mesa/src/freedreno/vulkan/tu_descriptor_set.c

1381 lines
50 KiB
C

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* @file
*
* We use the bindless descriptor model, which maps fairly closely to how
* Vulkan descriptor sets work. The two exceptions are input attachments and
* dynamic descriptors, which have to be patched when recording command
* buffers. We reserve an extra descriptor set for these. This descriptor set
* contains all the input attachments in the pipeline, in order, and then all
* the dynamic descriptors. The dynamic descriptors are stored in the CPU-side
* datastructure for each tu_descriptor_set, and then combined into one big
* descriptor set at CmdBindDescriptors time/draw time.
*/
#include "tu_private.h"
#include <assert.h>
#include <fcntl.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include "util/mesa-sha1.h"
#include "vk_descriptors.h"
#include "vk_util.h"
static inline uint8_t *
pool_base(struct tu_descriptor_pool *pool)
{
return pool->host_bo ?: pool->bo->map;
}
static uint32_t
descriptor_size(struct tu_device *dev, VkDescriptorType type)
{
switch (type) {
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
if (unlikely(dev->instance->debug_flags & TU_DEBUG_DYNAMIC))
return A6XX_TEX_CONST_DWORDS * 4;
/* Input attachment doesn't use descriptor sets at all */
return 0;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
/* We make offsets and sizes all 16 dwords, to match how the hardware
* interprets indices passed to sample/load/store instructions in
* multiples of 16 dwords. This means that "normal" descriptors are all
* of size 16, with padding for smaller descriptors like uniform storage
* descriptors which are less than 16 dwords. However combined images
* and samplers are actually two descriptors, so they have size 2.
*/
return A6XX_TEX_CONST_DWORDS * 4 * 2;
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
/* When we support 16-bit storage, we need an extra descriptor setup as
* a 32-bit array for isam to work.
*/
if (dev->physical_device->info->a6xx.storage_16bit) {
return A6XX_TEX_CONST_DWORDS * 4 * 2;
} else {
return A6XX_TEX_CONST_DWORDS * 4;
}
default:
return A6XX_TEX_CONST_DWORDS * 4;
}
}
static bool
is_dynamic(VkDescriptorType type)
{
return type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC ||
type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
}
static uint32_t
mutable_descriptor_size(struct tu_device *dev, const VkMutableDescriptorTypeListVALVE *list)
{
uint32_t max_size = 0;
for (uint32_t i = 0; i < list->descriptorTypeCount; i++) {
uint32_t size = descriptor_size(dev, list->pDescriptorTypes[i]);
max_size = MAX2(max_size, size);
}
return max_size;
}
VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorSetLayout(
VkDevice _device,
const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkDescriptorSetLayout *pSetLayout)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_descriptor_set_layout *set_layout;
assert(pCreateInfo->sType ==
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
const VkDescriptorSetLayoutBindingFlagsCreateInfo *variable_flags =
vk_find_struct_const(
pCreateInfo->pNext,
DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO);
const VkMutableDescriptorTypeCreateInfoVALVE *mutable_info =
vk_find_struct_const(
pCreateInfo->pNext,
MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_VALVE);
uint32_t num_bindings = 0;
uint32_t immutable_sampler_count = 0;
uint32_t ycbcr_sampler_count = 0;
for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
num_bindings = MAX2(num_bindings, pCreateInfo->pBindings[j].binding + 1);
if ((pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) &&
pCreateInfo->pBindings[j].pImmutableSamplers) {
immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
bool has_ycbcr_sampler = false;
for (unsigned i = 0; i < pCreateInfo->pBindings[j].descriptorCount; ++i) {
if (tu_sampler_from_handle(pCreateInfo->pBindings[j].pImmutableSamplers[i])->ycbcr_sampler)
has_ycbcr_sampler = true;
}
if (has_ycbcr_sampler)
ycbcr_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
}
}
uint32_t samplers_offset =
offsetof(struct tu_descriptor_set_layout, binding[num_bindings]);
/* note: only need to store TEX_SAMP_DWORDS for immutable samples,
* but using struct tu_sampler makes things simpler */
uint32_t size = samplers_offset +
immutable_sampler_count * sizeof(struct tu_sampler) +
ycbcr_sampler_count * sizeof(struct tu_sampler_ycbcr_conversion);
set_layout = vk_object_zalloc(&device->vk, NULL, size,
VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT);
if (!set_layout)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
set_layout->flags = pCreateInfo->flags;
/* We just allocate all the immutable samplers at the end of the struct */
struct tu_sampler *samplers = (void*) &set_layout->binding[num_bindings];
struct tu_sampler_ycbcr_conversion *ycbcr_samplers =
(void*) &samplers[immutable_sampler_count];
VkDescriptorSetLayoutBinding *bindings = NULL;
VkResult result = vk_create_sorted_bindings(
pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings);
if (result != VK_SUCCESS) {
vk_object_free(&device->vk, pAllocator, set_layout);
return vk_error(device, result);
}
set_layout->ref_cnt = 1;
set_layout->binding_count = num_bindings;
set_layout->shader_stages = 0;
set_layout->has_immutable_samplers = false;
set_layout->size = 0;
uint32_t dynamic_offset_size = 0;
for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
const VkDescriptorSetLayoutBinding *binding = bindings + j;
uint32_t b = binding->binding;
set_layout->binding[b].type = binding->descriptorType;
set_layout->binding[b].array_size = binding->descriptorCount;
set_layout->binding[b].offset = set_layout->size;
set_layout->binding[b].dynamic_offset_offset = dynamic_offset_size;
set_layout->binding[b].shader_stages = binding->stageFlags;
if (binding->descriptorType == VK_DESCRIPTOR_TYPE_MUTABLE_VALVE) {
/* For mutable descriptor types we must allocate a size that fits the
* largest descriptor type that the binding can mutate to.
