mesa/src/intel/blorp/blorp_clear.c

1553 lines
60 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright © 2013 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "util/ralloc.h"
#include "util/macros.h" /* Needed for MAX3 and MAX2 for format_rgb9e5 */
#include "util/format_rgb9e5.h"
#include "util/format_srgb.h"
#include "blorp_priv.h"
#include "compiler/brw_eu_defines.h"
#include "dev/intel_debug.h"
#include "blorp_nir_builder.h"
#define FILE_DEBUG_FLAG DEBUG_BLORP
#pragma pack(push, 1)
struct brw_blorp_const_color_prog_key
{
struct brw_blorp_base_key base;
bool use_simd16_replicated_data;
bool clear_rgb_as_red;
uint8_t local_y;
};
#pragma pack(pop)
static bool
blorp_params_get_clear_kernel_fs(struct blorp_batch *batch,
struct blorp_params *params,
bool use_replicated_data,
bool clear_rgb_as_red)
{
struct blorp_context *blorp = batch->blorp;
const struct brw_blorp_const_color_prog_key blorp_key = {
.base = BRW_BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_CLEAR),
.base.shader_pipeline = BLORP_SHADER_PIPELINE_RENDER,
.use_simd16_replicated_data = use_replicated_data,
.clear_rgb_as_red = clear_rgb_as_red,
.local_y = 0,
};
params->shader_type = blorp_key.base.shader_type;
params->shader_pipeline = blorp_key.base.shader_pipeline;
if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
&params->wm_prog_kernel, &params->wm_prog_data))
return true;
void *mem_ctx = ralloc_context(NULL);
nir_builder b;
blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT,
blorp_shader_type_to_name(blorp_key.base.shader_type));
nir_variable *v_color =
BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
nir_ssa_def *color = nir_load_var(&b, v_color);
if (clear_rgb_as_red) {
nir_ssa_def *pos = nir_f2i32(&b, nir_load_frag_coord(&b));
nir_ssa_def *comp = nir_umod(&b, nir_channel(&b, pos, 0),
nir_imm_int(&b, 3));
color = nir_pad_vec4(&b, nir_vector_extract(&b, color, comp));
}
nir_variable *frag_color = nir_variable_create(b.shader, nir_var_shader_out,
glsl_vec4_type(),
"gl_FragColor");
frag_color->data.location = FRAG_RESULT_COLOR;
nir_store_var(&b, frag_color, color, 0xf);
struct brw_wm_prog_key wm_key;
brw_blorp_init_wm_prog_key(&wm_key);
struct brw_wm_prog_data prog_data;
const unsigned *program =
blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, use_replicated_data,
&prog_data);
bool result =
blorp->upload_shader(batch, MESA_SHADER_FRAGMENT,
&blorp_key, sizeof(blorp_key),
program, prog_data.base.program_size,
&prog_data.base, sizeof(prog_data),
&params->wm_prog_kernel, &params->wm_prog_data);
ralloc_free(mem_ctx);
return result;
}
static bool
blorp_params_get_clear_kernel_cs(struct blorp_batch *batch,
struct blorp_params *params,
bool clear_rgb_as_red)
{
struct blorp_context *blorp = batch->blorp;
const struct brw_blorp_const_color_prog_key blorp_key = {
.base = BRW_BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_CLEAR),
.base.shader_pipeline = BLORP_SHADER_PIPELINE_COMPUTE,
.use_simd16_replicated_data = false,
.clear_rgb_as_red = clear_rgb_as_red,
.local_y = blorp_get_cs_local_y(params),
};
params->shader_type = blorp_key.base.shader_type;
params->shader_pipeline = blorp_key.base.shader_pipeline;
if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
&params->cs_prog_kernel, &params->cs_prog_data))
return true;
void *mem_ctx = ralloc_context(NULL);
nir_builder b;
blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_COMPUTE, "BLORP-gpgpu-clear");
blorp_set_cs_dims(b.shader, blorp_key.local_y);
nir_ssa_def *dst_pos = nir_load_global_invocation_id(&b, 32);
nir_variable *v_color =
BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
nir_ssa_def *color = nir_load_var(&b, v_color);
nir_variable *v_bounds_rect =
BLORP_CREATE_NIR_INPUT(b.shader, bounds_rect, glsl_vec4_type());
nir_ssa_def *bounds_rect = nir_load_var(&b, v_bounds_rect);
nir_ssa_def *in_bounds = blorp_check_in_bounds(&b, bounds_rect, dst_pos);
if (clear_rgb_as_red) {
nir_ssa_def *comp = nir_umod(&b, nir_channel(&b, dst_pos, 0),
nir_imm_int(&b, 3));
color = nir_pad_vec4(&b, nir_vector_extract(&b, color, comp));
}
nir_push_if(&b, in_bounds);
nir_image_store(&b, nir_imm_int(&b, 0),
nir_pad_vector_imm_int(&b, dst_pos, 0, 4),
nir_imm_int(&b, 0),
nir_pad_vector_imm_int(&b, color, 0, 4),
nir_imm_int(&b, 0),
.image_dim = GLSL_SAMPLER_DIM_2D,
.image_array = true,
.access = ACCESS_NON_READABLE);
nir_pop_if(&b, NULL);
struct brw_cs_prog_key cs_key;
brw_blorp_init_cs_prog_key(&cs_key);
struct brw_cs_prog_data prog_data;
const unsigned *program =
blorp_compile_cs(blorp, mem_ctx, b.shader, &cs_key, &prog_data);
bool result =
blorp->upload_shader(batch, MESA_SHADER_COMPUTE,
&blorp_key, sizeof(blorp_key),
program, prog_data.base.program_size,
&prog_data.base, sizeof(prog_data),
&params->cs_prog_kernel, &params->cs_prog_data);
ralloc_free(mem_ctx);
return result;
}
static bool
blorp_params_get_clear_kernel(struct blorp_batch *batch,
struct blorp_params *params,
bool use_replicated_data,
bool clear_rgb_as_red)
{
if (batch->flags & BLORP_BATCH_USE_COMPUTE) {
assert(!use_replicated_data);
return blorp_params_get_clear_kernel_cs(batch, params, clear_rgb_as_red);
} else {
return blorp_params_get_clear_kernel_fs(batch, params,
use_replicated_data,
clear_rgb_as_red);
}
}
#pragma pack(push, 1)
struct layer_offset_vs_key {
struct brw_blorp_base_key base;
unsigned num_inputs;
};
#pragma pack(pop)
/* In the case of doing attachment clears, we are using a surface state that
* is handed to us so we can't set (and don't even know) the base array layer.
* In order to do a layered clear in this scenario, we need some way of adding
* the base array layer to the instance id. Unfortunately, our hardware has
* no real concept of "base instance", so we have to do it manually in a
* vertex shader.
