mesa/src/freedreno/ir3/ir3_a4xx.c

445 lines
16 KiB
C

/*
* Copyright (C) 2017-2018 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
/* 500 gets us LDIB but doesn't change any other a4xx instructions */
#define GPU 500
#include "ir3_context.h"
#include "ir3_image.h"
/* SSBO data is available at this CB address, addressed like regular consts
* containing the following data in each vec4:
*
* [ base address, pitch, array_pitch, cpp ]
*
* These mirror the values uploaded to A4XX_SSBO_0 state. For A5XX, these are
* uploaded manually by the driver.
*/
#define A4XX_SSBO_CB_BASE(i) (0x700 + ((i) << 2))
/*
* Handlers for instructions changed/added in a4xx:
*/
/* Convert byte offset to address of appropriate width for GPU */
static struct ir3_instruction *
byte_offset_to_address(struct ir3_context *ctx,
nir_src *ssbo,
struct ir3_instruction *byte_offset)
{
struct ir3_block *b = ctx->block;
if (ctx->compiler->gen == 4) {
uint32_t index = nir_src_as_uint(*ssbo);
unsigned cb = A4XX_SSBO_CB_BASE(index);
byte_offset = ir3_ADD_U(b, create_uniform(b, cb), 0, byte_offset, 0);
}
if (fd_dev_64b(ctx->compiler->dev_id)) {
return ir3_collect(b, byte_offset, create_immed(b, 0));
} else {
return byte_offset;
}
}
/* src[] = { buffer_index, offset }. No const_index */
static void
emit_intrinsic_load_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
struct ir3_instruction **dst)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *ldgb, *src0, *src1, *byte_offset, *offset;
struct ir3_instruction *ssbo = ir3_ssbo_to_ibo(ctx, intr->src[0]);
byte_offset = ir3_get_src(ctx, &intr->src[1])[0];
offset = ir3_get_src(ctx, &intr->src[2])[0];
/* src0 is uvec2(offset*4, 0), src1 is offset.. nir already *= 4: */
src0 = byte_offset_to_address(ctx, &intr->src[0], byte_offset);
src1 = offset;
ldgb = ir3_LDGB(b, ssbo, 0, src0, 0, src1, 0);
ldgb->dsts[0]->wrmask = MASK(intr->num_components);
ldgb->cat6.iim_val = intr->num_components;
ldgb->cat6.d = 4;
ldgb->cat6.type = TYPE_U32;
ldgb->barrier_class = IR3_BARRIER_BUFFER_R;
ldgb->barrier_conflict = IR3_BARRIER_BUFFER_W;
ir3_split_dest(b, dst, ldgb, 0, intr->num_components);
}
/* src[] = { value, block_index, offset }. const_index[] = { write_mask } */
static void
emit_intrinsic_store_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *stgb, *src0, *src1, *src2, *byte_offset, *offset;
unsigned wrmask = nir_intrinsic_write_mask(intr);
unsigned ncomp = ffs(~wrmask) - 1;
assert(wrmask == BITFIELD_MASK(intr->num_components));
struct ir3_instruction *ssbo = ir3_ssbo_to_ibo(ctx, intr->src[1]);
byte_offset = ir3_get_src(ctx, &intr->src[2])[0];
offset = ir3_get_src(ctx, &intr->src[3])[0];
/* src0 is value, src1 is offset, src2 is uvec2(offset*4, 0)..
* nir already *= 4:
*/
src0 = ir3_create_collect(b, ir3_get_src(ctx, &intr->src[0]), ncomp);
src1 = offset;
src2 = byte_offset_to_address(ctx, &intr->src[1], byte_offset);
stgb = ir3_STGB(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
stgb->cat6.iim_val = ncomp;
stgb->cat6.d = 4;
stgb->cat6.type = TYPE_U32;
stgb->barrier_class = IR3_BARRIER_BUFFER_W;
stgb->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
array_insert(b, b->keeps, stgb);
}
/*
* SSBO atomic intrinsics
*
* All of the SSBO atomic memory operations read a value from memory,
* compute a new value using one of the operations below, write the new
* value to memory, and return the original value read.
*
* All operations take 3 sources except CompSwap that takes 4. These
* sources represent:
*
* 0: The SSBO buffer index.
* 1: The byte offset into the SSBO buffer of the variable that the atomic
* operation will operate on.
* 2: The data parameter to the atomic function (i.e. the value to add
* in ssbo_atomic_add, etc).