*/
set_layout->binding[b].size =
mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[j]);
} else {
set_layout->binding[b].size = descriptor_size(device, binding->descriptorType);
}
if (variable_flags && binding->binding < variable_flags->bindingCount &&
(variable_flags->pBindingFlags[binding->binding] &
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT)) {
assert(!binding->pImmutableSamplers); /* Terribly ill defined how
many samplers are valid */
assert(binding->binding == num_bindings - 1);
set_layout->has_variable_descriptors = true;
}
if ((binding->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
binding->descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) &&
binding->pImmutableSamplers) {
set_layout->binding[b].immutable_samplers_offset = samplers_offset;
set_layout->has_immutable_samplers = true;
for (uint32_t i = 0; i < binding->descriptorCount; i++)
samplers[i] = *tu_sampler_from_handle(binding->pImmutableSamplers[i]);
samplers += binding->descriptorCount;
samplers_offset += sizeof(struct tu_sampler) * binding->descriptorCount;
bool has_ycbcr_sampler = false;
for (unsigned i = 0; i < pCreateInfo->pBindings[j].descriptorCount; ++i) {
if (tu_sampler_from_handle(binding->pImmutableSamplers[i])->ycbcr_sampler)
has_ycbcr_sampler = true;
}
if (has_ycbcr_sampler) {
set_layout->binding[b].ycbcr_samplers_offset =
(const char*)ycbcr_samplers - (const char*)set_layout;
for (uint32_t i = 0; i < binding->descriptorCount; i++) {
struct tu_sampler *sampler = tu_sampler_from_handle(binding->pImmutableSamplers[i]);
if (sampler->ycbcr_sampler)
ycbcr_samplers[i] = *sampler->ycbcr_sampler;
else
ycbcr_samplers[i].ycbcr_model = VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY;
}
ycbcr_samplers += binding->descriptorCount;
} else {
set_layout->binding[b].ycbcr_samplers_offset = 0;
}
}
if (is_dynamic(binding->descriptorType)) {
dynamic_offset_size +=
binding->descriptorCount * set_layout->binding[b].size;
} else {
set_layout->size +=
binding->descriptorCount * set_layout->binding[b].size;
}
set_layout->shader_stages |= binding->stageFlags;
}
free(bindings);
set_layout->dynamic_offset_size = dynamic_offset_size;
*pSetLayout = tu_descriptor_set_layout_to_handle(set_layout);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
tu_DestroyDescriptorSetLayout(VkDevice _device,
VkDescriptorSetLayout _set_layout,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_descriptor_set_layout, set_layout, _set_layout);
if (!set_layout)
return;
tu_descriptor_set_layout_unref(device, set_layout);
}
void
tu_descriptor_set_layout_destroy(struct tu_device *device,
struct tu_descriptor_set_layout *layout)
{
assert(layout->ref_cnt == 0);
vk_object_free(&device->vk, NULL, layout);
}
VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorSetLayoutSupport(
VkDevice _device,
const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
VkDescriptorSetLayoutSupport *pSupport)
{
TU_FROM_HANDLE(tu_device, device, _device);
VkDescriptorSetLayoutBinding *bindings = NULL;
VkResult result = vk_create_sorted_bindings(
pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings);
if (result != VK_SUCCESS) {
pSupport->supported = false;
return;
}
const VkDescriptorSetLayoutBindingFlagsCreateInfo *variable_flags =
vk_find_struct_const(
pCreateInfo->pNext,
DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO);
VkDescriptorSetVariableDescriptorCountLayoutSupport *variable_count =
vk_find_struct(
(void *) pCreateInfo->pNext,
DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT);
const VkMutableDescriptorTypeCreateInfoVALVE *mutable_info =
vk_find_struct_const(
pCreateInfo->pNext,
MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_VALVE);
if (variable_count) {
variable_count->maxVariableDescriptorCount = 0;
}
bool supported = true;
uint64_t size = 0;
for (uint32_t i = 0; i < pCreateInfo->bindingCount; i++) {
const VkDescriptorSetLayoutBinding *binding = bindings + i;
uint64_t descriptor_sz;
if (is_dynamic(binding->descriptorType)) {
descriptor_sz = 0;
} else if (binding->descriptorType == VK_DESCRIPTOR_TYPE_MUTABLE_VALVE) {
const VkMutableDescriptorTypeListVALVE *list =
&mutable_info->pMutableDescriptorTypeLists[i];
for (uint32_t j = 0; j < list->descriptorTypeCount; j++) {
/* Don't support the input attachement and combined image sampler type
* for mutable descriptors */
if (list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT ||
list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) {
supported = false;
goto out;
}
}
descriptor_sz =
mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[i]);
} else {
descriptor_sz = descriptor_size(device, binding->descriptorType);
}
uint64_t descriptor_alignment = 8;
if (size && !ALIGN_POT(size, descriptor_alignment)) {
supported = false;
}
size = ALIGN_POT(size, descriptor_alignment);
uint64_t max_count = UINT64_MAX;
if (descriptor_sz)
max_count = (UINT64_MAX - size) / descriptor_sz;
if (max_count < binding->descriptorCount) {
supported = false;
}
if (variable_flags && binding->binding < variable_flags->bindingCount &&
variable_count &&
(variable_flags->pBindingFlags[binding->binding] &
