (1 << (i & 31));
uint32_t after = after_bits[i / 32] & (1 << (i & 31));
if (before != after) {
fprintf(stderr, " bit %d, %s to %s\n", i,
before ? "set" : "unset",
after ? "set" : "unset");
}
}
}
static int
compacted_between(int old_ip, int old_target_ip, int *compacted_counts)
{
int this_compacted_count = compacted_counts[old_ip];
int target_compacted_count = compacted_counts[old_target_ip];
return target_compacted_count - this_compacted_count;
}
static void
update_uip_jip(const struct brw_isa_info *isa, brw_inst *insn,
int this_old_ip, int *compacted_counts)
{
const struct intel_device_info *devinfo = isa->devinfo;
/* JIP and UIP are in units of:
* - bytes on Gfx8+; and
* - compacted instructions on Gfx6+.
*/
int shift = devinfo->ver >= 8 ? 3 : 0;
int32_t jip_compacted = brw_inst_jip(devinfo, insn) >> shift;
jip_compacted -= compacted_between(this_old_ip,
this_old_ip + (jip_compacted / 2),
compacted_counts);
brw_inst_set_jip(devinfo, insn, jip_compacted << shift);
if (brw_inst_opcode(isa, insn) == BRW_OPCODE_ENDIF ||
brw_inst_opcode(isa, insn) == BRW_OPCODE_WHILE ||
(brw_inst_opcode(isa, insn) == BRW_OPCODE_ELSE && devinfo->ver <= 7))
return;
int32_t uip_compacted = brw_inst_uip(devinfo, insn) >> shift;
uip_compacted -= compacted_between(this_old_ip,
this_old_ip + (uip_compacted / 2),
compacted_counts);
brw_inst_set_uip(devinfo, insn, uip_compacted << shift);
}
static void
update_gfx4_jump_count(const struct intel_device_info *devinfo, brw_inst *insn,
int this_old_ip, int *compacted_counts)
{
assert(devinfo->ver == 5 || devinfo->platform == INTEL_PLATFORM_G4X);
/* Jump Count is in units of:
* - uncompacted instructions on G45; and
* - compacted instructions on Gfx5.
*/
int shift = devinfo->platform == INTEL_PLATFORM_G4X ? 1 : 0;
int jump_count_compacted = brw_inst_gfx4_jump_count(devinfo, insn) << shift;
int target_old_ip = this_old_ip + (jump_count_compacted / 2);
int this_compacted_count = compacted_counts[this_old_ip];
int target_compacted_count = compacted_counts[target_old_ip];
jump_count_compacted -= (target_compacted_count - this_compacted_count);
brw_inst_set_gfx4_jump_count(devinfo, insn, jump_count_compacted >> shift);
}
static void
compaction_state_init(struct compaction_state *c,
const struct brw_isa_info *isa)
{
const struct intel_device_info *devinfo = isa->devinfo;
assert(g45_control_index_table[ARRAY_SIZE(g45_control_index_table) - 1] != 0);
assert(g45_datatype_table[ARRAY_SIZE(g45_datatype_table) - 1] != 0);
assert(g45_subreg_table[ARRAY_SIZE(g45_subreg_table) - 1] != 0);
assert(g45_src_index_table[ARRAY_SIZE(g45_src_index_table) - 1] != 0);
assert(gfx6_control_index_table[ARRAY_SIZE(gfx6_control_index_table) - 1] != 0);
assert(gfx6_datatype_table[ARRAY_SIZE(gfx6_datatype_table) - 1] != 0);
assert(gfx6_subreg_table[ARRAY_SIZE(gfx6_subreg_table) - 1] != 0);
assert(gfx6_src_index_table[ARRAY_SIZE(gfx6_src_index_table) - 1] != 0);
assert(gfx7_control_index_table[ARRAY_SIZE(gfx7_control_index_table) - 1] != 0);
assert(gfx7_datatype_table[ARRAY_SIZE(gfx7_datatype_table) - 1] != 0);
