mesa/src/freedreno/ir3/ir3_legalize.c

988 lines
33 KiB
C

/*
* Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#include "util/ralloc.h"
#include "util/u_math.h"
#include "ir3.h"
#include "ir3_shader.h"
/*
* Legalize:
*
* The legalize pass handles ensuring sufficient nop's and sync flags for
* correct execution.
*
* 1) Iteratively determine where sync ((sy)/(ss)) flags are needed,
* based on state flowing out of predecessor blocks until there is
* no further change. In some cases this requires inserting nops.
* 2) Mark (ei) on last varying input
* 3) Final nop scheduling for instruction latency
* 4) Resolve jumps and schedule blocks, marking potential convergence
* points with (jp)
*/
struct ir3_legalize_ctx {
struct ir3_compiler *compiler;
struct ir3_shader_variant *so;
gl_shader_stage type;
int max_bary;
bool early_input_release;
bool has_inputs;
};
struct ir3_legalize_state {
regmask_t needs_ss;
regmask_t needs_ss_war; /* write after read */
regmask_t needs_sy;
};
struct ir3_legalize_block_data {
bool valid;
struct ir3_legalize_state state;
};
/* We want to evaluate each block from the position of any other
* predecessor block, in order that the flags set are the union of
* all possible program paths.
*
* To do this, we need to know the output state (needs_ss/ss_war/sy)
* of all predecessor blocks. The tricky thing is loops, which mean
* that we can't simply recursively process each predecessor block
* before legalizing the current block.
*
* How we handle that is by looping over all the blocks until the
* results converge. If the output state of a given block changes
* in a given pass, this means that all successor blocks are not
* yet fully legalized.
*/
static bool
legalize_block(struct ir3_legalize_ctx *ctx, struct ir3_block *block)
{
struct ir3_legalize_block_data *bd = block->data;
if (bd->valid)
return false;
struct ir3_instruction *last_n = NULL;
struct list_head instr_list;
struct ir3_legalize_state prev_state = bd->state;
struct ir3_legalize_state *state = &bd->state;
bool last_input_needs_ss = false;
bool has_tex_prefetch = false;
bool mergedregs = ctx->so->mergedregs;
/* our input state is the OR of all predecessor blocks' state: */
for (unsigned i = 0; i < block->predecessors_count; i++) {
struct ir3_block *predecessor = block->predecessors[i];
struct ir3_legalize_block_data *pbd = predecessor->data;
struct ir3_legalize_state *pstate = &pbd->state;
/* Our input (ss)/(sy) state is based on OR'ing the output
* state of all our predecessor blocks
*/
regmask_or(&state->needs_ss, &state->needs_ss, &pstate->needs_ss);
regmask_or(&state->needs_ss_war, &state->needs_ss_war,
&pstate->needs_ss_war);
regmask_or(&state->needs_sy, &state->needs_sy, &pstate->needs_sy);
}
/* We need to take phsyical-only edges into account when tracking shared
* registers.
*/
for (unsigned i = 0; i < block->physical_predecessors_count; i++) {
struct ir3_block *predecessor = block->physical_predecessors[i];
struct ir3_legalize_block_data *pbd = predecessor->data;
struct ir3_legalize_state *pstate = &pbd->state;
regmask_or_shared(&state->needs_ss, &state->needs_ss, &pstate->needs_ss);
}
unsigned input_count = 0;
foreach_instr (n, &block->instr_list) {
if (is_input(n)) {
input_count++;
}
}
unsigned inputs_remaining = input_count;
/* Either inputs are in the first block or we expect inputs to be released
* with the end of the program.