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT)) {
variable_count->maxVariableDescriptorCount =
MIN2(UINT32_MAX, max_count);
}
size += binding->descriptorCount * descriptor_sz;
}
out:
free(bindings);
pSupport->supported = supported;
}
/* Note: we must hash any values used in tu_lower_io(). */
#define SHA1_UPDATE_VALUE(ctx, x) _mesa_sha1_update(ctx, &(x), sizeof(x));
static void
sha1_update_ycbcr_sampler(struct mesa_sha1 *ctx,
const struct tu_sampler_ycbcr_conversion *sampler)
{
SHA1_UPDATE_VALUE(ctx, sampler->ycbcr_model);
SHA1_UPDATE_VALUE(ctx, sampler->ycbcr_range);
SHA1_UPDATE_VALUE(ctx, sampler->format);
}
static void
sha1_update_descriptor_set_binding_layout(struct mesa_sha1 *ctx,
const struct tu_descriptor_set_binding_layout *layout,
const struct tu_descriptor_set_layout *set_layout)
{
SHA1_UPDATE_VALUE(ctx, layout->type);
SHA1_UPDATE_VALUE(ctx, layout->offset);
SHA1_UPDATE_VALUE(ctx, layout->size);
SHA1_UPDATE_VALUE(ctx, layout->array_size);
SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_offset);
SHA1_UPDATE_VALUE(ctx, layout->immutable_samplers_offset);
const struct tu_sampler_ycbcr_conversion *ycbcr_samplers =
tu_immutable_ycbcr_samplers(set_layout, layout);
if (ycbcr_samplers) {
for (unsigned i = 0; i < layout->array_size; i++)
sha1_update_ycbcr_sampler(ctx, ycbcr_samplers + i);
}
}
static void
sha1_update_descriptor_set_layout(struct mesa_sha1 *ctx,
const struct tu_descriptor_set_layout *layout)
{
for (uint16_t i = 0; i < layout->binding_count; i++)
sha1_update_descriptor_set_binding_layout(ctx, &layout->binding[i],
layout);
}
/*
* Pipeline layouts. These have nothing to do with the pipeline. They are
* just multiple descriptor set layouts pasted together.
*/
VKAPI_ATTR VkResult VKAPI_CALL
tu_CreatePipelineLayout(VkDevice _device,
const VkPipelineLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipelineLayout *pPipelineLayout)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_pipeline_layout *layout;
assert(pCreateInfo->sType ==
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);
layout = vk_object_alloc(&device->vk, pAllocator, sizeof(*layout),
VK_OBJECT_TYPE_PIPELINE_LAYOUT);
if (layout == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
layout->num_sets = pCreateInfo->setLayoutCount;
layout->dynamic_offset_size = 0;
unsigned dynamic_offset_size = 0;
for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) {
TU_FROM_HANDLE(tu_descriptor_set_layout, set_layout,
pCreateInfo->pSetLayouts[set]);
assert(set < MAX_SETS);
layout->set[set].layout = set_layout;
layout->set[set].dynamic_offset_start = dynamic_offset_size;
tu_descriptor_set_layout_ref(set_layout);
dynamic_offset_size += set_layout->dynamic_offset_size;
}
layout->dynamic_offset_size = dynamic_offset_size;
layout->push_constant_size = 0;
for (unsigned i = 0; i < pCreateInfo->pushConstantRangeCount; ++i) {
const VkPushConstantRange *range = pCreateInfo->pPushConstantRanges + i;
layout->push_constant_size =
MAX2(layout->push_constant_size, range->offset + range->size);
}
layout->push_constant_size = align(layout->push_constant_size, 16);
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
for (unsigned s = 0; s < layout->num_sets; s++) {
sha1_update_descriptor_set_layout(&ctx, layout->set[s].layout);
_mesa_sha1_update(&ctx, &layout->set[s].dynamic_offset_start,
sizeof(layout->set[s].dynamic_offset_start));
}
_mesa_sha1_update(&ctx, &layout->num_sets, sizeof(layout->num_sets));
_mesa_sha1_update(&ctx, &layout->push_constant_size,
sizeof(layout->push_constant_size));
_mesa_sha1_final(&ctx, layout->sha1);
*pPipelineLayout = tu_pipeline_layout_to_handle(layout);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
tu_DestroyPipelineLayout(VkDevice _device,
VkPipelineLayout _pipelineLayout,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_pipeline_layout, pipeline_layout, _pipelineLayout);
if (!pipeline_layout)
return;
for (uint32_t i = 0; i < pipeline_layout->num_sets; i++)
tu_descriptor_set_layout_unref(device, pipeline_layout->set[i].layout);
vk_object_free(&device->vk, pAllocator, pipeline_layout);
}
#define EMPTY 1
static VkResult
tu_descriptor_set_create(struct tu_device *device,
struct tu_descriptor_pool *pool,
struct tu_descriptor_set_layout *layout,
const uint32_t *variable_count,
struct tu_descriptor_set **out_set)
{
struct tu_descriptor_set *set;
unsigned dynamic_offset = sizeof(struct tu_descriptor_set);
unsigned mem_size = dynamic_offset + layout->dynamic_offset_size;
if (pool->host_memory_base) {
if (pool->host_memory_end - pool->host_memory_ptr < mem_size)
return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
set = (struct tu_descriptor_set*)pool->host_memory_ptr;
pool->host_memory_ptr += mem_size;
} else {
set = vk_alloc2(&device->vk.alloc, NULL, mem_size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!set)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
}
memset(set, 0, mem_size);
vk_object_base_init(&device->vk, &set->base, VK_OBJECT_TYPE_DESCRIPTOR_SET);
if (layout->dynamic_offset_size) {
set->dynamic_descriptors = (uint32_t *)((uint8_t*)set + dynamic_offset);
}
set->layout = layout;
