mesa/src/freedreno/computerator/a6xx.c

552 lines
19 KiB
C

/*
* Copyright © 2020 Google, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "ir3/ir3_compiler.h"
#include "util/u_math.h"
#include "adreno_pm4.xml.h"
#include "adreno_common.xml.h"
#include "a6xx.xml.h"
#include "common/freedreno_dev_info.h"
#include "ir3_asm.h"
#include "main.h"
struct a6xx_backend {
struct backend base;
struct ir3_compiler *compiler;
struct fd_device *dev;
const struct fd_dev_info *info;
unsigned seqno;
struct fd_bo *control_mem;
struct fd_bo *query_mem;
const struct perfcntr *perfcntrs;
unsigned num_perfcntrs;
};
define_cast(backend, a6xx_backend);
/*
* Data structures shared with GPU:
*/
/* This struct defines the layout of the fd6_context::control buffer: */
struct fd6_control {
uint32_t seqno; /* seqno for async CP_EVENT_WRITE, etc */
uint32_t _pad0;
volatile uint32_t vsc_overflow;
uint32_t _pad1;
/* flag set from cmdstream when VSC overflow detected: */
uint32_t vsc_scratch;
uint32_t _pad2;
uint32_t _pad3;
uint32_t _pad4;
/* scratch space for VPC_SO[i].FLUSH_BASE_LO/HI, start on 32 byte boundary. */
struct {
uint32_t offset;
uint32_t pad[7];
} flush_base[4];
};
#define control_ptr(a6xx_backend, member) \
(a6xx_backend)->control_mem, offsetof(struct fd6_control, member), 0, 0
struct PACKED fd6_query_sample {
uint64_t start;
uint64_t result;
uint64_t stop;
};
/* offset of a single field of an array of fd6_query_sample: */
#define query_sample_idx(a6xx_backend, idx, field) \
(a6xx_backend)->query_mem, \
(idx * sizeof(struct fd6_query_sample)) + \
offsetof(struct fd6_query_sample, field), \
0, 0
/*
* Backend implementation:
*/
static struct kernel *
a6xx_assemble(struct backend *b, FILE *in)
{
struct a6xx_backend *a6xx_backend = to_a6xx_backend(b);
struct ir3_kernel *ir3_kernel = ir3_asm_assemble(a6xx_backend->compiler, in);
ir3_kernel->backend = b;
return &ir3_kernel->base;
}
static void
a6xx_disassemble(struct kernel *kernel, FILE *out)
{
ir3_asm_disassemble(to_ir3_kernel(kernel), out);
}
static void
cs_program_emit(struct fd_ringbuffer *ring, struct kernel *kernel)
{
struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
struct a6xx_backend *a6xx_backend = to_a6xx_backend(ir3_kernel->backend);
struct ir3_shader_variant *v = ir3_kernel->v;
const struct ir3_info *i = &v->info;
enum a6xx_threadsize thrsz = i->double_threadsize ? THREAD128 : THREAD64;
OUT_PKT4(ring, REG_A6XX_SP_MODE_CONTROL, 1);
OUT_RING(ring, A6XX_SP_MODE_CONTROL_CONSTANT_DEMOTION_ENABLE | 4);
OUT_PKT4(ring, REG_A6XX_SP_PERFCTR_ENABLE, 1);
OUT_RING(ring, A6XX_SP_PERFCTR_ENABLE_CS);
OUT_PKT4(ring, REG_A6XX_SP_FLOAT_CNTL, 1);
OUT_RING(ring, 0);
OUT_PKT4(ring, REG_A6XX_HLSQ_INVALIDATE_CMD, 1);
