mesa/src/freedreno/ir3/ir3_cp.c

717 lines
23 KiB
C

/*
* Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#include <math.h>
#include "util/half_float.h"
#include "util/u_math.h"
#include "ir3.h"
#include "ir3_compiler.h"
#include "ir3_shader.h"
#define swap(a, b) \
do { \
__typeof(a) __tmp = (a); \
(a) = (b); \
(b) = __tmp; \
} while (0)
/*
* Copy Propagate:
*/
struct ir3_cp_ctx {
struct ir3 *shader;
struct ir3_shader_variant *so;
bool progress;
};
/* is it a type preserving mov, with ok flags?
*
* @instr: the mov to consider removing
* @dst_instr: the instruction consuming the mov (instr)
*
* TODO maybe drop allow_flags since this is only false when dst is
* NULL (ie. outputs)
*/
static bool
is_eligible_mov(struct ir3_instruction *instr,
struct ir3_instruction *dst_instr, bool allow_flags)
{
if (is_same_type_mov(instr)) {
struct ir3_register *dst = instr->dsts[0];
struct ir3_register *src = instr->srcs[0];
struct ir3_instruction *src_instr = ssa(src);
/* only if mov src is SSA (not const/immed): */
if (!src_instr)
return false;
/* no indirect: */
if (dst->flags & IR3_REG_RELATIV)
return false;
if (src->flags & IR3_REG_RELATIV)
return false;
if (src->flags & IR3_REG_ARRAY)
return false;
if (!allow_flags)
if (src->flags & (IR3_REG_FABS | IR3_REG_FNEG | IR3_REG_SABS |
IR3_REG_SNEG | IR3_REG_BNOT))
return false;
return true;
}
return false;
}
/* we can end up with extra cmps.s from frontend, which uses a
*
* cmps.s p0.x, cond, 0
*
* as a way to mov into the predicate register. But frequently 'cond'
* is itself a cmps.s/cmps.f/cmps.u. So detect this special case.
*/
static bool
is_foldable_double_cmp(struct ir3_instruction *cmp)
{
struct ir3_instruction *cond = ssa(cmp->srcs[0]);
return (cmp->dsts[0]->num == regid(REG_P0, 0)) && cond &&
(cmp->srcs[1]->flags & IR3_REG_IMMED) &&
(cmp->srcs[1]->iim_val == 0) &&
(cmp->cat2.condition == IR3_COND_NE) &&
(!cond->address || cond->address->def->instr->block == cmp->block);
}
/* propagate register flags from src to dst.. negates need special
* handling to cancel each other out.
*/
static void
combine_flags(unsigned *dstflags, struct ir3_instruction *src)
{
unsigned srcflags = src->srcs[0]->flags;
/* if what we are combining into already has (abs) flags,
* we can drop (neg) from src:
*/
if (*dstflags & IR3_REG_FABS)
srcflags &= ~IR3_REG_FNEG;
if (*dstflags & IR3_REG_SABS)
srcflags &= ~IR3_REG_SNEG;
if (srcflags & IR3_REG_FABS)
*dstflags |= IR3_REG_FABS;
if (srcflags & IR3_REG_SABS)
*dstflags |= IR3_REG_SABS;
if (srcflags & IR3_REG_FNEG)
*dstflags ^= IR3_REG_FNEG;
if (srcflags & IR3_REG_SNEG)
*dstflags ^= IR3_REG_SNEG;
if (srcflags & IR3_REG_BNOT)
*dstflags ^= IR3_REG_BNOT;
*dstflags &= ~IR3_REG_SSA;
*dstflags |= srcflags & IR3_REG_SSA;
*dstflags |= srcflags & IR3_REG_CONST;
*dstflags |= srcflags & IR3_REG_IMMED;
*dstflags |= srcflags & IR3_REG_RELATIV;
*dstflags |= srcflags & IR3_REG_ARRAY;
*dstflags |= srcflags & IR3_REG_SHARED;
/* if src of the src is boolean we can drop the (abs) since we know
* the source value is already a postitive integer. This cleans
* up the absnegs that get inserted when converting between nir and
* native boolean (see ir3_b2n/n2b)
*/
struct ir3_instruction *srcsrc = ssa(src->srcs[0]);
if (srcsrc && is_bool(srcsrc))
*dstflags &= ~IR3_REG_SABS;
}
/* Tries lowering an immediate register argument to a const buffer access by
* adding to the list of immediates to be pushed to the const buffer when
* switching to this shader.
