mesa/src/broadcom/vulkan/v3dv_descriptor_set.c

1441 lines
54 KiB
C

/*
* Copyright © 2019 Raspberry Pi Ltd
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "vk_descriptors.h"
#include "vk_util.h"
#include "v3dv_private.h"
/*
* For a given descriptor defined by the descriptor_set it belongs, its
* binding layout, and array_index, it returns the map region assigned to it
* from the descriptor pool bo.
*/
static void *
descriptor_bo_map(struct v3dv_device *device,
struct v3dv_descriptor_set *set,
const struct v3dv_descriptor_set_binding_layout *binding_layout,
uint32_t array_index)
{
/* Inline uniform blocks use BO memory to store UBO contents, not
* descriptor data, so their descriptor BO size is 0 even though they
* do use BO memory.
*/
uint32_t bo_size = v3dv_X(device, descriptor_bo_size)(binding_layout->type);
assert(bo_size > 0 ||
binding_layout->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK);
return set->pool->bo->map +
set->base_offset + binding_layout->descriptor_offset +
array_index * bo_size;
}
static bool
descriptor_type_is_dynamic(VkDescriptorType type)
{
switch (type) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
return true;
break;
default:
return false;
}
}
/*
* Tries to get a real descriptor using a descriptor map index from the
* descriptor_state + pipeline_layout.
*/
struct v3dv_descriptor *
v3dv_descriptor_map_get_descriptor(struct v3dv_descriptor_state *descriptor_state,
struct v3dv_descriptor_map *map,
struct v3dv_pipeline_layout *pipeline_layout,
uint32_t index,
uint32_t *dynamic_offset)
{
assert(index < map->num_desc);
uint32_t set_number = map->set[index];
assert((descriptor_state->valid & 1 << set_number));
struct v3dv_descriptor_set *set =
descriptor_state->descriptor_sets[set_number];
assert(set);
uint32_t binding_number = map->binding[index];
assert(binding_number < set->layout->binding_count);
const struct v3dv_descriptor_set_binding_layout *binding_layout =
&set->layout->binding[binding_number];
uint32_t array_index = map->array_index[index];
assert(array_index < binding_layout->array_size);
if (descriptor_type_is_dynamic(binding_layout->type)) {
uint32_t dynamic_offset_index =
pipeline_layout->set[set_number].dynamic_offset_start +
binding_layout->dynamic_offset_index + array_index;
*dynamic_offset = descriptor_state->dynamic_offsets[dynamic_offset_index];
}
return &set->descriptors[binding_layout->descriptor_index + array_index];
}
/* Equivalent to map_get_descriptor but it returns a reloc with the bo
* associated with that descriptor (suballocation of the descriptor pool bo)
*
* It also returns the descriptor type, so the caller could do extra
* validation or adding extra offsets if the bo contains more that one field.
*/
struct v3dv_cl_reloc
v3dv_descriptor_map_get_descriptor_bo(struct v3dv_device *device,
struct v3dv_descriptor_state *descriptor_state,
struct v3dv_descriptor_map *map,
struct v3dv_pipeline_layout *pipeline_layout,
uint32_t index,
VkDescriptorType *out_type)
{
assert(index < map->num_desc);
uint32_t set_number = map->set[index];
assert(descriptor_state->valid & 1 << set_number);
struct v3dv_descriptor_set *set =
descriptor_state->descriptor_sets[set_number];
assert(set);
uint32_t binding_number = map->binding[index];
assert(binding_number < set->layout->binding_count);
const struct v3dv_descriptor_set_binding_layout *binding_layout =
&set->layout->binding[binding_number];
assert(binding_layout->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK ||
v3dv_X(device, descriptor_bo_size)(binding_layout->type) > 0);
if (out_type)
*out_type = binding_layout->type;
uint32_t array_index = map->array_index[index];
assert(array_index < binding_layout->array_size);
struct v3dv_cl_reloc reloc = {
.bo = set->pool->bo,
.offset = set->base_offset + binding_layout->descriptor_offset +
array_index * v3dv_X(device, descriptor_bo_size)(binding_layout->type),
};
return reloc;
}
/*
* The difference between this method and v3dv_descriptor_map_get_descriptor,
* is that if the sampler are added as immutable when creating the set layout,
* they are bound to the set layout, so not part of the descriptor per
* se. This method return early in that case.
