mesa/src/intel/blorp/blorp.c

522 lines
17 KiB
C

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <errno.h>
#include "program/prog_instruction.h"
#include "blorp_priv.h"
#include "compiler/brw_compiler.h"
#include "compiler/brw_nir.h"
#include "dev/intel_debug.h"
const char *
blorp_shader_type_to_name(enum blorp_shader_type type)
{
static const char *shader_name[] = {
[BLORP_SHADER_TYPE_COPY] = "BLORP-copy",
[BLORP_SHADER_TYPE_BLIT] = "BLORP-blit",
[BLORP_SHADER_TYPE_CLEAR] = "BLORP-clear",
[BLORP_SHADER_TYPE_MCS_PARTIAL_RESOLVE] = "BLORP-mcs-partial-resolve",
[BLORP_SHADER_TYPE_LAYER_OFFSET_VS] = "BLORP-layer-offset-vs",
[BLORP_SHADER_TYPE_GFX4_SF] = "BLORP-gfx4-sf",
};
assert(type < ARRAY_SIZE(shader_name));
return shader_name[type];
}
const char *
blorp_shader_pipeline_to_name(enum blorp_shader_pipeline pipe)
{
static const char *pipeline_name[] = {
[BLORP_SHADER_PIPELINE_RENDER] = "render",
[BLORP_SHADER_PIPELINE_COMPUTE] = "compute",
};
assert(pipe < ARRAY_SIZE(pipeline_name));
return pipeline_name[pipe];
}
void
blorp_init(struct blorp_context *blorp, void *driver_ctx,
struct isl_device *isl_dev, const struct blorp_config *config)
{
memset(blorp, 0, sizeof(*blorp));
blorp->driver_ctx = driver_ctx;
blorp->isl_dev = isl_dev;
if (config)
blorp->config = *config;
}
void
blorp_finish(struct blorp_context *blorp)
{
blorp->driver_ctx = NULL;
}
void
blorp_batch_init(struct blorp_context *blorp,
struct blorp_batch *batch, void *driver_batch,
enum blorp_batch_flags flags)
{
batch->blorp = blorp;
batch->driver_batch = driver_batch;
batch->flags = flags;
}
void
blorp_batch_finish(struct blorp_batch *batch)
{
batch->blorp = NULL;
}
void
brw_blorp_surface_info_init(struct blorp_batch *batch,
struct brw_blorp_surface_info *info,
const struct blorp_surf *surf,
unsigned int level, float layer,
enum isl_format format, bool is_dest)
{
struct blorp_context *blorp = batch->blorp;
memset(info, 0, sizeof(*info));
assert(level < surf->surf->levels);
assert(layer < MAX2(surf->surf->logical_level0_px.depth >> level,
surf->surf->logical_level0_px.array_len));
info->enabled = true;
if (format == ISL_FORMAT_UNSUPPORTED)
format = surf->surf->format;
info->surf = *surf->surf;
info->addr = surf->addr;
info->aux_usage = surf->aux_usage;
if (info->aux_usage != ISL_AUX_USAGE_NONE) {
info->aux_surf = *surf->aux_surf;
info->aux_addr = surf->aux_addr;
}
info->clear_color = surf->clear_color;
info->clear_color_addr = surf->clear_color_addr;
isl_surf_usage_flags_t view_usage;
if (is_dest) {
if (batch->flags & BLORP_BATCH_USE_COMPUTE)
view_usage = ISL_SURF_USAGE_STORAGE_BIT;
else
view_usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
} else {
view_usage = ISL_SURF_USAGE_TEXTURE_BIT;
}
info->view = (struct isl_view) {
.usage = view_usage,
.format = format,
.base_level = level,
.levels = 1,
.swizzle = ISL_SWIZZLE_IDENTITY,
};
info->view.array_len = MAX2(info->surf.logical_level0_px.depth,
info->surf.logical_level0_px.array_len);
if (!is_dest &&
(info->surf.dim == ISL_SURF_DIM_3D ||
info->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY)) {
/* 3-D textures don't support base_array layer and neither do 2-D
* multisampled textures on IVB so we need to pass it through the
* sampler in those cases. These are also two cases where we are
* guaranteed that we won't be doing any funny surface hacks.
*/
info->view.base_array_layer = 0;
info->z_offset = layer;
} else {
info->view.base_array_layer = layer;
assert(info->view.array_len >= info->view.base_array_layer);
info->view.array_len -= info->view.base_array_layer;
info->z_offset = 0;
}
/* Sandy Bridge and earlier have a limit of a maximum of 512 layers for
* layered rendering.
