mesa/src/freedreno/ir3/ir3_nir_analyze_ubo_ranges.c

667 lines
22 KiB
C

/*
* Copyright © 2019 Google, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_builder.h"
#include "util/u_math.h"
#include "ir3_compiler.h"
#include "ir3_nir.h"
static inline bool
get_ubo_load_range(nir_shader *nir, nir_intrinsic_instr *instr,
uint32_t alignment, struct ir3_ubo_range *r)
{
uint32_t offset = nir_intrinsic_range_base(instr);
uint32_t size = nir_intrinsic_range(instr);
/* If the offset is constant, the range is trivial (and NIR may not have
* figured it out).
*/
if (nir_src_is_const(instr->src[1])) {
offset = nir_src_as_uint(instr->src[1]);
size = nir_intrinsic_dest_components(instr) * 4;
}
/* If we haven't figured out the range accessed in the UBO, bail. */
if (size == ~0)
return false;
r->start = ROUND_DOWN_TO(offset, alignment * 16);
r->end = ALIGN(offset + size, alignment * 16);
return true;
}
static bool
get_ubo_info(nir_intrinsic_instr *instr, struct ir3_ubo_info *ubo)
{
if (nir_src_is_const(instr->src[0])) {
ubo->block = nir_src_as_uint(instr->src[0]);
ubo->bindless_base = 0;
ubo->bindless = false;
return true;
} else {
nir_intrinsic_instr *rsrc = ir3_bindless_resource(instr->src[0]);
if (rsrc && nir_src_is_const(rsrc->src[0])) {
ubo->block = nir_src_as_uint(rsrc->src[0]);
ubo->bindless_base = nir_intrinsic_desc_set(rsrc);
ubo->bindless = true;
return true;
}
}
return false;
}
/**
* Finds the given instruction's UBO load in the UBO upload plan, if any.
*/
static const struct ir3_ubo_range *
get_existing_range(nir_intrinsic_instr *instr,
const struct ir3_ubo_analysis_state *state,
struct ir3_ubo_range *r)
{
struct ir3_ubo_info ubo = {};
if (!get_ubo_info(instr, &ubo))
return NULL;
for (int i = 0; i < state->num_enabled; i++) {
const struct ir3_ubo_range *range = &state->range[i];
if (!memcmp(&range->ubo, &ubo, sizeof(ubo)) && r->start >= range->start &&
r->end <= range->end) {
return range;
}
}
return NULL;
}
/**
* Merges together neighboring/overlapping ranges in the range plan with a
* newly updated range.
*/
static void
merge_neighbors(struct ir3_ubo_analysis_state *state, int index)
{
struct ir3_ubo_range *a = &state->range[index];
/* index is always the first slot that would have neighbored/overlapped with
* the new range.
*/
for (int i = index + 1; i < state->num_enabled; i++) {
struct ir3_ubo_range *b = &state->range[i];
if (memcmp(&a->ubo, &b->ubo, sizeof(a->ubo)))
continue;
if (a->start > b->end || a->end < b->start)
continue;
/* Merge B into A. */
a->start = MIN2(a->start, b->start);
a->end = MAX2(a->end, b->end);
/* Swap the last enabled range into B's now unused slot */
*b = state->range[--state->num_enabled];
}
}
/**
* During the first pass over the shader, makes the plan of which UBO upload
* should include the range covering this UBO load.
*
* We are passed in an upload_remaining of how much space is left for us in
* the const file, and we make sure our plan doesn't exceed that.
*/
static void
gather_ubo_ranges(nir_shader *nir, nir_intrinsic_instr *instr,
struct ir3_ubo_analysis_state *state, uint32_t alignment,
uint32_t *upload_remaining)
{
if (ir3_shader_debug & IR3_DBG_NOUBOOPT)
return;
struct ir3_ubo_info ubo = {};
if (!get_ubo_info(instr, &ubo))
return;
struct ir3_ubo_range r;
if (!get_ubo_load_range(nir, instr, alignment, &r))
return;
/* See if there's an existing range for this UBO we want to merge into. */
for (int i = 0; i < state->num_enabled; i++) {
struct ir3_ubo_range *plan_r = &state->range[i];
if (memcmp(&plan_r->ubo, &ubo, sizeof(ubo)))
continue;
/* Don't extend existing uploads unless they're
* neighboring/overlapping.
