mesa/src/freedreno/ir3/ir3.h

2615 lines
77 KiB
C

/*
* Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef IR3_H_
#define IR3_H_
#include <stdbool.h>
#include <stdint.h>
#include "compiler/shader_enums.h"
#include "util/bitscan.h"
#include "util/list.h"
#include "util/set.h"
#include "util/u_debug.h"
#include "instr-a3xx.h"
/* low level intermediate representation of an adreno shader program */
struct ir3_compiler;
struct ir3;
struct ir3_instruction;
struct ir3_block;
struct ir3_info {
void *data; /* used internally in ir3 assembler */
/* Size in bytes of the shader binary, including NIR constants and
* padding
*/
uint32_t size;
/* byte offset from start of the shader to the NIR constant data. */
uint32_t constant_data_offset;
/* Size in dwords of the instructions. */
uint16_t sizedwords;
uint16_t instrs_count; /* expanded to account for rpt's */
uint16_t nops_count; /* # of nop instructions, including nopN */
uint16_t mov_count;
uint16_t cov_count;
uint16_t stp_count;
uint16_t ldp_count;
/* NOTE: max_reg, etc, does not include registers not touched
* by the shader (ie. vertex fetched via VFD_DECODE but not
* touched by shader)
*/
int8_t max_reg; /* highest GPR # used by shader */
int8_t max_half_reg;
int16_t max_const;
/* This is the maximum # of waves that can executed at once in one core,
* assuming that they are all executing this shader.
*/
int8_t max_waves;
bool double_threadsize;
bool multi_dword_ldp_stp;
/* number of sync bits: */
uint16_t ss, sy;
/* estimate of number of cycles stalled on (ss) */
uint16_t sstall;
/* estimate of number of cycles stalled on (sy) */
uint16_t systall;
uint16_t last_baryf; /* instruction # of last varying fetch */
/* Number of instructions of a given category: */
uint16_t instrs_per_cat[8];
};
struct ir3_merge_set {
uint16_t preferred_reg;
uint16_t size;
uint16_t alignment;
unsigned interval_start;
unsigned spill_slot;
unsigned regs_count;
struct ir3_register **regs;
};
struct ir3_register {
enum {
IR3_REG_CONST = 0x001,
IR3_REG_IMMED = 0x002,
IR3_REG_HALF = 0x004,
/* Shared registers have the same value for all threads when read.
* They can only be written when one thread is active (that is, inside
* a "getone" block).
*/
IR3_REG_SHARED = 0x008,
IR3_REG_RELATIV = 0x010,
IR3_REG_R = 0x020,
/* Most instructions, it seems, can do float abs/neg but not
* integer. The CP pass needs to know what is intended (int or
* float) in order to do the right thing. For this reason the
* abs/neg flags are split out into float and int variants. In
* addition, .b (bitwise) operations, the negate is actually a
* bitwise not, so split that out into a new flag to make it
* more clear.
*/
IR3_REG_FNEG = 0x040,
IR3_REG_FABS = 0x080,
IR3_REG_SNEG = 0x100,
IR3_REG_SABS = 0x200,
IR3_REG_BNOT = 0x400,
/* (ei) flag, end-input? Set on last bary, presumably to signal
* that the shader needs no more input:
*
* Note: Has different meaning on other instructions like add.s/u
*/
IR3_REG_EI = 0x2000,
/* meta-flags, for intermediate stages of IR, ie.
* before register assignment is done:
*/
IR3_REG_SSA = 0x4000, /* 'def' is ptr to assigning destination */
IR3_REG_ARRAY = 0x8000,
/* Set on a use whenever the SSA value becomes dead after the current
* instruction.
*/
IR3_REG_KILL = 0x10000,
/* Similar to IR3_REG_KILL, except that if there are multiple uses of the
* same SSA value in a single instruction, this is only set on the first
* use.
*/
IR3_REG_FIRST_KILL = 0x20000,
/* Set when a destination doesn't have any uses and is dead immediately
* after the instruction. This can happen even after optimizations for
* corner cases such as destinations of atomic instructions.
*/
IR3_REG_UNUSED = 0x40000,
/* "Early-clobber" on a destination means that the destination is
* (potentially) written before any sources are read and therefore
* interferes with the sources of the instruction.
*/
IR3_REG_EARLY_CLOBBER = 0x80000,
} flags;
unsigned name;
/* used for cat5 instructions, but also for internal/IR level
* tracking of what registers are read/written by an instruction.
* wrmask may be a bad name since it is used to represent both
* src and dst that touch multiple adjacent registers.
*/
unsigned wrmask : 16; /* up to vec16 */
/* for relative addressing, 32bits for array size is too small,
* but otoh we don't need to deal with disjoint sets, so instead
* use a simple size field (number of scalar components).
*
* Note the size field isn't important for relative const (since
* we don't have to do register allocation for constants).
*/
unsigned size : 16;
/* normal registers:
* the component is in the low two bits of the reg #, so
* rN.x becomes: (N << 2) | x
*/
uint16_t num;
union {
/* immediate: */
int32_t iim_val;
uint32_t uim_val;
float fim_val;
/* relative: */
struct {
uint16_t id;
int16_t offset;
uint16_t base;
} array;
};
/* For IR3_REG_DEST, pointer back to the instruction containing this
* register.
*/
struct ir3_instruction *instr;
/* For IR3_REG_SSA, src registers contain ptr back to assigning
* instruction.
*
* For IR3_REG_ARRAY, the pointer is back to the last dependent
* array access (although the net effect is the same, it points
* back to a previous instruction that we depend on).
*/
struct ir3_register *def;
/* Pointer to another register in the instruction that must share the same
* physical register. Each destination can be tied with one source, and
* they must have "tied" pointing to each other.
*/
struct ir3_register *tied;
unsigned spill_slot, next_use;
unsigned merge_set_offset;
struct ir3_merge_set *merge_set;
unsigned interval_start, interval_end;
};
/*
* Stupid/simple growable array implementation:
*/
#define DECLARE_ARRAY(type, name) \
unsigned name##_count, name##_sz; \
type *name;
#define array_insert(ctx, arr, ...) \
do { \
if (arr##_count == arr##_sz) { \
arr##_sz = MAX2(2 * arr##_sz, 16); \
arr = reralloc_size(ctx, arr, arr##_sz * sizeof(arr[0])); \
} \
arr[arr##_count++] = __VA_ARGS__; \
} while (0)
typedef enum {
REDUCE_OP_ADD_U,
REDUCE_OP_ADD_F,
REDUCE_OP_MUL_U,
REDUCE_OP_MUL_F,
REDUCE_OP_MIN_U,
REDUCE_OP_MIN_S,
REDUCE_OP_MIN_F,
REDUCE_OP_MAX_U,
REDUCE_OP_MAX_S,
REDUCE_OP_MAX_F,
REDUCE_OP_AND_B,
REDUCE_OP_OR_B,
REDUCE_OP_XOR_B,
} reduce_op_t;
struct ir3_instruction {
struct ir3_block *block;
opc_t opc;
enum {
/* (sy) flag is set on first instruction, and after sample
* instructions (probably just on RAW hazard).
*/
IR3_INSTR_SY = 0x001,
/* (ss) flag is set on first instruction, and first instruction
* to depend on the result of "long" instructions (RAW hazard):
*
* rcp, rsq, log2, exp2, sin, cos, sqrt
*
* It seems to synchronize until all in-flight instructions are
* completed, for example:
*
* rsq hr1.w, hr1.w
* add.f hr2.z, (neg)hr2.z, hc0.y
* mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
* rsq hr2.x, hr2.x
* (rpt1)nop
* mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
* nop
* mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
* (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
* (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
*
* The last mul.f does not have (ss) set, presumably because the
* (ss) on the previous instruction does the job.
*
* The blob driver also seems to set it on WAR hazards, although
* not really clear if this is needed or just blob compiler being
* sloppy. So far I haven't found a case where removing the (ss)
* causes problems for WAR hazard, but I could just be getting
* lucky:
*
* rcp r1.y, r3.y
* (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
*
*/
IR3_INSTR_SS = 0x002,
/* (jp) flag is set on jump targets:
*/
IR3_INSTR_JP = 0x004,
IR3_INSTR_UL = 0x008,
IR3_INSTR_3D = 0x010,
IR3_INSTR_A = 0x020,
IR3_INSTR_O = 0x040,
IR3_INSTR_P = 0x080,
IR3_INSTR_S = 0x100,
IR3_INSTR_S2EN = 0x200,
IR3_INSTR_SAT = 0x400,
/* (cat5/cat6) Bindless */
IR3_INSTR_B = 0x800,
/* (cat5/cat6) nonuniform */
IR3_INSTR_NONUNIF = 0x1000,
/* (cat5-only) Get some parts of the encoding from a1.x */
IR3_INSTR_A1EN = 0x02000,
/* meta-flags, for intermediate stages of IR, ie.
* before register assignment is done:
*/
IR3_INSTR_MARK = 0x04000,
IR3_INSTR_UNUSED = 0x08000,
} flags;
uint8_t repeat;
uint8_t nop;
#ifdef DEBUG
unsigned srcs_max, dsts_max;
#endif
unsigned srcs_count, dsts_count;
struct ir3_register **dsts;
struct ir3_register **srcs;
union {
struct {
char inv1, inv2;
char comp1, comp2;
int immed;
struct ir3_block *target;
const char *target_label;
brtype_t brtype;
unsigned idx; /* for brac.N */
} cat0;
struct {
type_t src_type, dst_type;
round_t round;
reduce_op_t reduce_op;
} cat1;
struct {
enum {
IR3_COND_LT = 0,
IR3_COND_LE = 1,
IR3_COND_GT = 2,
IR3_COND_GE = 3,
IR3_COND_EQ = 4,
IR3_COND_NE = 5,
} condition;
} cat2;
struct {
enum {
IR3_SRC_UNSIGNED = 0,
IR3_SRC_MIXED = 1,
} signedness;
enum {
IR3_SRC_PACKED_LOW = 0,
IR3_SRC_PACKED_HIGH = 1,
} packed;
bool swapped;
} cat3;
struct {
unsigned samp, tex;
unsigned tex_base : 3;
unsigned cluster_size : 4;
type_t type;
} cat5;
struct {
type_t type;
/* TODO remove dst_offset and handle as a ir3_register
* which might be IMMED, similar to how src_offset is
* handled.