*/
static bool
blorp_params_get_layer_offset_vs(struct blorp_batch *batch,
struct blorp_params *params)
{
struct blorp_context *blorp = batch->blorp;
struct layer_offset_vs_key blorp_key = {
.base = BRW_BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_LAYER_OFFSET_VS),
};
if (params->wm_prog_data)
blorp_key.num_inputs = params->wm_prog_data->num_varying_inputs;
if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
&params->vs_prog_kernel, &params->vs_prog_data))
return true;
void *mem_ctx = ralloc_context(NULL);
nir_builder b;
blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_VERTEX,
blorp_shader_type_to_name(blorp_key.base.shader_type));
const struct glsl_type *uvec4_type = glsl_vector_type(GLSL_TYPE_UINT, 4);
/* First we deal with the header which has instance and base instance */
nir_variable *a_header = nir_variable_create(b.shader, nir_var_shader_in,
uvec4_type, "header");
a_header->data.location = VERT_ATTRIB_GENERIC0;
nir_variable *v_layer = nir_variable_create(b.shader, nir_var_shader_out,
glsl_int_type(), "layer_id");
v_layer->data.location = VARYING_SLOT_LAYER;
/* Compute the layer id */
nir_ssa_def *header = nir_load_var(&b, a_header);
nir_ssa_def *base_layer = nir_channel(&b, header, 0);
nir_ssa_def *instance = nir_channel(&b, header, 1);
nir_store_var(&b, v_layer, nir_iadd(&b, instance, base_layer), 0x1);
/* Then we copy the vertex from the next slot to VARYING_SLOT_POS */
nir_variable *a_vertex = nir_variable_create(b.shader, nir_var_shader_in,
glsl_vec4_type(), "a_vertex");
a_vertex->data.location = VERT_ATTRIB_GENERIC1;
nir_variable *v_pos = nir_variable_create(b.shader, nir_var_shader_out,
glsl_vec4_type(), "v_pos");
v_pos->data.location = VARYING_SLOT_POS;
nir_copy_var(&b, v_pos, a_vertex);
/* Then we copy everything else */
for (unsigned i = 0; i < blorp_key.num_inputs; i++) {
nir_variable *a_in = nir_variable_create(b.shader, nir_var_shader_in,
uvec4_type, "input");
a_in->data.location = VERT_ATTRIB_GENERIC2 + i;
nir_variable *v_out = nir_variable_create(b.shader, nir_var_shader_out,
uvec4_type, "output");
v_out->data.location = VARYING_SLOT_VAR0 + i;
nir_copy_var(&b, v_out, a_in);
}
struct brw_vs_prog_data vs_prog_data;
memset(&vs_prog_data, 0, sizeof(vs_prog_data));
const unsigned *program =
blorp_compile_vs(blorp, mem_ctx, b.shader, &vs_prog_data);
bool result =
blorp->upload_shader(batch, MESA_SHADER_VERTEX,
&blorp_key, sizeof(blorp_key),
program, vs_prog_data.base.base.program_size,
&vs_prog_data.base.base, sizeof(vs_prog_data),
&params->vs_prog_kernel, &params->vs_prog_data);
ralloc_free(mem_ctx);
return result;
}
/* The x0, y0, x1, and y1 parameters must already be populated with the render
* area of the framebuffer to be cleared.
*/
static void
get_fast_clear_rect(const struct isl_device *dev,
const struct isl_surf *surf,
const struct isl_surf *aux_surf,
unsigned *x0, unsigned *y0,
unsigned *x1, unsigned *y1)
{
unsigned int x_align, y_align;
unsigned int x_scaledown, y_scaledown;
/* Only single sampled surfaces need to (and actually can) be resolved. */
if (surf->samples == 1) {
if (dev->info->verx10 >= 125) {
assert(surf->tiling == ISL_TILING_4);
/* From Bspec 47709, "MCS/CCS Buffer for Render Target(s)":
*
* SW must ensure that clearing rectangle dimensions cover the
* entire area desired, to accomplish this task initial X/Y
* dimensions need to be rounded up to next multiple of scaledown
* factor before dividing by scale down factor:
*
* The X and Y scale down factors in the table that follows are used
* for both alignment and scaling down.
*/
const uint32_t bs = isl_format_get_layout(surf->format)->bpb / 8;
x_align = x_scaledown = 1024 / bs;
y_align = y_scaledown = 16;
} else {
assert(aux_surf->usage == ISL_SURF_USAGE_CCS_BIT);
/* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
* Target(s)", beneath the "Fast Color Clear" bullet (p327):
*
* Clear pass must have a clear rectangle that must follow
* alignment rules in terms of pixels and lines as shown in the
* table below. Further, the clear-rectangle height and width
* must be multiple of the following dimensions. If the height
* and width of the render target being cleared do not meet these
* requirements, an MCS buffer can be created such that it
* follows the requirement and covers the RT.
*
* The alignment size in the table that follows is related to the
* alignment size that is baked into the CCS surface format but with X
* alignment multiplied by 16 and Y alignment multiplied by 32.
*/
x_align = isl_format_get_layout(aux_surf->format)->bw;
y_align = isl_format_get_layout(aux_surf->format)->bh;
x_align *= 16;
/* The line alignment requirement for Y-tiled is halved at SKL and again
* at TGL.
*/
if (dev->info->ver >= 12)
y_align *= 8;
else if (dev->info->ver >= 9)
y_align *= 16;
else
y_align *= 32;
/* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
* Target(s)", beneath the "Fast Color Clear" bullet (p327):
*
* In order to optimize the performance MCS buffer (when bound to
* 1X RT) clear similarly to MCS buffer clear for MSRT case,
* clear rect is required to be scaled by the following factors
* in the horizontal and vertical directions:
*
* The X and Y scale down factors in the table that follows are each
* equal to half the alignment value computed above.
*/
x_scaledown = x_align / 2;
y_scaledown = y_align / 2;
}
if (ISL_DEV_IS_HASWELL(dev)) {
/* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel
* Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color
* Clear of Non-MultiSampled Render Target Restrictions":
*
* Clear rectangle must be aligned to two times the number of
* pixels in the table shown below due to 16x16 hashing across the
* slice.
*
* This restriction is only documented to exist on HSW GT3 but
* empirical evidence suggests that it's also needed GT2.
*/
x_align *= 2;
y_align *= 2;
}
} else {
assert(aux_surf->usage == ISL_SURF_USAGE_MCS_BIT);
/* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
* Target(s)", beneath the "MSAA Compression" bullet (p326):
*
* Clear pass for this case requires that scaled down primitive
* is sent down with upper left coordinate to coincide with
* actual rectangle being cleared. For MSAA, clear rectangles
* height and width need to as show in the following table in
* terms of (width,height) of the RT.
*
* MSAA Width of Clear Rect Height of Clear Rect
* 2X Ceil(1/8*width) Ceil(1/2*height)
* 4X Ceil(1/8*width) Ceil(1/2*height)
* 8X Ceil(1/2*width) Ceil(1/2*height)
* 16X width Ceil(1/2*height)
*
* The text "with upper left coordinate to coincide with actual
* rectangle being cleared" is a little confusing--it seems to imply
* that to clear a rectangle from (x,y) to (x+w,y+h), one needs to
* feed the pipeline using the rectangle (x,y) to
* (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on
* the number of samples. Experiments indicate that this is not
* quite correct; actually, what the hardware appears to do is to
* align whatever rectangle is sent down the pipeline to the nearest
* multiple of 2x2 blocks, and then scale it up by a factor of N
* horizontally and 2 vertically. So the resulting alignment is 4
* vertically and either 4 or 16 horizontally, and the scaledown
* factor is 2 vertically and either 2 or 8 horizontally.