*/
if (is_dest && blorp->isl_dev->info->ver <= 6)
info->view.array_len = MIN2(info->view.array_len, 512);
if (surf->tile_x_sa || surf->tile_y_sa) {
/* This is only allowed on simple 2D surfaces without MSAA */
assert(info->surf.dim == ISL_SURF_DIM_2D);
assert(info->surf.samples == 1);
assert(info->surf.levels == 1);
assert(info->surf.logical_level0_px.array_len == 1);
assert(info->aux_usage == ISL_AUX_USAGE_NONE);
info->tile_x_sa = surf->tile_x_sa;
info->tile_y_sa = surf->tile_y_sa;
/* Instead of using the X/Y Offset fields in RENDER_SURFACE_STATE, we
* place the image at the tile boundary and offset our sampling or
* rendering. For this reason, we need to grow the image by the offset
* to ensure that the hardware doesn't think we've gone past the edge.
*/
info->surf.logical_level0_px.w += surf->tile_x_sa;
info->surf.logical_level0_px.h += surf->tile_y_sa;
info->surf.phys_level0_sa.w += surf->tile_x_sa;
info->surf.phys_level0_sa.h += surf->tile_y_sa;
}
}
void
blorp_params_init(struct blorp_params *params)
{
memset(params, 0, sizeof(*params));
params->num_samples = 1;
params->num_draw_buffers = 1;
params->num_layers = 1;
}
static void
blorp_init_base_prog_key(struct brw_base_prog_key *key)
{
for (int i = 0; i < BRW_MAX_SAMPLERS; i++)
key->tex.swizzles[i] = SWIZZLE_XYZW;
}
void
brw_blorp_init_wm_prog_key(struct brw_wm_prog_key *wm_key)
{
memset(wm_key, 0, sizeof(*wm_key));
wm_key->nr_color_regions = 1;
blorp_init_base_prog_key(&wm_key->base);
}
void
brw_blorp_init_cs_prog_key(struct brw_cs_prog_key *cs_key)
{
memset(cs_key, 0, sizeof(*cs_key));
blorp_init_base_prog_key(&cs_key->base);
}
const unsigned *
blorp_compile_fs(struct blorp_context *blorp, void *mem_ctx,
struct nir_shader *nir,
struct brw_wm_prog_key *wm_key,
bool use_repclear,
struct brw_wm_prog_data *wm_prog_data)
{
const struct brw_compiler *compiler = blorp->compiler;
nir->options = compiler->nir_options[MESA_SHADER_FRAGMENT];
memset(wm_prog_data, 0, sizeof(*wm_prog_data));
wm_prog_data->base.nr_params = 0;
wm_prog_data->base.param = NULL;
brw_preprocess_nir(compiler, nir, NULL);
nir_remove_dead_variables(nir, nir_var_shader_in, NULL);
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
if (blorp->compiler->devinfo->ver < 6) {
if (nir->info.fs.uses_discard)
wm_key->iz_lookup |= BRW_WM_IZ_PS_KILL_ALPHATEST_BIT;
wm_key->input_slots_valid = nir->info.inputs_read | VARYING_BIT_POS;
}
struct brw_compile_fs_params params = {
.nir = nir,
.key = wm_key,
.prog_data = wm_prog_data,
.use_rep_send = use_repclear,
.log_data = blorp->driver_ctx,
.debug_flag = DEBUG_BLORP,
};
return brw_compile_fs(compiler, mem_ctx, &params);
}
const unsigned *
blorp_compile_vs(struct blorp_context *blorp, void *mem_ctx,
struct nir_shader *nir,
struct brw_vs_prog_data *vs_prog_data)
{
const struct brw_compiler *compiler = blorp->compiler;
nir->options = compiler->nir_options[MESA_SHADER_VERTEX];
brw_preprocess_nir(compiler, nir, NULL);
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
vs_prog_data->inputs_read = nir->info.inputs_read;
brw_compute_vue_map(compiler->devinfo,
&vs_prog_data->base.vue_map,
nir->info.outputs_written,
nir->info.separate_shader,
1);
struct brw_vs_prog_key vs_key = { 0, };
struct brw_compile_vs_params params = {
.nir = nir,
.key = &vs_key,
.prog_data = vs_prog_data,
.log_data = blorp->driver_ctx,
.debug_flag = DEBUG_BLORP,
};
return brw_compile_vs(compiler, mem_ctx, &params);
}
const unsigned *
blorp_compile_cs(struct blorp_context *blorp, void *mem_ctx,
struct nir_shader *nir,
struct brw_cs_prog_key *cs_key,
struct brw_cs_prog_data *cs_prog_data)
{
const struct brw_compiler *compiler = blorp->compiler;