* 3: CompSwap: the second data parameter.
* Non-CompSwap: The dword offset into the SSBO buffer variable.
* 4: CompSwap: The dword offset into the SSBO buffer variable.
*
* We use custom ssbo_*_ir3 intrinsics generated by ir3_nir_lower_io_offsets()
* so we can have the dword offset generated in NIR.
*/
static struct ir3_instruction *
emit_intrinsic_atomic_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *atomic;
type_t type = TYPE_U32;
struct ir3_instruction *ssbo = ir3_ssbo_to_ibo(ctx, intr->src[0]);
struct ir3_instruction *data = ir3_get_src(ctx, &intr->src[2])[0];
/* 64b byte offset */
struct ir3_instruction *byte_offset =
byte_offset_to_address(ctx, &intr->src[0], ir3_get_src(ctx, &intr->src[1])[0]);
/* dword offset for everything but comp_swap */
struct ir3_instruction *src3 = ir3_get_src(ctx, &intr->src[3])[0];
switch (intr->intrinsic) {
case nir_intrinsic_ssbo_atomic_add_ir3:
atomic = ir3_ATOMIC_S_ADD(b, ssbo, 0, data, 0, src3, 0, byte_offset, 0);
break;
case nir_intrinsic_ssbo_atomic_imin_ir3:
atomic = ir3_ATOMIC_S_MIN(b, ssbo, 0, data, 0, src3, 0, byte_offset, 0);
type = TYPE_S32;
break;
case nir_intrinsic_ssbo_atomic_umin_ir3:
atomic = ir3_ATOMIC_S_MIN(b, ssbo, 0, data, 0, src3, 0, byte_offset, 0);
break;
case nir_intrinsic_ssbo_atomic_imax_ir3:
atomic = ir3_ATOMIC_S_MAX(b, ssbo, 0, data, 0, src3, 0, byte_offset, 0);
type = TYPE_S32;
break;
case nir_intrinsic_ssbo_atomic_umax_ir3:
atomic = ir3_ATOMIC_S_MAX(b, ssbo, 0, data, 0, src3, 0, byte_offset, 0);
break;
case nir_intrinsic_ssbo_atomic_and_ir3:
atomic = ir3_ATOMIC_S_AND(b, ssbo, 0, data, 0, src3, 0, byte_offset, 0);
break;
case nir_intrinsic_ssbo_atomic_or_ir3:
atomic = ir3_ATOMIC_S_OR(b, ssbo, 0, data, 0, src3, 0, byte_offset, 0);
break;
case nir_intrinsic_ssbo_atomic_xor_ir3:
atomic = ir3_ATOMIC_S_XOR(b, ssbo, 0, data, 0, src3, 0, byte_offset, 0);
break;
case nir_intrinsic_ssbo_atomic_exchange_ir3:
atomic = ir3_ATOMIC_S_XCHG(b, ssbo, 0, data, 0, src3, 0, byte_offset, 0);
break;
case nir_intrinsic_ssbo_atomic_comp_swap_ir3:
/* for cmpxchg, src0 is [ui]vec2(data, compare): */
data = ir3_collect(b, src3, data);
struct ir3_instruction *dword_offset = ir3_get_src(ctx, &intr->src[4])[0];
atomic = ir3_ATOMIC_S_CMPXCHG(b, ssbo, 0, data, 0, dword_offset, 0,
byte_offset, 0);
break;
default:
unreachable("boo");
}
atomic->cat6.iim_val = 1;
atomic->cat6.d = 4;
atomic->cat6.type = type;
atomic->barrier_class = IR3_BARRIER_BUFFER_W;
atomic->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
/* even if nothing consume the result, we can't DCE the instruction: */
array_insert(b, b->keeps, atomic);
return atomic;
}
static struct ir3_instruction *
get_image_offset(struct ir3_context *ctx, const nir_intrinsic_instr *instr,
struct ir3_instruction *const *coords, bool byteoff)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *offset;
unsigned index = nir_src_as_uint(instr->src[0]);
unsigned ncoords = ir3_get_image_coords(instr, NULL);
/* to calculate the byte offset (yes, uggg) we need (up to) three
* const values to know the bytes per pixel, and y and z stride:
*/
unsigned cb;
if (ctx->compiler->gen > 4) {
const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
assert(const_state->image_dims.mask & (1 << index));
cb = regid(const_state->offsets.image_dims, 0) +
const_state->image_dims.off[index];
} else {
index += ctx->s->info.num_ssbos;