*/
const struct v3dv_sampler *
v3dv_descriptor_map_get_sampler(struct v3dv_descriptor_state *descriptor_state,
struct v3dv_descriptor_map *map,
struct v3dv_pipeline_layout *pipeline_layout,
uint32_t index)
{
assert(index < map->num_desc);
uint32_t set_number = map->set[index];
assert(descriptor_state->valid & 1 << set_number);
struct v3dv_descriptor_set *set =
descriptor_state->descriptor_sets[set_number];
assert(set);
uint32_t binding_number = map->binding[index];
assert(binding_number < set->layout->binding_count);
const struct v3dv_descriptor_set_binding_layout *binding_layout =
&set->layout->binding[binding_number];
uint32_t array_index = map->array_index[index];
assert(array_index < binding_layout->array_size);
if (binding_layout->immutable_samplers_offset != 0) {
assert(binding_layout->type == VK_DESCRIPTOR_TYPE_SAMPLER ||
binding_layout->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
const struct v3dv_sampler *immutable_samplers =
v3dv_immutable_samplers(set->layout, binding_layout);
assert(immutable_samplers);
const struct v3dv_sampler *sampler = &immutable_samplers[array_index];
assert(sampler);
return sampler;
}
struct v3dv_descriptor *descriptor =
&set->descriptors[binding_layout->descriptor_index + array_index];
assert(descriptor->type == VK_DESCRIPTOR_TYPE_SAMPLER ||
descriptor->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
assert(descriptor->sampler);
return descriptor->sampler;
}
struct v3dv_cl_reloc
v3dv_descriptor_map_get_sampler_state(struct v3dv_device *device,
struct v3dv_descriptor_state *descriptor_state,
struct v3dv_descriptor_map *map,
struct v3dv_pipeline_layout *pipeline_layout,
uint32_t index)
{
VkDescriptorType type;
struct v3dv_cl_reloc reloc =
v3dv_descriptor_map_get_descriptor_bo(device, descriptor_state, map,
pipeline_layout,
index, &type);
assert(type == VK_DESCRIPTOR_TYPE_SAMPLER ||
type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
if (type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
reloc.offset += v3dv_X(device, combined_image_sampler_sampler_state_offset)();
return reloc;
}
struct v3dv_bo*
v3dv_descriptor_map_get_texture_bo(struct v3dv_descriptor_state *descriptor_state,
struct v3dv_descriptor_map *map,
struct v3dv_pipeline_layout *pipeline_layout,
uint32_t index)
{
struct v3dv_descriptor *descriptor =
v3dv_descriptor_map_get_descriptor(descriptor_state, map,
pipeline_layout, index, NULL);
switch (descriptor->type) {
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
assert(descriptor->buffer_view);
return descriptor->buffer_view->buffer->mem->bo;
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
assert(descriptor->image_view);
struct v3dv_image *image =
(struct v3dv_image *) descriptor->image_view->vk.image;
return image->mem->bo;
}
default:
unreachable("descriptor type doesn't has a texture bo");
}
}
struct v3dv_cl_reloc
v3dv_descriptor_map_get_texture_shader_state(struct v3dv_device *device,
struct v3dv_descriptor_state *descriptor_state,
struct v3dv_descriptor_map *map,
struct v3dv_pipeline_layout *pipeline_layout,
uint32_t index)
{
VkDescriptorType type;
struct v3dv_cl_reloc reloc =
v3dv_descriptor_map_get_descriptor_bo(device,
descriptor_state, map,
pipeline_layout,
index, &type);
assert(type == VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE ||
type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
type == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT ||
type == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE ||
type == VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER ||
type == VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER);
if (type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
reloc.offset += v3dv_X(device, combined_image_sampler_texture_state_offset)();
return reloc;
}
#define SHA1_UPDATE_VALUE(ctx, x) _mesa_sha1_update(ctx, &(x), sizeof(x));
static void
sha1_update_descriptor_set_binding_layout(struct mesa_sha1 *ctx,
const struct v3dv_descriptor_set_binding_layout *layout)
{
SHA1_UPDATE_VALUE(ctx, layout->type);
SHA1_UPDATE_VALUE(ctx, layout->array_size);
SHA1_UPDATE_VALUE(ctx, layout->descriptor_index);
SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_count);
SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_index);
SHA1_UPDATE_VALUE(ctx, layout->descriptor_offset);
SHA1_UPDATE_VALUE(ctx, layout->immutable_samplers_offset);
}
static void
sha1_update_descriptor_set_layout(struct mesa_sha1 *ctx,
const struct v3dv_descriptor_set_layout *layout)
{
SHA1_UPDATE_VALUE(ctx, layout->flags);
SHA1_UPDATE_VALUE(ctx, layout->binding_count);
SHA1_UPDATE_VALUE(ctx, layout->shader_stages);
SHA1_UPDATE_VALUE(ctx, layout->descriptor_count);
SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_count);
for (uint16_t i = 0; i < layout->binding_count; i++)
sha1_update_descriptor_set_binding_layout(ctx, &layout->binding[i]);
}
/*
* As anv and tu already points:
*
* "Pipeline layouts. These have nothing to do with the pipeline. They are
* just multiple descriptor set layouts pasted together."