OUT_RING(
ring,
A6XX_HLSQ_INVALIDATE_CMD_VS_STATE | A6XX_HLSQ_INVALIDATE_CMD_HS_STATE |
A6XX_HLSQ_INVALIDATE_CMD_DS_STATE | A6XX_HLSQ_INVALIDATE_CMD_GS_STATE |
A6XX_HLSQ_INVALIDATE_CMD_FS_STATE | A6XX_HLSQ_INVALIDATE_CMD_CS_STATE |
A6XX_HLSQ_INVALIDATE_CMD_CS_IBO | A6XX_HLSQ_INVALIDATE_CMD_GFX_IBO);
unsigned constlen = align(v->constlen, 4);
OUT_PKT4(ring, REG_A6XX_HLSQ_CS_CNTL, 1);
OUT_RING(ring,
A6XX_HLSQ_CS_CNTL_CONSTLEN(constlen) | A6XX_HLSQ_CS_CNTL_ENABLED);
OUT_PKT4(ring, REG_A6XX_SP_CS_CONFIG, 2);
OUT_RING(ring, A6XX_SP_CS_CONFIG_ENABLED |
A6XX_SP_CS_CONFIG_NIBO(kernel->num_bufs) |
A6XX_SP_CS_CONFIG_NTEX(v->num_samp) |
A6XX_SP_CS_CONFIG_NSAMP(v->num_samp)); /* SP_VS_CONFIG */
OUT_RING(ring, v->instrlen); /* SP_VS_INSTRLEN */
OUT_PKT4(ring, REG_A6XX_SP_CS_CTRL_REG0, 1);
OUT_RING(ring,
A6XX_SP_CS_CTRL_REG0_THREADSIZE(thrsz) |
A6XX_SP_CS_CTRL_REG0_FULLREGFOOTPRINT(i->max_reg + 1) |
A6XX_SP_CS_CTRL_REG0_HALFREGFOOTPRINT(i->max_half_reg + 1) |
COND(v->mergedregs, A6XX_SP_CS_CTRL_REG0_MERGEDREGS) |
COND(ir3_kernel->info.early_preamble, A6XX_SP_CS_CTRL_REG0_EARLYPREAMBLE) |
A6XX_SP_CS_CTRL_REG0_BRANCHSTACK(ir3_shader_branchstack_hw(v)));
OUT_PKT4(ring, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
OUT_RING(ring, 0x41);
if (a6xx_backend->info->a6xx.has_lpac) {
OUT_PKT4(ring, REG_A6XX_HLSQ_CS_UNKNOWN_B9D0, 1);
OUT_RING(ring, A6XX_HLSQ_CS_UNKNOWN_B9D0_SHARED_SIZE(1) |
A6XX_HLSQ_CS_UNKNOWN_B9D0_UNK6);
}
uint32_t local_invocation_id, work_group_id;
local_invocation_id =
ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
work_group_id = ir3_find_sysval_regid(v, SYSTEM_VALUE_WORKGROUP_ID);
OUT_PKT4(ring, REG_A6XX_HLSQ_CS_CNTL_0, 2);
OUT_RING(ring, A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
A6XX_HLSQ_CS_CNTL_0_WGSIZECONSTID(regid(63, 0)) |
A6XX_HLSQ_CS_CNTL_0_WGOFFSETCONSTID(regid(63, 0)) |
A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
OUT_RING(ring, A6XX_HLSQ_CS_CNTL_1_LINEARLOCALIDREGID(regid(63, 0)) |
A6XX_HLSQ_CS_CNTL_1_THREADSIZE(thrsz));
if (a6xx_backend->info->a6xx.has_lpac) {
OUT_PKT4(ring, REG_A6XX_SP_CS_CNTL_0, 2);
OUT_RING(ring, A6XX_SP_CS_CNTL_0_WGIDCONSTID(work_group_id) |
A6XX_SP_CS_CNTL_0_WGSIZECONSTID(regid(63, 0)) |
A6XX_SP_CS_CNTL_0_WGOFFSETCONSTID(regid(63, 0)) |
A6XX_SP_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
OUT_RING(ring, A6XX_SP_CS_CNTL_1_LINEARLOCALIDREGID(regid(63, 0)) |
A6XX_SP_CS_CNTL_1_THREADSIZE(thrsz));
}
OUT_PKT4(ring, REG_A6XX_SP_CS_OBJ_START, 2);
OUT_RELOC(ring, v->bo, 0, 0, 0); /* SP_CS_OBJ_START_LO/HI */
OUT_PKT4(ring, REG_A6XX_SP_CS_INSTRLEN, 1);
OUT_RING(ring, v->instrlen);
OUT_PKT4(ring, REG_A6XX_SP_CS_OBJ_START, 2);
OUT_RELOC(ring, v->bo, 0, 0, 0);
uint32_t shader_preload_size =