*/
static bool
lower_immed(struct ir3_cp_ctx *ctx, struct ir3_instruction *instr, unsigned n,
struct ir3_register *reg, unsigned new_flags)
{
if (!(new_flags & IR3_REG_IMMED))
return false;
new_flags &= ~IR3_REG_IMMED;
new_flags |= IR3_REG_CONST;
if (!ir3_valid_flags(instr, n, new_flags))
return false;
reg = ir3_reg_clone(ctx->shader, reg);
/* Half constant registers seems to handle only 32-bit values
* within floating-point opcodes. So convert back to 32-bit values.
*/
bool f_opcode =
(is_cat2_float(instr->opc) || is_cat3_float(instr->opc)) ? true : false;
if (f_opcode && (new_flags & IR3_REG_HALF))
reg->uim_val = fui(_mesa_half_to_float(reg->uim_val));
/* in some cases, there are restrictions on (abs)/(neg) plus const..
* so just evaluate those and clear the flags:
*/
if (new_flags & IR3_REG_SABS) {
reg->iim_val = abs(reg->iim_val);
new_flags &= ~IR3_REG_SABS;
}
if (new_flags & IR3_REG_FABS) {
reg->fim_val = fabs(reg->fim_val);
new_flags &= ~IR3_REG_FABS;
}
if (new_flags & IR3_REG_SNEG) {
reg->iim_val = -reg->iim_val;
new_flags &= ~IR3_REG_SNEG;
}
if (new_flags & IR3_REG_FNEG) {
reg->fim_val = -reg->fim_val;
new_flags &= ~IR3_REG_FNEG;
}
/* Reallocate for 4 more elements whenever it's necessary. Note that ir3
* printing relies on having groups of 4 dwords, so we fill the unused
* slots with a dummy value.
*/
struct ir3_const_state *const_state = ir3_const_state(ctx->so);
if (const_state->immediates_count == const_state->immediates_size) {
const_state->immediates = rerzalloc(
const_state, const_state->immediates,
__typeof__(const_state->immediates[0]), const_state->immediates_size,
const_state->immediates_size + 4);
const_state->immediates_size += 4;
for (int i = const_state->immediates_count;
i < const_state->immediates_size; i++)
const_state->immediates[i] = 0xd0d0d0d0;
}
int i;
for (i = 0; i < const_state->immediates_count; i++) {
if (const_state->immediates[i] == reg->uim_val)
break;
}
if (i == const_state->immediates_count) {
/* Add on a new immediate to be pushed, if we have space left in the
* constbuf.
*/
if (const_state->offsets.immediate + const_state->immediates_count / 4 >=
ir3_max_const(ctx->so))
return false;
const_state->immediates[i] = reg->uim_val;
const_state->immediates_count++;
}
reg->flags = new_flags;
reg->num = i + (4 * const_state->offsets.immediate);
instr->srcs[n] = reg;
return true;
}
static void
unuse(struct ir3_instruction *instr)
{
assert(instr->use_count > 0);
if (--instr->use_count == 0) {
struct ir3_block *block = instr->block;
instr->barrier_class = 0;
instr->barrier_conflict = 0;
/* we don't want to remove anything in keeps (which could
* be things like array store's)
*/
for (unsigned i = 0; i < block->keeps_count; i++) {
assert(block->keeps[i] != instr);
}
}
}
/**
* Handles the special case of the 2nd src (n == 1) to "normal" mad
* instructions, which cannot reference a constant. See if it is
* possible to swap the 1st and 2nd sources.
*/
static bool
try_swap_mad_two_srcs(struct ir3_instruction *instr, unsigned new_flags)
{
if (!is_mad(instr->opc))
return false;
/* If we've already tried, nothing more to gain.. we will only
* have previously swapped if the original 2nd src was const or
* immed. So swapping back won't improve anything and could
* result in an infinite "progress" loop.
*/
if (instr->cat3.swapped)
return false;
/* cat3 doesn't encode immediate, but we can lower immediate
* to const if that helps:
*/
if (new_flags & IR3_REG_IMMED) {
new_flags &= ~IR3_REG_IMMED;
new_flags |= IR3_REG_CONST;
}
/* If the reason we couldn't fold without swapping is something
* other than const source, then swapping won't help:
*/
if (!(new_flags & IR3_REG_CONST))
return false;
instr->cat3.swapped = true;
/* NOTE: pre-swap first two src's before valid_flags(),
* which might try to dereference the n'th src:
*/
swap(instr->srcs[0], instr->srcs[1]);
bool valid_swap =
/* can we propagate mov if we move 2nd src to first? */
ir3_valid_flags(instr, 0, new_flags) &&
/* and does first src fit in second slot? */
ir3_valid_flags(instr, 1, instr->srcs[1]->flags);
if (!valid_swap) {
/* put things back the way they were: */
swap(instr->srcs[0], instr->srcs[1]);
} /* otherwise leave things swapped */
return valid_swap;
}
/* Values that are uniform inside a loop can become divergent outside
* it if the loop has a divergent trip count. This means that we can't
* propagate a copy of a shared to non-shared register if it would
* make the shared reg's live range extend outside of its loop. Users
* outside the loop would see the value for the thread(s) that last
* exited the loop, rather than for their own thread.