set->pool = pool;
uint32_t layout_size = layout->size;
if (variable_count) {
assert(layout->has_variable_descriptors);
uint32_t stride = layout->binding[layout->binding_count - 1].size;
layout_size = layout->binding[layout->binding_count - 1].offset +
*variable_count * stride;
}
if (layout_size) {
set->size = layout_size;
if (!pool->host_memory_base && pool->entry_count == pool->max_entry_count) {
vk_object_free(&device->vk, NULL, set);
return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
}
/* try to allocate linearly first, so that we don't spend
* time looking for gaps if the app only allocates &
* resets via the pool. */
if (pool->current_offset + layout_size <= pool->size) {
set->mapped_ptr = (uint32_t*)(pool_base(pool) + pool->current_offset);
set->va = pool->host_bo ? 0 : pool->bo->iova + pool->current_offset;
if (!pool->host_memory_base) {
pool->entries[pool->entry_count].offset = pool->current_offset;
pool->entries[pool->entry_count].size = layout_size;
pool->entries[pool->entry_count].set = set;
pool->entry_count++;
}
pool->current_offset += layout_size;
} else if (!pool->host_memory_base) {
uint64_t offset = 0;
int index;
for (index = 0; index < pool->entry_count; ++index) {
if (pool->entries[index].offset - offset >= layout_size)
break;
offset = pool->entries[index].offset + pool->entries[index].size;
}
if (pool->size - offset < layout_size) {
vk_object_free(&device->vk, NULL, set);
return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
}
set->mapped_ptr = (uint32_t*)(pool_base(pool) + offset);
set->va = pool->host_bo ? 0 : pool->bo->iova + offset;
memmove(&pool->entries[index + 1], &pool->entries[index],
sizeof(pool->entries[0]) * (pool->entry_count - index));
pool->entries[index].offset = offset;
pool->entries[index].size = layout_size;
pool->entries[index].set = set;
pool->entry_count++;
} else
return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
}
if (layout->has_immutable_samplers) {
for (unsigned i = 0; i < layout->binding_count; ++i) {
if (!layout->binding[i].immutable_samplers_offset)
continue;
unsigned offset = layout->binding[i].offset / 4;
if (layout->binding[i].type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
offset += A6XX_TEX_CONST_DWORDS;
const struct tu_sampler *samplers =
(const struct tu_sampler *)((const char *)layout +
layout->binding[i].immutable_samplers_offset);
for (unsigned j = 0; j < layout->binding[i].array_size; ++j) {
memcpy(set->mapped_ptr + offset, samplers[j].descriptor,
sizeof(samplers[j].descriptor));
offset += layout->binding[i].size / 4;
}
}
}
tu_descriptor_set_layout_ref(layout);
list_addtail(&set->pool_link, &pool->desc_sets);
*out_set = set;
return VK_SUCCESS;
}
static void
tu_descriptor_set_destroy(struct tu_device *device,
struct tu_descriptor_pool *pool,
struct tu_descriptor_set *set,
bool free_bo)
{
assert(!pool->host_memory_base);
if (free_bo && set->size && !pool->host_memory_base) {
uint32_t offset = (uint8_t*)set->mapped_ptr - pool_base(pool);
for (int i = 0; i < pool->entry_count; ++i) {
if (pool->entries[i].offset == offset) {
memmove(&pool->entries[i], &pool->entries[i+1],
sizeof(pool->entries[i]) * (pool->entry_count - i - 1));
--pool->entry_count;
break;
}
}
}
vk_object_free(&device->vk, NULL, set);
}
VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorPool(VkDevice _device,
const VkDescriptorPoolCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkDescriptorPool *pDescriptorPool)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_descriptor_pool *pool;
uint64_t size = sizeof(struct tu_descriptor_pool);
uint64_t bo_size = 0, bo_count = 0, dynamic_size = 0;
VkResult ret;
const VkMutableDescriptorTypeCreateInfoVALVE *mutable_info =
vk_find_struct_const( pCreateInfo->pNext,
MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_VALVE);
for (unsigned i = 0; i < pCreateInfo->poolSizeCount; ++i) {
if (pCreateInfo->pPoolSizes[i].type != VK_DESCRIPTOR_TYPE_SAMPLER)
bo_count += pCreateInfo->pPoolSizes[i].descriptorCount;
switch(pCreateInfo->pPoolSizes[i].type) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
dynamic_size += descriptor_size(device, pCreateInfo->pPoolSizes[i].type) *
pCreateInfo->pPoolSizes[i].descriptorCount;
break;
case VK_DESCRIPTOR_TYPE_MUTABLE_VALVE:
if (mutable_info && i < mutable_info->mutableDescriptorTypeListCount &&
mutable_info->pMutableDescriptorTypeLists[i].descriptorTypeCount > 0) {
bo_size +=
mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[i]) *
pCreateInfo->pPoolSizes[i].descriptorCount;
} else {
/* Allocate the maximum size possible. */
bo_size += 2 * A6XX_TEX_CONST_DWORDS * 4 *
pCreateInfo->pPoolSizes[i].descriptorCount;
}
continue;
default:
break;
}
bo_size += descriptor_size(device, pCreateInfo->pPoolSizes[i].type) *
pCreateInfo->pPoolSizes[i].descriptorCount;
}
if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
uint64_t host_size = pCreateInfo->maxSets * sizeof(struct tu_descriptor_set);
host_size += sizeof(struct tu_bo*) * bo_count;
host_size += dynamic_size;
size += host_size;
} else {
size += sizeof(struct tu_descriptor_pool_entry) * pCreateInfo->maxSets;
}