MIN2(v->instrlen, a6xx_backend->info->a6xx.instr_cache_size);
OUT_PKT7(ring, CP_LOAD_STATE6_FRAG, 3);
OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_CS_SHADER) |
CP_LOAD_STATE6_0_NUM_UNIT(shader_preload_size));
OUT_RELOC(ring, v->bo, 0, 0, 0);
if (v->pvtmem_size > 0) {
uint32_t per_fiber_size = ALIGN(v->pvtmem_size, 512);
uint32_t per_sp_size =
ALIGN(per_fiber_size * a6xx_backend->info->a6xx.fibers_per_sp, 1 << 12);
uint32_t total_size = per_sp_size * a6xx_backend->info->num_sp_cores;
struct fd_bo *pvtmem = fd_bo_new(a6xx_backend->dev, total_size, 0, "pvtmem");
OUT_PKT4(ring, REG_A6XX_SP_CS_PVT_MEM_PARAM, 4);
OUT_RING(ring, A6XX_SP_CS_PVT_MEM_PARAM_MEMSIZEPERITEM(per_fiber_size));
OUT_RELOC(ring, pvtmem, 0, 0, 0);
OUT_RING(ring, A6XX_SP_CS_PVT_MEM_SIZE_TOTALPVTMEMSIZE(per_sp_size) |
COND(v->pvtmem_per_wave,
A6XX_SP_CS_PVT_MEM_SIZE_PERWAVEMEMLAYOUT));
OUT_PKT4(ring, REG_A6XX_SP_CS_PVT_MEM_HW_STACK_OFFSET, 1);
OUT_RING(ring, A6XX_SP_CS_PVT_MEM_HW_STACK_OFFSET_OFFSET(per_sp_size));
}
}
static void
emit_const(struct fd_ringbuffer *ring, uint32_t regid, uint32_t sizedwords,
const uint32_t *dwords)
{
uint32_t align_sz;
assert((regid % 4) == 0);
align_sz = align(sizedwords, 4);
OUT_PKT7(ring, CP_LOAD_STATE6_FRAG, 3 + align_sz);
OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(regid / 4) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_CS_SHADER) |
CP_LOAD_STATE6_0_NUM_UNIT(DIV_ROUND_UP(sizedwords, 4)));
OUT_RING(ring, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
OUT_RING(ring, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
for (uint32_t i = 0; i < sizedwords; i++) {
OUT_RING(ring, dwords[i]);
}
/* Zero-pad to multiple of 4 dwords */
for (uint32_t i = sizedwords; i < align_sz; i++) {
OUT_RING(ring, 0);
}
}
static void
cs_const_emit(struct fd_ringbuffer *ring, struct kernel *kernel,
uint32_t grid[3])
{
struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
struct ir3_shader_variant *v = ir3_kernel->v;
const struct ir3_const_state *const_state = ir3_const_state(v);
uint32_t base = const_state->offsets.immediate;
int size = DIV_ROUND_UP(const_state->immediates_count, 4);
if (ir3_kernel->info.numwg != INVALID_REG) {
assert((ir3_kernel->info.numwg & 0x3) == 0);
int idx = ir3_kernel->info.numwg >> 2;
const_state->immediates[idx * 4 + 0] = grid[0];
const_state->immediates[idx * 4 + 1] = grid[1];
const_state->immediates[idx * 4 + 2] = grid[2];
}
for (int i = 0; i < MAX_BUFS; i++) {
if (kernel->buf_addr_regs[i] != INVALID_REG) {
assert((kernel->buf_addr_regs[i] & 0x3) == 0);
int idx = kernel->buf_addr_regs[i] >> 2;
uint64_t iova = fd_bo_get_iova(kernel->bufs[i]);
const_state->immediates[idx * 4 + 1] = iova >> 32;
