mesa/src/gallium/drivers/r600/sfn/sfn_shader_gs.cpp

401 lines
13 KiB
C++

/* -*- mesa-c++ -*-
*
* Copyright (c) 2022 Collabora LTD
*
* Author: Gert Wollny <gert.wollny@collabora.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "sfn_shader_gs.h"
#include "sfn_instr_fetch.h"
#include "sfn_debug.h"
namespace r600 {
GeometryShader::GeometryShader(const r600_shader_key& key):
Shader("GS"),
m_tri_strip_adj_fix(key.gs.tri_strip_adj_fix)
{
}
bool GeometryShader::do_scan_instruction(nir_instr *instr)
{
if (instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *ii = nir_instr_as_intrinsic(instr);
switch (ii->intrinsic) {
case nir_intrinsic_store_output:
return process_store_output(ii);
case nir_intrinsic_load_per_vertex_input:
return process_load_input(ii);
default:
return false;
}
}
bool GeometryShader::process_store_output(nir_intrinsic_instr *instr)
{
auto location = nir_intrinsic_io_semantics(instr).location;
auto index = nir_src_as_const_value(instr->src[1]);
assert(index);
auto driver_location = nir_intrinsic_base(instr) + index->u32;
if (location == VARYING_SLOT_COL0 ||
location == VARYING_SLOT_COL1 ||
(location >= VARYING_SLOT_VAR0 &&
location <= VARYING_SLOT_VAR31) ||
(location >= VARYING_SLOT_TEX0 &&
location <= VARYING_SLOT_TEX7) ||
location == VARYING_SLOT_BFC0 ||
location == VARYING_SLOT_BFC1 ||
location == VARYING_SLOT_PNTC ||
location == VARYING_SLOT_CLIP_VERTEX ||
location == VARYING_SLOT_CLIP_DIST0 ||
location == VARYING_SLOT_CLIP_DIST1 ||
location == VARYING_SLOT_PRIMITIVE_ID ||
location == VARYING_SLOT_POS ||
location == VARYING_SLOT_PSIZ ||
location == VARYING_SLOT_LAYER ||
location == VARYING_SLOT_VIEWPORT ||
location == VARYING_SLOT_FOGC) {
auto semantic = r600_get_varying_semantic(location);
tgsi_semantic name = (tgsi_semantic)semantic.first;
auto write_mask = nir_intrinsic_write_mask(instr);
ShaderOutput output(driver_location, name, write_mask);
if (!nir_intrinsic_io_semantics(instr).no_varying)
output.set_sid(semantic.second);
if (nir_intrinsic_io_semantics(instr).location != VARYING_SLOT_CLIP_VERTEX)
add_output(output);
if (location == VARYING_SLOT_VIEWPORT) {
m_out_viewport = true;
m_out_misc_write = true;
}
if (location == VARYING_SLOT_CLIP_DIST0 ||
location == VARYING_SLOT_CLIP_DIST1) {
auto write_mask = nir_intrinsic_write_mask(instr);
m_cc_dist_mask |= write_mask << (4 * (location - VARYING_SLOT_CLIP_DIST0));
m_clip_dist_write |= write_mask << (4 * (location - VARYING_SLOT_CLIP_DIST0));
}
if (m_noutputs <= driver_location &&
nir_intrinsic_io_semantics(instr).location != VARYING_SLOT_CLIP_VERTEX)
m_noutputs = driver_location + 1;
return true;
}
return false;
}
bool GeometryShader::process_load_input(nir_intrinsic_instr *instr)
{
auto location = nir_intrinsic_io_semantics(instr).location;
auto index = nir_src_as_const_value(instr->src[1]);
assert(index);
auto driver_location = nir_intrinsic_base(instr) + index->u32;
if (location == VARYING_SLOT_POS ||
location == VARYING_SLOT_PSIZ ||
location == VARYING_SLOT_FOGC ||
location == VARYING_SLOT_CLIP_VERTEX ||
location == VARYING_SLOT_CLIP_DIST0 ||
location == VARYING_SLOT_CLIP_DIST1 ||
location == VARYING_SLOT_COL0 ||
location == VARYING_SLOT_COL1 ||
location == VARYING_SLOT_BFC0 ||
location == VARYING_SLOT_BFC1 ||
location == VARYING_SLOT_PNTC ||
(location >= VARYING_SLOT_VAR0 &&
location <= VARYING_SLOT_VAR31) ||
(location >= VARYING_SLOT_TEX0 &&
location <= VARYING_SLOT_TEX7)) {
uint64_t bit = 1ull << location;
if (!(bit & m_input_mask)) {