pool = vk_object_zalloc(&device->vk, pAllocator, size,
VK_OBJECT_TYPE_DESCRIPTOR_POOL);
if (!pool)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
pool->host_memory_base = (uint8_t*)pool + sizeof(struct tu_descriptor_pool);
pool->host_memory_ptr = pool->host_memory_base;
pool->host_memory_end = (uint8_t*)pool + size;
}
if (bo_size) {
if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_VALVE)) {
ret = tu_bo_init_new(device, &pool->bo, bo_size, TU_BO_ALLOC_ALLOW_DUMP);
if (ret)
goto fail_alloc;
ret = tu_bo_map(device, pool->bo);
if (ret)
goto fail_map;
} else {
pool->host_bo = vk_alloc2(&device->vk.alloc, pAllocator, bo_size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!pool->host_bo) {
ret = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail_alloc;
}
}
}
pool->size = bo_size;
pool->max_entry_count = pCreateInfo->maxSets;
list_inithead(&pool->desc_sets);
*pDescriptorPool = tu_descriptor_pool_to_handle(pool);
return VK_SUCCESS;
fail_map:
tu_bo_finish(device, pool->bo);
fail_alloc:
vk_object_free(&device->vk, pAllocator, pool);
return ret;
}
VKAPI_ATTR void VKAPI_CALL
tu_DestroyDescriptorPool(VkDevice _device,
VkDescriptorPool _pool,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_descriptor_pool, pool, _pool);
if (!pool)
return;
list_for_each_entry_safe(struct tu_descriptor_set, set,
&pool->desc_sets, pool_link) {
tu_descriptor_set_layout_unref(device, set->layout);
}
if (!pool->host_memory_base) {
for(int i = 0; i < pool->entry_count; ++i) {
tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false);
}
}
if (pool->size) {
if (pool->host_bo)
vk_free2(&device->vk.alloc, pAllocator, pool->host_bo);
else
tu_bo_finish(device, pool->bo);
}
vk_object_free(&device->vk, pAllocator, pool);
}
VKAPI_ATTR VkResult VKAPI_CALL
tu_ResetDescriptorPool(VkDevice _device,
VkDescriptorPool descriptorPool,
VkDescriptorPoolResetFlags flags)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool);
list_for_each_entry_safe(struct tu_descriptor_set, set,
&pool->desc_sets, pool_link) {
tu_descriptor_set_layout_unref(device, set->layout);
}
list_inithead(&pool->desc_sets);
if (!pool->host_memory_base) {
for(int i = 0; i < pool->entry_count; ++i) {
tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false);
}
pool->entry_count = 0;
}
pool->current_offset = 0;
pool->host_memory_ptr = pool->host_memory_base;
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
tu_AllocateDescriptorSets(VkDevice _device,
const VkDescriptorSetAllocateInfo *pAllocateInfo,
VkDescriptorSet *pDescriptorSets)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_descriptor_pool, pool, pAllocateInfo->descriptorPool);
VkResult result = VK_SUCCESS;
uint32_t i;
struct tu_descriptor_set *set = NULL;
const VkDescriptorSetVariableDescriptorCountAllocateInfo *variable_counts =
vk_find_struct_const(pAllocateInfo->pNext, DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO);
const uint32_t zero = 0;
/* allocate a set of buffers for each shader to contain descriptors */
for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
TU_FROM_HANDLE(tu_descriptor_set_layout, layout,
pAllocateInfo->pSetLayouts[i]);
const uint32_t *variable_count = NULL;
if (variable_counts) {
if (i < variable_counts->descriptorSetCount)
variable_count = variable_counts->pDescriptorCounts + i;
else
variable_count = &zero;
}
assert(!(layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
result = tu_descriptor_set_create(device, pool, layout, variable_count, &set);
if (result != VK_SUCCESS)
break;
pDescriptorSets[i] = tu_descriptor_set_to_handle(set);
}
if (result != VK_SUCCESS) {
tu_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool,
i, pDescriptorSets);
for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
pDescriptorSets[i] = VK_NULL_HANDLE;
}
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
tu_FreeDescriptorSets(VkDevice _device,
VkDescriptorPool descriptorPool,
uint32_t count,
const VkDescriptorSet *pDescriptorSets)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool);
for (uint32_t i = 0; i < count; i++) {
TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
if (set) {
tu_descriptor_set_layout_unref(device, set->layout);
list_del(&set->pool_link);
}
if (set && !pool->host_memory_base)
tu_descriptor_set_destroy(device, pool, set, true);
}
return VK_SUCCESS;
}
static void
write_texel_buffer_descriptor(uint32_t *dst, const VkBufferView buffer_view)
{
if (buffer_view == VK_NULL_HANDLE) {
memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
} else {
TU_FROM_HANDLE(tu_buffer_view, view, buffer_view);
memcpy(dst, view->descriptor, sizeof(view->descriptor));
}
}
static uint32_t get_range(struct tu_buffer *buf, VkDeviceSize offset,
VkDeviceSize range)
{
if (range == VK_WHOLE_SIZE) {
return buf->size - offset;
} else {
return range;
}
}
static void
write_buffer_descriptor(const struct tu_device *device,
uint32_t *dst,
const VkDescriptorBufferInfo *buffer_info)
{
bool storage_16bit = device->physical_device->info->a6xx.storage_16bit;
/* newer a6xx allows using 16-bit descriptor for both 16-bit and 32-bit
* access, but we need to keep a 32-bit descriptor for readonly access via
* isam.