cb = A4XX_SSBO_CB_BASE(index);
}
/* offset = coords.x * bytes_per_pixel: */
if (ctx->compiler->gen == 4)
offset = ir3_MUL_S24(b, coords[0], 0, create_uniform(b, cb + 3), 0);
else
offset = ir3_MUL_S24(b, coords[0], 0, create_uniform(b, cb + 0), 0);
if (ncoords > 1) {
/* offset += coords.y * y_pitch: */
offset =
ir3_MAD_S24(b, create_uniform(b, cb + 1), 0, coords[1], 0, offset, 0);
}
if (ncoords > 2) {
/* offset += coords.z * z_pitch: */
offset =
ir3_MAD_S24(b, create_uniform(b, cb + 2), 0, coords[2], 0, offset, 0);
}
/* a4xx: must add in the base address: */
if (ctx->compiler->gen == 4)
offset = ir3_ADD_U(b, offset, 0, create_uniform(b, cb + 0), 0);
if (!byteoff) {
/* Some cases, like atomics, seem to use dword offset instead
* of byte offsets.. blob just puts an extra shr.b in there
* in those cases:
*/
offset = ir3_SHR_B(b, offset, 0, create_immed(b, 2), 0);
}
if (fd_dev_64b(ctx->compiler->dev_id))
return ir3_collect(b, offset, create_immed(b, 0));
else
return offset;
}
/* src[] = { deref, coord, sample_index }. const_index[] = {} */
static void
emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr,
struct ir3_instruction **dst)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *const *coords = ir3_get_src(ctx, &intr->src[1]);
struct ir3_instruction *ibo = ir3_image_to_ibo(ctx, intr->src[0]);
struct ir3_instruction *offset = get_image_offset(ctx, intr, coords, true);
unsigned ncoords = ir3_get_image_coords(intr, NULL);
unsigned ncomp =
ir3_get_num_components_for_image_format(nir_intrinsic_format(intr));
struct ir3_instruction *ldib;
/* At least A420 does not have LDIB. Use LDGB and perform conversion
* ourselves.
*
* TODO: Actually do the conversion. ES 3.1 only requires this for
* single-component 32-bit types anyways.
*/
if (ctx->compiler->gen > 4) {
ldib = ir3_LDIB(
b, ibo, 0, offset, 0, ir3_create_collect(b, coords, ncoords), 0);
} else {
ldib = ir3_LDGB(
b, ibo, 0, offset, 0, ir3_create_collect(b, coords, ncoords), 0);
switch (nir_intrinsic_format(intr)) {
case PIPE_FORMAT_R32_UINT:
case PIPE_FORMAT_R32_SINT:
case PIPE_FORMAT_R32_FLOAT:
break;
default:
/* For some reason even more 32-bit components don't work. */
assert(0);
break;
}
}
ldib->dsts[0]->wrmask = MASK(intr->num_components);
ldib->cat6.iim_val = ncomp;
ldib->cat6.d = ncoords;
ldib->cat6.type = ir3_get_type_for_image_intrinsic(intr);
ldib->cat6.typed = true;
ldib->barrier_class = IR3_BARRIER_IMAGE_R;
ldib->barrier_conflict = IR3_BARRIER_IMAGE_W;
ir3_split_dest(b, dst, ldib, 0, intr->num_components);
}
/* src[] = { index, coord, sample_index, value }. const_index[] = {} */
static void
emit_intrinsic_store_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *stib, *offset;
struct ir3_instruction *const *value = ir3_get_src(ctx, &intr->src[3]);
struct ir3_instruction *const *coords = ir3_get_src(ctx, &intr->src[1]);
struct ir3_instruction *ibo = ir3_image_to_ibo(ctx, intr->src[0]);
unsigned ncoords = ir3_get_image_coords(intr, NULL);
unsigned ncomp =
ir3_get_num_components_for_image_format(nir_intrinsic_format(intr));
/* src0 is value
* src1 is coords
* src2 is 64b byte offset
*/
offset = get_image_offset(ctx, intr, coords, true);
/* NOTE: stib seems to take byte offset, but stgb.typed can be used
* too and takes a dword offset.. not quite sure yet why blob uses
* one over the other in various cases.