const_state->immediates[idx * 4 + 0] = (iova << 32) >> 32;
}
}
/* truncate size to avoid writing constants that shader
* does not use:
*/
size = MIN2(size + base, v->constlen) - base;
/* convert out of vec4: */
base *= 4;
size *= 4;
if (size > 0) {
emit_const(ring, base, size, const_state->immediates);
}
}
static void
cs_ibo_emit(struct fd_ringbuffer *ring, struct fd_submit *submit,
struct kernel *kernel)
{
struct fd_ringbuffer *state = fd_submit_new_ringbuffer(
submit, kernel->num_bufs * 16 * 4, FD_RINGBUFFER_STREAMING);
for (unsigned i = 0; i < kernel->num_bufs; i++) {
/* size is encoded with low 15b in WIDTH and high bits in HEIGHT,
* in units of elements:
*/
unsigned sz = kernel->buf_sizes[i];
unsigned width = sz & MASK(15);
unsigned height = sz >> 15;
OUT_RING(state, A6XX_TEX_CONST_0_FMT(FMT6_32_UINT) | A6XX_TEX_CONST_0_TILE_MODE(0));
OUT_RING(state, A6XX_TEX_CONST_1_WIDTH(width) | A6XX_TEX_CONST_1_HEIGHT(height));
OUT_RING(state, A6XX_TEX_CONST_2_PITCH(0) | A6XX_TEX_CONST_2_BUFFER |
A6XX_TEX_CONST_2_TYPE(A6XX_TEX_BUFFER));
OUT_RING(state, A6XX_TEX_CONST_3_ARRAY_PITCH(0));
OUT_RELOC(state, kernel->bufs[i], 0, 0, 0);
OUT_RING(state, 0x00000000);
OUT_RING(state, 0x00000000);
OUT_RING(state, 0x00000000);
OUT_RING(state, 0x00000000);
OUT_RING(state, 0x00000000);
OUT_RING(state, 0x00000000);
OUT_RING(state, 0x00000000);
OUT_RING(state, 0x00000000);
OUT_RING(state, 0x00000000);
OUT_RING(state, 0x00000000);
}
OUT_PKT7(ring, CP_LOAD_STATE6_FRAG, 3);
OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_IBO) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_CS_SHADER) |
CP_LOAD_STATE6_0_NUM_UNIT(kernel->num_bufs));
OUT_RB(ring, state);
OUT_PKT4(ring, REG_A6XX_SP_CS_IBO, 2);
OUT_RB(ring, state);
OUT_PKT4(ring, REG_A6XX_SP_CS_IBO_COUNT, 1);
OUT_RING(ring, kernel->num_bufs);
fd_ringbuffer_del(state);
}
static inline unsigned
event_write(struct fd_ringbuffer *ring, struct kernel *kernel,
enum vgt_event_type evt, bool timestamp)
{
unsigned seqno = 0;
OUT_PKT7(ring, CP_EVENT_WRITE, timestamp ? 4 : 1);
OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(evt));
if (timestamp) {
struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
struct a6xx_backend *a6xx_backend = to_a6xx_backend(ir3_kernel->backend);
seqno = ++a6xx_backend->seqno;
OUT_RELOC(ring, control_ptr(a6xx_backend, seqno)); /* ADDR_LO/HI */
OUT_RING(ring, seqno);
}
return seqno;
}
static inline void
cache_flush(struct fd_ringbuffer *ring, struct kernel *kernel)
{
struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
struct a6xx_backend *a6xx_backend = to_a6xx_backend(ir3_kernel->backend);
unsigned seqno;
seqno = event_write(ring, kernel, RB_DONE_TS, true);
OUT_PKT7(ring, CP_WAIT_REG_MEM, 6);
OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
CP_WAIT_REG_MEM_0_POLL_MEMORY);
OUT_RELOC(ring, control_ptr(a6xx_backend, seqno));
OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(seqno));
OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(~0));
OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(16));
seqno = event_write(ring, kernel, CACHE_FLUSH_TS, true);
OUT_PKT7(ring, CP_WAIT_MEM_GTE, 4);
OUT_RING(ring, CP_WAIT_MEM_GTE_0_RESERVED(0));
OUT_RELOC(ring, control_ptr(a6xx_backend, seqno));
OUT_RING(ring, CP_WAIT_MEM_GTE_3_REF(seqno));
}
static void
a6xx_emit_grid(struct kernel *kernel, uint32_t grid[3],
struct fd_submit *submit)
{
struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
struct a6xx_backend *a6xx_backend = to_a6xx_backend(ir3_kernel->backend);
struct fd_ringbuffer *ring = fd_submit_new_ringbuffer(
submit, 0, FD_RINGBUFFER_PRIMARY | FD_RINGBUFFER_GROWABLE);
cs_program_emit(ring, kernel);
cs_const_emit(ring, kernel, grid);
cs_ibo_emit(ring, submit, kernel);
OUT_PKT7(ring, CP_SET_MARKER, 1);
OUT_RING(ring, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
const unsigned *local_size = kernel->local_size;
const unsigned *num_groups = grid;
unsigned work_dim = 0;
for (int i = 0; i < 3; i++) {
if (!grid[i])
break;
work_dim++;
}
OUT_PKT4(ring, REG_A6XX_HLSQ_CS_NDRANGE_0, 7);
OUT_RING(ring, A6XX_HLSQ_CS_NDRANGE_0_KERNELDIM(work_dim) |
A6XX_HLSQ_CS_NDRANGE_0_LOCALSIZEX(local_size[0] - 1) |
A6XX_HLSQ_CS_NDRANGE_0_LOCALSIZEY(local_size[1] - 1) |
A6XX_HLSQ_CS_NDRANGE_0_LOCALSIZEZ(local_size[2] - 1));
OUT_RING(ring,
A6XX_HLSQ_CS_NDRANGE_1_GLOBALSIZE_X(local_size[0] * num_groups[0]));
OUT_RING(ring, 0); /* HLSQ_CS_NDRANGE_2_GLOBALOFF_X */
OUT_RING(ring,
A6XX_HLSQ_CS_NDRANGE_3_GLOBALSIZE_Y(local_size[1] * num_groups[1]));
OUT_RING(ring, 0); /* HLSQ_CS_NDRANGE_4_GLOBALOFF_Y */
OUT_RING(ring,
A6XX_HLSQ_CS_NDRANGE_5_GLOBALSIZE_Z(local_size[2] * num_groups[2]));
OUT_RING(ring, 0); /* HLSQ_CS_NDRANGE_6_GLOBALOFF_Z */
OUT_PKT4(ring, REG_A6XX_HLSQ_CS_KERNEL_GROUP_X, 3);
OUT_RING(ring, 1); /* HLSQ_CS_KERNEL_GROUP_X */
OUT_RING(ring, 1); /* HLSQ_CS_KERNEL_GROUP_Y */
OUT_RING(ring, 1); /* HLSQ_CS_KERNEL_GROUP_Z */
if (a6xx_backend->num_perfcntrs > 0) {
a6xx_backend->query_mem = fd_bo_new(
a6xx_backend->dev,
a6xx_backend->num_perfcntrs * sizeof(struct fd6_query_sample), 0, "query");
/* configure the performance counters to count the requested
* countables:
*/
for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
const struct perfcntr *counter = &a6xx_backend->perfcntrs[i];
OUT_PKT4(ring, counter->select_reg, 1);
OUT_RING(ring, counter->selector);
}
OUT_PKT7(ring, CP_WAIT_FOR_IDLE, 0);
/* and snapshot the start values: */