*/
int dst_offset;
int iim_val; /* for ldgb/stgb, # of components */
unsigned d : 3; /* for ldc, component offset */
bool typed : 1;
unsigned base : 3;
} cat6;
struct {
unsigned w : 1; /* write */
unsigned r : 1; /* read */
unsigned l : 1; /* local */
unsigned g : 1; /* global */
} cat7;
/* for meta-instructions, just used to hold extra data
* before instruction scheduling, etc
*/
struct {
int off; /* component/offset */
} split;
struct {
/* Per-source index back to the entry in the
* ir3_shader_variant::outputs table.
*/
unsigned *outidxs;
} end;
struct {
/* used to temporarily hold reference to nir_phi_instr
* until we resolve the phi srcs
*/
void *nphi;
} phi;
struct {
unsigned samp, tex;
unsigned input_offset;
unsigned samp_base : 3;
unsigned tex_base : 3;
} prefetch;
struct {
/* maps back to entry in ir3_shader_variant::inputs table: */
int inidx;
/* for sysvals, identifies the sysval type. Mostly so we can
* identify the special cases where a sysval should not be DCE'd
* (currently, just pre-fs texture fetch)
*/
gl_system_value sysval;
} input;
};
/* For assigning jump offsets, we need instruction's position: */
uint32_t ip;
/* used for per-pass extra instruction data.
*
* TODO we should remove the per-pass data like this and 'use_count'
* and do something similar to what RA does w/ ir3_ra_instr_data..
* ie. use the ir3_count_instructions pass, and then use instr->ip
* to index into a table of pass-private data.
*/
void *data;
/**
* Valid if pass calls ir3_find_ssa_uses().. see foreach_ssa_use()
*/
struct set *uses;
int use_count; /* currently just updated/used by cp */
/* an instruction can reference at most one address register amongst
* it's src/dst registers. Beyond that, you need to insert mov's.
*
* NOTE: do not write this directly, use ir3_instr_set_address()
*/
struct ir3_register *address;
/* Tracking for additional dependent instructions. Used to handle
* barriers, WAR hazards for arrays/SSBOs/etc.
*/
DECLARE_ARRAY(struct ir3_instruction *, deps);
/*
* From PoV of instruction scheduling, not execution (ie. ignores global/
* local distinction):
* shared image atomic SSBO everything
* barrier()/ - R/W R/W R/W R/W X
* groupMemoryBarrier()
* memoryBarrier()
* (but only images declared coherent?)
* memoryBarrierAtomic() - R/W
* memoryBarrierBuffer() - R/W
* memoryBarrierImage() - R/W
* memoryBarrierShared() - R/W
*
* TODO I think for SSBO/image/shared, in cases where we can determine
* which variable is accessed, we don't need to care about accesses to
* different variables (unless declared coherent??)
*/
enum {
IR3_BARRIER_EVERYTHING = 1 << 0,
IR3_BARRIER_SHARED_R = 1 << 1,
IR3_BARRIER_SHARED_W = 1 << 2,
IR3_BARRIER_IMAGE_R = 1 << 3,
IR3_BARRIER_IMAGE_W = 1 << 4,
IR3_BARRIER_BUFFER_R = 1 << 5,
IR3_BARRIER_BUFFER_W = 1 << 6,
IR3_BARRIER_ARRAY_R = 1 << 7,
IR3_BARRIER_ARRAY_W = 1 << 8,
IR3_BARRIER_PRIVATE_R = 1 << 9,
IR3_BARRIER_PRIVATE_W = 1 << 10,
IR3_BARRIER_CONST_W = 1 << 11,
} barrier_class,
barrier_conflict;
/* Entry in ir3_block's instruction list: */
struct list_head node;
uint32_t serialno;
// TODO only computerator/assembler:
int line;
};
struct ir3 {
struct ir3_compiler *compiler;
gl_shader_stage type;
DECLARE_ARRAY(struct ir3_instruction *, inputs);
/* Track bary.f (and ldlv) instructions.. this is needed in
* scheduling to ensure that all varying fetches happen before
* any potential kill instructions. The hw gets grumpy if all
* threads in a group are killed before the last bary.f gets
* a chance to signal end of input (ei).
*/
DECLARE_ARRAY(struct ir3_instruction *, baryfs);
/* Track all indirect instructions (read and write). To avoid
* deadlock scenario where an address register gets scheduled,
* but other dependent src instructions cannot be scheduled due
* to dependency on a *different* address register value, the
* scheduler needs to ensure that all dependencies other than
* the instruction other than the address register are scheduled
* before the one that writes the address register. Having a
* convenient list of instructions that reference some address
* register simplifies this.
*/
DECLARE_ARRAY(struct ir3_instruction *, a0_users);
/* same for a1.x: */
DECLARE_ARRAY(struct ir3_instruction *, a1_users);
/* and same for instructions that consume predicate register: */
DECLARE_ARRAY(struct ir3_instruction *, predicates);
/* Track texture sample instructions which need texture state
* patched in (for astc-srgb workaround):
*/
DECLARE_ARRAY(struct ir3_instruction *, astc_srgb);
/* Track tg4 instructions which need texture state patched in (for tg4
* swizzling workaround):
*/
DECLARE_ARRAY(struct ir3_instruction *, tg4);
/* List of blocks: */
struct list_head block_list;
/* List of ir3_array's: */
struct list_head array_list;
#ifdef DEBUG
unsigned block_count;
#endif
unsigned instr_count;
};
struct ir3_array {
struct list_head node;
unsigned length;
unsigned id;
struct nir_register *r;
/* To avoid array write's from getting DCE'd, keep track of the
* most recent write. Any array access depends on the most
* recent write. This way, nothing depends on writes after the
* last read. But all the writes that happen before that have
* something depending on them
*/
struct ir3_register *last_write;
/* extra stuff used in RA pass: */
unsigned base; /* base vreg name */
unsigned reg; /* base physical reg */
uint16_t start_ip, end_ip;
/* Indicates if half-precision */
bool half;
bool unused;
};
struct ir3_array *ir3_lookup_array(struct ir3 *ir, unsigned id);
enum ir3_branch_type {
IR3_BRANCH_COND, /* condition */
IR3_BRANCH_ANY, /* subgroupAny(condition) */
IR3_BRANCH_ALL, /* subgroupAll(condition) */
IR3_BRANCH_GETONE, /* subgroupElect() */
IR3_BRANCH_SHPS, /* preamble start */
};
struct ir3_block {
struct list_head node;
struct ir3 *shader;
const struct nir_block *nblock;
struct list_head instr_list; /* list of ir3_instruction */
/* The actual branch condition, if there are two successors */
enum ir3_branch_type brtype;
/* each block has either one or two successors.. in case of two
* successors, 'condition' decides which one to follow. A block preceding
* an if/else has two successors.
*
* In some cases the path that the machine actually takes through the
* program may not match the per-thread view of the CFG. In particular
* this is the case for if/else, where the machine jumps from the end of
* the if to the beginning of the else and switches active lanes. While
* most things only care about the per-thread view, we need to use the
* "physical" view when allocating shared registers. "successors" contains
* the per-thread successors, and "physical_successors" contains the
* physical successors which includes the fallthrough edge from the if to
* the else.
*/
struct ir3_instruction *condition;
struct ir3_block *successors[2];
struct ir3_block *physical_successors[2];
DECLARE_ARRAY(struct ir3_block *, predecessors);
DECLARE_ARRAY(struct ir3_block *, physical_predecessors);
uint16_t start_ip, end_ip;
/* Track instructions which do not write a register but other-
* wise must not be discarded (such as kill, stg, etc)
*/
DECLARE_ARRAY(struct ir3_instruction *, keeps);
/* used for per-pass extra block data. Mainly used right
* now in RA step to track livein/liveout.
*/
void *data;
uint32_t index;
struct ir3_block *imm_dom;
DECLARE_ARRAY(struct ir3_block *, dom_children);
uint32_t dom_pre_index;
uint32_t dom_post_index;
uint32_t loop_id;
uint32_t loop_depth;
#ifdef DEBUG
uint32_t serialno;
#endif
};
static inline uint32_t
block_id(struct ir3_block *block)
{
#ifdef DEBUG
return block->serialno;
#else
return (uint32_t)(unsigned long)block;
#endif
}
static inline struct ir3_block *
ir3_start_block(struct ir3 *ir)
{
return list_first_entry(&ir->block_list, struct ir3_block, node);
}
static inline struct ir3_block *
ir3_after_preamble(struct ir3 *ir)
{
struct ir3_block *block = ir3_start_block(ir);
/* The preamble will have a usually-empty else branch, and we want to skip
* that to get to the block after the preamble.