*/
switch (aux_surf->format) {
case ISL_FORMAT_MCS_2X:
case ISL_FORMAT_MCS_4X:
x_scaledown = 8;
break;
case ISL_FORMAT_MCS_8X:
x_scaledown = 2;
break;
case ISL_FORMAT_MCS_16X:
x_scaledown = 1;
break;
default:
unreachable("Unexpected MCS format for fast clear");
}
y_scaledown = 2;
x_align = x_scaledown * 2;
y_align = y_scaledown * 2;
}
*x0 = ROUND_DOWN_TO(*x0, x_align) / x_scaledown;
*y0 = ROUND_DOWN_TO(*y0, y_align) / y_scaledown;
*x1 = ALIGN(*x1, x_align) / x_scaledown;
*y1 = ALIGN(*y1, y_align) / y_scaledown;
}
void
blorp_fast_clear(struct blorp_batch *batch,
const struct blorp_surf *surf,
enum isl_format format, struct isl_swizzle swizzle,
uint32_t level, uint32_t start_layer, uint32_t num_layers,
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
{
struct blorp_params params;
blorp_params_init(&params);
params.num_layers = num_layers;
assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0);
params.x0 = x0;
params.y0 = y0;
params.x1 = x1;
params.y1 = y1;
memset(&params.wm_inputs.clear_color, 0xff, 4*sizeof(float));
params.fast_clear_op = ISL_AUX_OP_FAST_CLEAR;
get_fast_clear_rect(batch->blorp->isl_dev, surf->surf, surf->aux_surf,
&params.x0, &params.y0, &params.x1, &params.y1);
if (!blorp_params_get_clear_kernel(batch, &params, true, false))
return;
brw_blorp_surface_info_init(batch, &params.dst, surf, level,
start_layer, format, true);
params.num_samples = params.dst.surf.samples;
assert(params.num_samples != 0);
if (params.num_samples == 1)
params.snapshot_type = INTEL_SNAPSHOT_CCS_COLOR_CLEAR;
else
params.snapshot_type = INTEL_SNAPSHOT_MCS_COLOR_CLEAR;
/* If a swizzle was provided, we need to swizzle the clear color so that
* the hardware color format conversion will work properly.
*/
params.dst.clear_color =
isl_color_value_swizzle_inv(params.dst.clear_color, swizzle);
batch->blorp->exec(batch, &params);
}
bool
blorp_clear_supports_compute(struct blorp_context *blorp,
uint8_t color_write_disable, bool blend_enabled,
enum isl_aux_usage aux_usage)
{
if (blorp->isl_dev->info->ver < 7)
return false;
if (color_write_disable != 0 || blend_enabled)
return false;
if (blorp->isl_dev->info->ver >= 12) {
return aux_usage == ISL_AUX_USAGE_GFX12_CCS_E ||
aux_usage == ISL_AUX_USAGE_CCS_E ||
aux_usage == ISL_AUX_USAGE_NONE;
} else {
return aux_usage == ISL_AUX_USAGE_NONE;
}
}
void
blorp_clear(struct blorp_batch *batch,
const struct blorp_surf *surf,
enum isl_format format, struct isl_swizzle swizzle,
uint32_t level, uint32_t start_layer, uint32_t num_layers,
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
union isl_color_value clear_color,
uint8_t color_write_disable)
{
struct blorp_params params;
blorp_params_init(&params);
params.snapshot_type = INTEL_SNAPSHOT_SLOW_COLOR_CLEAR;
const bool compute = batch->flags & BLORP_BATCH_USE_COMPUTE;
if (compute)
assert(blorp_clear_supports_compute(batch->blorp, color_write_disable,
false, surf->aux_usage));
/* Manually apply the clear destination swizzle. This way swizzled clears
* will work for swizzles which we can't normally use for rendering and it
* also ensures that they work on pre-Haswell hardware which can't swizlle
* at all.
*/
clear_color = isl_color_value_swizzle_inv(clear_color, swizzle);
swizzle = ISL_SWIZZLE_IDENTITY;
bool clear_rgb_as_red = false;
if (format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
clear_color.u32[0] = float3_to_rgb9e5(clear_color.f32);
format = ISL_FORMAT_R32_UINT;
} else if (format == ISL_FORMAT_L8_UNORM_SRGB) {
clear_color.f32[0] = util_format_linear_to_srgb_float(clear_color.f32[0]);
format = ISL_FORMAT_R8_UNORM;
} else if (format == ISL_FORMAT_A4B4G4R4_UNORM) {
/* Broadwell and earlier cannot render to this format so we need to work
* around it by swapping the colors around and using B4G4R4A4 instead.
*/
const struct isl_swizzle ARGB = ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE);
clear_color = isl_color_value_swizzle_inv(clear_color, ARGB);
format = ISL_FORMAT_B4G4R4A4_UNORM;
} else if (isl_format_get_layout(format)->bpb % 3 == 0) {
clear_rgb_as_red = true;
if (format == ISL_FORMAT_R8G8B8_UNORM_SRGB) {
clear_color.f32[0] = util_format_linear_to_srgb_float(clear_color.f32[0]);
clear_color.f32[1] = util_format_linear_to_srgb_float(clear_color.f32[1]);
clear_color.f32[2] = util_format_linear_to_srgb_float(clear_color.f32[2]);
}
}
memcpy(&params.wm_inputs.clear_color, clear_color.f32, sizeof(float) * 4);
bool use_simd16_replicated_data = true;
/* From the SNB PRM (Vol4_Part1):
*
* "Replicated data (Message Type = 111) is only supported when
* accessing tiled memory. Using this Message Type to access linear
* (untiled) memory is UNDEFINED."
*/
if (surf->surf->tiling == ISL_TILING_LINEAR)
use_simd16_replicated_data = false;
/* Replicated clears don't work yet before gfx6 */
if (batch->blorp->isl_dev->info->ver < 6)
use_simd16_replicated_data = false;
if (compute)
use_simd16_replicated_data = false;
/* Constant color writes ignore everything in blend and color calculator
* state. This is not documented.
*/
params.color_write_disable = color_write_disable & BITFIELD_MASK(4);
if (color_write_disable)
use_simd16_replicated_data = false;
if (!blorp_params_get_clear_kernel(batch, &params,
use_simd16_replicated_data,
clear_rgb_as_red))
return;
if (!compute && !blorp_ensure_sf_program(batch, &params))
return;
while (num_layers > 0) {
brw_blorp_surface_info_init(batch, &params.dst, surf, level,
start_layer, format, true);
params.dst.view.swizzle = swizzle;
params.x0 = x0;
params.y0 = y0;
params.x1 = x1;
params.y1 = y1;
if (compute) {
params.wm_inputs.bounds_rect.x0 = x0;
params.wm_inputs.bounds_rect.y0 = y0;
params.wm_inputs.bounds_rect.x1 = x1;
params.wm_inputs.bounds_rect.y1 = y1;
}
if (params.dst.tile_x_sa || params.dst.tile_y_sa) {
assert(params.dst.surf.samples == 1);
assert(num_layers == 1);
params.x0 += params.dst.tile_x_sa;
params.y0 += params.dst.tile_y_sa;
params.x1 += params.dst.tile_x_sa;
params.y1 += params.dst.tile_y_sa;
}
/* The MinLOD and MinimumArrayElement don't work properly for cube maps.