*/
VKAPI_ATTR VkResult VKAPI_CALL
v3dv_CreatePipelineLayout(VkDevice _device,
const VkPipelineLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipelineLayout *pPipelineLayout)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
struct v3dv_pipeline_layout *layout;
assert(pCreateInfo->sType ==
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);
layout = vk_object_zalloc(&device->vk, pAllocator, sizeof(*layout),
VK_OBJECT_TYPE_PIPELINE_LAYOUT);
if (layout == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
layout->num_sets = pCreateInfo->setLayoutCount;
uint32_t dynamic_offset_count = 0;
for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) {
V3DV_FROM_HANDLE(v3dv_descriptor_set_layout, set_layout,
pCreateInfo->pSetLayouts[set]);
v3dv_descriptor_set_layout_ref(set_layout);
layout->set[set].layout = set_layout;
layout->set[set].dynamic_offset_start = dynamic_offset_count;
for (uint32_t b = 0; b < set_layout->binding_count; b++) {
dynamic_offset_count += set_layout->binding[b].array_size *
set_layout->binding[b].dynamic_offset_count;
}
layout->shader_stages |= set_layout->shader_stages;
}
layout->push_constant_size = 0;
for (unsigned i = 0; i < pCreateInfo->pushConstantRangeCount; ++i) {
const VkPushConstantRange *range = pCreateInfo->pPushConstantRanges + i;
layout->push_constant_size =
MAX2(layout->push_constant_size, range->offset + range->size);
}
layout->push_constant_size = align(layout->push_constant_size, 4096);
layout->dynamic_offset_count = dynamic_offset_count;
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
for (unsigned s = 0; s < layout->num_sets; s++) {
sha1_update_descriptor_set_layout(&ctx, layout->set[s].layout);
_mesa_sha1_update(&ctx, &layout->set[s].dynamic_offset_start,
sizeof(layout->set[s].dynamic_offset_start));
}
_mesa_sha1_update(&ctx, &layout->num_sets, sizeof(layout->num_sets));
_mesa_sha1_final(&ctx, layout->sha1);
*pPipelineLayout = v3dv_pipeline_layout_to_handle(layout);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
v3dv_DestroyPipelineLayout(VkDevice _device,
VkPipelineLayout _pipelineLayout,
const VkAllocationCallbacks *pAllocator)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
V3DV_FROM_HANDLE(v3dv_pipeline_layout, pipeline_layout, _pipelineLayout);
if (!pipeline_layout)
return;
for (uint32_t i = 0; i < pipeline_layout->num_sets; i++)
v3dv_descriptor_set_layout_unref(device, pipeline_layout->set[i].layout);
vk_object_free(&device->vk, pAllocator, pipeline_layout);
}
VKAPI_ATTR VkResult VKAPI_CALL
v3dv_CreateDescriptorPool(VkDevice _device,
const VkDescriptorPoolCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkDescriptorPool *pDescriptorPool)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
struct v3dv_descriptor_pool *pool;
/* size is for the vulkan object descriptor pool. The final size would
* depend on some of FREE_DESCRIPTOR flags used
*/
uint64_t size = sizeof(struct v3dv_descriptor_pool);
/* bo_size is for the descriptor related info that we need to have on a GPU
* address (so on v3dv_bo_alloc allocated memory), like for example the
* texture sampler state. Note that not all the descriptors use it
*/
uint32_t bo_size = 0;
uint32_t descriptor_count = 0;
const VkDescriptorPoolInlineUniformBlockCreateInfo *inline_info =
vk_find_struct_const(pCreateInfo->pNext,
DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO);
for (unsigned i = 0; i < pCreateInfo->poolSizeCount; ++i) {
/* Verify supported descriptor type */
switch(pCreateInfo->pPoolSizes[i].type) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK:
break;
default:
unreachable("Unimplemented descriptor type");
break;
}
assert(pCreateInfo->pPoolSizes[i].descriptorCount > 0);
if (pCreateInfo->pPoolSizes[i].type ==
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
/* Inline uniform blocks are specified to use the descriptor array
* size as the size in bytes of the block.