*/
if (block->brtype == IR3_BRANCH_SHPS)
return block->successors[1]->successors[0];
else
return block;
}
void ir3_block_add_predecessor(struct ir3_block *block, struct ir3_block *pred);
void ir3_block_add_physical_predecessor(struct ir3_block *block,
struct ir3_block *pred);
void ir3_block_remove_predecessor(struct ir3_block *block,
struct ir3_block *pred);
void ir3_block_remove_physical_predecessor(struct ir3_block *block,
struct ir3_block *pred);
unsigned ir3_block_get_pred_index(struct ir3_block *block,
struct ir3_block *pred);
void ir3_calc_dominance(struct ir3 *ir);
bool ir3_block_dominates(struct ir3_block *a, struct ir3_block *b);
struct ir3_shader_variant;
struct ir3 *ir3_create(struct ir3_compiler *compiler,
struct ir3_shader_variant *v);
void ir3_destroy(struct ir3 *shader);
void ir3_collect_info(struct ir3_shader_variant *v);
void *ir3_alloc(struct ir3 *shader, int sz);
unsigned ir3_get_reg_dependent_max_waves(const struct ir3_compiler *compiler,
unsigned reg_count,
bool double_threadsize);
unsigned ir3_get_reg_independent_max_waves(struct ir3_shader_variant *v,
bool double_threadsize);
bool ir3_should_double_threadsize(struct ir3_shader_variant *v,
unsigned regs_count);
struct ir3_block *ir3_block_create(struct ir3 *shader);
struct ir3_instruction *ir3_instr_create(struct ir3_block *block, opc_t opc,
int ndst, int nsrc);
struct ir3_instruction *ir3_instr_clone(struct ir3_instruction *instr);
void ir3_instr_add_dep(struct ir3_instruction *instr,
struct ir3_instruction *dep);
const char *ir3_instr_name(struct ir3_instruction *instr);
struct ir3_register *ir3_src_create(struct ir3_instruction *instr, int num,
int flags);
struct ir3_register *ir3_dst_create(struct ir3_instruction *instr, int num,
int flags);
struct ir3_register *ir3_reg_clone(struct ir3 *shader,
struct ir3_register *reg);
static inline void
ir3_reg_tie(struct ir3_register *dst, struct ir3_register *src)
{
assert(!dst->tied && !src->tied);
dst->tied = src;
src->tied = dst;
}
void ir3_reg_set_last_array(struct ir3_instruction *instr,
struct ir3_register *reg,
struct ir3_register *last_write);
void ir3_instr_set_address(struct ir3_instruction *instr,
struct ir3_instruction *addr);
static inline bool
ir3_instr_check_mark(struct ir3_instruction *instr)
{
if (instr->flags & IR3_INSTR_MARK)
return true; /* already visited */
instr->flags |= IR3_INSTR_MARK;
return false;
}
void ir3_block_clear_mark(struct ir3_block *block);
void ir3_clear_mark(struct ir3 *shader);
unsigned ir3_count_instructions(struct ir3 *ir);
unsigned ir3_count_instructions_ra(struct ir3 *ir);
/**
* Move 'instr' to just before 'after'
*/
static inline void
ir3_instr_move_before(struct ir3_instruction *instr,
struct ir3_instruction *after)
{
list_delinit(&instr->node);
list_addtail(&instr->node, &after->node);
}
/**
* Move 'instr' to just after 'before':
*/
static inline void
ir3_instr_move_after(struct ir3_instruction *instr,
struct ir3_instruction *before)
{
list_delinit(&instr->node);
list_add(&instr->node, &before->node);
}
/**
* Move 'instr' to the beginning of the block:
*/
static inline void
ir3_instr_move_before_block(struct ir3_instruction *instr,
struct ir3_block *block)
{
list_delinit(&instr->node);
list_add(&instr->node, &block->instr_list);
}
void ir3_find_ssa_uses(struct ir3 *ir, void *mem_ctx, bool falsedeps);
void ir3_set_dst_type(struct ir3_instruction *instr, bool half);
void ir3_fixup_src_type(struct ir3_instruction *instr);
int ir3_flut(struct ir3_register *src_reg);
bool ir3_valid_flags(struct ir3_instruction *instr, unsigned n, unsigned flags);
bool ir3_valid_immediate(struct ir3_instruction *instr, int32_t immed);
#include "util/set.h"
#define foreach_ssa_use(__use, __instr) \
for (struct ir3_instruction *__use = (void *)~0; __use && (__instr)->uses; \
__use = NULL) \
set_foreach ((__instr)->uses, __entry) \
if ((__use = (void *)__entry->key))
static inline uint32_t
reg_num(const struct ir3_register *reg)
{
return reg->num >> 2;
}
static inline uint32_t
reg_comp(const struct ir3_register *reg)
{
return reg->num & 0x3;
}
static inline bool
is_flow(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 0);
}
static inline bool
is_kill_or_demote(struct ir3_instruction *instr)
{
return instr->opc == OPC_KILL || instr->opc == OPC_DEMOTE;
}
static inline bool
is_nop(struct ir3_instruction *instr)
{
return instr->opc == OPC_NOP;
}
static inline bool
is_same_type_reg(struct ir3_register *dst, struct ir3_register *src)
{
unsigned dst_type = (dst->flags & IR3_REG_HALF);
unsigned src_type = (src->flags & IR3_REG_HALF);
/* Treat shared->normal copies as same-type, because they can generally be
* folded, but not normal->shared copies.
*/
if (dst_type != src_type ||
((dst->flags & IR3_REG_SHARED) && !(src->flags & IR3_REG_SHARED)))
return false;
else
return true;
}
/* Is it a non-transformative (ie. not type changing) mov? This can
* also include absneg.s/absneg.f, which for the most part can be
* treated as a mov (single src argument).
*/
static inline bool
is_same_type_mov(struct ir3_instruction *instr)
{
struct ir3_register *dst;
switch (instr->opc) {
case OPC_MOV:
if (instr->cat1.src_type != instr->cat1.dst_type)
return false;
/* If the type of dest reg and src reg are different,
* it shouldn't be considered as same type mov
*/
if (!is_same_type_reg(instr->dsts[0], instr->srcs[0]))
return false;
break;
case OPC_ABSNEG_F:
case OPC_ABSNEG_S:
if (instr->flags & IR3_INSTR_SAT)
return false;
/* If the type of dest reg and src reg are different,
* it shouldn't be considered as same type mov
*/
if (!is_same_type_reg(instr->dsts[0], instr->srcs[0]))
return false;
break;
case OPC_META_PHI:
return instr->srcs_count == 1;
default:
return false;
}
dst = instr->dsts[0];
/* mov's that write to a0 or p0.x are special: */
if (dst->num == regid(REG_P0, 0))
return false;
if (reg_num(dst) == REG_A0)
return false;
if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
return false;
return true;
}
/* A move from const, which changes size but not type, can also be
* folded into dest instruction in some cases.
*/
static inline bool
is_const_mov(struct ir3_instruction *instr)
{
if (instr->opc != OPC_MOV)
return false;
if (!(instr->srcs[0]->flags & IR3_REG_CONST))
return false;
type_t src_type = instr->cat1.src_type;
type_t dst_type = instr->cat1.dst_type;
return (type_float(src_type) && type_float(dst_type)) ||
(type_uint(src_type) && type_uint(dst_type)) ||
(type_sint(src_type) && type_sint(dst_type));
}
static inline bool
is_subgroup_cond_mov_macro(struct ir3_instruction *instr)
{
switch (instr->opc) {
case OPC_BALLOT_MACRO:
case OPC_ANY_MACRO:
case OPC_ALL_MACRO:
case OPC_ELECT_MACRO:
case OPC_READ_COND_MACRO:
case OPC_READ_FIRST_MACRO:
case OPC_SWZ_SHARED_MACRO:
case OPC_SCAN_MACRO:
return true;
default:
return false;
}
}
static inline bool
is_alu(struct ir3_instruction *instr)
{
return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
}
static inline bool
is_sfu(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 4) || instr->opc == OPC_GETFIBERID;
}
static inline bool
is_tex(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 5);
}
static inline bool
is_tex_or_prefetch(struct ir3_instruction *instr)
{
return is_tex(instr) || (instr->opc == OPC_META_TEX_PREFETCH);
}
static inline bool
is_mem(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 6) && instr->opc != OPC_GETFIBERID;
}
static inline bool
is_barrier(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 7);
}
static inline bool
is_half(struct ir3_instruction *instr)
{
return !!(instr->dsts[0]->flags & IR3_REG_HALF);
}
static inline bool
is_shared(struct ir3_instruction *instr)
{
return !!(instr->dsts[0]->flags & IR3_REG_SHARED);
}
static inline bool
is_store(struct ir3_instruction *instr)
{
/* these instructions, the "destination" register is
* actually a source, the address to store to.