*/
static bool
is_valid_shared_copy(struct ir3_instruction *dst_instr,
struct ir3_instruction *src_instr,
struct ir3_register *src_reg)
{
return !(src_reg->flags & IR3_REG_SHARED) ||
dst_instr->block->loop_id == src_instr->block->loop_id;
}
/**
* Handle cp for a given src register. This additionally handles
* the cases of collapsing immedate/const (which replace the src
* register with a non-ssa src) or collapsing mov's from relative
* src (which needs to also fixup the address src reference by the
* instruction).
*/
static bool
reg_cp(struct ir3_cp_ctx *ctx, struct ir3_instruction *instr,
struct ir3_register *reg, unsigned n)
{
struct ir3_instruction *src = ssa(reg);
if (is_eligible_mov(src, instr, true)) {
/* simple case, no immed/const/relativ, only mov's w/ ssa src: */
struct ir3_register *src_reg = src->srcs[0];
unsigned new_flags = reg->flags;
if (!is_valid_shared_copy(instr, src, src_reg))
return false;
combine_flags(&new_flags, src);
if (ir3_valid_flags(instr, n, new_flags)) {
if (new_flags & IR3_REG_ARRAY) {
assert(!(reg->flags & IR3_REG_ARRAY));
reg->array = src_reg->array;
}
reg->flags = new_flags;
reg->def = src_reg->def;
instr->barrier_class |= src->barrier_class;
instr->barrier_conflict |= src->barrier_conflict;
unuse(src);
reg->def->instr->use_count++;
return true;
}
} else if ((is_same_type_mov(src) || is_const_mov(src)) &&
/* cannot collapse const/immed/etc into control flow: */
opc_cat(instr->opc) != 0) {
/* immed/const/etc cases, which require some special handling: */
struct ir3_register *src_reg = src->srcs[0];
unsigned new_flags = reg->flags;
if (!is_valid_shared_copy(instr, src, src_reg))
return false;
if (src_reg->flags & IR3_REG_ARRAY)
return false;
combine_flags(&new_flags, src);
if (!ir3_valid_flags(instr, n, new_flags)) {
/* See if lowering an immediate to const would help. */
if (lower_immed(ctx, instr, n, src_reg, new_flags))
return true;
/* special case for "normal" mad instructions, we can
* try swapping the first two args if that fits better.
*
* the "plain" MAD's (ie. the ones that don't shift first
* src prior to multiply) can swap their first two srcs if
* src[0] is !CONST and src[1] is CONST:
*/
if ((n == 1) && try_swap_mad_two_srcs(instr, new_flags)) {
return true;
} else {
return false;
}
}
/* Here we handle the special case of mov from
* CONST and/or RELATIV. These need to be handled
* specially, because in the case of move from CONST
* there is no src ir3_instruction so we need to
* replace the ir3_register. And in the case of
* RELATIV we need to handle the address register
* dependency.
*/
if (src_reg->flags & IR3_REG_CONST) {
/* an instruction cannot reference two different
* address registers:
*/
if ((src_reg->flags & IR3_REG_RELATIV) &&
conflicts(instr->address, reg->def->instr->address))
return false;
/* These macros expand to a mov in an if statement */
if ((src_reg->flags & IR3_REG_RELATIV) &&
is_subgroup_cond_mov_macro(instr))
return false;
/* This seems to be a hw bug, or something where the timings
* just somehow don't work out. This restriction may only
* apply if the first src is also CONST.
*/
if ((opc_cat(instr->opc) == 3) && (n == 2) &&
(src_reg->flags & IR3_REG_RELATIV) && (src_reg->array.offset == 0))
return false;
/* When narrowing constant from 32b to 16b, it seems
* to work only for float. So we should do this only with
* float opcodes.
*/
if (src->cat1.dst_type == TYPE_F16) {
/* TODO: should we have a way to tell phi/collect to use a
* float move so that this is legal?