*/
stib = ir3_STIB(b, ibo, 0, ir3_create_collect(b, value, ncomp), 0,
ir3_create_collect(b, coords, ncoords), 0, offset, 0);
stib->cat6.iim_val = ncomp;
stib->cat6.d = ncoords;
stib->cat6.type = ir3_get_type_for_image_intrinsic(intr);
stib->cat6.typed = true;
stib->barrier_class = IR3_BARRIER_IMAGE_W;
stib->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
array_insert(b, b->keeps, stib);
}
/* src[] = { deref, coord, sample_index, value, compare }. const_index[] = {} */
static struct ir3_instruction *
emit_intrinsic_atomic_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *atomic, *src0, *src1, *src2;
struct ir3_instruction *const *coords = ir3_get_src(ctx, &intr->src[1]);
struct ir3_instruction *image = ir3_image_to_ibo(ctx, intr->src[0]);
unsigned ncoords = ir3_get_image_coords(intr, NULL);
/* src0 is value (or uvec2(value, compare))
* src1 is coords
* src2 is 64b byte offset
*/
src0 = ir3_get_src(ctx, &intr->src[3])[0];
src1 = ir3_create_collect(b, coords, ncoords);
src2 = get_image_offset(ctx, intr, coords, ctx->compiler->gen == 4);
switch (intr->intrinsic) {
case nir_intrinsic_image_atomic_add:
atomic = ir3_ATOMIC_S_ADD(b, image, 0, src0, 0, src1, 0, src2, 0);
break;
case nir_intrinsic_image_atomic_imin:
case nir_intrinsic_image_atomic_umin:
atomic = ir3_ATOMIC_S_MIN(b, image, 0, src0, 0, src1, 0, src2, 0);
break;
case nir_intrinsic_image_atomic_imax:
case nir_intrinsic_image_atomic_umax:
atomic = ir3_ATOMIC_S_MAX(b, image, 0, src0, 0, src1, 0, src2, 0);
break;
case nir_intrinsic_image_atomic_and:
atomic = ir3_ATOMIC_S_AND(b, image, 0, src0, 0, src1, 0, src2, 0);
break;
case nir_intrinsic_image_atomic_or:
atomic = ir3_ATOMIC_S_OR(b, image, 0, src0, 0, src1, 0, src2, 0);
break;
case nir_intrinsic_image_atomic_xor:
atomic = ir3_ATOMIC_S_XOR(b, image, 0, src0, 0, src1, 0, src2, 0);
break;
case nir_intrinsic_image_atomic_exchange:
atomic = ir3_ATOMIC_S_XCHG(b, image, 0, src0, 0, src1, 0, src2, 0);
break;
case nir_intrinsic_image_atomic_comp_swap:
/* for cmpxchg, src0 is [ui]vec2(data, compare): */
src0 = ir3_collect(b, ir3_get_src(ctx, &intr->src[4])[0], src0);
atomic = ir3_ATOMIC_S_CMPXCHG(b, image, 0, src0, 0, src1, 0, src2, 0);
break;
default:
unreachable("boo");
}
atomic->cat6.iim_val = 1;
atomic->cat6.d = ncoords;
atomic->cat6.type = ir3_get_type_for_image_intrinsic(intr);
atomic->cat6.typed = ctx->compiler->gen == 5;
atomic->barrier_class = IR3_BARRIER_IMAGE_W;
atomic->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
/* even if nothing consume the result, we can't DCE the instruction: */
array_insert(b, b->keeps, atomic);
return atomic;
}
static struct ir3_instruction *
emit_intrinsic_atomic_global(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
unreachable("Global atomic are unimplemented on A5xx");
}
const struct ir3_context_funcs ir3_a4xx_funcs = {
.emit_intrinsic_load_ssbo = emit_intrinsic_load_ssbo,
.emit_intrinsic_store_ssbo = emit_intrinsic_store_ssbo,
.emit_intrinsic_atomic_ssbo = emit_intrinsic_atomic_ssbo,
.emit_intrinsic_load_image = emit_intrinsic_load_image,
.emit_intrinsic_store_image = emit_intrinsic_store_image,
.emit_intrinsic_atomic_image = emit_intrinsic_atomic_image,
.emit_intrinsic_image_size = emit_intrinsic_image_size_tex,
.emit_intrinsic_load_global_ir3 = NULL,
.emit_intrinsic_store_global_ir3 = NULL,
.emit_intrinsic_atomic_global = emit_intrinsic_atomic_global,
};