*/
assert(input_count == 0 || !ctx->early_input_release ||
block == ir3_after_preamble(block->shader));
/* remove all the instructions from the list, we'll be adding
* them back in as we go
*/
list_replace(&block->instr_list, &instr_list);
list_inithead(&block->instr_list);
foreach_instr_safe (n, &instr_list) {
unsigned i;
n->flags &= ~(IR3_INSTR_SS | IR3_INSTR_SY);
/* _meta::tex_prefetch instructions removed later in
* collect_tex_prefetches()
*/
if (is_meta(n) && (n->opc != OPC_META_TEX_PREFETCH))
continue;
if (is_input(n)) {
struct ir3_register *inloc = n->srcs[0];
assert(inloc->flags & IR3_REG_IMMED);
ctx->max_bary = MAX2(ctx->max_bary, inloc->iim_val);
}
if ((last_n && is_barrier(last_n)) || n->opc == OPC_SHPE) {
n->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
last_input_needs_ss = false;
regmask_init(&state->needs_ss_war, mergedregs);
regmask_init(&state->needs_ss, mergedregs);
regmask_init(&state->needs_sy, mergedregs);
}
if (last_n && (last_n->opc == OPC_PREDT)) {
n->flags |= IR3_INSTR_SS;
regmask_init(&state->needs_ss_war, mergedregs);
regmask_init(&state->needs_ss, mergedregs);
}
/* NOTE: consider dst register too.. it could happen that
* texture sample instruction (for example) writes some
* components which are unused. A subsequent instruction
* that writes the same register can race w/ the sam instr
* resulting in undefined results:
*/
for (i = 0; i < n->dsts_count + n->srcs_count; i++) {
struct ir3_register *reg;
if (i < n->dsts_count)
reg = n->dsts[i];
else
reg = n->srcs[i - n->dsts_count];
if (reg_gpr(reg)) {
/* TODO: we probably only need (ss) for alu
* instr consuming sfu result.. need to make
* some tests for both this and (sy)..
*/
if (regmask_get(&state->needs_ss, reg)) {
n->flags |= IR3_INSTR_SS;
last_input_needs_ss = false;
regmask_init(&state->needs_ss_war, mergedregs);
regmask_init(&state->needs_ss, mergedregs);
}
if (regmask_get(&state->needs_sy, reg)) {
n->flags |= IR3_INSTR_SY;
regmask_init(&state->needs_sy, mergedregs);
}
}
}
foreach_dst (reg, n) {
if (regmask_get(&state->needs_ss_war, reg)) {
n->flags |= IR3_INSTR_SS;
last_input_needs_ss = false;
regmask_init(&state->needs_ss_war, mergedregs);
regmask_init(&state->needs_ss, mergedregs);
}
}
/* cat5+ does not have an (ss) bit, if needed we need to
* insert a nop to carry the sync flag. Would be kinda
* clever if we were aware of this during scheduling, but
* this should be a pretty rare case:
*/
if ((n->flags & IR3_INSTR_SS) && (opc_cat(n->opc) >= 5)) {
struct ir3_instruction *nop;
nop = ir3_NOP(block);
nop->flags |= IR3_INSTR_SS;
n->flags &= ~IR3_INSTR_SS;
}
/* need to be able to set (ss) on first instruction: */
if (list_is_empty(&block->instr_list) && (opc_cat(n->opc) >= 5))
ir3_NOP(block);
if (ctx->compiler->samgq_workaround &&
ctx->type != MESA_SHADER_FRAGMENT &&
ctx->type != MESA_SHADER_COMPUTE && n->opc == OPC_SAMGQ) {
struct ir3_instruction *samgp;
list_delinit(&n->node);
for (i = 0; i < 4; i++) {
samgp = ir3_instr_clone(n);
samgp->opc = OPC_SAMGP0 + i;
if (i > 1)
samgp->flags |= IR3_INSTR_SY;
}
} else {
list_delinit(&n->node);
list_addtail(&n->node, &block->instr_list);
}
if (is_sfu(n))
regmask_set(&state->needs_ss, n->dsts[0]);
foreach_dst (dst, n) {
if (dst->flags & IR3_REG_SHARED)
regmask_set(&state->needs_ss, dst);
}
if (is_tex_or_prefetch(n)) {
regmask_set(&state->needs_sy, n->dsts[0]);
if (n->opc == OPC_META_TEX_PREFETCH)
has_tex_prefetch = true;
} else if (n->opc == OPC_RESINFO) {
regmask_set(&state->needs_ss, n->dsts[0]);
ir3_NOP(block)->flags |= IR3_INSTR_SS;
last_input_needs_ss = false;
} else if (is_load(n)) {
if (is_local_mem_load(n))
regmask_set(&state->needs_ss, n->dsts[0]);
else
regmask_set(&state->needs_sy, n->dsts[0]);
} else if (is_atomic(n->opc)) {
if (is_bindless_atomic(n->opc)) {
regmask_set(&state->needs_sy, n->srcs[2]);
} else if (is_global_a3xx_atomic(n->opc) ||
is_global_a6xx_atomic(n->opc)) {
regmask_set(&state->needs_sy, n->dsts[0]);
} else {
regmask_set(&state->needs_ss, n->dsts[0]);
}
}
if (is_ssbo(n->opc) || is_global_a3xx_atomic(n->opc) ||
is_bindless_atomic(n->opc))
ctx->so->has_ssbo = true;
/* both tex/sfu appear to not always immediately consume
* their src register(s):
*/
if (is_tex(n) || is_sfu(n) || is_mem(n)) {
foreach_src (reg, n) {
regmask_set(&state->needs_ss_war, reg);
}
}
if (ctx->early_input_release && is_input(n)) {
last_input_needs_ss |= (n->opc == OPC_LDLV);
assert(inputs_remaining > 0);
inputs_remaining--;
if (inputs_remaining == 0) {
/* This is the last input. We add the (ei) flag to release
* varying memory after this executes. If it's an ldlv,
* however, we need to insert a dummy bary.f on which we can
* set the (ei) flag. We may also need to insert an (ss) to
* guarantee that all ldlv's have finished fetching their
* results before releasing the varying memory.