*/
if (r.start > plan_r->end || r.end < plan_r->start)
continue;
r.start = MIN2(r.start, plan_r->start);
r.end = MAX2(r.end, plan_r->end);
uint32_t added = (plan_r->start - r.start) + (r.end - plan_r->end);
if (added >= *upload_remaining)
return;
plan_r->start = r.start;
plan_r->end = r.end;
*upload_remaining -= added;
merge_neighbors(state, i);
return;
}
if (state->num_enabled == ARRAY_SIZE(state->range))
return;
uint32_t added = r.end - r.start;
if (added >= *upload_remaining)
return;
struct ir3_ubo_range *plan_r = &state->range[state->num_enabled++];
plan_r->ubo = ubo;
plan_r->start = r.start;
plan_r->end = r.end;
*upload_remaining -= added;
}
/* For indirect offset, it is common to see a pattern of multiple
* loads with the same base, but different constant offset, ie:
*
* vec1 32 ssa_33 = iadd ssa_base, const_offset
* vec4 32 ssa_34 = intrinsic load_uniform (ssa_33) (base=N, 0, 0)
*
* Detect this, and peel out the const_offset part, to end up with:
*
* vec4 32 ssa_34 = intrinsic load_uniform (ssa_base) (base=N+const_offset,
* 0, 0)
*
* Or similarly:
*
* vec1 32 ssa_33 = imad24_ir3 a, b, const_offset
* vec4 32 ssa_34 = intrinsic load_uniform (ssa_33) (base=N, 0, 0)
*
* Can be converted to:
*
* vec1 32 ssa_base = imul24 a, b
* vec4 32 ssa_34 = intrinsic load_uniform (ssa_base) (base=N+const_offset,
* 0, 0)
*
* This gives the other opt passes something much easier to work
* with (ie. not requiring value range tracking)
*/
static void
handle_partial_const(nir_builder *b, nir_ssa_def **srcp, int *offp)
{
if ((*srcp)->parent_instr->type != nir_instr_type_alu)
return;
nir_alu_instr *alu = nir_instr_as_alu((*srcp)->parent_instr);
if (alu->op == nir_op_imad24_ir3) {
/* This case is slightly more complicated as we need to
* replace the imad24_ir3 with an imul24:
*/
if (!nir_src_is_const(alu->src[2].src))
return;
*offp += nir_src_as_uint(alu->src[2].src);
*srcp = nir_imul24(b, nir_ssa_for_alu_src(b, alu, 0),
nir_ssa_for_alu_src(b, alu, 1));
return;
}
if (alu->op != nir_op_iadd)
return;
if (!(alu->src[0].src.is_ssa && alu->src[1].src.is_ssa))
return;
if (nir_src_is_const(alu->src[0].src)) {
*offp += nir_src_as_uint(alu->src[0].src);
*srcp = alu->src[1].src.ssa;
} else if (nir_src_is_const(alu->src[1].src)) {
*srcp = alu->src[0].src.ssa;
*offp += nir_src_as_uint(alu->src[1].src);
}
}
/* Tracks the maximum bindful UBO accessed so that we reduce the UBO
* descriptors emitted in the fast path for GL.
*/
static void
track_ubo_use(nir_intrinsic_instr *instr, nir_builder *b, int *num_ubos)
{
if (ir3_bindless_resource(instr->src[0])) {
assert(!b->shader->info.first_ubo_is_default_ubo); /* only set for GL */
return;
}
if (nir_src_is_const(instr->src[0])) {
int block = nir_src_as_uint(instr->src[0]);
*num_ubos = MAX2(*num_ubos, block + 1);
} else {
*num_ubos = b->shader->info.num_ubos;
}
}
static bool
lower_ubo_load_to_uniform(nir_intrinsic_instr *instr, nir_builder *b,
const struct ir3_ubo_analysis_state *state,
int *num_ubos, uint32_t alignment)
{
b->cursor = nir_before_instr(&instr->instr);
struct ir3_ubo_range r;
if (!get_ubo_load_range(b->shader, instr, alignment, &r)) {
track_ubo_use(instr, b, num_ubos);
return false;
}
/* We don't lower dynamic block index UBO loads to load_uniform, but we
* could probably with some effort determine a block stride in number of
* registers.