*/
switch (instr->opc) {
case OPC_STG:
case OPC_STG_A:
case OPC_STGB:
case OPC_STIB:
case OPC_STP:
case OPC_STL:
case OPC_STLW:
case OPC_L2G:
case OPC_G2L:
return true;
default:
return false;
}
}
static inline bool
is_load(struct ir3_instruction *instr)
{
switch (instr->opc) {
case OPC_LDG:
case OPC_LDG_A:
case OPC_LDGB:
case OPC_LDIB:
case OPC_LDL:
case OPC_LDP:
case OPC_L2G:
case OPC_LDLW:
case OPC_LDC:
case OPC_LDLV:
/* probably some others too.. */
return true;
default:
return false;
}
}
static inline bool
is_input(struct ir3_instruction *instr)
{
/* in some cases, ldlv is used to fetch varying without
* interpolation.. fortunately inloc is the first src
* register in either case
*/
switch (instr->opc) {
case OPC_LDLV:
case OPC_BARY_F:
case OPC_FLAT_B:
return true;
default:
return false;
}
}
static inline bool
is_bool(struct ir3_instruction *instr)
{
switch (instr->opc) {
case OPC_CMPS_F:
case OPC_CMPS_S:
case OPC_CMPS_U:
return true;
default:
return false;
}
}
static inline opc_t
cat3_half_opc(opc_t opc)
{
switch (opc) {
case OPC_MAD_F32:
return OPC_MAD_F16;
case OPC_SEL_B32:
return OPC_SEL_B16;
case OPC_SEL_S32:
return OPC_SEL_S16;
case OPC_SEL_F32:
return OPC_SEL_F16;
case OPC_SAD_S32:
return OPC_SAD_S16;
default:
return opc;
}
}
static inline opc_t
cat3_full_opc(opc_t opc)
{
switch (opc) {
case OPC_MAD_F16:
return OPC_MAD_F32;
case OPC_SEL_B16:
return OPC_SEL_B32;
case OPC_SEL_S16:
return OPC_SEL_S32;
case OPC_SEL_F16:
return OPC_SEL_F32;
case OPC_SAD_S16:
return OPC_SAD_S32;
default:
return opc;
}
}
static inline opc_t
cat4_half_opc(opc_t opc)
{
switch (opc) {
case OPC_RSQ:
return OPC_HRSQ;
case OPC_LOG2:
return OPC_HLOG2;
case OPC_EXP2:
return OPC_HEXP2;
default:
return opc;
}
}
static inline opc_t
cat4_full_opc(opc_t opc)
{
switch (opc) {
case OPC_HRSQ:
return OPC_RSQ;
case OPC_HLOG2:
return OPC_LOG2;
case OPC_HEXP2:
return OPC_EXP2;
default:
return opc;
}
}
static inline bool
is_meta(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == -1);
}
static inline unsigned
reg_elems(const struct ir3_register *reg)
{
if (reg->flags & IR3_REG_ARRAY)
return reg->size;
else
return util_last_bit(reg->wrmask);
}
static inline unsigned
reg_elem_size(const struct ir3_register *reg)
{
return (reg->flags & IR3_REG_HALF) ? 1 : 2;
}
static inline unsigned
reg_size(const struct ir3_register *reg)
{
return reg_elems(reg) * reg_elem_size(reg);
}
static inline unsigned
dest_regs(struct ir3_instruction *instr)
{
if (instr->dsts_count == 0)
return 0;
assert(instr->dsts_count == 1);
return util_last_bit(instr->dsts[0]->wrmask);
}
/* is dst a normal temp register: */
static inline bool
is_dest_gpr(struct ir3_register *dst)
{
if (dst->wrmask == 0)
return false;
if ((reg_num(dst) == REG_A0) || (dst->num == regid(REG_P0, 0)))
return false;
return true;
}
static inline bool
writes_gpr(struct ir3_instruction *instr)
{
if (dest_regs(instr) == 0)
return false;
return is_dest_gpr(instr->dsts[0]);
}
static inline bool
writes_addr0(struct ir3_instruction *instr)
{
/* Note: only the first dest can write to a0.x */
if (instr->dsts_count > 0) {
struct ir3_register *dst = instr->dsts[0];
return dst->num == regid(REG_A0, 0);
}
return false;
}
static inline bool
writes_addr1(struct ir3_instruction *instr)
{
/* Note: only the first dest can write to a1.x */
if (instr->dsts_count > 0) {
struct ir3_register *dst = instr->dsts[0];
return dst->num == regid(REG_A0, 1);
}
return false;
}
static inline bool
writes_pred(struct ir3_instruction *instr)
{
/* Note: only the first dest can write to p0.x */
if (instr->dsts_count > 0) {
struct ir3_register *dst = instr->dsts[0];
return reg_num(dst) == REG_P0;
}
return false;
}
/* Is it something other than a normal register. Shared regs, p0, and a0/a1
* are considered special here. Special registers are always accessed with one
* size and never alias normal registers, even though a naive calculation
* would sometimes make it seem like e.g. r30.z aliases a0.x.
*/
static inline bool
is_reg_special(const struct ir3_register *reg)
{
return (reg->flags & IR3_REG_SHARED) || (reg_num(reg) == REG_A0) ||
(reg_num(reg) == REG_P0);
}
/* Same as above but in cases where we don't have a register. r48.x and above
* are shared/special.
*/
static inline bool
is_reg_num_special(unsigned num)
{
return num >= 48 * 4;
}
/* returns defining instruction for reg */
/* TODO better name */
static inline struct ir3_instruction *
ssa(struct ir3_register *reg)
{
if ((reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) && reg->def)
return reg->def->instr;
return NULL;
}
static inline bool
conflicts(struct ir3_register *a, struct ir3_register *b)
{
return (a && b) && (a->def != b->def);
}
static inline bool
reg_gpr(struct ir3_register *r)
{
if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
return false;
if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
return false;
return true;
}
static inline type_t
half_type(type_t type)
{
switch (type) {
case TYPE_F32:
return TYPE_F16;
case TYPE_U32:
return TYPE_U16;
case TYPE_S32:
return TYPE_S16;
case TYPE_F16:
case TYPE_U16:
case TYPE_S16:
return type;
case TYPE_U8:
case TYPE_S8:
return type;
default:
assert(0);
return ~0;
}
}
static inline type_t
full_type(type_t type)
{
switch (type) {
case TYPE_F16:
return TYPE_F32;
case TYPE_U8:
case TYPE_U16:
return TYPE_U32;
case TYPE_S8:
case TYPE_S16:
return TYPE_S32;
case TYPE_F32:
case TYPE_U32:
case TYPE_S32:
return type;
default:
assert(0);
return ~0;
}
}
/* some cat2 instructions (ie. those which are not float) can embed an
* immediate:
*/
static inline bool
ir3_cat2_int(opc_t opc)
{
switch (opc) {
case OPC_ADD_U:
case OPC_ADD_S:
case OPC_SUB_U:
case OPC_SUB_S:
case OPC_CMPS_U:
case OPC_CMPS_S:
case OPC_MIN_U:
case OPC_MIN_S:
case OPC_MAX_U:
case OPC_MAX_S:
case OPC_CMPV_U:
case OPC_CMPV_S:
case OPC_MUL_U24:
case OPC_MUL_S24:
case OPC_MULL_U:
case OPC_CLZ_S:
case OPC_ABSNEG_S:
case OPC_AND_B:
case OPC_OR_B:
case OPC_NOT_B:
case OPC_XOR_B:
case OPC_BFREV_B:
case OPC_CLZ_B:
case OPC_SHL_B:
case OPC_SHR_B:
case OPC_ASHR_B:
case OPC_MGEN_B:
case OPC_GETBIT_B:
case OPC_CBITS_B:
case OPC_BARY_F:
case OPC_FLAT_B:
return true;
default:
return false;
}
}
/* map cat2 instruction to valid abs/neg flags: */
static inline unsigned
ir3_cat2_absneg(opc_t opc)
{
switch (opc) {
case OPC_ADD_F:
case OPC_MIN_F:
case OPC_MAX_F:
case OPC_MUL_F:
case OPC_SIGN_F:
case OPC_CMPS_F:
case OPC_ABSNEG_F:
case OPC_CMPV_F:
case OPC_FLOOR_F:
case OPC_CEIL_F:
case OPC_RNDNE_F:
case OPC_RNDAZ_F:
case OPC_TRUNC_F:
case OPC_BARY_F:
return IR3_REG_FABS | IR3_REG_FNEG;
case OPC_ADD_U:
case OPC_ADD_S:
case OPC_SUB_U:
case OPC_SUB_S:
case OPC_CMPS_U:
case OPC_CMPS_S:
case OPC_MIN_U:
case OPC_MIN_S:
case OPC_MAX_U:
case OPC_MAX_S:
case OPC_CMPV_U:
case OPC_CMPV_S:
case OPC_MUL_U24:
case OPC_MUL_S24:
case OPC_MULL_U:
case OPC_CLZ_S:
return 0;
case OPC_ABSNEG_S:
return IR3_REG_SABS | IR3_REG_SNEG;
case OPC_AND_B:
case OPC_OR_B:
case OPC_NOT_B:
case OPC_XOR_B:
case OPC_BFREV_B:
case OPC_CLZ_B:
case OPC_SHL_B:
case OPC_SHR_B:
case OPC_ASHR_B:
case OPC_MGEN_B:
case OPC_GETBIT_B:
case OPC_CBITS_B:
return IR3_REG_BNOT;
default:
return 0;
}
}
/* map cat3 instructions to valid abs/neg flags: */
static inline unsigned
ir3_cat3_absneg(opc_t opc)
{
switch (opc) {
case OPC_MAD_F16:
case OPC_MAD_F32:
case OPC_SEL_F16:
case OPC_SEL_F32:
return IR3_REG_FNEG;
case OPC_MAD_U16:
case OPC_MADSH_U16:
case OPC_MAD_S16:
case OPC_MADSH_M16:
case OPC_MAD_U24:
case OPC_MAD_S24:
case OPC_SEL_S16:
case OPC_SEL_S32:
case OPC_SAD_S16:
case OPC_SAD_S32:
/* neg *may* work on 3rd src.. */
case OPC_SEL_B16:
case OPC_SEL_B32:
case OPC_SHRM:
case OPC_SHLM:
case OPC_SHRG:
case OPC_SHLG:
case OPC_ANDG:
case OPC_WMM:
case OPC_WMM_ACCU:
default:
return 0;
}
}
/* Return the type (float, int, or uint) the op uses when converting from the
* internal result of the op (which is assumed to be the same size as the
* sources) to the destination when they are not the same size. If F32 it does
* a floating-point conversion, if U32 it does a truncation/zero-extension, if
* S32 it does a truncation/sign-extension. "can_fold" will be false if it
* doesn't do anything sensible or is unknown.