*/
assert(inline_info);
descriptor_count += inline_info->maxInlineUniformBlockBindings;
bo_size += pCreateInfo->pPoolSizes[i].descriptorCount;
} else {
descriptor_count += pCreateInfo->pPoolSizes[i].descriptorCount;
bo_size += v3dv_X(device, descriptor_bo_size)(pCreateInfo->pPoolSizes[i].type) *
pCreateInfo->pPoolSizes[i].descriptorCount;
}
}
/* We align all our buffers to V3D_NON_COHERENT_ATOM_SIZE, make sure we
* allocate enough memory to honor that requirement for all our inline
* buffers too.
*/
if (inline_info) {
bo_size += V3D_NON_COHERENT_ATOM_SIZE *
inline_info->maxInlineUniformBlockBindings;
}
if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
uint64_t host_size =
pCreateInfo->maxSets * sizeof(struct v3dv_descriptor_set);
host_size += sizeof(struct v3dv_descriptor) * descriptor_count;
size += host_size;
} else {
size += sizeof(struct v3dv_descriptor_pool_entry) * pCreateInfo->maxSets;
}
pool = vk_object_zalloc(&device->vk, pAllocator, size,
VK_OBJECT_TYPE_DESCRIPTOR_POOL);
if (!pool)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
pool->host_memory_base = (uint8_t*)pool + sizeof(struct v3dv_descriptor_pool);
pool->host_memory_ptr = pool->host_memory_base;
pool->host_memory_end = (uint8_t*)pool + size;
}
pool->max_entry_count = pCreateInfo->maxSets;
if (bo_size > 0) {
pool->bo = v3dv_bo_alloc(device, bo_size, "descriptor pool bo", true);
if (!pool->bo)
goto out_of_device_memory;
bool ok = v3dv_bo_map(device, pool->bo, pool->bo->size);
if (!ok)
goto out_of_device_memory;
pool->current_offset = 0;
} else {
pool->bo = NULL;
}
*pDescriptorPool = v3dv_descriptor_pool_to_handle(pool);
return VK_SUCCESS;
out_of_device_memory:
vk_object_free(&device->vk, pAllocator, pool);
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
}
static void
descriptor_set_destroy(struct v3dv_device *device,
struct v3dv_descriptor_pool *pool,
struct v3dv_descriptor_set *set,
bool free_bo)
{
assert(!pool->host_memory_base);
v3dv_descriptor_set_layout_unref(device, set->layout);
if (free_bo && !pool->host_memory_base) {
for (uint32_t i = 0; i < pool->entry_count; i++) {
if (pool->entries[i].set == set) {
memmove(&pool->entries[i], &pool->entries[i+1],
sizeof(pool->entries[i]) * (pool->entry_count - i - 1));
--pool->entry_count;
break;
}
}
}
vk_object_free(&device->vk, NULL, set);
}
VKAPI_ATTR void VKAPI_CALL
v3dv_DestroyDescriptorPool(VkDevice _device,
VkDescriptorPool _pool,
const VkAllocationCallbacks *pAllocator)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
V3DV_FROM_HANDLE(v3dv_descriptor_pool, pool, _pool);
if (!pool)
return;
if (!pool->host_memory_base) {
for(int i = 0; i < pool->entry_count; ++i) {
descriptor_set_destroy(device, pool, pool->entries[i].set, false);
}
}
if (pool->bo) {
v3dv_bo_free(device, pool->bo);
pool->bo = NULL;
}
vk_object_free(&device->vk, pAllocator, pool);
}