* Convert them to a single slice on gfx4.
*/
if (batch->blorp->isl_dev->info->ver == 4 &&
(params.dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT)) {
blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params.dst);
}
if (clear_rgb_as_red) {
surf_fake_rgb_with_red(batch->blorp->isl_dev, &params.dst);
params.x0 *= 3;
params.x1 *= 3;
}
if (isl_format_is_compressed(params.dst.surf.format)) {
blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.dst,
NULL, NULL, NULL, NULL);
//&dst_x, &dst_y, &dst_w, &dst_h);
}
if (params.dst.tile_x_sa || params.dst.tile_y_sa) {
/* Either we're on gfx4 where there is no multisampling or the
* surface is compressed which also implies no multisampling.
* Therefore, sa == px and we don't need to do a conversion.
*/
assert(params.dst.surf.samples == 1);
params.x0 += params.dst.tile_x_sa;
params.y0 += params.dst.tile_y_sa;
params.x1 += params.dst.tile_x_sa;
params.y1 += params.dst.tile_y_sa;
}
params.num_samples = params.dst.surf.samples;
/* We may be restricted on the number of layers we can bind at any one
* time. In particular, Sandy Bridge has a maximum number of layers of
* 512 but a maximum 3D texture size is much larger.
*/
params.num_layers = MIN2(params.dst.view.array_len, num_layers);
const unsigned max_image_width = 16 * 1024;
if (params.dst.surf.logical_level0_px.width > max_image_width) {
/* Clearing an RGB image as red multiplies the surface width by 3
* so it may now be too wide for the hardware surface limits. We
* have to break the clear up into pieces in order to clear wide
* images.
*/
assert(clear_rgb_as_red);
assert(params.dst.surf.dim == ISL_SURF_DIM_2D);
assert(params.dst.surf.tiling == ISL_TILING_LINEAR);
assert(params.dst.surf.logical_level0_px.depth == 1);
assert(params.dst.surf.logical_level0_px.array_len == 1);
assert(params.dst.surf.levels == 1);
assert(params.dst.surf.samples == 1);
assert(params.dst.tile_x_sa == 0 || params.dst.tile_y_sa == 0);
assert(params.dst.aux_usage == ISL_AUX_USAGE_NONE);
/* max_image_width rounded down to a multiple of 3 */
const unsigned max_fake_rgb_width = (max_image_width / 3) * 3;
const unsigned cpp =
isl_format_get_layout(params.dst.surf.format)->bpb / 8;
params.dst.surf.logical_level0_px.width = max_fake_rgb_width;
params.dst.surf.phys_level0_sa.width = max_fake_rgb_width;
uint32_t orig_x0 = params.x0, orig_x1 = params.x1;
uint64_t orig_offset = params.dst.addr.offset;
for (uint32_t x = orig_x0; x < orig_x1; x += max_fake_rgb_width) {
/* Offset to the surface. It's easy because we're linear */
params.dst.addr.offset = orig_offset + x * cpp;
params.x0 = 0;
params.x1 = MIN2(orig_x1 - x, max_image_width);
batch->blorp->exec(batch, &params);
}
} else {
batch->blorp->exec(batch, &params);
}
start_layer += params.num_layers;
num_layers -= params.num_layers;
}
}
static bool
blorp_clear_stencil_as_rgba(struct blorp_batch *batch,
const struct blorp_surf *surf,
uint32_t level, uint32_t start_layer,
uint32_t num_layers,
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
uint8_t stencil_mask, uint8_t stencil_value)
{
assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0);
/* We only support separate W-tiled stencil for now */
if (surf->surf->format != ISL_FORMAT_R8_UINT ||
surf->surf->tiling != ISL_TILING_W)
return false;
/* Stencil mask support would require piles of shader magic */
if (stencil_mask != 0xff)
return false;
if (surf->surf->samples > 1) {
/* Adjust x0, y0, x1, and y1 to be in units of samples */
assert(surf->surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
struct isl_extent2d msaa_px_size_sa =
isl_get_interleaved_msaa_px_size_sa(surf->surf->samples);
x0 *= msaa_px_size_sa.w;
y0 *= msaa_px_size_sa.h;
x1 *= msaa_px_size_sa.w;
y1 *= msaa_px_size_sa.h;
}
/* W-tiles and Y-tiles have the same layout as far as cache lines are
* concerned: both are 8x8 cache lines laid out Y-major. The difference is
* entirely in how the data is arranged within the cache line. W-tiling
* is 8x8 pixels in a swizzled pattern while Y-tiling is 16B by 4 rows
* regardless of image format size. As long as everything is aligned to 8,
* we can just treat the W-tiled image as Y-tiled, ignore the layout
* difference within a cache line, and blast out data.
*/
if (x0 % 8 != 0 || y0 % 8 != 0 || x1 % 8 != 0 || y1 % 8 != 0)
return false;
struct blorp_params params;
blorp_params_init(&params);
params.snapshot_type = INTEL_SNAPSHOT_SLOW_DEPTH_CLEAR;
if (!blorp_params_get_clear_kernel(batch, &params, true, false))
return false;
memset(&params.wm_inputs.clear_color, stencil_value,
sizeof(params.wm_inputs.clear_color));
/* The Sandy Bridge PRM Vol. 4 Pt. 2, section 2.11.2.1.1 has the
* following footnote to the format table:
*
* 128 BPE Formats cannot be Tiled Y when used as render targets
*
* We have to use RGBA16_UINT on SNB.