*/
static inline type_t
ir3_output_conv_type(struct ir3_instruction *instr, bool *can_fold)
{
*can_fold = true;
switch (instr->opc) {
case OPC_ADD_F:
case OPC_MUL_F:
case OPC_BARY_F:
case OPC_MAD_F32:
case OPC_MAD_F16:
case OPC_WMM:
case OPC_WMM_ACCU:
return TYPE_F32;
case OPC_ADD_U:
case OPC_SUB_U:
case OPC_MIN_U:
case OPC_MAX_U:
case OPC_AND_B:
case OPC_OR_B:
case OPC_NOT_B:
case OPC_XOR_B:
case OPC_MUL_U24:
case OPC_MULL_U:
case OPC_SHL_B:
case OPC_SHR_B:
case OPC_ASHR_B:
case OPC_MAD_U24:
case OPC_SHRM:
case OPC_SHLM:
case OPC_SHRG:
case OPC_SHLG:
case OPC_ANDG:
/* Comparison ops zero-extend/truncate their results, so consider them as
* unsigned here.
*/
case OPC_CMPS_F:
case OPC_CMPV_F:
case OPC_CMPS_U:
case OPC_CMPS_S:
return TYPE_U32;
case OPC_ADD_S:
case OPC_SUB_S:
case OPC_MIN_S:
case OPC_MAX_S:
case OPC_ABSNEG_S:
case OPC_MUL_S24:
case OPC_MAD_S24:
return TYPE_S32;
/* We assume that any move->move folding that could be done was done by
* NIR.
*/
case OPC_MOV:
default:
*can_fold = false;
return TYPE_U32;
}
}
/* Return the src and dst types for the conversion which is already folded
* into the op. We can assume that instr has folded in a conversion from
* ir3_output_conv_src_type() to ir3_output_conv_dst_type(). Only makes sense
* to call if ir3_output_conv_type() returns can_fold = true.
*/
static inline type_t
ir3_output_conv_src_type(struct ir3_instruction *instr, type_t base_type)
{
switch (instr->opc) {
case OPC_CMPS_F:
case OPC_CMPV_F:
case OPC_CMPS_U:
case OPC_CMPS_S:
/* Comparisons only return 0/1 and the size of the comparison sources
* is irrelevant, never consider them as having an output conversion
* by returning a type with the dest size here:
*/
return (instr->dsts[0]->flags & IR3_REG_HALF) ? half_type(base_type)
: full_type(base_type);
case OPC_BARY_F:
/* bary.f doesn't have an explicit source, but we can assume here that
* the varying data it reads is in fp32.
*
* This may be fp16 on older gen's depending on some register
* settings, but it's probably not worth plumbing that through for a
* small improvement that NIR would hopefully handle for us anyway.
*/
return TYPE_F32;
case OPC_FLAT_B:
/* Treat the input data as u32 if not interpolating. */
return TYPE_U32;
default:
return (instr->srcs[0]->flags & IR3_REG_HALF) ? half_type(base_type)
: full_type(base_type);
}
}
static inline type_t
ir3_output_conv_dst_type(struct ir3_instruction *instr, type_t base_type)
{
return (instr->dsts[0]->flags & IR3_REG_HALF) ? half_type(base_type)
: full_type(base_type);
}
/* Some instructions have signed/unsigned variants which are identical except
* for whether the folded conversion sign-extends or zero-extends, and we can
* fold in a mismatching move by rewriting the opcode. Return the opcode to
* switch signedness, and whether one exists.
*/
static inline opc_t
ir3_try_swap_signedness(opc_t opc, bool *can_swap)
{
switch (opc) {
#define PAIR(u, s) \
case OPC_##u: \
return OPC_##s; \
case OPC_##s: \
return OPC_##u;
PAIR(ADD_U, ADD_S)
PAIR(SUB_U, SUB_S)
/* Note: these are only identical when the sources are half, but that's
* the only case we call this function for anyway.
*/
PAIR(MUL_U24, MUL_S24)
default:
*can_swap = false;
return opc;
}
}
#define MASK(n) ((1 << (n)) - 1)
/* iterator for an instructions's sources (reg), also returns src #: */
#define foreach_src_n(__srcreg, __n, __instr) \
if ((__instr)->srcs_count) \
for (struct ir3_register *__srcreg = (void *)~0; __srcreg; \
__srcreg = NULL) \
for (unsigned __cnt = (__instr)->srcs_count, __n = 0; __n < __cnt; \
__n++) \
if ((__srcreg = (__instr)->srcs[__n]))
/* iterator for an instructions's sources (reg): */
#define foreach_src(__srcreg, __instr) foreach_src_n (__srcreg, __i, __instr)
/* iterator for an instructions's destinations (reg), also returns dst #: */
#define foreach_dst_n(__dstreg, __n, __instr) \
if ((__instr)->dsts_count) \
for (struct ir3_register *__dstreg = (void *)~0; __dstreg; \
__dstreg = NULL) \
for (unsigned __cnt = (__instr)->dsts_count, __n = 0; __n < __cnt; \
__n++) \
if ((__dstreg = (__instr)->dsts[__n]))
/* iterator for an instructions's destinations (reg): */
#define foreach_dst(__dstreg, __instr) foreach_dst_n (__dstreg, __i, __instr)
static inline unsigned
__ssa_src_cnt(struct ir3_instruction *instr)
{
return instr->srcs_count + instr->deps_count;
}
static inline bool
__is_false_dep(struct ir3_instruction *instr, unsigned n)
{
if (n >= instr->srcs_count)
return true;
return false;
}
static inline struct ir3_instruction **
__ssa_srcp_n(struct ir3_instruction *instr, unsigned n)
{
if (__is_false_dep(instr, n))
return &instr->deps[n - instr->srcs_count];
if (ssa(instr->srcs[n]))
return &instr->srcs[n]->def->instr;
return NULL;
}
#define foreach_ssa_srcp_n(__srcp, __n, __instr) \
for (struct ir3_instruction **__srcp = (void *)~0; __srcp; __srcp = NULL) \
for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; \
__n++) \
if ((__srcp = __ssa_srcp_n(__instr, __n)))
#define foreach_ssa_srcp(__srcp, __instr) \
foreach_ssa_srcp_n (__srcp, __i, __instr)
/* iterator for an instruction's SSA sources (instr), also returns src #: */
#define foreach_ssa_src_n(__srcinst, __n, __instr) \
for (struct ir3_instruction *__srcinst = (void *)~0; __srcinst; \
__srcinst = NULL) \
foreach_ssa_srcp_n (__srcp, __n, __instr) \
if ((__srcinst = *__srcp))
/* iterator for an instruction's SSA sources (instr): */
#define foreach_ssa_src(__srcinst, __instr) \
foreach_ssa_src_n (__srcinst, __i, __instr)
/* iterators for shader inputs: */
#define foreach_input_n(__ininstr, __cnt, __ir) \
for (struct ir3_instruction *__ininstr = (void *)~0; __ininstr; \
__ininstr = NULL) \
for (unsigned __cnt = 0; __cnt < (__ir)->inputs_count; __cnt++) \
if ((__ininstr = (__ir)->inputs[__cnt]))
#define foreach_input(__ininstr, __ir) foreach_input_n (__ininstr, __i, __ir)
/* iterators for instructions: */
#define foreach_instr(__instr, __list) \
list_for_each_entry (struct ir3_instruction, __instr, __list, node)
#define foreach_instr_rev(__instr, __list) \
list_for_each_entry_rev (struct ir3_instruction, __instr, __list, node)
#define foreach_instr_safe(__instr, __list) \
list_for_each_entry_safe (struct ir3_instruction, __instr, __list, node)
#define foreach_instr_from_safe(__instr, __start, __list) \
list_for_each_entry_from_safe(struct ir3_instruction, __instr, __start, \
__list, node)
/* iterators for blocks: */
#define foreach_block(__block, __list) \
list_for_each_entry (struct ir3_block, __block, __list, node)
#define foreach_block_safe(__block, __list) \
list_for_each_entry_safe (struct ir3_block, __block, __list, node)
#define foreach_block_rev(__block, __list) \
list_for_each_entry_rev (struct ir3_block, __block, __list, node)
/* iterators for arrays: */
#define foreach_array(__array, __list) \
list_for_each_entry (struct ir3_array, __array, __list, node)
#define foreach_array_safe(__array, __list) \
list_for_each_entry_safe (struct ir3_array, __array, __list, node)
#define IR3_PASS(ir, pass, ...) \
({ \
bool progress = pass(ir, ##__VA_ARGS__); \
if (progress) { \
ir3_debug_print(ir, "AFTER: " #pass); \
ir3_validate(ir); \
} \
progress; \
})
/* validate: */
void ir3_validate(struct ir3 *ir);
/* dump: */
void ir3_print(struct ir3 *ir);
void ir3_print_instr(struct ir3_instruction *instr);
struct log_stream;
void ir3_print_instr_stream(struct log_stream *stream, struct ir3_instruction *instr);
/* delay calculation: */
int ir3_delayslots(struct ir3_instruction *assigner,
struct ir3_instruction *consumer, unsigned n, bool soft);
unsigned ir3_delayslots_with_repeat(struct ir3_instruction *assigner,
struct ir3_instruction *consumer,
unsigned assigner_n, unsigned consumer_n);
unsigned ir3_delay_calc(struct ir3_block *block,
struct ir3_instruction *instr, bool mergedregs);
/* estimated (ss)/(sy) delay calculation */
static inline bool
is_local_mem_load(struct ir3_instruction *instr)
{
return instr->opc == OPC_LDL || instr->opc == OPC_LDLV ||
instr->opc == OPC_LDLW;
}
/* Does this instruction need (ss) to wait for its result? */
static inline bool
is_ss_producer(struct ir3_instruction *instr)
{
foreach_dst (dst, instr) {
if (dst->flags & IR3_REG_SHARED)
return true;
}
return is_sfu(instr) || is_local_mem_load(instr);
}
/* The soft delay for approximating the cost of (ss). */
static inline unsigned
soft_ss_delay(struct ir3_instruction *instr)
{
/* On a6xx, it takes the number of delay slots to get a SFU result back (ie.