*/
unsigned descriptors = storage_16bit ? 2 : 1;
if (buffer_info->buffer == VK_NULL_HANDLE) {
memset(dst, 0, descriptors * A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
return;
}
TU_FROM_HANDLE(tu_buffer, buffer, buffer_info->buffer);
assert((buffer_info->offset & 63) == 0); /* minStorageBufferOffsetAlignment */
uint64_t va = buffer->iova + buffer_info->offset;
uint32_t range = get_range(buffer, buffer_info->offset, buffer_info->range);
for (unsigned i = 0; i < descriptors; i++) {
if (storage_16bit && i == 0) {
dst[0] = A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR) | A6XX_TEX_CONST_0_FMT(FMT6_16_UINT);
dst[1] = DIV_ROUND_UP(range, 2);
} else {
dst[0] = A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR) | A6XX_TEX_CONST_0_FMT(FMT6_32_UINT);
dst[1] = DIV_ROUND_UP(range, 4);
}
dst[2] =
A6XX_TEX_CONST_2_BUFFER | A6XX_TEX_CONST_2_TYPE(A6XX_TEX_BUFFER);
dst[3] = 0;
dst[4] = A6XX_TEX_CONST_4_BASE_LO(va);
dst[5] = A6XX_TEX_CONST_5_BASE_HI(va >> 32);
for (int j = 6; j < A6XX_TEX_CONST_DWORDS; j++)
dst[j] = 0;
dst += A6XX_TEX_CONST_DWORDS;
}
}
static void
write_ubo_descriptor(uint32_t *dst, const VkDescriptorBufferInfo *buffer_info)
{
if (buffer_info->buffer == VK_NULL_HANDLE) {
dst[0] = dst[1] = 0;
return;
}
TU_FROM_HANDLE(tu_buffer, buffer, buffer_info->buffer);
uint32_t range = get_range(buffer, buffer_info->offset, buffer_info->range);
/* The HW range is in vec4 units */
range = ALIGN_POT(range, 16) / 16;
uint64_t va = buffer->iova + buffer_info->offset;
dst[0] = A6XX_UBO_0_BASE_LO(va);
dst[1] = A6XX_UBO_1_BASE_HI(va >> 32) | A6XX_UBO_1_SIZE(range);
}
static void
write_image_descriptor(uint32_t *dst,
VkDescriptorType descriptor_type,
const VkDescriptorImageInfo *image_info)
{
if (image_info->imageView == VK_NULL_HANDLE) {
memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
return;
}
TU_FROM_HANDLE(tu_image_view, iview, image_info->imageView);
if (descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) {
memcpy(dst, iview->view.storage_descriptor, sizeof(iview->view.storage_descriptor));
} else {
memcpy(dst, iview->view.descriptor, sizeof(iview->view.descriptor));
}
}
static void
write_combined_image_sampler_descriptor(uint32_t *dst,
VkDescriptorType descriptor_type,
const VkDescriptorImageInfo *image_info,
bool has_sampler)
{
write_image_descriptor(dst, descriptor_type, image_info);
/* copy over sampler state */
if (has_sampler) {
TU_FROM_HANDLE(tu_sampler, sampler, image_info->sampler);
memcpy(dst + A6XX_TEX_CONST_DWORDS, sampler->descriptor, sizeof(sampler->descriptor));
}
}
static void
write_sampler_descriptor(uint32_t *dst, const VkDescriptorImageInfo *image_info)
{
TU_FROM_HANDLE(tu_sampler, sampler, image_info->sampler);
memcpy(dst, sampler->descriptor, sizeof(sampler->descriptor));
}
/* note: this is used with immutable samplers in push descriptors */
static void
write_sampler_push(uint32_t *dst, const struct tu_sampler *sampler)
{
memcpy(dst, sampler->descriptor, sizeof(sampler->descriptor));
}
void
tu_update_descriptor_sets(const struct tu_device *device,
VkDescriptorSet dstSetOverride,
uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites,
uint32_t descriptorCopyCount,
const VkCopyDescriptorSet *pDescriptorCopies)
{
uint32_t i, j;
for (i = 0; i < descriptorWriteCount; i++) {
const VkWriteDescriptorSet *writeset = &pDescriptorWrites[i];
TU_FROM_HANDLE(tu_descriptor_set, set, dstSetOverride ?: writeset->dstSet);
const struct tu_descriptor_set_binding_layout *binding_layout =
set->layout->binding + writeset->dstBinding;
uint32_t *ptr = set->mapped_ptr;
if (writeset->descriptorType == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
writeset->descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
ptr = set->dynamic_descriptors;
ptr += binding_layout->dynamic_offset_offset / 4;
} else {
ptr = set->mapped_ptr;
ptr += binding_layout->offset / 4;
}
/* for immutable samplers with push descriptors: */
const bool copy_immutable_samplers =
dstSetOverride && binding_layout->immutable_samplers_offset;
const struct tu_sampler *samplers =
tu_immutable_samplers(set->layout, binding_layout);
ptr += (binding_layout->size / 4) * writeset->dstArrayElement;
for (j = 0; j < writeset->descriptorCount; ++j) {
switch(writeset->descriptorType) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
write_ubo_descriptor(ptr, writeset->pBufferInfo + j);
break;
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
write_buffer_descriptor(device, ptr, writeset->pBufferInfo + j);
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
write_texel_buffer_descriptor(ptr, writeset->pTexelBufferView[j]);
break;
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