*/
enum isl_format wide_format;
if (ISL_GFX_VER(batch->blorp->isl_dev) <= 6) {
wide_format = ISL_FORMAT_R16G16B16A16_UINT;
/* For RGBA16_UINT, we need to mask the stencil value otherwise, we risk
* clamping giving us the wrong values
*/
for (unsigned i = 0; i < 4; i++)
params.wm_inputs.clear_color[i] &= 0xffff;
} else {
wide_format = ISL_FORMAT_R32G32B32A32_UINT;
}
for (uint32_t a = 0; a < num_layers; a++) {
uint32_t layer = start_layer + a;
brw_blorp_surface_info_init(batch, &params.dst, surf, level,
layer, ISL_FORMAT_UNSUPPORTED, true);
if (surf->surf->samples > 1)
blorp_surf_fake_interleaved_msaa(batch->blorp->isl_dev, &params.dst);
/* Make it Y-tiled */
blorp_surf_retile_w_to_y(batch->blorp->isl_dev, &params.dst);
unsigned wide_Bpp =
isl_format_get_layout(wide_format)->bpb / 8;
params.dst.view.format = params.dst.surf.format = wide_format;
assert(params.dst.surf.logical_level0_px.width % wide_Bpp == 0);
params.dst.surf.logical_level0_px.width /= wide_Bpp;
assert(params.dst.tile_x_sa % wide_Bpp == 0);
params.dst.tile_x_sa /= wide_Bpp;
params.x0 = params.dst.tile_x_sa + x0 / (wide_Bpp / 2);
params.y0 = params.dst.tile_y_sa + y0 / 2;
params.x1 = params.dst.tile_x_sa + x1 / (wide_Bpp / 2);
params.y1 = params.dst.tile_y_sa + y1 / 2;
batch->blorp->exec(batch, &params);
}
return true;
}
void
blorp_clear_depth_stencil(struct blorp_batch *batch,
const struct blorp_surf *depth,
const struct blorp_surf *stencil,
uint32_t level, uint32_t start_layer,
uint32_t num_layers,
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
bool clear_depth, float depth_value,
uint8_t stencil_mask, uint8_t stencil_value)
{
assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0);
if (!clear_depth && blorp_clear_stencil_as_rgba(batch, stencil, level,
start_layer, num_layers,
x0, y0, x1, y1,
stencil_mask,
stencil_value))
return;
struct blorp_params params;
blorp_params_init(&params);
params.snapshot_type = INTEL_SNAPSHOT_SLOW_DEPTH_CLEAR;
params.x0 = x0;
params.y0 = y0;
params.x1 = x1;
params.y1 = y1;
if (ISL_GFX_VER(batch->blorp->isl_dev) == 6) {
/* For some reason, Sandy Bridge gets occlusion queries wrong if we
* don't have a shader. In particular, it records samples even though
* we disable statistics in 3DSTATE_WM. Give it the usual clear shader
* to work around the issue.
*/
if (!blorp_params_get_clear_kernel(batch, &params, false, false))
return;
}
while (num_layers > 0) {
params.num_layers = num_layers;
if (stencil_mask) {
brw_blorp_surface_info_init(batch, &params.stencil, stencil,
level, start_layer,
ISL_FORMAT_UNSUPPORTED, true);
params.stencil_mask = stencil_mask;
params.stencil_ref = stencil_value;
params.dst.surf.samples = params.stencil.surf.samples;
params.dst.surf.logical_level0_px =
params.stencil.surf.logical_level0_px;
params.dst.view = params.stencil.view;
params.num_samples = params.stencil.surf.samples;
/* We may be restricted on the number of layers we can bind at any
* one time. In particular, Sandy Bridge has a maximum number of
* layers of 512 but a maximum 3D texture size is much larger.
*/
if (params.stencil.view.array_len < params.num_layers)
params.num_layers = params.stencil.view.array_len;
}
if (clear_depth) {
brw_blorp_surface_info_init(batch, &params.depth, depth,
level, start_layer,
ISL_FORMAT_UNSUPPORTED, true);
params.z = depth_value;
params.depth_format =
isl_format_get_depth_format(depth->surf->format, false);
params.dst.surf.samples = params.depth.surf.samples;
params.dst.surf.logical_level0_px =
params.depth.surf.logical_level0_px;
params.dst.view = params.depth.view;
params.num_samples = params.depth.surf.samples;
/* We may be restricted on the number of layers we can bind at any
* one time. In particular, Sandy Bridge has a maximum number of
* layers of 512 but a maximum 3D texture size is much larger.
*/
if (params.depth.view.array_len < params.num_layers)
params.num_layers = params.depth.view.array_len;
}
batch->blorp->exec(batch, &params);
start_layer += params.num_layers;
num_layers -= params.num_layers;
}
}
bool
blorp_can_hiz_clear_depth(const struct intel_device_info *devinfo,
const struct isl_surf *surf,
enum isl_aux_usage aux_usage,
uint32_t level, uint32_t layer,
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
{
/* This function currently doesn't support any gen prior to gfx8 */
assert(devinfo->ver >= 8);
if (devinfo->ver == 8 && surf->format == ISL_FORMAT_R16_UNORM) {
/* From the BDW PRM, Vol 7, "Depth Buffer Clear":
*
* The following restrictions apply only if the depth buffer surface
* type is D16_UNORM and software does not use the “full surf clear”:
*
* If Number of Multisamples is NUMSAMPLES_1, the rectangle must be
* aligned to an 8x4 pixel block relative to the upper left corner of
* the depth buffer, and contain an integer number of these pixel
* blocks, and all 8x4 pixels must be lit.
*
* Alignment requirements for other sample counts are listed, but they
* can all be satisfied by the one mentioned above.
*/
if (x0 % 8 || y0 % 4 || x1 % 8 || y1 % 4)
return false;
} else if (aux_usage == ISL_AUX_USAGE_HIZ_CCS_WT) {
/* We have to set the WM_HZ_OP::FullSurfaceDepthandStencilClear bit
* whenever we clear an uninitialized HIZ buffer (as some drivers
* currently do). However, this bit seems liable to clear 16x8 pixels in
* the ZCS on Gfx12 - greater than the slice alignments for depth
* buffers.
*/
assert(surf->image_alignment_el.w % 16 != 0 ||
surf->image_alignment_el.h % 8 != 0);
/* This is the hypothesis behind some corruption that was seen with the
* amd_vertex_shader_layer-layered-depth-texture-render piglit test.
*
* From the Compressed Depth Buffers section of the Bspec, under the
* Gfx12 texture performant and ZCS columns:
*
* Update with clear at either 16x8 or 8x4 granularity, based on
* fs_clr or otherwise.
*
* There are a number of ways to avoid full surface CCS clears that
* overlap other slices, but for now we choose to disable fast-clears
* when an initializing clear could hit another miplevel.
*
* NOTE: Because the CCS compresses the depth buffer and not a version
* of it that has been rearranged with different alignments (like Gfx8+
* HIZ), we have to make sure that the x0 and y0 are at least 16x8
* aligned in the context of the entire surface.