assert(gfx7_subreg_table[ARRAY_SIZE(gfx7_subreg_table) - 1] != 0);
assert(gfx7_src_index_table[ARRAY_SIZE(gfx7_src_index_table) - 1] != 0);
assert(gfx8_control_index_table[ARRAY_SIZE(gfx8_control_index_table) - 1] != 0);
assert(gfx8_datatype_table[ARRAY_SIZE(gfx8_datatype_table) - 1] != 0);
assert(gfx8_subreg_table[ARRAY_SIZE(gfx8_subreg_table) - 1] != 0);
assert(gfx8_src_index_table[ARRAY_SIZE(gfx8_src_index_table) - 1] != 0);
assert(gfx11_datatype_table[ARRAY_SIZE(gfx11_datatype_table) - 1] != 0);
assert(gfx12_control_index_table[ARRAY_SIZE(gfx12_control_index_table) - 1] != 0);
assert(gfx12_datatype_table[ARRAY_SIZE(gfx12_datatype_table) - 1] != 0);
assert(gfx12_subreg_table[ARRAY_SIZE(gfx12_subreg_table) - 1] != 0);
assert(gfx12_src0_index_table[ARRAY_SIZE(gfx12_src0_index_table) - 1] != 0);
assert(gfx12_src1_index_table[ARRAY_SIZE(gfx12_src1_index_table) - 1] != 0);
assert(xehp_src0_index_table[ARRAY_SIZE(xehp_src0_index_table) - 1] != 0);
assert(xehp_src1_index_table[ARRAY_SIZE(xehp_src1_index_table) - 1] != 0);
c->isa = isa;
switch (devinfo->ver) {
case 12:
c->control_index_table = gfx12_control_index_table;;
c->datatype_table = gfx12_datatype_table;
c->subreg_table = gfx12_subreg_table;
if (devinfo->verx10 >= 125) {
c->src0_index_table = xehp_src0_index_table;
c->src1_index_table = xehp_src1_index_table;
} else {
c->src0_index_table = gfx12_src0_index_table;
c->src1_index_table = gfx12_src1_index_table;
}
break;
case 11:
c->control_index_table = gfx8_control_index_table;
c->datatype_table = gfx11_datatype_table;
c->subreg_table = gfx8_subreg_table;
c->src0_index_table = gfx8_src_index_table;
c->src1_index_table = gfx8_src_index_table;
break;
case 9:
case 8:
c->control_index_table = gfx8_control_index_table;
c->datatype_table = gfx8_datatype_table;
c->subreg_table = gfx8_subreg_table;
c->src0_index_table = gfx8_src_index_table;
c->src1_index_table = gfx8_src_index_table;
break;
case 7:
c->control_index_table = gfx7_control_index_table;
c->datatype_table = gfx7_datatype_table;
c->subreg_table = gfx7_subreg_table;
c->src0_index_table = gfx7_src_index_table;
c->src1_index_table = gfx7_src_index_table;
break;
case 6:
c->control_index_table = gfx6_control_index_table;
c->datatype_table = gfx6_datatype_table;
c->subreg_table = gfx6_subreg_table;
c->src0_index_table = gfx6_src_index_table;
c->src1_index_table = gfx6_src_index_table;
break;
case 5:
case 4:
c->control_index_table = g45_control_index_table;
c->datatype_table = g45_datatype_table;
c->subreg_table = g45_subreg_table;
c->src0_index_table = g45_src_index_table;
c->src1_index_table = g45_src_index_table;
break;
default:
unreachable("unknown generation");
}
}
void
brw_compact_instructions(struct brw_codegen *p, int start_offset,
struct disasm_info *disasm)
{
if (INTEL_DEBUG(DEBUG_NO_COMPACTION))
return;
const struct intel_device_info *devinfo = p->devinfo;
void *store = p->store + start_offset / 16;
/* For an instruction at byte offset 16*i before compaction, this is the
* number of compacted instructions minus the number of padding NOP/NENOPs
* that preceded it.