write_image_descriptor(ptr, writeset->descriptorType, writeset->pImageInfo + j);
break;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
write_combined_image_sampler_descriptor(ptr,
writeset->descriptorType,
writeset->pImageInfo + j,
!binding_layout->immutable_samplers_offset);
if (copy_immutable_samplers)
write_sampler_push(ptr + A6XX_TEX_CONST_DWORDS, &samplers[writeset->dstArrayElement + j]);
break;
case VK_DESCRIPTOR_TYPE_SAMPLER:
if (!binding_layout->immutable_samplers_offset)
write_sampler_descriptor(ptr, writeset->pImageInfo + j);
else if (copy_immutable_samplers)
write_sampler_push(ptr, &samplers[writeset->dstArrayElement + j]);
break;
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
/* nothing in descriptor set - framebuffer state is used instead */
if (unlikely(device->instance->debug_flags & TU_DEBUG_DYNAMIC))
write_image_descriptor(ptr, writeset->descriptorType, writeset->pImageInfo + j);
break;
default:
unreachable("unimplemented descriptor type");
break;
}
ptr += binding_layout->size / 4;
}
}
for (i = 0; i < descriptorCopyCount; i++) {
const VkCopyDescriptorSet *copyset = &pDescriptorCopies[i];
TU_FROM_HANDLE(tu_descriptor_set, src_set,
copyset->srcSet);
TU_FROM_HANDLE(tu_descriptor_set, dst_set,
copyset->dstSet);
const struct tu_descriptor_set_binding_layout *src_binding_layout =
src_set->layout->binding + copyset->srcBinding;
const struct tu_descriptor_set_binding_layout *dst_binding_layout =
dst_set->layout->binding + copyset->dstBinding;
uint32_t *src_ptr = src_set->mapped_ptr;
uint32_t *dst_ptr = dst_set->mapped_ptr;
if (src_binding_layout->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
src_binding_layout->type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
src_ptr = src_set->dynamic_descriptors;
dst_ptr = dst_set->dynamic_descriptors;
src_ptr += src_binding_layout->dynamic_offset_offset / 4;
dst_ptr += dst_binding_layout->dynamic_offset_offset / 4;
} else {
src_ptr = src_set->mapped_ptr;
dst_ptr = dst_set->mapped_ptr;
src_ptr += src_binding_layout->offset / 4;
dst_ptr += dst_binding_layout->offset / 4;
}
src_ptr += src_binding_layout->size * copyset->srcArrayElement / 4;
dst_ptr += dst_binding_layout->size * copyset->dstArrayElement / 4;
/* In case of copies between mutable descriptor types
* and non-mutable descriptor types.
*/
uint32_t copy_size = MIN2(src_binding_layout->size, dst_binding_layout->size);
for (j = 0; j < copyset->descriptorCount; ++j) {
memcpy(dst_ptr, src_ptr, copy_size);
src_ptr += src_binding_layout->size / 4;
dst_ptr += dst_binding_layout->size / 4;
}
}
}
VKAPI_ATTR void VKAPI_CALL
tu_UpdateDescriptorSets(VkDevice _device,
uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites,
uint32_t descriptorCopyCount,
const VkCopyDescriptorSet *pDescriptorCopies)
{
TU_FROM_HANDLE(tu_device, device, _device);
tu_update_descriptor_sets(device, VK_NULL_HANDLE,
descriptorWriteCount, pDescriptorWrites,
descriptorCopyCount, pDescriptorCopies);
}
VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorUpdateTemplate(
VkDevice _device,
const VkDescriptorUpdateTemplateCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkDescriptorUpdateTemplate *pDescriptorUpdateTemplate)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_descriptor_set_layout *set_layout = NULL;
const uint32_t entry_count = pCreateInfo->descriptorUpdateEntryCount;
const size_t size =
sizeof(struct tu_descriptor_update_template) +
sizeof(struct tu_descriptor_update_template_entry) * entry_count;
struct tu_descriptor_update_template *templ;
templ = vk_object_alloc(&device->vk, pAllocator, size,
VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE);
if (!templ)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
templ->entry_count = entry_count;
if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR) {
TU_FROM_HANDLE(tu_pipeline_layout, pipeline_layout, pCreateInfo->pipelineLayout);
/* descriptorSetLayout should be ignored for push descriptors
* and instead it refers to pipelineLayout and set.
*/
assert(pCreateInfo->set < MAX_SETS);
set_layout = pipeline_layout->set[pCreateInfo->set].layout;
templ->bind_point = pCreateInfo->pipelineBindPoint;
} else {
TU_FROM_HANDLE(tu_descriptor_set_layout, _set_layout,
pCreateInfo->descriptorSetLayout);
set_layout = _set_layout;
}
for (uint32_t i = 0; i < entry_count; i++) {
const VkDescriptorUpdateTemplateEntry *entry = &pCreateInfo->pDescriptorUpdateEntries[i];
const struct tu_descriptor_set_binding_layout *binding_layout =
set_layout->binding + entry->dstBinding;
uint32_t dst_offset, dst_stride;
const struct tu_sampler *immutable_samplers = NULL;
/* dst_offset is an offset into dynamic_descriptors when the descriptor
* is dynamic, and an offset into mapped_ptr otherwise.