*/
const struct ir3_ubo_range *range = get_existing_range(instr, state, &r);
if (!range) {
track_ubo_use(instr, b, num_ubos);
return false;
}
nir_ssa_def *ubo_offset = nir_ssa_for_src(b, instr->src[1], 1);
int const_offset = 0;
handle_partial_const(b, &ubo_offset, &const_offset);
/* UBO offset is in bytes, but uniform offset is in units of
* dwords, so we need to divide by 4 (right-shift by 2). For ldc the
* offset is in units of 16 bytes, so we need to multiply by 4. And
* also the same for the constant part of the offset:
*/
const int shift = -2;
nir_ssa_def *new_offset = ir3_nir_try_propagate_bit_shift(b, ubo_offset, -2);
nir_ssa_def *uniform_offset = NULL;
if (new_offset) {
uniform_offset = new_offset;
} else {
uniform_offset = shift > 0
? nir_ishl(b, ubo_offset, nir_imm_int(b, shift))
: nir_ushr(b, ubo_offset, nir_imm_int(b, -shift));
}
assert(!(const_offset & 0x3));
const_offset >>= 2;
const int range_offset = ((int)range->offset - (int)range->start) / 4;
const_offset += range_offset;
/* The range_offset could be negative, if if only part of the UBO
* block is accessed, range->start can be greater than range->offset.
* But we can't underflow const_offset. If necessary we need to
* insert nir instructions to compensate (which can hopefully be
* optimized away)
*/
if (const_offset < 0) {
uniform_offset = nir_iadd_imm(b, uniform_offset, const_offset);
const_offset = 0;
}
nir_ssa_def *uniform =
nir_load_uniform(b, instr->num_components, instr->dest.ssa.bit_size,
uniform_offset, .base = const_offset);
nir_ssa_def_rewrite_uses(&instr->dest.ssa, uniform);
nir_instr_remove(&instr->instr);
return true;
}
static bool
copy_ubo_to_uniform(nir_shader *nir, const struct ir3_const_state *const_state)
{
const struct ir3_ubo_analysis_state *state = &const_state->ubo_state;
if (state->num_enabled == 0 ||
(state->num_enabled == 1 && !state->range[0].ubo.bindless &&
state->range[0].ubo.block == const_state->constant_data_ubo))
return false;
nir_function_impl *preamble = nir_shader_get_preamble(nir);
nir_builder _b, *b = &_b;
nir_builder_init(b, preamble);
b->cursor = nir_after_cf_list(&preamble->body);
for (unsigned i = 0; i < state->num_enabled; i++) {
const struct ir3_ubo_range *range = &state->range[i];
/* The constant_data UBO is pushed in a different path from normal
* uniforms, and the state is setup earlier so it makes more sense to let
* the CP do it for us.
*/
if (!range->ubo.bindless &&
range->ubo.block == const_state->constant_data_ubo)
continue;
nir_ssa_def *ubo = nir_imm_int(b, range->ubo.block);
if (range->ubo.bindless) {
ubo = nir_bindless_resource_ir3(b, 32, ubo,
.desc_set = range->ubo.bindless_base);
}
/* ldc.k has a range of only 256, but there are 512 vec4 constants.
* Therefore we may have to split a large copy in two.
*/
unsigned size = (range->end - range->start) / 16;
for (unsigned offset = 0; offset < size; offset += 256) {
nir_copy_ubo_to_uniform_ir3(b, ubo, nir_imm_int(b, range->start / 16 +
offset),
.base = range->offset / 4 + offset * 4,
.range = MIN2(size - offset, 256));
}
}
return true;
}
static bool
instr_is_load_ubo(nir_instr *instr)
{
if (instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_op op = nir_instr_as_intrinsic(instr)->intrinsic;
/* nir_lower_ubo_vec4 happens after this pass. */
assert(op != nir_intrinsic_load_ubo_vec4);
return op == nir_intrinsic_load_ubo;
}
void
ir3_nir_analyze_ubo_ranges(nir_shader *nir, struct ir3_shader_variant *v)
{
struct ir3_const_state *const_state = ir3_const_state(v);
struct ir3_ubo_analysis_state *state = &const_state->ubo_state;
struct ir3_compiler *compiler = v->compiler;
/* Limit our uploads to the amount of constant buffer space available in
* the hardware, minus what the shader compiler may need for various
* driver params. We do this UBO-to-push-constant before the real
* allocation of the driver params' const space, because UBO pointers can
* be driver params but this pass usually eliminatings them.