*/
int compacted_counts[(p->next_insn_offset - start_offset) / sizeof(brw_inst)];
/* For an instruction at byte offset 8*i after compaction, this was its IP
* (in 16-byte units) before compaction.
*/
int old_ip[(p->next_insn_offset - start_offset) / sizeof(brw_compact_inst) + 1];
if (devinfo->ver == 4 && devinfo->platform != INTEL_PLATFORM_G4X)
return;
struct compaction_state c;
compaction_state_init(&c, p->isa);
int offset = 0;
int compacted_count = 0;
for (int src_offset = 0; src_offset < p->next_insn_offset - start_offset;
src_offset += sizeof(brw_inst)) {
brw_inst *src = store + src_offset;
void *dst = store + offset;
old_ip[offset / sizeof(brw_compact_inst)] = src_offset / sizeof(brw_inst);
compacted_counts[src_offset / sizeof(brw_inst)] = compacted_count;
brw_inst inst = precompact(p->isa, *src);
brw_inst saved = inst;
if (try_compact_instruction(&c, dst, &inst)) {
compacted_count++;
if (INTEL_DEBUG(DEBUG_ANY)) {
brw_inst uncompacted;
uncompact_instruction(&c, &uncompacted, dst);
if (memcmp(&saved, &uncompacted, sizeof(uncompacted))) {
brw_debug_compact_uncompact(p->isa, &saved, &uncompacted);
}
}
offset += sizeof(brw_compact_inst);
} else {
/* All uncompacted instructions need to be aligned on G45. */
if ((offset & sizeof(brw_compact_inst)) != 0 &&
devinfo->platform == INTEL_PLATFORM_G4X) {
brw_compact_inst *align = store + offset;
memset(align, 0, sizeof(*align));
brw_compact_inst_set_hw_opcode(
devinfo, align, brw_opcode_encode(p->isa, BRW_OPCODE_NENOP));
brw_compact_inst_set_cmpt_control(devinfo, align, true);
offset += sizeof(brw_compact_inst);
compacted_count--;
compacted_counts[src_offset / sizeof(brw_inst)] = compacted_count;
old_ip[offset / sizeof(brw_compact_inst)] = src_offset / sizeof(brw_inst);
dst = store + offset;
}
/* If we didn't compact this instruction, we need to move it down into
* place.
*/
if (offset != src_offset) {
memmove(dst, src, sizeof(brw_inst));
}
offset += sizeof(brw_inst);
}
}
/* Add an entry for the ending offset of the program. This greatly
* simplifies the linked list walk at the end of the function.