for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
const struct perfcntr *counter = &a6xx_backend->perfcntrs[i];
OUT_PKT7(ring, CP_REG_TO_MEM, 3);
OUT_RING(ring, CP_REG_TO_MEM_0_64B |
CP_REG_TO_MEM_0_REG(counter->counter_reg_lo));
OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, start));
}
}
OUT_PKT7(ring, CP_EXEC_CS, 4);
OUT_RING(ring, 0x00000000);
OUT_RING(ring, CP_EXEC_CS_1_NGROUPS_X(grid[0]));
OUT_RING(ring, CP_EXEC_CS_2_NGROUPS_Y(grid[1]));
OUT_RING(ring, CP_EXEC_CS_3_NGROUPS_Z(grid[2]));
OUT_PKT7(ring, CP_WAIT_FOR_IDLE, 0);
if (a6xx_backend->num_perfcntrs > 0) {
/* snapshot the end values: */
for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
const struct perfcntr *counter = &a6xx_backend->perfcntrs[i];
OUT_PKT7(ring, CP_REG_TO_MEM, 3);
OUT_RING(ring, CP_REG_TO_MEM_0_64B |
CP_REG_TO_MEM_0_REG(counter->counter_reg_lo));
OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, stop));
}
/* and compute the result: */
for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
/* result += stop - start: */
OUT_PKT7(ring, CP_MEM_TO_MEM, 9);
OUT_RING(ring, CP_MEM_TO_MEM_0_DOUBLE | CP_MEM_TO_MEM_0_NEG_C);
OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, result)); /* dst */
OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, result)); /* srcA */
OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, stop)); /* srcB */
OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, start)); /* srcC */
}
}
cache_flush(ring, kernel);
}
static void
a6xx_set_perfcntrs(struct backend *b, const struct perfcntr *perfcntrs,
unsigned num_perfcntrs)
{
struct a6xx_backend *a6xx_backend = to_a6xx_backend(b);
a6xx_backend->perfcntrs = perfcntrs;
a6xx_backend->num_perfcntrs = num_perfcntrs;
}
static void
a6xx_read_perfcntrs(struct backend *b, uint64_t *results)
{
struct a6xx_backend *a6xx_backend = to_a6xx_backend(b);
fd_bo_cpu_prep(a6xx_backend->query_mem, NULL, FD_BO_PREP_READ);
struct fd6_query_sample *samples = fd_bo_map(a6xx_backend->query_mem);
for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
results[i] = samples[i].result;
}
}
struct backend *
a6xx_init(struct fd_device *dev, const struct fd_dev_id *dev_id)
{
struct a6xx_backend *a6xx_backend = calloc(1, sizeof(*a6xx_backend));
a6xx_backend->base = (struct backend){
.assemble = a6xx_assemble,
.disassemble = a6xx_disassemble,
.emit_grid = a6xx_emit_grid,
.set_perfcntrs = a6xx_set_perfcntrs,
.read_perfcntrs = a6xx_read_perfcntrs,
};
a6xx_backend->compiler = ir3_compiler_create(dev, dev_id,
&(struct ir3_compiler_options){});
a6xx_backend->dev = dev;
a6xx_backend->info = fd_dev_info(dev_id);
a6xx_backend->control_mem =
fd_bo_new(dev, 0x1000, 0, "control");
return &a6xx_backend->base;
}