* using nop's instead of (ss) is:
*
* 8 - single warp
* 9 - two warps
* 10 - four warps
*
* and so on. Not quite sure where it tapers out (ie. how many warps share an
* SFU unit). But 10 seems like a reasonable # to choose:
*/
if (is_sfu(instr) || is_local_mem_load(instr))
return 10;
/* The blob adds 6 nops between shared producers and consumers, and before we
* used (ss) this was sufficient in most cases.
*/
return 6;
}
static inline bool
is_sy_producer(struct ir3_instruction *instr)
{
return is_tex_or_prefetch(instr) ||
(is_load(instr) && !is_local_mem_load(instr)) ||
is_atomic(instr->opc);
}
static inline unsigned
soft_sy_delay(struct ir3_instruction *instr, struct ir3 *shader)
{
/* TODO: this is just an optimistic guess, we can do better post-RA.
*/
bool double_wavesize =
shader->type == MESA_SHADER_FRAGMENT ||
shader->type == MESA_SHADER_COMPUTE;
unsigned components = reg_elems(instr->dsts[0]);
/* These numbers come from counting the number of delay slots to get
* cat5/cat6 results back using nops instead of (sy). Note that these numbers
* are with the result preloaded to cache by loading it before in the same
* shader - uncached results are much larger.
*
* Note: most ALU instructions can't complete at the full doubled rate, so
* they take 2 cycles. The only exception is fp16 instructions with no
* built-in conversions. Therefore divide the latency by 2.
*
* TODO: Handle this properly in the scheduler and remove this.
*/
if (instr->opc == OPC_LDC) {
if (double_wavesize)
return (21 + 8 * components) / 2;
else
return 18 + 4 * components;
} else if (is_tex_or_prefetch(instr)) {
if (double_wavesize) {
switch (components) {
case 1: return 58 / 2;
case 2: return 60 / 2;
case 3: return 77 / 2;
case 4: return 79 / 2;
default: unreachable("bad number of components");
}
} else {
switch (components) {
case 1: return 51;
case 2: return 53;
case 3: return 62;
case 4: return 64;
default: unreachable("bad number of components");
}
}
} else {
/* TODO: measure other cat6 opcodes like ldg */
if (double_wavesize)
return (172 + components) / 2;
else
return 109 + components;
}
}
/* unreachable block elimination: */
bool ir3_remove_unreachable(struct ir3 *ir);
/* dead code elimination: */
struct ir3_shader_variant;
bool ir3_dce(struct ir3 *ir, struct ir3_shader_variant *so);
/* fp16 conversion folding */
bool ir3_cf(struct ir3 *ir);
/* copy-propagate: */
bool ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so);
/* common subexpression elimination: */
bool ir3_cse(struct ir3 *ir);
/* Make arrays SSA */
bool ir3_array_to_ssa(struct ir3 *ir);
/* scheduling: */
bool ir3_sched_add_deps(struct ir3 *ir);
int ir3_sched(struct ir3 *ir);
struct ir3_context;
bool ir3_postsched(struct ir3 *ir, struct ir3_shader_variant *v);
/* register assignment: */
int ir3_ra(struct ir3_shader_variant *v);
/* lower subgroup ops: */
bool ir3_lower_subgroups(struct ir3 *ir);
/* legalize: */
bool ir3_legalize(struct ir3 *ir, struct ir3_shader_variant *so, int *max_bary);
bool ir3_legalize_relative(struct ir3 *ir);
static inline bool
ir3_has_latency_to_hide(struct ir3 *ir)
{
/* VS/GS/TCS/TESS co-exist with frag shader invocations, but we don't
* know the nature of the fragment shader. Just assume it will have
* latency to hide:
*/
if (ir->type != MESA_SHADER_FRAGMENT)
return true;
foreach_block (block, &ir->block_list) {
foreach_instr (instr, &block->instr_list) {
if (is_tex_or_prefetch(instr))
return true;
if (is_load(instr)) {
switch (instr->opc) {
case OPC_LDLV:
case OPC_LDL:
case OPC_LDLW:
break;
default:
return true;
}
}
}
}
return false;
}
/* ************************************************************************* */
/* instruction helpers */
/* creates SSA src of correct type (ie. half vs full precision) */
static inline struct ir3_register *
__ssa_src(struct ir3_instruction *instr, struct ir3_instruction *src,
unsigned flags)
{
struct ir3_register *reg;
if (src->dsts[0]->flags & IR3_REG_HALF)
flags |= IR3_REG_HALF;
reg = ir3_src_create(instr, INVALID_REG, IR3_REG_SSA | flags);
reg->def = src->dsts[0];
reg->wrmask = src->dsts[0]->wrmask;
return reg;
}
static inline struct ir3_register *
__ssa_dst(struct ir3_instruction *instr)
{
struct ir3_register *reg = ir3_dst_create(instr, INVALID_REG, IR3_REG_SSA);
reg->instr = instr;
return reg;
}
static inline struct ir3_instruction *
create_immed_typed(struct ir3_block *block, uint32_t val, type_t type)
{
struct ir3_instruction *mov;
unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
mov = ir3_instr_create(block, OPC_MOV, 1, 1);
mov->cat1.src_type = type;
mov->cat1.dst_type = type;
__ssa_dst(mov)->flags |= flags;
ir3_src_create(mov, 0, IR3_REG_IMMED | flags)->uim_val = val;
return mov;
}
static inline struct ir3_instruction *
create_immed(struct ir3_block *block, uint32_t val)
{
return create_immed_typed(block, val, TYPE_U32);
}
static inline struct ir3_instruction *
create_uniform_typed(struct ir3_block *block, unsigned n, type_t type)
{
struct ir3_instruction *mov;
unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
mov = ir3_instr_create(block, OPC_MOV, 1, 1);
mov->cat1.src_type = type;
mov->cat1.dst_type = type;
__ssa_dst(mov)->flags |= flags;
ir3_src_create(mov, n, IR3_REG_CONST | flags);
return mov;
}
static inline struct ir3_instruction *
create_uniform(struct ir3_block *block, unsigned n)
{
return create_uniform_typed(block, n, TYPE_F32);
}
static inline struct ir3_instruction *
create_uniform_indirect(struct ir3_block *block, int n, type_t type,
struct ir3_instruction *address)
{
struct ir3_instruction *mov;
mov = ir3_instr_create(block, OPC_MOV, 1, 1);
mov->cat1.src_type = type;
mov->cat1.dst_type = type;
__ssa_dst(mov);
ir3_src_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
ir3_instr_set_address(mov, address);
return mov;
}
static inline struct ir3_instruction *
ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
{
struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV, 1, 1);
unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
__ssa_dst(instr)->flags |= flags;
if (src->dsts[0]->flags & IR3_REG_ARRAY) {
struct ir3_register *src_reg = __ssa_src(instr, src, IR3_REG_ARRAY);
src_reg->array = src->dsts[0]->array;
} else {
__ssa_src(instr, src, src->dsts[0]->flags & IR3_REG_SHARED);
}
assert(!(src->dsts[0]->flags & IR3_REG_RELATIV));
instr->cat1.src_type = type;
instr->cat1.dst_type = type;
return instr;
}
static inline struct ir3_instruction *
ir3_COV(struct ir3_block *block, struct ir3_instruction *src, type_t src_type,
type_t dst_type)
{
struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV, 1, 1);
unsigned dst_flags = (type_size(dst_type) < 32) ? IR3_REG_HALF : 0;
unsigned src_flags = (type_size(src_type) < 32) ? IR3_REG_HALF : 0;
assert((src->dsts[0]->flags & IR3_REG_HALF) == src_flags);
__ssa_dst(instr)->flags |= dst_flags;
__ssa_src(instr, src, 0);
instr->cat1.src_type = src_type;
instr->cat1.dst_type = dst_type;
assert(!(src->dsts[0]->flags & IR3_REG_ARRAY));
return instr;
}
static inline struct ir3_instruction *
ir3_MOVMSK(struct ir3_block *block, unsigned components)
{
struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOVMSK, 1, 0);