*/
struct ir3_instruction *last_input = n;
if (n->opc == OPC_LDLV) {
struct ir3_instruction *baryf;
/* (ss)bary.f (ei)r63.x, 0, r0.x */
baryf = ir3_instr_create(block, OPC_BARY_F, 1, 2);
ir3_dst_create(baryf, regid(63, 0), 0);
ir3_src_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0;
ir3_src_create(baryf, regid(0, 0), 0);
last_input = baryf;
}
last_input->dsts[0]->flags |= IR3_REG_EI;
if (last_input_needs_ss) {
last_input->flags |= IR3_INSTR_SS;
regmask_init(&state->needs_ss_war, mergedregs);
regmask_init(&state->needs_ss, mergedregs);
}
}
}
last_n = n;
}
assert(inputs_remaining == 0 || !ctx->early_input_release);
if (has_tex_prefetch && !ctx->has_inputs) {
/* texture prefetch, but *no* inputs.. we need to insert a
* dummy bary.f at the top of the shader to unblock varying
* storage:
*/
struct ir3_instruction *baryf;
/* (ss)bary.f (ei)r63.x, 0, r0.x */
baryf = ir3_instr_create(block, OPC_BARY_F, 1, 2);
ir3_dst_create(baryf, regid(63, 0), 0)->flags |= IR3_REG_EI;
ir3_src_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0;
ir3_src_create(baryf, regid(0, 0), 0);
/* insert the dummy bary.f at head: */
list_delinit(&baryf->node);
list_add(&baryf->node, &block->instr_list);
}
bd->valid = true;
if (memcmp(&prev_state, state, sizeof(*state))) {
/* our output state changed, this invalidates all of our
* successors:
*/
for (unsigned i = 0; i < ARRAY_SIZE(block->successors); i++) {
if (!block->successors[i])
break;
struct ir3_legalize_block_data *pbd = block->successors[i]->data;
pbd->valid = false;
}
}
return true;
}
/* Expands dsxpp and dsypp macros to:
*
* dsxpp.1 dst, src
* dsxpp.1.p dst, src
*
* We apply this after flags syncing, as we don't want to sync in between the
* two (which might happen if dst == src). We do it before nop scheduling
* because that needs to count actual instructions.
*/
static bool
apply_fine_deriv_macro(struct ir3_legalize_ctx *ctx, struct ir3_block *block)
{
struct list_head instr_list;
/* remove all the instructions from the list, we'll be adding
* them back in as we go
*/
list_replace(&block->instr_list, &instr_list);
list_inithead(&block->instr_list);
foreach_instr_safe (n, &instr_list) {
list_addtail(&n->node, &block->instr_list);
if (n->opc == OPC_DSXPP_MACRO || n->opc == OPC_DSYPP_MACRO) {
n->opc = (n->opc == OPC_DSXPP_MACRO) ? OPC_DSXPP_1 : OPC_DSYPP_1;
struct ir3_instruction *op_p = ir3_instr_clone(n);
op_p->flags = IR3_INSTR_P;
ctx->so->need_fine_derivatives = true;
}
}
return true;
}
/* NOTE: branch instructions are always the last instruction(s)
* in the block. We take advantage of this as we resolve the
* branches, since "if (foo) break;" constructs turn into
* something like:
*
* block3 {
* ...