*/
uint32_t slice_x0, slice_y0, slice_z0, slice_a0;
isl_surf_get_image_offset_el(surf, level,
surf->dim == ISL_SURF_DIM_3D ? 0 : layer,
surf->dim == ISL_SURF_DIM_3D ? layer: 0,
&slice_x0, &slice_y0, &slice_z0, &slice_a0);
assert(slice_z0 == 0 && slice_a0 == 0);
const bool max_x1_y1 =
x1 == u_minify(surf->logical_level0_px.width, level) &&
y1 == u_minify(surf->logical_level0_px.height, level);
const uint32_t haligned_x1 = ALIGN(x1, surf->image_alignment_el.w);
const uint32_t valigned_y1 = ALIGN(y1, surf->image_alignment_el.h);
const bool unaligned = (slice_x0 + x0) % 16 || (slice_y0 + y0) % 8 ||
(max_x1_y1 ? haligned_x1 % 16 || valigned_y1 % 8 :
x1 % 16 || y1 % 8);
const bool partial_clear = x0 > 0 || y0 > 0 || !max_x1_y1;
const bool multislice_surf = surf->levels > 1 ||
surf->logical_level0_px.depth > 1 ||
surf->logical_level0_px.array_len > 1;
if (unaligned && (partial_clear || multislice_surf))
return false;
}
return isl_aux_usage_has_hiz(aux_usage);
}
static bool
blorp_can_clear_full_surface(const struct blorp_surf *depth,
const struct blorp_surf *stencil,
uint32_t level,
uint32_t x0, uint32_t y0,
uint32_t x1, uint32_t y1,
bool clear_depth,
bool clear_stencil)
{
uint32_t width = 0, height = 0;
if (clear_stencil) {
width = u_minify(stencil->surf->logical_level0_px.width, level);
height = u_minify(stencil->surf->logical_level0_px.height, level);
}
if (clear_depth && !(width || height)) {
width = u_minify(depth->surf->logical_level0_px.width, level);
height = u_minify(depth->surf->logical_level0_px.height, level);
}
return x0 == 0 && y0 == 0 && width == x1 && height == y1;
}
void
blorp_hiz_clear_depth_stencil(struct blorp_batch *batch,
const struct blorp_surf *depth,
const struct blorp_surf *stencil,
uint32_t level,
uint32_t start_layer, uint32_t num_layers,
uint32_t x0, uint32_t y0,
uint32_t x1, uint32_t y1,
bool clear_depth, float depth_value,
bool clear_stencil, uint8_t stencil_value)
{
struct blorp_params params;
blorp_params_init(&params);
params.snapshot_type = INTEL_SNAPSHOT_HIZ_CLEAR;
/* This requires WM_HZ_OP which only exists on gfx8+ */
assert(ISL_GFX_VER(batch->blorp->isl_dev) >= 8);
params.hiz_op = ISL_AUX_OP_FAST_CLEAR;
/* From BSpec: 3DSTATE_WM_HZ_OP_BODY >> Full Surface Depth and Stencil Clear
*
* "Software must set this only when the APP requires the entire Depth
* surface to be cleared."
*/
params.full_surface_hiz_op =
blorp_can_clear_full_surface(depth, stencil, level, x0, y0, x1, y1,
clear_depth, clear_stencil);
params.num_layers = 1;
params.x0 = x0;
params.y0 = y0;
params.x1 = x1;
params.y1 = y1;
for (uint32_t l = 0; l < num_layers; l++) {
const uint32_t layer = start_layer + l;
if (clear_stencil) {
brw_blorp_surface_info_init(batch, &params.stencil, stencil,
level, layer,
ISL_FORMAT_UNSUPPORTED, true);
params.stencil_mask = 0xff;
params.stencil_ref = stencil_value;
params.num_samples = params.stencil.surf.samples;
}
if (clear_depth) {
/* If we're clearing depth, we must have HiZ */
assert(depth && isl_aux_usage_has_hiz(depth->aux_usage));
brw_blorp_surface_info_init(batch, &params.depth, depth,
level, layer,
ISL_FORMAT_UNSUPPORTED, true);
params.depth.clear_color.f32[0] = depth_value;
params.depth_format =
isl_format_get_depth_format(depth->surf->format, false);
params.num_samples = params.depth.surf.samples;
}
batch->blorp->exec(batch, &params);
}
}
/* Given a depth stencil attachment, this function performs a fast depth clear
* on a depth portion and a regular clear on the stencil portion. When
* performing a fast depth clear on the depth portion, the HiZ buffer is simply
* tagged as cleared so the depth clear value is not actually needed.
*/
void
blorp_gfx8_hiz_clear_attachments(struct blorp_batch *batch,
uint32_t num_samples,
uint32_t x0, uint32_t y0,
uint32_t x1, uint32_t y1,
bool clear_depth, bool clear_stencil,
uint8_t stencil_value)
{
assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
struct blorp_params params;
blorp_params_init(&params);
params.snapshot_type = INTEL_SNAPSHOT_HIZ_CLEAR;
params.num_layers = 1;
params.hiz_op = ISL_AUX_OP_FAST_CLEAR;
params.x0 = x0;
params.y0 = y0;
params.x1 = x1;
params.y1 = y1;
params.num_samples = num_samples;
params.depth.enabled = clear_depth;
params.stencil.enabled = clear_stencil;
params.stencil_ref = stencil_value;
batch->blorp->exec(batch, &params);
}
/** Clear active color/depth/stencili attachments
*
* This function performs a clear operation on the currently bound
* color/depth/stencil attachments. It is assumed that any information passed
* in here is valid, consistent, and in-bounds relative to the currently
* attached depth/stencil. The binding_table_offset parameter is the 32-bit
* offset relative to surface state base address where pre-baked binding table
* that we are to use lives. If clear_color is false, binding_table_offset
* must point to a binding table with one entry which is a valid null surface
* that matches the currently bound depth and stencil.
*/
void
blorp_clear_attachments(struct blorp_batch *batch,
uint32_t binding_table_offset,
enum isl_format depth_format,
uint32_t num_samples,
uint32_t start_layer, uint32_t num_layers,
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
bool clear_color, union isl_color_value color_value,
bool clear_depth, float depth_value,
uint8_t stencil_mask, uint8_t stencil_value)
{
struct blorp_params params;
blorp_params_init(&params);
assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0);
assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
params.x0 = x0;
params.y0 = y0;
params.x1 = x1;
params.y1 = y1;
params.use_pre_baked_binding_table = true;
params.pre_baked_binding_table_offset = binding_table_offset;
params.num_layers = num_layers;
params.num_samples = num_samples;
if (clear_color) {
params.dst.enabled = true;
params.snapshot_type = INTEL_SNAPSHOT_SLOW_COLOR_CLEAR;
memcpy(&params.wm_inputs.clear_color, color_value.f32, sizeof(float) * 4);
/* Unfortunately, without knowing whether or not our destination surface
* is tiled or not, we have to assume it may be linear. This means no
* SIMD16_REPDATA for us. :-(
*/
if (!blorp_params_get_clear_kernel(batch, &params, false, false))
return;
}
if (clear_depth) {
params.depth.enabled = true;
params.snapshot_type = INTEL_SNAPSHOT_SLOW_DEPTH_CLEAR;
params.z = depth_value;
params.depth_format = isl_format_get_depth_format(depth_format, false);
}
if (stencil_mask) {
params.stencil.enabled = true;
params.snapshot_type = INTEL_SNAPSHOT_SLOW_DEPTH_CLEAR;
params.stencil_mask = stencil_mask;
params.stencil_ref = stencil_value;
}
if (!blorp_params_get_layer_offset_vs(batch, &params))
return;
params.vs_inputs.base_layer = start_layer;
batch->blorp->exec(batch, &params);
}
void
blorp_ccs_resolve(struct blorp_batch *batch,
struct blorp_surf *surf, uint32_t level,
uint32_t start_layer, uint32_t num_layers,
enum isl_format format,
enum isl_aux_op resolve_op)
{
assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0);
struct blorp_params params;
blorp_params_init(&params);
switch(resolve_op) {
case ISL_AUX_OP_AMBIGUATE:
params.snapshot_type = INTEL_SNAPSHOT_CCS_AMBIGUATE;
break;
case ISL_AUX_OP_FULL_RESOLVE:
params.snapshot_type = INTEL_SNAPSHOT_CCS_RESOLVE;
break;
case ISL_AUX_OP_PARTIAL_RESOLVE:
params.snapshot_type = INTEL_SNAPSHOT_CCS_PARTIAL_RESOLVE;
break;
default:
assert(false);
}
brw_blorp_surface_info_init(batch, &params.dst, surf,
level, start_layer, format, true);
params.x0 = params.y0 = 0;
params.x1 = u_minify(params.dst.surf.logical_level0_px.width, level);
params.y1 = u_minify(params.dst.surf.logical_level0_px.height, level);
if (ISL_GFX_VER(batch->blorp->isl_dev) >= 9) {
/* From Bspec 2424, "Render Target Resolve":
*
* The Resolve Rectangle size is same as Clear Rectangle size from
* SKL+.