nir->options = compiler->nir_options[MESA_SHADER_COMPUTE];
memset(cs_prog_data, 0, sizeof(*cs_prog_data));
brw_preprocess_nir(compiler, nir, NULL);
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
NIR_PASS_V(nir, nir_lower_io, nir_var_uniform, type_size_scalar_bytes,
(nir_lower_io_options)0);
STATIC_ASSERT(offsetof(struct brw_blorp_wm_inputs, subgroup_id) + 4 ==
sizeof(struct brw_blorp_wm_inputs));
nir->num_uniforms = offsetof(struct brw_blorp_wm_inputs, subgroup_id);
unsigned nr_params = nir->num_uniforms / 4;
cs_prog_data->base.nr_params = nr_params;
cs_prog_data->base.param = rzalloc_array(NULL, uint32_t, nr_params);
NIR_PASS_V(nir, brw_nir_lower_cs_intrinsics);
struct brw_compile_cs_params params = {
.nir = nir,
.key = cs_key,
.prog_data = cs_prog_data,
.log_data = blorp->driver_ctx,
.debug_flag = DEBUG_BLORP,
};
const unsigned *program = brw_compile_cs(compiler, mem_ctx, &params);
ralloc_free(cs_prog_data->base.param);
cs_prog_data->base.param = NULL;
return program;
}
struct blorp_sf_key {
struct brw_blorp_base_key base;
struct brw_sf_prog_key key;
};
bool
blorp_ensure_sf_program(struct blorp_batch *batch,
struct blorp_params *params)
{
struct blorp_context *blorp = batch->blorp;
const struct brw_wm_prog_data *wm_prog_data = params->wm_prog_data;
assert(params->wm_prog_data);
/* Gfx6+ doesn't need a strips and fans program */
if (blorp->compiler->devinfo->ver >= 6)
return true;
struct blorp_sf_key key = {
.base = BRW_BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_GFX4_SF),
};
/* Everything gets compacted in vertex setup, so we just need a
* pass-through for the correct number of input varyings.
*/
const uint64_t slots_valid = VARYING_BIT_POS |
((1ull << wm_prog_data->num_varying_inputs) - 1) << VARYING_SLOT_VAR0;
key.key.attrs = slots_valid;
key.key.primitive = BRW_SF_PRIM_TRIANGLES;
key.key.contains_flat_varying = wm_prog_data->contains_flat_varying;
STATIC_ASSERT(sizeof(key.key.interp_mode) ==
sizeof(wm_prog_data->interp_mode));
memcpy(key.key.interp_mode, wm_prog_data->interp_mode,
sizeof(key.key.interp_mode));
if (blorp->lookup_shader(batch, &key, sizeof(key),
&params->sf_prog_kernel, &params->sf_prog_data))
return true;
void *mem_ctx = ralloc_context(NULL);
const unsigned *program;
unsigned program_size;
struct brw_vue_map vue_map;
brw_compute_vue_map(blorp->compiler->devinfo, &vue_map, slots_valid, false, 1);
struct brw_sf_prog_data prog_data_tmp;
program = brw_compile_sf(blorp->compiler, mem_ctx, &key.key,
&prog_data_tmp, &vue_map, &program_size);
bool result =
blorp->upload_shader(batch, MESA_SHADER_NONE,
&key, sizeof(key), program, program_size,
(void *)&prog_data_tmp, sizeof(prog_data_tmp),
&params->sf_prog_kernel, &params->sf_prog_data);
ralloc_free(mem_ctx);
return result;
}
void
blorp_hiz_op(struct blorp_batch *batch, struct blorp_surf *surf,
uint32_t level, uint32_t start_layer, uint32_t num_layers,
enum isl_aux_op op)
{
const struct intel_device_info *devinfo = batch->blorp->isl_dev->info;
struct blorp_params params;
blorp_params_init(&params);
params.hiz_op = op;
params.full_surface_hiz_op = true;
switch (op) {
case ISL_AUX_OP_FULL_RESOLVE:
params.snapshot_type = INTEL_SNAPSHOT_HIZ_RESOLVE;
break;
case ISL_AUX_OP_AMBIGUATE:
params.snapshot_type = INTEL_SNAPSHOT_HIZ_AMBIGUATE;
break;
case ISL_AUX_OP_FAST_CLEAR:
params.snapshot_type = INTEL_SNAPSHOT_HIZ_CLEAR;
break;
case ISL_AUX_OP_PARTIAL_RESOLVE:
case ISL_AUX_OP_NONE:
unreachable("Invalid HiZ op");
}
for (uint32_t a = 0; a < num_layers; a++) {
const uint32_t layer = start_layer + a;
brw_blorp_surface_info_init(batch, &params.depth, surf, level,
layer, surf->surf->format, true);
/* Align the rectangle primitive to 8x4 pixels.