* 0029:021: mov.s32s32 r62.x, r1.y
* 0082:022: br !p0.x, target=block5
* 0083:023: br p0.x, target=block4
* // succs: if _[0029:021: mov.s32s32] block4; else block5;
* }
* block4 {
* 0084:024: jump, target=block6
* // succs: block6;
* }
* block5 {
* 0085:025: jump, target=block7
* // succs: block7;
* }
*
* ie. only instruction in block4/block5 is a jump, so when
* resolving branches we can easily detect this by checking
* that the first instruction in the target block is itself
* a jump, and setup the br directly to the jump's target
* (and strip back out the now unreached jump)
*
* TODO sometimes we end up with things like:
*
* br !p0.x, #2
* br p0.x, #12
* add.u r0.y, r0.y, 1
*
* If we swapped the order of the branches, we could drop one.
*/
static struct ir3_block *
resolve_dest_block(struct ir3_block *block)
{
/* special case for last block: */
if (!block->successors[0])
return block;
/* NOTE that we may or may not have inserted the jump
* in the target block yet, so conditions to resolve
* the dest to the dest block's successor are:
*
* (1) successor[1] == NULL &&
* (2) (block-is-empty || only-instr-is-jump)
*/
if (block->successors[1] == NULL) {
if (list_is_empty(&block->instr_list)) {
return block->successors[0];
} else if (list_length(&block->instr_list) == 1) {
struct ir3_instruction *instr =
list_first_entry(&block->instr_list, struct ir3_instruction, node);
if (instr->opc == OPC_JUMP) {
/* If this jump is backwards, then we will probably convert
* the jump being resolved to a backwards jump, which will
* change a loop-with-continue or loop-with-if into a
* doubly-nested loop and change the convergence behavior.
* Disallow this here.
*/
if (block->successors[0]->index <= block->index)
return block;
return block->successors[0];
}
}
}
return block;
}
static void
remove_unused_block(struct ir3_block *old_target)
{
list_delinit(&old_target->node);
/* If there are any physical predecessors due to fallthroughs, then they may
* fall through to any of the physical successors of this block. But we can
* only fit two, so just pick the "earliest" one, i.e. the fallthrough if
* possible.
*
* TODO: we really ought to have unlimited numbers of physical successors,
* both because of this and because we currently don't model some scenarios
* with nested break/continue correctly.
*/
struct ir3_block *new_target;
if (old_target->physical_successors[1] &&
old_target->physical_successors[1]->start_ip <
old_target->physical_successors[0]->start_ip) {
new_target = old_target->physical_successors[1];
} else {
new_target = old_target->physical_successors[0];
}
for (unsigned i = 0; i < old_target->physical_predecessors_count; i++) {
struct ir3_block *pred = old_target->physical_predecessors[i];
if (pred->physical_successors[0] == old_target) {
if (!new_target) {
/* If we remove a physical successor, make sure the only physical
* successor is the first one.
*/
pred->physical_successors[0] = pred->physical_successors[1];
pred->physical_successors[1] = NULL;
} else {
pred->physical_successors[0] = new_target;
}
} else {
assert(pred->physical_successors[1] == old_target);
pred->physical_successors[1] = new_target;
}
if (new_target)
ir3_block_add_physical_predecessor(new_target, pred);
}
/* cleanup dangling predecessors: */
for (unsigned i = 0; i < ARRAY_SIZE(old_target->successors); i++) {
if (old_target->successors[i]) {
struct ir3_block *succ = old_target->successors[i];
ir3_block_remove_predecessor(succ, old_target);
}
}
for (unsigned i = 0; i < ARRAY_SIZE(old_target->physical_successors); i++) {
if (old_target->physical_successors[i]) {
struct ir3_block *succ = old_target->physical_successors[i];
ir3_block_remove_physical_predecessor(succ, old_target);
}
}
}
static bool
retarget_jump(struct ir3_instruction *instr, struct ir3_block *new_target)
{
struct ir3_block *old_target = instr->cat0.target;
struct ir3_block *cur_block = instr->block;
/* update current blocks successors to reflect the retargetting: */
if (cur_block->successors[0] == old_target) {
cur_block->successors[0] = new_target;
} else {
assert(cur_block->successors[1] == old_target);
cur_block->successors[1] = new_target;
}
/* also update physical_successors: */
if (cur_block->physical_successors[0] == old_target) {
cur_block->physical_successors[0] = new_target;