*
* Note that this differs from Vol7 of the Sky Lake PRM, which only
* specifies aligning by the scaledown factors.
*/
get_fast_clear_rect(batch->blorp->isl_dev, surf->surf, surf->aux_surf,
&params.x0, &params.y0, &params.x1, &params.y1);
} else {
/* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve":
*
* A rectangle primitive must be scaled down by the following factors
* with respect to render target being resolved.
*
* The scaledown factors in the table that follows are related to the
* block size of the CCS format. For IVB and HSW, we divide by two, for
* BDW we multiply by 8 and 16.
*/
const struct isl_format_layout *aux_fmtl =
isl_format_get_layout(params.dst.aux_surf.format);
assert(aux_fmtl->txc == ISL_TXC_CCS);
unsigned x_scaledown, y_scaledown;
if (ISL_GFX_VER(batch->blorp->isl_dev) >= 8) {
x_scaledown = aux_fmtl->bw * 8;
y_scaledown = aux_fmtl->bh * 16;
} else {
x_scaledown = aux_fmtl->bw / 2;
y_scaledown = aux_fmtl->bh / 2;
}
params.x1 = ALIGN(params.x1, x_scaledown) / x_scaledown;
params.y1 = ALIGN(params.y1, y_scaledown) / y_scaledown;
}
if (batch->blorp->isl_dev->info->ver >= 10) {
assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE ||
resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE ||
resolve_op == ISL_AUX_OP_AMBIGUATE);
} else if (batch->blorp->isl_dev->info->ver >= 9) {
assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE ||
resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
} else {
/* Broadwell and earlier do not have a partial resolve */
assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE);
}
params.fast_clear_op = resolve_op;
params.num_layers = num_layers;
/* Note: there is no need to initialize push constants because it doesn't
* matter what data gets dispatched to the render target. However, we must
* ensure that the fragment shader delivers the data using the "replicated
* color" message.
*/
if (!blorp_params_get_clear_kernel(batch, &params, true, false))
return;
batch->blorp->exec(batch, &params);
}
static nir_ssa_def *
blorp_nir_bit(nir_builder *b, nir_ssa_def *src, unsigned bit)
{
return nir_iand(b, nir_ushr(b, src, nir_imm_int(b, bit)),
nir_imm_int(b, 1));
}
#pragma pack(push, 1)
struct blorp_mcs_partial_resolve_key
{
struct brw_blorp_base_key base;
bool indirect_clear_color;
bool int_format;
uint32_t num_samples;
};
#pragma pack(pop)
static bool
blorp_params_get_mcs_partial_resolve_kernel(struct blorp_batch *batch,
struct blorp_params *params)
{
struct blorp_context *blorp = batch->blorp;
const struct blorp_mcs_partial_resolve_key blorp_key = {
.base = BRW_BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_MCS_PARTIAL_RESOLVE),
.indirect_clear_color = params->dst.clear_color_addr.buffer != NULL,
.int_format = isl_format_has_int_channel(params->dst.view.format),
.num_samples = params->num_samples,
};
if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
&params->wm_prog_kernel, &params->wm_prog_data))
return true;
void *mem_ctx = ralloc_context(NULL);
nir_builder b;
blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT,
blorp_shader_type_to_name(blorp_key.base.shader_type));
nir_variable *v_color =
BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
nir_variable *frag_color =
nir_variable_create(b.shader, nir_var_shader_out,
glsl_vec4_type(), "gl_FragColor");
frag_color->data.location = FRAG_RESULT_COLOR;
/* Do an MCS fetch and check if it is equal to the magic clear value */
nir_ssa_def *mcs =
blorp_nir_txf_ms_mcs(&b, nir_f2i32(&b, nir_load_frag_coord(&b)),
nir_load_layer_id(&b));
nir_ssa_def *is_clear =
blorp_nir_mcs_is_clear_color(&b, mcs, blorp_key.num_samples);
/* If we aren't the clear value, discard. */
nir_discard_if(&b, nir_inot(&b, is_clear));
nir_ssa_def *clear_color = nir_load_var(&b, v_color);
if (blorp_key.indirect_clear_color && blorp->isl_dev->info->ver <= 8) {
/* Gfx7-8 clear colors are stored as single 0/1 bits */
clear_color = nir_vec4(&b, blorp_nir_bit(&b, clear_color, 31),
blorp_nir_bit(&b, clear_color, 30),
blorp_nir_bit(&b, clear_color, 29),
blorp_nir_bit(&b, clear_color, 28));
if (!blorp_key.int_format)
clear_color = nir_i2f32(&b, clear_color);
}
nir_store_var(&b, frag_color, clear_color, 0xf);
struct brw_wm_prog_key wm_key;
brw_blorp_init_wm_prog_key(&wm_key);
wm_key.base.tex.compressed_multisample_layout_mask = 1;
wm_key.base.tex.msaa_16 = blorp_key.num_samples == 16;
wm_key.multisample_fbo = true;
struct brw_wm_prog_data prog_data;
const unsigned *program =
blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, false,
&prog_data);
bool result =
blorp->upload_shader(batch, MESA_SHADER_FRAGMENT,
&blorp_key, sizeof(blorp_key),
program, prog_data.base.program_size,
&prog_data.base, sizeof(prog_data),
&params->wm_prog_kernel, &params->wm_prog_data);
ralloc_free(mem_ctx);
return result;
}
void
blorp_mcs_partial_resolve(struct blorp_batch *batch,
struct blorp_surf *surf,
enum isl_format format,
uint32_t start_layer, uint32_t num_layers)
{
struct blorp_params params;
blorp_params_init(&params);
params.snapshot_type = INTEL_SNAPSHOT_MCS_PARTIAL_RESOLVE;
assert(batch->blorp->isl_dev->info->ver >= 7);
params.x0 = 0;
params.y0 = 0;
params.x1 = surf->surf->logical_level0_px.width;
params.y1 = surf->surf->logical_level0_px.height;
brw_blorp_surface_info_init(batch, &params.src, surf, 0,
start_layer, format, false);
brw_blorp_surface_info_init(batch, &params.dst, surf, 0,
start_layer, format, true);
params.num_samples = params.dst.surf.samples;
params.num_layers = num_layers;
params.dst_clear_color_as_input = surf->clear_color_addr.buffer != NULL;
memcpy(&params.wm_inputs.clear_color,
surf->clear_color.f32, sizeof(float) * 4);
if (!blorp_params_get_mcs_partial_resolve_kernel(batch, &params))
return;
batch->blorp->exec(batch, &params);
}
/** Clear a CCS to the "uncompressed" state
*
* This pass is the CCS equivalent of a "HiZ resolve". It sets the CCS values
* for a given layer/level of a surface to 0x0 which is the "uncompressed"
* state which tells the sampler to go look at the main surface.