struct ir3_register *dst = __ssa_dst(instr);
dst->flags |= IR3_REG_SHARED;
dst->wrmask = (1 << components) - 1;
instr->repeat = components - 1;
return instr;
}
static inline struct ir3_instruction *
ir3_BALLOT_MACRO(struct ir3_block *block, struct ir3_instruction *src,
unsigned components)
{
struct ir3_instruction *instr =
ir3_instr_create(block, OPC_BALLOT_MACRO, 1, 1);
struct ir3_register *dst = __ssa_dst(instr);
dst->flags |= IR3_REG_SHARED;
dst->wrmask = (1 << components) - 1;
__ssa_src(instr, src, 0);
return instr;
}
static inline struct ir3_instruction *
ir3_NOP(struct ir3_block *block)
{
return ir3_instr_create(block, OPC_NOP, 0, 0);
}
/* clang-format off */
#define __INSTR0(flag, name, opc) \
static inline struct ir3_instruction *ir3_##name(struct ir3_block *block) \
{ \
struct ir3_instruction *instr = ir3_instr_create(block, opc, 1, 0); \
instr->flags |= flag; \
return instr; \
}
/* clang-format on */
#define INSTR0F(f, name) __INSTR0(IR3_INSTR_##f, name##_##f, OPC_##name)
#define INSTR0(name) __INSTR0(0, name, OPC_##name)
/* clang-format off */
#define __INSTR1(flag, dst_count, name, opc) \
static inline struct ir3_instruction *ir3_##name( \
struct ir3_block *block, struct ir3_instruction *a, unsigned aflags) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create(block, opc, dst_count, 1); \
for (unsigned i = 0; i < dst_count; i++) \
__ssa_dst(instr); \
__ssa_src(instr, a, aflags); \
instr->flags |= flag; \
return instr; \
}
/* clang-format on */
#define INSTR1F(f, name) __INSTR1(IR3_INSTR_##f, 1, name##_##f, OPC_##name)
#define INSTR1(name) __INSTR1(0, 1, name, OPC_##name)
#define INSTR1NODST(name) __INSTR1(0, 0, name, OPC_##name)
/* clang-format off */
#define __INSTR2(flag, dst_count, name, opc) \
static inline struct ir3_instruction *ir3_##name( \
struct ir3_block *block, struct ir3_instruction *a, unsigned aflags, \
struct ir3_instruction *b, unsigned bflags) \
{ \
struct ir3_instruction *instr = ir3_instr_create(block, opc, dst_count, 2); \
for (unsigned i = 0; i < dst_count; i++) \
__ssa_dst(instr); \
__ssa_src(instr, a, aflags); \
__ssa_src(instr, b, bflags); \
instr->flags |= flag; \
return instr; \
}
/* clang-format on */
#define INSTR2F(f, name) __INSTR2(IR3_INSTR_##f, 1, name##_##f, OPC_##name)
#define INSTR2(name) __INSTR2(0, 1, name, OPC_##name)
#define INSTR2NODST(name) __INSTR2(0, 0, name, OPC_##name)
/* clang-format off */
#define __INSTR3(flag, dst_count, name, opc) \
static inline struct ir3_instruction *ir3_##name( \
struct ir3_block *block, struct ir3_instruction *a, unsigned aflags, \
struct ir3_instruction *b, unsigned bflags, struct ir3_instruction *c, \
unsigned cflags) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create(block, opc, dst_count, 3); \
for (unsigned i = 0; i < dst_count; i++) \
__ssa_dst(instr); \
__ssa_src(instr, a, aflags); \
__ssa_src(instr, b, bflags); \
__ssa_src(instr, c, cflags); \
instr->flags |= flag; \
return instr; \
}
/* clang-format on */
#define INSTR3F(f, name) __INSTR3(IR3_INSTR_##f, 1, name##_##f, OPC_##name)
#define INSTR3(name) __INSTR3(0, 1, name, OPC_##name)
#define INSTR3NODST(name) __INSTR3(0, 0, name, OPC_##name)
/* clang-format off */
#define __INSTR4(flag, dst_count, name, opc) \
static inline struct ir3_instruction *ir3_##name( \
struct ir3_block *block, struct ir3_instruction *a, unsigned aflags, \
struct ir3_instruction *b, unsigned bflags, struct ir3_instruction *c, \
unsigned cflags, struct ir3_instruction *d, unsigned dflags) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create(block, opc, dst_count, 4); \
for (unsigned i = 0; i < dst_count; i++) \
__ssa_dst(instr); \
__ssa_src(instr, a, aflags); \
__ssa_src(instr, b, bflags); \
__ssa_src(instr, c, cflags); \
__ssa_src(instr, d, dflags); \
instr->flags |= flag; \
return instr; \
}
/* clang-format on */
#define INSTR4F(f, name) __INSTR4(IR3_INSTR_##f, 1, name##_##f, OPC_##name)
#define INSTR4(name) __INSTR4(0, 1, name, OPC_##name)
#define INSTR4NODST(name) __INSTR4(0, 0, name, OPC_##name)
/* clang-format off */
#define __INSTR5(flag, name, opc) \
static inline struct ir3_instruction *ir3_##name( \
struct ir3_block *block, struct ir3_instruction *a, unsigned aflags, \
struct ir3_instruction *b, unsigned bflags, struct ir3_instruction *c, \
unsigned cflags, struct ir3_instruction *d, unsigned dflags, \
struct ir3_instruction *e, unsigned eflags) \
{ \
struct ir3_instruction *instr = ir3_instr_create(block, opc, 1, 5); \
__ssa_dst(instr); \
__ssa_src(instr, a, aflags); \
__ssa_src(instr, b, bflags); \
__ssa_src(instr, c, cflags); \
__ssa_src(instr, d, dflags); \
__ssa_src(instr, e, eflags); \
instr->flags |= flag; \
return instr; \
}
/* clang-format on */
#define INSTR5F(f, name) __INSTR5(IR3_INSTR_##f, name##_##f, OPC_##name)
#define INSTR5(name) __INSTR5(0, name, OPC_##name)
/* clang-format off */
#define __INSTR6(flag, dst_count, name, opc) \
static inline struct ir3_instruction *ir3_##name( \
struct ir3_block *block, struct ir3_instruction *a, unsigned aflags, \
struct ir3_instruction *b, unsigned bflags, struct ir3_instruction *c, \
unsigned cflags, struct ir3_instruction *d, unsigned dflags, \
struct ir3_instruction *e, unsigned eflags, struct ir3_instruction *f, \
unsigned fflags) \
{ \
struct ir3_instruction *instr = ir3_instr_create(block, opc, 1, 6); \
for (unsigned i = 0; i < dst_count; i++) \
__ssa_dst(instr); \
__ssa_src(instr, a, aflags); \
__ssa_src(instr, b, bflags); \
__ssa_src(instr, c, cflags); \
__ssa_src(instr, d, dflags); \
__ssa_src(instr, e, eflags); \
__ssa_src(instr, f, fflags); \
instr->flags |= flag; \
return instr; \
}
/* clang-format on */
#define INSTR6F(f, name) __INSTR6(IR3_INSTR_##f, 1, name##_##f, OPC_##name)
#define INSTR6(name) __INSTR6(0, 1, name, OPC_##name)
#define INSTR6NODST(name) __INSTR6(0, 0, name, OPC_##name)
/* cat0 instructions: */
INSTR1NODST(B)
INSTR0(JUMP)
INSTR1NODST(KILL)
INSTR1NODST(DEMOTE)
INSTR0(END)
INSTR0(CHSH)
INSTR0(CHMASK)
INSTR1NODST(PREDT)
INSTR0(PREDF)
INSTR0(PREDE)
INSTR0(GETONE)
INSTR0(SHPS)
INSTR0(SHPE)
/* cat1 macros */
INSTR1(ANY_MACRO)
INSTR1(ALL_MACRO)
INSTR1(READ_FIRST_MACRO)
INSTR2(READ_COND_MACRO)
static inline struct ir3_instruction *
ir3_ELECT_MACRO(struct ir3_block *block)
{
struct ir3_instruction *instr =
ir3_instr_create(block, OPC_ELECT_MACRO, 1, 0);
__ssa_dst(instr);
return instr;
}
static inline struct ir3_instruction *
ir3_SHPS_MACRO(struct ir3_block *block)
{
struct ir3_instruction *instr =
ir3_instr_create(block, OPC_SHPS_MACRO, 1, 0);
__ssa_dst(instr);
return instr;
}
/* cat2 instructions, most 2 src but some 1 src: */
INSTR2(ADD_F)
INSTR2(MIN_F)
INSTR2(MAX_F)
INSTR2(MUL_F)
INSTR1(SIGN_F)
INSTR2(CMPS_F)
INSTR1(ABSNEG_F)
INSTR2(CMPV_F)
INSTR1(FLOOR_F)
INSTR1(CEIL_F)
INSTR1(RNDNE_F)
INSTR1(RNDAZ_F)
INSTR1(TRUNC_F)
INSTR2(ADD_U)
INSTR2(ADD_S)
INSTR2(SUB_U)
INSTR2(SUB_S)
INSTR2(CMPS_U)
INSTR2(CMPS_S)
INSTR2(MIN_U)
INSTR2(MIN_S)
INSTR2(MAX_U)
INSTR2(MAX_S)
INSTR1(ABSNEG_S)
INSTR2(AND_B)
INSTR2(OR_B)
INSTR1(NOT_B)
INSTR2(XOR_B)
INSTR2(CMPV_U)
INSTR2(CMPV_S)
INSTR2(MUL_U24)
INSTR2(MUL_S24)
INSTR2(MULL_U)
INSTR1(BFREV_B)
INSTR1(CLZ_S)
INSTR1(CLZ_B)
INSTR2(SHL_B)
INSTR2(SHR_B)