} else {
assert(cur_block->physical_successors[1] == old_target);
cur_block->physical_successors[1] = new_target;
}
/* update new target's predecessors: */
ir3_block_add_predecessor(new_target, cur_block);
ir3_block_add_physical_predecessor(new_target, cur_block);
/* and remove old_target's predecessor: */
ir3_block_remove_predecessor(old_target, cur_block);
ir3_block_remove_physical_predecessor(old_target, cur_block);
instr->cat0.target = new_target;
if (old_target->predecessors_count == 0) {
remove_unused_block(old_target);
return true;
}
return false;
}
static bool
opt_jump(struct ir3 *ir)
{
bool progress = false;
unsigned index = 0;
foreach_block (block, &ir->block_list)
block->index = index++;
foreach_block (block, &ir->block_list) {
foreach_instr (instr, &block->instr_list) {
if (!is_flow(instr) || !instr->cat0.target)
continue;
struct ir3_block *tblock = resolve_dest_block(instr->cat0.target);
if (tblock != instr->cat0.target) {
progress = true;
/* Exit early if we deleted a block to avoid iterator
* weirdness/assert fails
*/
if (retarget_jump(instr, tblock))
return true;
}
}
/* Detect the case where the block ends either with:
* - A single unconditional jump to the next block.
* - Two jump instructions with opposite conditions, and one of the
* them jumps to the next block.
* We can remove the one that jumps to the next block in either case.
*/
if (list_is_empty(&block->instr_list))
continue;
struct ir3_instruction *jumps[2] = {NULL, NULL};
jumps[0] =
list_last_entry(&block->instr_list, struct ir3_instruction, node);
if (!list_is_singular(&block->instr_list))
jumps[1] =
list_last_entry(&jumps[0]->node, struct ir3_instruction, node);
if (jumps[0]->opc == OPC_JUMP)
jumps[1] = NULL;
else if (jumps[0]->opc != OPC_B || !jumps[1] || jumps[1]->opc != OPC_B)
continue;
for (unsigned i = 0; i < 2; i++) {
if (!jumps[i])
continue;
struct ir3_block *tblock = jumps[i]->cat0.target;
if (&tblock->node == block->node.next) {
list_delinit(&jumps[i]->node);
progress = true;
break;
}
}
}
return progress;
}
static void
resolve_jumps(struct ir3 *ir)
{
foreach_block (block, &ir->block_list)
foreach_instr (instr, &block->instr_list)
if (is_flow(instr) && instr->cat0.target) {
struct ir3_instruction *target = list_first_entry(
&instr->cat0.target->instr_list, struct ir3_instruction, node);
instr->cat0.immed = (int)target->ip - (int)instr->ip;
}
}
static void
mark_jp(struct ir3_block *block)
{
/* We only call this on the end block (in kill_sched) or after retargeting
* all jumps to empty blocks (in mark_xvergence_points) so there's no need to
* worry about empty blocks.
*/
assert(!list_is_empty(&block->instr_list));
struct ir3_instruction *target =
list_first_entry(&block->instr_list, struct ir3_instruction, node);
target->flags |= IR3_INSTR_JP;
}
/* Mark points where control flow converges or diverges.
*
* Divergence points could actually be re-convergence points where
* "parked" threads are recoverged with threads that took the opposite
* path last time around. Possibly it is easier to think of (jp) as
* "the execution mask might have changed".
*/
static void
mark_xvergence_points(struct ir3 *ir)
{
foreach_block (block, &ir->block_list) {
/* We need to insert (jp) if an entry in the "branch stack" is created for
* our block. This happens if there is a predecessor to our block that may
* fallthrough to an earlier block in the physical CFG, either because it
* ends in a non-uniform conditional branch or because there's a
* fallthrough for an block in-between that also starts with (jp) and was
* pushed on the branch stack already.
*/
for (unsigned i = 0; i < block->predecessors_count; i++) {
struct ir3_block *pred = block->predecessors[i];
for (unsigned j = 0; j < ARRAY_SIZE(pred->physical_successors); j++) {
if (pred->physical_successors[j] != NULL &&
pred->physical_successors[j]->start_ip < block->start_ip)
mark_jp(block);
/* If the predecessor just falls through to this block, we still
* need to check if it "falls through" by jumping to the block. This
* can happen if opt_jump fails and the block ends in two branches,
* or if there's an empty if-statement (which currently can happen
* with binning shaders after dead-code elimination) and the block
* before ends with a conditional branch directly to this block.