*/
struct ir3_const_state worst_case_const_state = {
.preamble_size = const_state->preamble_size,
};
ir3_setup_const_state(nir, v, &worst_case_const_state);
const uint32_t max_upload =
(ir3_max_const(v) - worst_case_const_state.offsets.immediate) * 16;
memset(state, 0, sizeof(*state));
uint32_t upload_remaining = max_upload;
bool push_ubos = compiler->push_ubo_with_preamble;
nir_foreach_function (function, nir) {
if (function->impl && (!push_ubos || !function->is_preamble)) {
nir_foreach_block (block, function->impl) {
nir_foreach_instr (instr, block) {
if (instr_is_load_ubo(instr))
gather_ubo_ranges(nir, nir_instr_as_intrinsic(instr), state,
compiler->const_upload_unit,
&upload_remaining);
}
}
}
}
/* For now, everything we upload is accessed statically and thus will be
* used by the shader. Once we can upload dynamically indexed data, we may
* upload sparsely accessed arrays, at which point we probably want to
* give priority to smaller UBOs, on the assumption that big UBOs will be
* accessed dynamically. Alternatively, we can track statically and
* dynamically accessed ranges separately and upload static rangtes
* first.
*/
uint32_t offset = v->num_reserved_user_consts * 16;
for (uint32_t i = 0; i < state->num_enabled; i++) {
uint32_t range_size = state->range[i].end - state->range[i].start;
assert(offset <= max_upload);
state->range[i].offset = offset;
assert(offset <= max_upload);
offset += range_size;
}
state->size = offset - v->num_reserved_user_consts * 16;
}
bool
ir3_nir_lower_ubo_loads(nir_shader *nir, struct ir3_shader_variant *v)
{
struct ir3_compiler *compiler = v->compiler;
/* For the binning pass variant, we re-use the corresponding draw-pass
* variants const_state and ubo state. To make these clear, in this
* pass it is const (read-only)
*/
const struct ir3_const_state *const_state = ir3_const_state(v);
const struct ir3_ubo_analysis_state *state = &const_state->ubo_state;
int num_ubos = 0;
bool progress = false;
bool has_preamble = false;
bool push_ubos = compiler->push_ubo_with_preamble;
nir_foreach_function (function, nir) {
if (function->impl) {
if (function->is_preamble && push_ubos) {
has_preamble = true;
nir_metadata_preserve(function->impl, nir_metadata_all);
continue;
}
nir_builder builder;
nir_builder_init(&builder, function->impl);
nir_foreach_block (block, function->impl) {
nir_foreach_instr_safe (instr, block) {
if (!instr_is_load_ubo(instr))
continue;
progress |= lower_ubo_load_to_uniform(
nir_instr_as_intrinsic(instr), &builder, state, &num_ubos,
compiler->const_upload_unit);
}
}
nir_metadata_preserve(
function->impl, nir_metadata_block_index | nir_metadata_dominance);
}
}
/* Update the num_ubos field for GL (first_ubo_is_default_ubo). With
* Vulkan's bindless, we don't use the num_ubos field, so we can leave it
* incremented.
*/
if (nir->info.first_ubo_is_default_ubo && !push_ubos && !has_preamble)
nir->info.num_ubos = num_ubos;
if (compiler->has_preamble && push_ubos)
progress |= copy_ubo_to_uniform(nir, const_state);
return progress;
}
static bool
fixup_load_uniform_filter(const nir_instr *instr, const void *arg)
{
if (instr->type != nir_instr_type_intrinsic)
return false;
return nir_instr_as_intrinsic(instr)->intrinsic ==
nir_intrinsic_load_uniform;
}
static nir_ssa_def *
fixup_load_uniform_instr(struct nir_builder *b, nir_instr *instr, void *arg)
{
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
/* We don't need to worry about non-indirect case: */
if (nir_src_is_const(intr->src[0]))
return NULL;
const unsigned base_offset_limit = (1 << 9); /* 9 bits */
unsigned base_offset = nir_intrinsic_base(intr);
/* Or cases were base offset is lower than the hw limit: */
if (base_offset < base_offset_limit)
return NULL;
b->cursor = nir_before_instr(instr);
nir_ssa_def *offset = nir_ssa_for_src(b, intr->src[0], 1);
/* We'd like to avoid a sequence like:
*
* vec4 32 ssa_18 = intrinsic load_uniform (ssa_4) (1024, 0, 0)
* vec4 32 ssa_19 = intrinsic load_uniform (ssa_4) (1072, 0, 0)
* vec4 32 ssa_20 = intrinsic load_uniform (ssa_4) (1120, 0, 0)
*
* From turning into a unique offset value (which requires reloading
* a0.x for each instruction). So instead of just adding the constant
* base_offset to the non-const offset, be a bit more clever and only
* extract the part that cannot be encoded. Afterwards CSE should
* turn the result into:
*
* vec1 32 ssa_5 = load_const (1024)
* vec4 32 ssa_6 = iadd ssa4_, ssa_5
* vec4 32 ssa_18 = intrinsic load_uniform (ssa_5) (0, 0, 0)
* vec4 32 ssa_19 = intrinsic load_uniform (ssa_5) (48, 0, 0)
* vec4 32 ssa_20 = intrinsic load_uniform (ssa_5) (96, 0, 0)
*/
unsigned new_base_offset = base_offset % base_offset_limit;
nir_intrinsic_set_base(intr, new_base_offset);
offset = nir_iadd_imm(b, offset, base_offset - new_base_offset);
nir_instr_rewrite_src(instr, &intr->src[0], nir_src_for_ssa(offset));
return NIR_LOWER_INSTR_PROGRESS;
}
/**
* For relative CONST file access, we can only encode 10b worth of fixed offset,
* so in cases where the base offset is larger, we need to peel it out into
* ALU instructions.