VKAPI_ATTR VkResult VKAPI_CALL
v3dv_ResetDescriptorPool(VkDevice _device,
VkDescriptorPool descriptorPool,
VkDescriptorPoolResetFlags flags)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
V3DV_FROM_HANDLE(v3dv_descriptor_pool, pool, descriptorPool);
if (!pool->host_memory_base) {
for(int i = 0; i < pool->entry_count; ++i) {
descriptor_set_destroy(device, pool, pool->entries[i].set, false);
}
} else {
/* We clean-up the host memory, so when allocating a new set from the
* pool, it is already 0
*/
uint32_t host_size = pool->host_memory_end - pool->host_memory_base;
memset(pool->host_memory_base, 0, host_size);
}
pool->entry_count = 0;
pool->host_memory_ptr = pool->host_memory_base;
pool->current_offset = 0;
return VK_SUCCESS;
}
void
v3dv_descriptor_set_layout_destroy(struct v3dv_device *device,
struct v3dv_descriptor_set_layout *set_layout)
{
assert(set_layout->ref_cnt == 0);
vk_object_base_finish(&set_layout->base);
vk_free2(&device->vk.alloc, NULL, set_layout);
}
VKAPI_ATTR VkResult VKAPI_CALL
v3dv_CreateDescriptorSetLayout(VkDevice _device,
const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkDescriptorSetLayout *pSetLayout)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
struct v3dv_descriptor_set_layout *set_layout;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
uint32_t num_bindings = 0;
uint32_t immutable_sampler_count = 0;
for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
num_bindings = MAX2(num_bindings, pCreateInfo->pBindings[j].binding + 1);
/* From the Vulkan 1.1.97 spec for VkDescriptorSetLayoutBinding:
*
* "If descriptorType specifies a VK_DESCRIPTOR_TYPE_SAMPLER or
* VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER type descriptor, then
* pImmutableSamplers can be used to initialize a set of immutable
* samplers. [...] If descriptorType is not one of these descriptor
* types, then pImmutableSamplers is ignored.
*
* We need to be careful here and only parse pImmutableSamplers if we
* have one of the right descriptor types.
*/
VkDescriptorType desc_type = pCreateInfo->pBindings[j].descriptorType;
if ((desc_type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
desc_type == VK_DESCRIPTOR_TYPE_SAMPLER) &&
pCreateInfo->pBindings[j].pImmutableSamplers) {
immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
}
}
/* We place immutable samplers after the binding data. We want to use
* offsetof instead of any sizeof(struct v3dv_descriptor_set_layout)
* because the latter may include padding at the end of the struct.
*/
uint32_t samplers_offset =
offsetof(struct v3dv_descriptor_set_layout, binding[num_bindings]);
uint32_t size = samplers_offset +
immutable_sampler_count * sizeof(struct v3dv_sampler);
/* Descriptor set layouts are reference counted and therefore can survive
* vkDestroyPipelineSetLayout, so they need to be allocated with a device
* scope.