auto semantic = r600_get_varying_semantic(location);
ShaderInput input(driver_location, semantic.first);
input.set_sid(semantic.second);
input.set_ring_offset(16 * driver_location);
add_input(input);
m_next_input_ring_offset += 16;
m_input_mask |= bit;
}
return true;
}
return false;
}
int GeometryShader::do_allocate_reserved_registers()
{
const int sel[6] = {0, 0 ,0, 1, 1, 1};
const int chan[6] = {0, 1 ,3, 0, 1, 2};
/* Reserve registers used by the shaders (should check how many
* components are actually used */
for (int i = 0; i < 6; ++i) {
m_per_vertex_offsets[i] = value_factory().allocate_pinned_register(sel[i], chan[i]);
m_per_vertex_offsets[i]->pin_live_range(true);
}
m_primitive_id = value_factory().allocate_pinned_register(0, 2);
m_primitive_id->pin_live_range(true);
m_invocation_id = value_factory().allocate_pinned_register(1, 3);
m_invocation_id->pin_live_range(true);
value_factory().set_virtual_register_base(2);
auto zero = value_factory().inline_const(ALU_SRC_0, 0);
for (int i = 0; i < 4; ++i) {
m_export_base[i] = value_factory().temp_register(0, false);
emit_instruction(new AluInstr(op1_mov, m_export_base[i], zero, AluInstr::last_write));
}
m_ring_item_sizes[0] = m_next_input_ring_offset;
if (m_tri_strip_adj_fix)
emit_adj_fix();
return value_factory().next_register_index();
}
bool GeometryShader::process_stage_intrinsic(nir_intrinsic_instr *intr)
{
switch (intr->intrinsic) {
case nir_intrinsic_emit_vertex:
return emit_vertex(intr, false);
case nir_intrinsic_end_primitive:
return emit_vertex(intr, true);
case nir_intrinsic_load_primitive_id:
return emit_simple_mov(intr->dest, 0, m_primitive_id);
case nir_intrinsic_load_invocation_id:
return emit_simple_mov(intr->dest, 0, m_invocation_id);
case nir_intrinsic_load_per_vertex_input:
return emit_load_per_vertex_input(intr);
default:
;
}
return false;
}
bool GeometryShader::emit_vertex(nir_intrinsic_instr* instr, bool cut)
{
int stream = nir_intrinsic_stream_id(instr);
assert(stream < 4);
auto cut_instr = new EmitVertexInstr(stream, cut);
for(auto v: m_streamout_data) {
if (stream == 0 || v.first != VARYING_SLOT_POS) {
v.second->patch_ring(stream, m_export_base[stream]);
cut_instr->add_required_instr(v.second);
emit_instruction(v.second);
} else
delete v.second;
}
m_streamout_data.clear();
emit_instruction(cut_instr);
start_new_block(0);
if (!cut) {
auto ir = new AluInstr(op2_add_int, m_export_base[stream], m_export_base[stream],
value_factory().literal(m_noutputs),
AluInstr::last_write);
emit_instruction(ir);
}
return true;
}
bool GeometryShader::store_output(nir_intrinsic_instr* instr)
{
if (nir_intrinsic_io_semantics(instr).location == VARYING_SLOT_CLIP_VERTEX)
return true;
auto location = nir_intrinsic_io_semantics(instr).location;
auto index = nir_src_as_const_value(instr->src[1]);
assert(index);
auto driver_location = nir_intrinsic_base(instr) + index->u32;
uint32_t write_mask = nir_intrinsic_write_mask(instr);
uint32_t shift = nir_intrinsic_component(instr);
RegisterVec4::Swizzle src_swz {7,7,7,7};
for (unsigned i = shift; i < 4; ++i) {
src_swz[i] = (1 << i) & (write_mask << shift) ? i - shift: 7;
}
auto out_value = value_factory().src_vec4(instr->src[0], pin_group, src_swz);
AluInstr *ir = nullptr;
if (m_streamout_data[location]) {
const auto& value = m_streamout_data[location]->value();
auto tmp = value_factory().temp_vec4(pin_group);
for (unsigned i = 0; i < 4 - shift; ++i) {
if (!(write_mask & (1 << i)))
continue;
if (out_value[i + shift]->chan() < 4) {