*
* This should run late, after constant folding has had a chance to do it's
* thing, so we can actually know if it is an indirect uniform offset or not.
*/
bool
ir3_nir_fixup_load_uniform(nir_shader *nir)
{
return nir_shader_lower_instructions(nir, fixup_load_uniform_filter,
fixup_load_uniform_instr, NULL);
}
static nir_ssa_def *
ir3_nir_lower_load_const_instr(nir_builder *b, nir_instr *in_instr, void *data)
{
struct ir3_const_state *const_state = data;
nir_intrinsic_instr *instr = nir_instr_as_intrinsic(in_instr);
/* Pick a UBO index to use as our constant data. Skip UBO 0 since that's
* reserved for gallium's cb0.
*/
if (const_state->constant_data_ubo == -1) {
if (b->shader->info.num_ubos == 0)
b->shader->info.num_ubos++;
const_state->constant_data_ubo = b->shader->info.num_ubos++;
}
unsigned num_components = instr->num_components;
if (nir_dest_bit_size(instr->dest) == 16) {
/* We can't do 16b loads -- either from LDC (32-bit only in any of our
* traces, and disasm that doesn't look like it really supports it) or
* from the constant file (where CONSTANT_DEMOTION_ENABLE means we get
* automatic 32b-to-16b conversions when we ask for 16b from it).
* Instead, we'll load 32b from a UBO and unpack from there.
*/
num_components = DIV_ROUND_UP(num_components, 2);
}
unsigned base = nir_intrinsic_base(instr);
nir_ssa_def *index = nir_imm_int(b, const_state->constant_data_ubo);
nir_ssa_def *offset =
nir_iadd_imm(b, nir_ssa_for_src(b, instr->src[0], 1), base);
nir_ssa_def *result =
nir_load_ubo(b, num_components, 32, index, offset,
.align_mul = nir_intrinsic_align_mul(instr),
.align_offset = nir_intrinsic_align_offset(instr),
.range_base = base, .range = nir_intrinsic_range(instr));
if (nir_dest_bit_size(instr->dest) == 16) {
result = nir_bitcast_vector(b, result, 16);
result = nir_trim_vector(b, result, instr->num_components);
}
return result;
}
static bool
ir3_lower_load_const_filter(const nir_instr *instr, const void *data)
{
return (instr->type == nir_instr_type_intrinsic &&
nir_instr_as_intrinsic(instr)->intrinsic ==
nir_intrinsic_load_constant);
}
/* Lowers load_constant intrinsics to UBO accesses so we can run them through
* the general "upload to const file or leave as UBO access" code.
*/
bool
ir3_nir_lower_load_constant(nir_shader *nir, struct ir3_shader_variant *v)
{
struct ir3_const_state *const_state = ir3_const_state(v);
const_state->constant_data_ubo = -1;
bool progress = nir_shader_lower_instructions(
nir, ir3_lower_load_const_filter, ir3_nir_lower_load_const_instr,
const_state);
if (progress) {
struct ir3_compiler *compiler = v->compiler;
/* Save a copy of the NIR constant data to the variant for
* inclusion in the final assembly.
*/
v->constant_data_size =
align(nir->constant_data_size,
compiler->const_upload_unit * 4 * sizeof(uint32_t));
v->constant_data = rzalloc_size(v, v->constant_data_size);
memcpy(v->constant_data, nir->constant_data, nir->constant_data_size);
}
return progress;
}