*/
old_ip[offset / sizeof(brw_compact_inst)] =
(p->next_insn_offset - start_offset) / sizeof(brw_inst);
/* Fix up control flow offsets. */
p->next_insn_offset = start_offset + offset;
for (offset = 0; offset < p->next_insn_offset - start_offset;
offset = next_offset(devinfo, store, offset)) {
brw_inst *insn = store + offset;
int this_old_ip = old_ip[offset / sizeof(brw_compact_inst)];
int this_compacted_count = compacted_counts[this_old_ip];
switch (brw_inst_opcode(p->isa, insn)) {
case BRW_OPCODE_BREAK:
case BRW_OPCODE_CONTINUE:
case BRW_OPCODE_HALT:
if (devinfo->ver >= 6) {
update_uip_jip(p->isa, insn, this_old_ip, compacted_counts);
} else {
update_gfx4_jump_count(devinfo, insn, this_old_ip,
compacted_counts);
}
break;
case BRW_OPCODE_IF:
case BRW_OPCODE_IFF:
case BRW_OPCODE_ELSE:
case BRW_OPCODE_ENDIF:
case BRW_OPCODE_WHILE:
if (devinfo->ver >= 7) {
if (brw_inst_cmpt_control(devinfo, insn)) {
brw_inst uncompacted;
uncompact_instruction(&c, &uncompacted,
(brw_compact_inst *)insn);
update_uip_jip(p->isa, &uncompacted, this_old_ip,
compacted_counts);
bool ret = try_compact_instruction(&c, (brw_compact_inst *)insn,
&uncompacted);
assert(ret); (void)ret;
} else {
update_uip_jip(p->isa, insn, this_old_ip, compacted_counts);
}
} else if (devinfo->ver == 6) {
assert(!brw_inst_cmpt_control(devinfo, insn));
/* Jump Count is in units of compacted instructions on Gfx6. */
int jump_count_compacted = brw_inst_gfx6_jump_count(devinfo, insn);
int target_old_ip = this_old_ip + (jump_count_compacted / 2);
int target_compacted_count = compacted_counts[target_old_ip];
jump_count_compacted -= (target_compacted_count - this_compacted_count);
brw_inst_set_gfx6_jump_count(devinfo, insn, jump_count_compacted);
} else {
update_gfx4_jump_count(devinfo, insn, this_old_ip,
compacted_counts);
}
break;
case BRW_OPCODE_ADD:
/* Add instructions modifying the IP register use an immediate src1,
* and Gens that use this cannot compact instructions with immediate
* operands.
*/
if (brw_inst_cmpt_control(devinfo, insn))
break;
if (brw_inst_dst_reg_file(devinfo, insn) == BRW_ARCHITECTURE_REGISTER_FILE &&
brw_inst_dst_da_reg_nr(devinfo, insn) == BRW_ARF_IP) {
assert(brw_inst_src1_reg_file(devinfo, insn) == BRW_IMMEDIATE_VALUE);
int shift = 3;
int jump_compacted = brw_inst_imm_d(devinfo, insn) >> shift;
int target_old_ip = this_old_ip + (jump_compacted / 2);
int target_compacted_count = compacted_counts[target_old_ip];
jump_compacted -= (target_compacted_count - this_compacted_count);
brw_inst_set_imm_ud(devinfo, insn, jump_compacted << shift);
}
break;
default:
break;
}
}
/* p->nr_insn is counting the number of uncompacted instructions still, so
* divide. We do want to be sure there's a valid instruction in any
* alignment padding, so that the next compression pass (for the FS 8/16
* compile passes) parses correctly.
*/
if (p->next_insn_offset & sizeof(brw_compact_inst)) {
brw_compact_inst *align = store + offset;
memset(align, 0, sizeof(*align));
brw_compact_inst_set_hw_opcode(
devinfo, align, brw_opcode_encode(p->isa, BRW_OPCODE_NOP));
brw_compact_inst_set_cmpt_control(devinfo, align, true);
p->next_insn_offset += sizeof(brw_compact_inst);
}
p->nr_insn = p->next_insn_offset / sizeof(brw_inst);
for (int i = 0; i < p->num_relocs; i++) {
if (p->relocs[i].offset < (uint32_t)start_offset)
continue;
assert(p->relocs[i].offset % 16 == 0);
unsigned idx = (p->relocs[i].offset - start_offset) / 16;
p->relocs[i].offset -= compacted_counts[idx] * 8;
}
/* Update the instruction offsets for each group. */
if (disasm) {
int offset = 0;
foreach_list_typed(struct inst_group, group, link, &disasm->group_list) {
while (start_offset + old_ip[offset / sizeof(brw_compact_inst)] *
sizeof(brw_inst) != group->offset) {
assert(start_offset + old_ip[offset / sizeof(brw_compact_inst)] *
sizeof(brw_inst) < group->offset);
offset = next_offset(devinfo, store, offset);
}
group->offset = start_offset + offset;
offset = next_offset(devinfo, store, offset);
}
}
}