*/
if (is_meta(instr))
return false;
if (instr->opc == OPC_MOV && !type_float(instr->cat1.src_type))
return false;
if (!is_cat2_float(instr->opc) && !is_cat3_float(instr->opc))
return false;
} else if (src->cat1.dst_type == TYPE_U16) {
/* Since we set CONSTANT_DEMOTION_ENABLE, a float reference of
* what was a U16 value read from the constbuf would incorrectly
* do 32f->16f conversion, when we want to read a 16f value.
*/
if (is_cat2_float(instr->opc) || is_cat3_float(instr->opc))
return false;
if (instr->opc == OPC_MOV && type_float(instr->cat1.src_type))
return false;
}
src_reg = ir3_reg_clone(instr->block->shader, src_reg);
src_reg->flags = new_flags;
instr->srcs[n] = src_reg;
if (src_reg->flags & IR3_REG_RELATIV)
ir3_instr_set_address(instr, reg->def->instr->address->def->instr);
return true;
}
if (src_reg->flags & IR3_REG_IMMED) {
int32_t iim_val = src_reg->iim_val;
assert((opc_cat(instr->opc) == 1) ||
(opc_cat(instr->opc) == 2) ||
(opc_cat(instr->opc) == 6) ||
is_meta(instr) ||
(is_mad(instr->opc) && (n == 0)));
if ((opc_cat(instr->opc) == 2) &&
!ir3_cat2_int(instr->opc)) {
iim_val = ir3_flut(src_reg);
if (iim_val < 0) {
/* Fall back to trying to load the immediate as a const: */
return lower_immed(ctx, instr, n, src_reg, new_flags);
}
}
if (new_flags & IR3_REG_SABS)
iim_val = abs(iim_val);
if (new_flags & IR3_REG_SNEG)
iim_val = -iim_val;
if (new_flags & IR3_REG_BNOT)
iim_val = ~iim_val;
if (ir3_valid_flags(instr, n, new_flags) &&
ir3_valid_immediate(instr, iim_val)) {
new_flags &= ~(IR3_REG_SABS | IR3_REG_SNEG | IR3_REG_BNOT);
src_reg = ir3_reg_clone(instr->block->shader, src_reg);
src_reg->flags = new_flags;
src_reg->iim_val = iim_val;
instr->srcs[n] = src_reg;
return true;
} else {
/* Fall back to trying to load the immediate as a const: */
return lower_immed(ctx, instr, n, src_reg, new_flags);
}
}
}
return false;
}
/* Handle special case of eliminating output mov, and similar cases where
* there isn't a normal "consuming" instruction. In this case we cannot
* collapse flags (ie. output mov from const, or w/ abs/neg flags, cannot
* be eliminated)
*/
static struct ir3_instruction *
eliminate_output_mov(struct ir3_cp_ctx *ctx, struct ir3_instruction *instr)
{
if (is_eligible_mov(instr, NULL, false)) {
struct ir3_register *reg = instr->srcs[0];
if (!(reg->flags & IR3_REG_ARRAY)) {
struct ir3_instruction *src_instr = ssa(reg);
assert(src_instr);
ctx->progress = true;
return src_instr;
}
}
return instr;
}
/**
* Find instruction src's which are mov's that can be collapsed, replacing
* the mov dst with the mov src
*/
static void
instr_cp(struct ir3_cp_ctx *ctx, struct ir3_instruction *instr)
{
if (instr->srcs_count == 0)
return;
if (ir3_instr_check_mark(instr))
return;
/* walk down the graph from each src: */
bool progress;
do {
progress = false;
foreach_src_n (reg, n, instr) {
struct ir3_instruction *src = ssa(reg);
if (!src)
continue;
instr_cp(ctx, src);
/* TODO non-indirect access we could figure out which register
* we actually want and allow cp..
*/
if ((reg->flags & IR3_REG_ARRAY) && src->opc != OPC_META_PHI)
continue;
/* Don't CP absneg into meta instructions, that won't end well: */
if (is_meta(instr) &&
(src->opc == OPC_ABSNEG_F || src->opc == OPC_ABSNEG_S))
continue;
/* Don't CP mova and mova1 into their users */
if (writes_addr0(src) || writes_addr1(src))
continue;
progress |= reg_cp(ctx, instr, reg, n);
ctx->progress |= progress;
}
} while (progress);
/* After folding a mov's source we may wind up with a type-converting mov
* of an immediate. This happens e.g. with texture descriptors, since we
* narrow the descriptor (which may be a constant) to a half-reg in ir3.