*/
void
blorp_ccs_ambiguate(struct blorp_batch *batch,
struct blorp_surf *surf,
uint32_t level, uint32_t layer)
{
assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0);
if (ISL_GFX_VER(batch->blorp->isl_dev) >= 10) {
/* On gfx10 and above, we have a hardware resolve op for this */
return blorp_ccs_resolve(batch, surf, level, layer, 1,
surf->surf->format, ISL_AUX_OP_AMBIGUATE);
}
struct blorp_params params;
blorp_params_init(&params);
params.snapshot_type = INTEL_SNAPSHOT_CCS_AMBIGUATE;
assert(ISL_GFX_VER(batch->blorp->isl_dev) >= 7);
const struct isl_format_layout *aux_fmtl =
isl_format_get_layout(surf->aux_surf->format);
assert(aux_fmtl->txc == ISL_TXC_CCS);
params.dst = (struct brw_blorp_surface_info) {
.enabled = true,
.addr = surf->aux_addr,
.view = {
.usage = ISL_SURF_USAGE_RENDER_TARGET_BIT,
.format = ISL_FORMAT_R32G32B32A32_UINT,
.base_level = 0,
.base_array_layer = 0,
.levels = 1,
.array_len = 1,
.swizzle = ISL_SWIZZLE_IDENTITY,
},
};
uint32_t z = 0;
if (surf->surf->dim == ISL_SURF_DIM_3D) {
z = layer;
layer = 0;
}
uint64_t offset_B;
uint32_t x_offset_el, y_offset_el;
isl_surf_get_image_offset_B_tile_el(surf->aux_surf, level, layer, z,
&offset_B, &x_offset_el, &y_offset_el);
params.dst.addr.offset += offset_B;
const uint32_t width_px =
u_minify(surf->aux_surf->logical_level0_px.width, level);
const uint32_t height_px =
u_minify(surf->aux_surf->logical_level0_px.height, level);
const uint32_t width_el = DIV_ROUND_UP(width_px, aux_fmtl->bw);
const uint32_t height_el = DIV_ROUND_UP(height_px, aux_fmtl->bh);
struct isl_tile_info ccs_tile_info;
isl_surf_get_tile_info(surf->aux_surf, &ccs_tile_info);
/* We're going to map it as a regular RGBA32_UINT surface. We need to
* downscale a good deal. We start by computing the area on the CCS to
* clear in units of Y-tiled cache lines.
*/
uint32_t x_offset_cl, y_offset_cl, width_cl, height_cl;
if (ISL_GFX_VER(batch->blorp->isl_dev) >= 8) {
/* From the Sky Lake PRM Vol. 12 in the section on planes:
*
* "The Color Control Surface (CCS) contains the compression status
* of the cache-line pairs. The compression state of the cache-line
* pair is specified by 2 bits in the CCS. Each CCS cache-line
* represents an area on the main surface of 16x16 sets of 128 byte
* Y-tiled cache-line-pairs. CCS is always Y tiled."
*
* Each 2-bit surface element in the CCS corresponds to a single
* cache-line pair in the main surface. This means that 16x16 el block
* in the CCS maps to a Y-tiled cache line. Fortunately, CCS layouts
* are calculated with a very large alignment so we can round up to a
* whole cache line without worrying about overdraw.
*/
/* On Broadwell and above, a CCS tile is the same as a Y tile when
* viewed at the cache-line granularity. Fortunately, the horizontal
* and vertical alignment requirements of the CCS are such that we can
* align to an entire cache line without worrying about crossing over
* from one LOD to another.
*/
const uint32_t x_el_per_cl = ccs_tile_info.logical_extent_el.w / 8;
const uint32_t y_el_per_cl = ccs_tile_info.logical_extent_el.h / 8;
assert(surf->aux_surf->image_alignment_el.w % x_el_per_cl == 0);
assert(surf->aux_surf->image_alignment_el.h % y_el_per_cl == 0);
assert(x_offset_el % x_el_per_cl == 0);
assert(y_offset_el % y_el_per_cl == 0);
x_offset_cl = x_offset_el / x_el_per_cl;
y_offset_cl = y_offset_el / y_el_per_cl;
width_cl = DIV_ROUND_UP(width_el, x_el_per_cl);
height_cl = DIV_ROUND_UP(height_el, y_el_per_cl);
} else {
/* On gfx7, the CCS tiling is not so nice. However, there we are
* guaranteed that we only have a single level and slice so we don't
* have to worry about it and can just align to a whole tile.
*/
assert(surf->aux_surf->logical_level0_px.depth == 1);
assert(surf->aux_surf->logical_level0_px.array_len == 1);
assert(x_offset_el == 0 && y_offset_el == 0);
const uint32_t width_tl =
DIV_ROUND_UP(width_el, ccs_tile_info.logical_extent_el.w);
const uint32_t height_tl =
DIV_ROUND_UP(height_el, ccs_tile_info.logical_extent_el.h);
x_offset_cl = 0;
y_offset_cl = 0;
width_cl = width_tl * 8;
height_cl = height_tl * 8;
}
/* We're going to use a RGBA32 format so as to write data as quickly as
* possible. A y-tiled cache line will then be 1x4 px.
*/
const uint32_t x_offset_rgba_px = x_offset_cl;
const uint32_t y_offset_rgba_px = y_offset_cl * 4;
const uint32_t width_rgba_px = width_cl;
const uint32_t height_rgba_px = height_cl * 4;
ASSERTED bool ok =
isl_surf_init(batch->blorp->isl_dev, &params.dst.surf,
.dim = ISL_SURF_DIM_2D,
.format = ISL_FORMAT_R32G32B32A32_UINT,
.width = width_rgba_px + x_offset_rgba_px,
.height = height_rgba_px + y_offset_rgba_px,
.depth = 1,
.levels = 1,
.array_len = 1,
.samples = 1,
.row_pitch_B = surf->aux_surf->row_pitch_B,
.usage = ISL_SURF_USAGE_RENDER_TARGET_BIT,
.tiling_flags = ISL_TILING_Y0_BIT);
assert(ok);
params.x0 = x_offset_rgba_px;
params.y0 = y_offset_rgba_px;
params.x1 = x_offset_rgba_px + width_rgba_px;
params.y1 = y_offset_rgba_px + height_rgba_px;
/* A CCS value of 0 means "uncompressed." */
memset(&params.wm_inputs.clear_color, 0,
sizeof(params.wm_inputs.clear_color));
if (!blorp_params_get_clear_kernel(batch, &params, true, false))
return;
batch->blorp->exec(batch, &params);
}