*/
if (pred->physical_successors[j] == block) {
foreach_instr_rev (instr, &pred->instr_list) {
if (!is_flow(instr))
break;
if (instr->cat0.target == block) {
mark_jp(block);
break;
}
}
}
}
}
}
}
/* Insert the branch/jump instructions for flow control between blocks.
* Initially this is done naively, without considering if the successor
* block immediately follows the current block (ie. so no jump required),
* but that is cleaned up in opt_jump().
*
* TODO what ensures that the last write to p0.x in a block is the
* branch condition? Have we been getting lucky all this time?
*/
static void
block_sched(struct ir3 *ir)
{
foreach_block (block, &ir->block_list) {
if (block->successors[1]) {
/* if/else, conditional branches to "then" or "else": */
struct ir3_instruction *br1, *br2;
if (block->brtype == IR3_BRANCH_GETONE ||
block->brtype == IR3_BRANCH_SHPS) {
/* getone/shps can't be inverted, and it wouldn't even make sense
* to follow it with an inverted branch, so follow it by an
* unconditional branch.
*/
assert(!block->condition);
if (block->brtype == IR3_BRANCH_GETONE)
br1 = ir3_GETONE(block);
else
br1 = ir3_SHPS(block);
br1->cat0.target = block->successors[1];
br2 = ir3_JUMP(block);
br2->cat0.target = block->successors[0];
} else {
assert(block->condition);
/* create "else" branch first (since "then" block should
* frequently/always end up being a fall-thru):
*/
br1 = ir3_instr_create(block, OPC_B, 0, 1);
ir3_src_create(br1, regid(REG_P0, 0), 0)->def =
block->condition->dsts[0];
br1->cat0.inv1 = true;
br1->cat0.target = block->successors[1];
/* "then" branch: */
br2 = ir3_instr_create(block, OPC_B, 0, 1);
ir3_src_create(br2, regid(REG_P0, 0), 0)->def =
block->condition->dsts[0];
br2->cat0.target = block->successors[0];
switch (block->brtype) {
case IR3_BRANCH_COND:
br1->cat0.brtype = br2->cat0.brtype = BRANCH_PLAIN;
break;
case IR3_BRANCH_ALL:
br1->cat0.brtype = BRANCH_ANY;
br2->cat0.brtype = BRANCH_ALL;
break;
case IR3_BRANCH_ANY:
br1->cat0.brtype = BRANCH_ALL;
br2->cat0.brtype = BRANCH_ANY;
break;
case IR3_BRANCH_GETONE:
case IR3_BRANCH_SHPS:
unreachable("can't get here");
}
}
} else if (block->successors[0]) {
/* otherwise unconditional jump to next block: */
struct ir3_instruction *jmp;
jmp = ir3_JUMP(block);
jmp->cat0.target = block->successors[0];
}
}
}
/* Here we workaround the fact that kill doesn't actually kill the thread as
* GL expects. The last instruction always needs to be an end instruction,
* which means that if we're stuck in a loop where kill is the only way out,
* then we may have to jump out to the end. kill may also have the d3d
* semantics of converting the thread to a helper thread, rather than setting
* the exec mask to 0, in which case the helper thread could get stuck in an
* infinite loop.
*
* We do this late, both to give the scheduler the opportunity to reschedule
* kill instructions earlier and to avoid having to create a separate basic
* block.
*
* TODO: Assuming that the wavefront doesn't stop as soon as all threads are
* killed, we might benefit by doing this more aggressively when the remaining
* part of the program after the kill is large, since that would let us
* skip over the instructions when there are no non-killed threads left.