INSTR2(ASHR_B)
INSTR2(BARY_F)
INSTR2(FLAT_B)
INSTR2(MGEN_B)
INSTR2(GETBIT_B)
INSTR1(SETRM)
INSTR1(CBITS_B)
INSTR2(SHB)
INSTR2(MSAD)
/* cat3 instructions: */
INSTR3(MAD_U16)
INSTR3(MADSH_U16)
INSTR3(MAD_S16)
INSTR3(MADSH_M16)
INSTR3(MAD_U24)
INSTR3(MAD_S24)
INSTR3(MAD_F16)
INSTR3(MAD_F32)
INSTR3(DP2ACC)
INSTR3(DP4ACC)
/* NOTE: SEL_B32 checks for zero vs nonzero */
INSTR3(SEL_B16)
INSTR3(SEL_B32)
INSTR3(SEL_S16)
INSTR3(SEL_S32)
INSTR3(SEL_F16)
INSTR3(SEL_F32)
INSTR3(SAD_S16)
INSTR3(SAD_S32)
/* cat4 instructions: */
INSTR1(RCP)
INSTR1(RSQ)
INSTR1(HRSQ)
INSTR1(LOG2)
INSTR1(HLOG2)
INSTR1(EXP2)
INSTR1(HEXP2)
INSTR1(SIN)
INSTR1(COS)
INSTR1(SQRT)
/* cat5 instructions: */
INSTR1(DSX)
INSTR1(DSXPP_MACRO)
INSTR1(DSY)
INSTR1(DSYPP_MACRO)
INSTR1F(3D, DSX)
INSTR1F(3D, DSY)
INSTR1(RGETPOS)
static inline struct ir3_instruction *
ir3_SAM(struct ir3_block *block, opc_t opc, type_t type, unsigned wrmask,
unsigned flags, struct ir3_instruction *samp_tex,
struct ir3_instruction *src0, struct ir3_instruction *src1)
{
struct ir3_instruction *sam;
unsigned nreg = 0;
if (flags & IR3_INSTR_S2EN) {
nreg++;
}
if (src0) {
nreg++;
}
if (src1) {
nreg++;
}
sam = ir3_instr_create(block, opc, 1, nreg);
sam->flags |= flags;
__ssa_dst(sam)->wrmask = wrmask;
if (flags & IR3_INSTR_S2EN) {
__ssa_src(sam, samp_tex, (flags & IR3_INSTR_B) ? 0 : IR3_REG_HALF);
}
if (src0) {
__ssa_src(sam, src0, 0);
}
if (src1) {
__ssa_src(sam, src1, 0);
}
sam->cat5.type = type;
return sam;
}
/* cat6 instructions: */
INSTR0(GETFIBERID)
INSTR2(LDLV)
INSTR3(LDG)
INSTR3(LDL)
INSTR3(LDLW)
INSTR3(LDP)
INSTR4NODST(STG)
INSTR3NODST(STL)
INSTR3NODST(STLW)
INSTR3NODST(STP)
INSTR1(RESINFO)
INSTR1(RESFMT)
INSTR2(ATOMIC_ADD)
INSTR2(ATOMIC_SUB)
INSTR2(ATOMIC_XCHG)
INSTR2(ATOMIC_INC)
INSTR2(ATOMIC_DEC)
INSTR2(ATOMIC_CMPXCHG)
INSTR2(ATOMIC_MIN)
INSTR2(ATOMIC_MAX)
INSTR2(ATOMIC_AND)
INSTR2(ATOMIC_OR)
INSTR2(ATOMIC_XOR)
INSTR2(LDC)
INSTR2(QUAD_SHUFFLE_BRCST)
INSTR1(QUAD_SHUFFLE_HORIZ)
INSTR1(QUAD_SHUFFLE_VERT)
INSTR1(QUAD_SHUFFLE_DIAG)
INSTR2NODST(LDC_K)
INSTR2NODST(STC)
#if GPU >= 600
INSTR3NODST(STIB);
INSTR2(LDIB);
INSTR5(LDG_A);
INSTR6NODST(STG_A);
INSTR2(ATOMIC_G_ADD)
INSTR2(ATOMIC_G_SUB)
INSTR2(ATOMIC_G_XCHG)
INSTR2(ATOMIC_G_INC)
INSTR2(ATOMIC_G_DEC)
INSTR2(ATOMIC_G_CMPXCHG)
INSTR2(ATOMIC_G_MIN)
INSTR2(ATOMIC_G_MAX)
INSTR2(ATOMIC_G_AND)
INSTR2(ATOMIC_G_OR)
INSTR2(ATOMIC_G_XOR)
INSTR3(ATOMIC_B_ADD)
INSTR3(ATOMIC_B_SUB)
INSTR3(ATOMIC_B_XCHG)
INSTR3(ATOMIC_B_INC)
INSTR3(ATOMIC_B_DEC)
INSTR3(ATOMIC_B_CMPXCHG)
INSTR3(ATOMIC_B_MIN)
INSTR3(ATOMIC_B_MAX)
INSTR3(ATOMIC_B_AND)
INSTR3(ATOMIC_B_OR)
INSTR3(ATOMIC_B_XOR)
#elif GPU >= 400
INSTR3(LDGB)
#if GPU >= 500
INSTR3(LDIB)
#endif
INSTR4NODST(STGB)
INSTR4NODST(STIB)
INSTR4(ATOMIC_S_ADD)
INSTR4(ATOMIC_S_SUB)
INSTR4(ATOMIC_S_XCHG)
INSTR4(ATOMIC_S_INC)
INSTR4(ATOMIC_S_DEC)
INSTR4(ATOMIC_S_CMPXCHG)
INSTR4(ATOMIC_S_MIN)
INSTR4(ATOMIC_S_MAX)
INSTR4(ATOMIC_S_AND)
INSTR4(ATOMIC_S_OR)
INSTR4(ATOMIC_S_XOR)
#endif
/* cat7 instructions: */
INSTR0(BAR)
INSTR0(FENCE)
/* ************************************************************************* */
#include "bitset.h"
#define MAX_REG 256
typedef BITSET_DECLARE(regmaskstate_t, 2 * MAX_REG);
typedef struct {
bool mergedregs;
regmaskstate_t mask;
} regmask_t;
static inline bool
__regmask_get(regmask_t *regmask, bool half, unsigned n)
{
if (regmask->mergedregs) {
/* a6xx+ case, with merged register file, we track things in terms
* of half-precision registers, with a full precisions register
* using two half-precision slots.
*
* Pretend that special regs (a0.x, a1.x, etc.) are full registers to
* avoid having them alias normal full regs.
*/
if (half && !is_reg_num_special(n)) {
return BITSET_TEST(regmask->mask, n);
} else {
n *= 2;
return BITSET_TEST(regmask->mask, n) ||
BITSET_TEST(regmask->mask, n + 1);
}
} else {
/* pre a6xx case, with separate register file for half and full
* precision:
*/
if (half)
n += MAX_REG;
return BITSET_TEST(regmask->mask, n);
}
}
static inline void
__regmask_set(regmask_t *regmask, bool half, unsigned n)
{
if (regmask->mergedregs) {
/* a6xx+ case, with merged register file, we track things in terms
* of half-precision registers, with a full precisions register
* using two half-precision slots:
*/
if (half && !is_reg_num_special(n)) {
BITSET_SET(regmask->mask, n);
} else {
n *= 2;
BITSET_SET(regmask->mask, n);
BITSET_SET(regmask->mask, n + 1);
}
} else {
/* pre a6xx case, with separate register file for half and full
* precision:
*/
if (half)
n += MAX_REG;
BITSET_SET(regmask->mask, n);
}
}
static inline void
__regmask_clear(regmask_t *regmask, bool half, unsigned n)
{
if (regmask->mergedregs) {
/* a6xx+ case, with merged register file, we track things in terms
* of half-precision registers, with a full precisions register
* using two half-precision slots:
*/
if (half && !is_reg_num_special(n)) {
BITSET_CLEAR(regmask->mask, n);
} else {
n *= 2;
BITSET_CLEAR(regmask->mask, n);
BITSET_CLEAR(regmask->mask, n + 1);
}
} else {
/* pre a6xx case, with separate register file for half and full
* precision:
*/
if (half)
n += MAX_REG;
BITSET_CLEAR(regmask->mask, n);
}
}
static inline void
regmask_init(regmask_t *regmask, bool mergedregs)
{
memset(&regmask->mask, 0, sizeof(regmask->mask));
regmask->mergedregs = mergedregs;
}
static inline void
regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
{
assert(dst->mergedregs == a->mergedregs);
assert(dst->mergedregs == b->mergedregs);
for (unsigned i = 0; i < ARRAY_SIZE(dst->mask); i++)
dst->mask[i] = a->mask[i] | b->mask[i];
}
static inline void
regmask_or_shared(regmask_t *dst, regmask_t *a, regmask_t *b)
{
regmaskstate_t shared_mask;
BITSET_ZERO(shared_mask);
if (b->mergedregs) {
BITSET_SET_RANGE(shared_mask, 2 * 4 * 48, 2 * 4 * 56 - 1);
} else {
BITSET_SET_RANGE(shared_mask, 4 * 48, 4 * 56 - 1);
}
for (unsigned i = 0; i < ARRAY_SIZE(dst->mask); i++)
dst->mask[i] = a->mask[i] | (b->mask[i] & shared_mask[i]);
}
static inline void
regmask_set(regmask_t *regmask, struct ir3_register *reg)
{
bool half = reg->flags & IR3_REG_HALF;
if (reg->flags & IR3_REG_RELATIV) {
for (unsigned i = 0; i < reg->size; i++)
__regmask_set(regmask, half, reg->array.base + i);
} else {
for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++)
if (mask & 1)
__regmask_set(regmask, half, n);
}
}
static inline void
regmask_clear(regmask_t *regmask, struct ir3_register *reg)
{
bool half = reg->flags & IR3_REG_HALF;
if (reg->flags & IR3_REG_RELATIV) {
for (unsigned i = 0; i < reg->size; i++)
__regmask_clear(regmask, half, reg->array.base + i);
} else {
for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++)
if (mask & 1)
__regmask_clear(regmask, half, n);
}
}
static inline bool
regmask_get(regmask_t *regmask, struct ir3_register *reg)
{
bool half = reg->flags & IR3_REG_HALF;
if (reg->flags & IR3_REG_RELATIV) {
for (unsigned i = 0; i < reg->size; i++)
if (__regmask_get(regmask, half, reg->array.base + i))
return true;
} else {
for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++)
if (mask & 1)
if (__regmask_get(regmask, half, n))
return true;
}
return false;
}
/* ************************************************************************* */
#endif /* IR3_H_ */