*
* During fast depth clears, the emitted rectangle primitive must be
* aligned to 8x4 pixels. From the Ivybridge PRM, Vol 2 Part 1 Section
* 11.5.3.1 Depth Buffer Clear (and the matching section in the
* Sandybridge PRM):
*
* If Number of Multisamples is NUMSAMPLES_1, the rectangle must be
* aligned to an 8x4 pixel block relative to the upper left corner
* of the depth buffer [...]
*
* For hiz resolves, the rectangle must also be 8x4 aligned. Item
* WaHizAmbiguate8x4Aligned from the Haswell workarounds page and the
* Ivybridge simulator require the alignment.
*
* To be safe, let's just align the rect for all hiz operations and all
* hardware generations.
*
* However, for some miptree slices of a Z24 texture, emitting an 8x4
* aligned rectangle that covers the slice may clobber adjacent slices
* if we strictly adhered to the texture alignments specified in the
* PRM. The Ivybridge PRM, Section "Alignment Unit Size", states that
* SURFACE_STATE.Surface_Horizontal_Alignment should be 4 for Z24
* surfaces, not 8. But commit 1f112cc increased the alignment from 4 to
* 8, which prevents the clobbering.
*/
params.x1 = u_minify(params.depth.surf.logical_level0_px.width,
params.depth.view.base_level);
params.y1 = u_minify(params.depth.surf.logical_level0_px.height,
params.depth.view.base_level);
params.x1 = ALIGN(params.x1, 8);
params.y1 = ALIGN(params.y1, 4);
if (params.depth.view.base_level == 0) {
/* TODO: What about MSAA? */
params.depth.surf.logical_level0_px.width = params.x1;
params.depth.surf.logical_level0_px.height = params.y1;
} else if (devinfo->ver >= 8 && devinfo->ver <= 9 &&
op == ISL_AUX_OP_AMBIGUATE) {
/* On some platforms, it's not enough to just adjust the clear
* rectangle when the LOD is greater than 0.
*
* From the BDW and SKL PRMs, Vol 7, "Optimized Hierarchical Depth
* Buffer Resolve":
*
* The following is required when performing a hierarchical depth
* buffer resolve:
*
* - A rectangle primitive covering the full render target must be
* programmed on Xmin, Ymin, Xmax, and Ymax in the
* 3DSTATE_WM_HZ_OP command.
*
* - The rectangle primitive size must be aligned to 8x4 pixels.
*
* And from the Clear Rectangle programming note in 3DSTATE_WM_HZ_OP
* (Vol 2a):
*
* Hence the max values must be less than or equal to: ( Surface
* Width » LOD ) and ( Surface Height » LOD ) for X Max and Y Max
* respectively.
*
* This means that the extent of the LOD must be naturally
* 8x4-aligned after minification of the base LOD. Since the base LOD
* dimensions affect the placement of smaller LODs, it's not trivial
* (nor possible, at times) to satisfy the requirement by adjusting
* the base LOD extent. Just assert that the caller is accessing an
* LOD that satisfies this requirement.
*/
assert(u_minify(params.depth.surf.logical_level0_px.width,
params.depth.view.base_level) == params.x1);
assert(u_minify(params.depth.surf.logical_level0_px.height,
params.depth.view.base_level) == params.y1);
}
params.dst.surf.samples = params.depth.surf.samples;
params.dst.surf.logical_level0_px = params.depth.surf.logical_level0_px;
params.depth_format =
isl_format_get_depth_format(surf->surf->format, false);
params.num_samples = params.depth.surf.samples;
batch->blorp->exec(batch, &params);
}
}