*/
static void
kill_sched(struct ir3 *ir, struct ir3_shader_variant *so)
{
/* True if we know that this block will always eventually lead to the end
* block:
*/
bool always_ends = true;
bool added = false;
struct ir3_block *last_block =
list_last_entry(&ir->block_list, struct ir3_block, node);
foreach_block_rev (block, &ir->block_list) {
for (unsigned i = 0; i < 2 && block->successors[i]; i++) {
if (block->successors[i]->start_ip <= block->end_ip)
always_ends = false;
}
if (always_ends)
continue;
foreach_instr_safe (instr, &block->instr_list) {
if (instr->opc != OPC_KILL)
continue;
struct ir3_instruction *br = ir3_instr_create(block, OPC_B, 0, 1);
ir3_src_create(br, instr->srcs[0]->num, instr->srcs[0]->flags)->wrmask =
1;
br->cat0.target =
list_last_entry(&ir->block_list, struct ir3_block, node);
list_del(&br->node);
list_add(&br->node, &instr->node);
added = true;
}
}
if (added) {
/* I'm not entirely sure how the branchstack works, but we probably
* need to add at least one entry for the divergence which is resolved
* at the end:
*/
so->branchstack++;
/* We don't update predecessors/successors, so we have to do this
* manually:
*/
mark_jp(last_block);
}
}
/* Insert nop's required to make this a legal/valid shader program: */
static void
nop_sched(struct ir3 *ir, struct ir3_shader_variant *so)
{
foreach_block (block, &ir->block_list) {
struct ir3_instruction *last = NULL;
struct list_head instr_list;
/* remove all the instructions from the list, we'll be adding
* them back in as we go
*/
list_replace(&block->instr_list, &instr_list);
list_inithead(&block->instr_list);
foreach_instr_safe (instr, &instr_list) {
unsigned delay = ir3_delay_calc(block, instr, so->mergedregs);
/* NOTE: I think the nopN encoding works for a5xx and
* probably a4xx, but not a3xx. So far only tested on
* a6xx.
*/
if ((delay > 0) && (ir->compiler->gen >= 6) && last &&
((opc_cat(last->opc) == 2) || (opc_cat(last->opc) == 3)) &&
(last->repeat == 0)) {
/* the previous cat2/cat3 instruction can encode at most 3 nop's: */
unsigned transfer = MIN2(delay, 3 - last->nop);
last->nop += transfer;
delay -= transfer;
}
if ((delay > 0) && last && (last->opc == OPC_NOP)) {
/* the previous nop can encode at most 5 repeats: */
unsigned transfer = MIN2(delay, 5 - last->repeat);
last->repeat += transfer;
delay -= transfer;
}
if (delay > 0) {
assert(delay <= 6);
ir3_NOP(block)->repeat = delay - 1;
}
list_addtail(&instr->node, &block->instr_list);
last = instr;
}
}
}
bool
ir3_legalize(struct ir3 *ir, struct ir3_shader_variant *so, int *max_bary)
{
struct ir3_legalize_ctx *ctx = rzalloc(ir, struct ir3_legalize_ctx);
bool mergedregs = so->mergedregs;
bool progress;
ctx->so = so;
ctx->max_bary = -1;
ctx->compiler = ir->compiler;
ctx->type = ir->type;
/* allocate per-block data: */
foreach_block (block, &ir->block_list) {
struct ir3_legalize_block_data *bd =
rzalloc(ctx, struct ir3_legalize_block_data);
regmask_init(&bd->state.needs_ss_war, mergedregs);
regmask_init(&bd->state.needs_ss, mergedregs);
regmask_init(&bd->state.needs_sy, mergedregs);
block->data = bd;
}
/* We may have failed to pull all input loads into the first block.
* In such case at the moment we aren't able to find a better place
* to for (ei) than the end of the program.
* a5xx and a6xx do automatically release varying storage at the end.
*/
ctx->early_input_release = true;
struct ir3_block *start_block = ir3_after_preamble(ir);
foreach_block (block, &ir->block_list) {
foreach_instr (instr, &block->instr_list) {
if (is_input(instr)) {
ctx->has_inputs = true;
if (block != start_block) {
ctx->early_input_release = false;
break;
}
}
}
}
assert(ctx->early_input_release || ctx->compiler->gen >= 5);
/* process each block: */
do {
progress = false;
foreach_block (block, &ir->block_list) {
progress |= legalize_block(ctx, block);
}
} while (progress);
*max_bary = ctx->max_bary;
block_sched(ir);
if (so->type == MESA_SHADER_FRAGMENT)
kill_sched(ir, so);
foreach_block (block, &ir->block_list) {
progress |= apply_fine_deriv_macro(ctx, block);
}
nop_sched(ir, so);
while (opt_jump(ir))
;
ir3_count_instructions(ir);
resolve_jumps(ir);
mark_xvergence_points(ir);
ralloc_free(ctx);
return true;
}