ir = new AluInstr(op1_mov, tmp[i + shift], out_value[i + shift], AluInstr::write);
} else if (value[i]->chan() < 4) {
ir = new AluInstr(op1_mov, tmp[i + shift], value[i], AluInstr::write);
} else
continue;
emit_instruction(ir);
}
ir->set_alu_flag(alu_last_instr);
m_streamout_data[location] = new MemRingOutInstr(cf_mem_ring, MemRingOutInstr::mem_write_ind, tmp,
4 * driver_location,
instr->num_components, m_export_base[0]);
} else {
sfn_log << SfnLog::io << "None-streamout ";
bool need_copy = shift != 0;
if (!need_copy) {
for (int i = 0; i < 4; ++i) {
if ((write_mask & (1 << i)) && (out_value[i]->chan() != i)) {
need_copy = true;
break;
}
}
}
if (need_copy) {
auto tmp = value_factory().temp_vec4(pin_group);
for (unsigned i = 0; i < 4 - shift; ++i) {
if (out_value[i]->chan() < 4) {
ir = new AluInstr(op1_mov, tmp[i], out_value[i], AluInstr::write);
emit_instruction(ir);
}
}
ir->set_alu_flag(alu_last_instr);
m_streamout_data[location] = new MemRingOutInstr(cf_mem_ring, MemRingOutInstr::mem_write_ind, tmp,
4 * driver_location,
instr->num_components, m_export_base[0]);
} else {
m_streamout_data[location] = new MemRingOutInstr(cf_mem_ring, MemRingOutInstr::mem_write_ind, out_value,
4 * driver_location,
instr->num_components, m_export_base[0]);
}
}
return true;
}
bool GeometryShader::emit_load_per_vertex_input(nir_intrinsic_instr* instr)
{
auto dest = value_factory().dest_vec4(instr->dest, pin_group);
RegisterVec4::Swizzle dest_swz{7,7,7,7};
for (unsigned i = 0; i < nir_dest_num_components(instr->dest); ++i) {
dest_swz[i] = i + nir_intrinsic_component(instr);
}
auto literal_index = nir_src_as_const_value(instr->src[0]);
if (!literal_index) {
sfn_log << SfnLog::err << "GS: Indirect input addressing not (yet) supported\n";
return false;
}
assert(literal_index->u32 < 6);
assert(nir_intrinsic_io_semantics(instr).num_slots == 1);
auto addr = m_per_vertex_offsets[literal_index->u32];
auto fetch = new LoadFromBuffer(dest, dest_swz, addr,
16 * nir_intrinsic_base(instr),
R600_GS_RING_CONST_BUFFER, nullptr,
fmt_invalid);
fetch->set_fetch_flag(FetchInstr::use_const_field);
fetch->set_num_format(vtx_nf_norm);
fetch->reset_fetch_flag(FetchInstr::format_comp_signed);
emit_instruction(fetch);
return true;
}
void GeometryShader::do_finalize()
{
}
void GeometryShader::do_get_shader_info(r600_shader *sh_info)
{
sh_info->processor_type = PIPE_SHADER_GEOMETRY;
sh_info->ring_item_sizes[0] = m_ring_item_sizes[0];
sh_info->cc_dist_mask = m_cc_dist_mask;
sh_info->clip_dist_write = m_clip_dist_write;
}
bool GeometryShader::read_prop(std::istream& is)
{
(void)is;
return true;
}
void GeometryShader::do_print_properties(std::ostream& os) const
{
(void)os;
}
void GeometryShader::emit_adj_fix()
{
auto adjhelp0 = value_factory().temp_register();
emit_instruction(new AluInstr(op2_and_int, adjhelp0,
m_primitive_id, value_factory().one_i(),
AluInstr::last_write));
int reg_indices[6];
int rotate_indices[6] = {4, 5, 0, 1, 2, 3};
reg_indices[0] = reg_indices[1] = reg_indices[2] = m_export_base[1]->sel();
reg_indices[3] = reg_indices[4] = reg_indices[5] = m_export_base[2]->sel();
std::array<PRegister, 6> adjhelp;
AluInstr *ir = nullptr;
for (int i = 0; i < 6; i++) {
adjhelp[i] = value_factory().temp_register();
ir = new AluInstr(op3_cnde_int, adjhelp[i],
adjhelp0, m_per_vertex_offsets[i],
m_per_vertex_offsets[rotate_indices[i]],
AluInstr::write);
emit_instruction(ir);
}
ir->set_alu_flag(alu_last_instr);
for (int i = 0; i < 6; i++)
m_per_vertex_offsets[i] = adjhelp[i];
}
}