* By converting the immediate in-place to the destination type, we can
* turn the mov into a same-type mov so that it can be further propagated.
*/
if (instr->opc == OPC_MOV && (instr->srcs[0]->flags & IR3_REG_IMMED) &&
instr->cat1.src_type != instr->cat1.dst_type &&
/* Only do uint types for now, until we generate other types of
* mov's during instruction selection.
*/
full_type(instr->cat1.src_type) == TYPE_U32 &&
full_type(instr->cat1.dst_type) == TYPE_U32) {
uint32_t uimm = instr->srcs[0]->uim_val;
if (instr->cat1.dst_type == TYPE_U16)
uimm &= 0xffff;
instr->srcs[0]->uim_val = uimm;
if (instr->dsts[0]->flags & IR3_REG_HALF)
instr->srcs[0]->flags |= IR3_REG_HALF;
else
instr->srcs[0]->flags &= ~IR3_REG_HALF;
instr->cat1.src_type = instr->cat1.dst_type;
ctx->progress = true;
}
/* Re-write the instruction writing predicate register to get rid
* of the double cmps.
*/
if ((instr->opc == OPC_CMPS_S) && is_foldable_double_cmp(instr)) {
struct ir3_instruction *cond = ssa(instr->srcs[0]);
switch (cond->opc) {
case OPC_CMPS_S:
case OPC_CMPS_F:
case OPC_CMPS_U:
instr->opc = cond->opc;
instr->flags = cond->flags;
instr->cat2 = cond->cat2;
if (cond->address)
ir3_instr_set_address(instr, cond->address->def->instr);
instr->srcs[0] = ir3_reg_clone(ctx->shader, cond->srcs[0]);
instr->srcs[1] = ir3_reg_clone(ctx->shader, cond->srcs[1]);
instr->barrier_class |= cond->barrier_class;
instr->barrier_conflict |= cond->barrier_conflict;
unuse(cond);
ctx->progress = true;
break;
default:
break;
}
}
/* Handle converting a sam.s2en (taking samp/tex idx params via register)
* into a normal sam (encoding immediate samp/tex idx) if they are
* immediate. This saves some instructions and regs in the common case
* where we know samp/tex at compile time. This needs to be done in the
* frontend for bindless tex, though, so don't replicate it here.
*/
if (is_tex(instr) && (instr->flags & IR3_INSTR_S2EN) &&
!(instr->flags & IR3_INSTR_B) &&
!(ir3_shader_debug & IR3_DBG_FORCES2EN)) {
/* The first src will be a collect, if both of it's
* two sources are mov from imm, then we can
*/
struct ir3_instruction *samp_tex = ssa(instr->srcs[0]);
assert(samp_tex->opc == OPC_META_COLLECT);
struct ir3_register *samp = samp_tex->srcs[0];
struct ir3_register *tex = samp_tex->srcs[1];
if ((samp->flags & IR3_REG_IMMED) && (tex->flags & IR3_REG_IMMED) &&
(samp->iim_val < 16) && (tex->iim_val < 16)) {
instr->flags &= ~IR3_INSTR_S2EN;
instr->cat5.samp = samp->iim_val;
instr->cat5.tex = tex->iim_val;
/* shuffle around the regs to remove the first src: */
instr->srcs_count--;
for (unsigned i = 0; i < instr->srcs_count; i++) {
instr->srcs[i] = instr->srcs[i + 1];
}
ctx->progress = true;
}
}
}
bool
ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so)
{
struct ir3_cp_ctx ctx = {
.shader = ir,
.so = so,
};
/* This is a bit annoying, and probably wouldn't be necessary if we
* tracked a reverse link from producing instruction to consumer.
* But we need to know when we've eliminated the last consumer of
* a mov, so we need to do a pass to first count consumers of a
* mov.
*/
foreach_block (block, &ir->block_list) {
foreach_instr (instr, &block->instr_list) {
/* by the way, we don't account for false-dep's, so the CP
* pass should always happen before false-dep's are inserted
*/
assert(instr->deps_count == 0);
foreach_ssa_src (src, instr) {
src->use_count++;
}
}
}
ir3_clear_mark(ir);
foreach_block (block, &ir->block_list) {
if (block->condition) {
instr_cp(&ctx, block->condition);
block->condition = eliminate_output_mov(&ctx, block->condition);
}
for (unsigned i = 0; i < block->keeps_count; i++) {
instr_cp(&ctx, block->keeps[i]);
block->keeps[i] = eliminate_output_mov(&ctx, block->keeps[i]);
}
}
return ctx.progress;
}