*/
switch (entry->descriptorType) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
dst_offset = binding_layout->dynamic_offset_offset / 4;
break;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLER:
if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR &&
binding_layout->immutable_samplers_offset) {
immutable_samplers =
tu_immutable_samplers(set_layout, binding_layout) + entry->dstArrayElement;
}
FALLTHROUGH;
default:
dst_offset = binding_layout->offset / 4;
}
dst_offset += (binding_layout->size * entry->dstArrayElement) / 4;
dst_stride = binding_layout->size / 4;
templ->entry[i] = (struct tu_descriptor_update_template_entry) {
.descriptor_type = entry->descriptorType,
.descriptor_count = entry->descriptorCount,
.src_offset = entry->offset,
.src_stride = entry->stride,
.dst_offset = dst_offset,
.dst_stride = dst_stride,
.has_sampler = !binding_layout->immutable_samplers_offset,
.immutable_samplers = immutable_samplers,
};
}
*pDescriptorUpdateTemplate =
tu_descriptor_update_template_to_handle(templ);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
tu_DestroyDescriptorUpdateTemplate(
VkDevice _device,
VkDescriptorUpdateTemplate descriptorUpdateTemplate,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_descriptor_update_template, templ,
descriptorUpdateTemplate);
if (!templ)
return;
vk_object_free(&device->vk, pAllocator, templ);
}
void
tu_update_descriptor_set_with_template(
const struct tu_device *device,
struct tu_descriptor_set *set,
VkDescriptorUpdateTemplate descriptorUpdateTemplate,
const void *pData)
{
TU_FROM_HANDLE(tu_descriptor_update_template, templ,
descriptorUpdateTemplate);
for (uint32_t i = 0; i < templ->entry_count; i++) {
uint32_t *ptr = set->mapped_ptr;
const void *src = ((const char *) pData) + templ->entry[i].src_offset;
const struct tu_sampler *samplers = templ->entry[i].immutable_samplers;
ptr += templ->entry[i].dst_offset;
unsigned dst_offset = templ->entry[i].dst_offset;
for (unsigned j = 0; j < templ->entry[i].descriptor_count; ++j) {
switch(templ->entry[i].descriptor_type) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: {
assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
write_ubo_descriptor(set->dynamic_descriptors + dst_offset, src);
break;
}
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
write_ubo_descriptor(ptr, src);
break;
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
write_buffer_descriptor(device, set->dynamic_descriptors + dst_offset, src);
break;
}
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
write_buffer_descriptor(device, ptr, src);
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
write_texel_buffer_descriptor(ptr, *(VkBufferView *) src);
break;
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
write_image_descriptor(ptr, templ->entry[i].descriptor_type, src);
break;
}
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
write_combined_image_sampler_descriptor(ptr,
templ->entry[i].descriptor_type,
src,
templ->entry[i].has_sampler);
if (samplers)
write_sampler_push(ptr + A6XX_TEX_CONST_DWORDS, &samplers[j]);
break;
case VK_DESCRIPTOR_TYPE_SAMPLER:
if (templ->entry[i].has_sampler)
write_sampler_descriptor(ptr, src);
else if (samplers)
write_sampler_push(ptr, &samplers[j]);
break;
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
/* nothing in descriptor set - framebuffer state is used instead */
if (unlikely(device->instance->debug_flags & TU_DEBUG_DYNAMIC))
write_image_descriptor(ptr, templ->entry[i].descriptor_type, src);
break;
default:
unreachable("unimplemented descriptor type");
break;
}
src = (char *) src + templ->entry[i].src_stride;
ptr += templ->entry[i].dst_stride;
dst_offset += templ->entry[i].dst_stride;
}
}
}
VKAPI_ATTR void VKAPI_CALL
tu_UpdateDescriptorSetWithTemplate(
VkDevice _device,
VkDescriptorSet descriptorSet,
VkDescriptorUpdateTemplate descriptorUpdateTemplate,
const void *pData)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_descriptor_set, set, descriptorSet);
tu_update_descriptor_set_with_template(device, set, descriptorUpdateTemplate, pData);
}
VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateSamplerYcbcrConversion(
VkDevice _device,
const VkSamplerYcbcrConversionCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkSamplerYcbcrConversion *pYcbcrConversion)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_sampler_ycbcr_conversion *conversion;
conversion = vk_object_alloc(&device->vk, pAllocator, sizeof(*conversion),
VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION);
if (!conversion)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
conversion->format = pCreateInfo->format;
conversion->ycbcr_model = pCreateInfo->ycbcrModel;
conversion->ycbcr_range = pCreateInfo->ycbcrRange;
conversion->components = pCreateInfo->components;
conversion->chroma_offsets[0] = pCreateInfo->xChromaOffset;
conversion->chroma_offsets[1] = pCreateInfo->yChromaOffset;
conversion->chroma_filter = pCreateInfo->chromaFilter;
*pYcbcrConversion = tu_sampler_ycbcr_conversion_to_handle(conversion);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
tu_DestroySamplerYcbcrConversion(VkDevice _device,
VkSamplerYcbcrConversion ycbcrConversion,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_sampler_ycbcr_conversion, ycbcr_conversion, ycbcrConversion);
if (!ycbcr_conversion)
return;
vk_object_free(&device->vk, pAllocator, ycbcr_conversion);
}