*/
set_layout =
vk_zalloc(&device->vk.alloc, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!set_layout)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &set_layout->base,
VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT);
struct v3dv_sampler *samplers = (void*) &set_layout->binding[num_bindings];
assert(pCreateInfo->bindingCount == 0 || num_bindings > 0);
VkDescriptorSetLayoutBinding *bindings = NULL;
VkResult result = vk_create_sorted_bindings(pCreateInfo->pBindings,
pCreateInfo->bindingCount, &bindings);
if (result != VK_SUCCESS) {
v3dv_descriptor_set_layout_destroy(device, set_layout);
return vk_error(device, result);
}
set_layout->binding_count = num_bindings;
set_layout->flags = pCreateInfo->flags;
set_layout->shader_stages = 0;
set_layout->bo_size = 0;
set_layout->ref_cnt = 1;
uint32_t descriptor_count = 0;
uint32_t dynamic_offset_count = 0;
for (uint32_t i = 0; i < pCreateInfo->bindingCount; i++) {
const VkDescriptorSetLayoutBinding *binding = bindings + i;
uint32_t binding_number = binding->binding;
switch (binding->descriptorType) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
set_layout->binding[binding_number].dynamic_offset_count = 1;
break;
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK:
/* Nothing here, just to keep the descriptor type filtering below */
break;
default:
unreachable("Unknown descriptor type\n");
break;
}
set_layout->binding[binding_number].type = binding->descriptorType;
set_layout->binding[binding_number].array_size = binding->descriptorCount;
set_layout->binding[binding_number].descriptor_index = descriptor_count;
set_layout->binding[binding_number].dynamic_offset_index = dynamic_offset_count;
if ((binding->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
binding->descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) &&
binding->pImmutableSamplers) {
set_layout->binding[binding_number].immutable_samplers_offset = samplers_offset;
for (uint32_t i = 0; i < binding->descriptorCount; i++)
samplers[i] = *v3dv_sampler_from_handle(binding->pImmutableSamplers[i]);
samplers += binding->descriptorCount;
samplers_offset += sizeof(struct v3dv_sampler) * binding->descriptorCount;
}
set_layout->shader_stages |= binding->stageFlags;
if (binding->descriptorType != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
dynamic_offset_count += binding->descriptorCount *
set_layout->binding[binding_number].dynamic_offset_count;
descriptor_count += binding->descriptorCount;
set_layout->binding[binding_number].descriptor_offset =
set_layout->bo_size;
set_layout->bo_size +=
v3dv_X(device, descriptor_bo_size)(set_layout->binding[binding_number].type) *
binding->descriptorCount;
} else {
/* We align all our buffers, inline buffers too. We made sure to take
* this account when calculating total BO size requirements at pool
* creation time.
*/
set_layout->bo_size = align(set_layout->bo_size,
V3D_NON_COHERENT_ATOM_SIZE);
set_layout->binding[binding_number].descriptor_offset =
set_layout->bo_size;
/* Inline uniform blocks are not arrayed, instead descriptorCount
* specifies the size of the buffer in bytes.
*/
set_layout->bo_size += binding->descriptorCount;
descriptor_count++;
}
}
free(bindings);
set_layout->descriptor_count = descriptor_count;
set_layout->dynamic_offset_count = dynamic_offset_count;
*pSetLayout = v3dv_descriptor_set_layout_to_handle(set_layout);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
v3dv_DestroyDescriptorSetLayout(VkDevice _device,
VkDescriptorSetLayout _set_layout,
const VkAllocationCallbacks *pAllocator)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
V3DV_FROM_HANDLE(v3dv_descriptor_set_layout, set_layout, _set_layout);
if (!set_layout)
return;
v3dv_descriptor_set_layout_unref(device, set_layout);
}
static inline VkResult
out_of_pool_memory(const struct v3dv_device *device,
const struct v3dv_descriptor_pool *pool)
{
/* Don't log OOPM errors for internal driver pools, we handle these properly
* by allocating a new pool, so they don't point to real issues.
*/
if (!pool->is_driver_internal)
return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
else
return VK_ERROR_OUT_OF_POOL_MEMORY;
}
static VkResult
descriptor_set_create(struct v3dv_device *device,
struct v3dv_descriptor_pool *pool,
struct v3dv_descriptor_set_layout *layout,
struct v3dv_descriptor_set **out_set)
{
struct v3dv_descriptor_set *set;
uint32_t descriptor_count = layout->descriptor_count;
unsigned mem_size = sizeof(struct v3dv_descriptor_set) +
sizeof(struct v3dv_descriptor) * descriptor_count;
if (pool->host_memory_base) {
if (pool->host_memory_end - pool->host_memory_ptr < mem_size)
return out_of_pool_memory(device, pool);
set = (struct v3dv_descriptor_set*)pool->host_memory_ptr;
pool->host_memory_ptr += mem_size;
vk_object_base_init(&device->vk, &set->base, VK_OBJECT_TYPE_DESCRIPTOR_SET);
} else {
set = vk_object_zalloc(&device->vk, NULL, mem_size,
VK_OBJECT_TYPE_DESCRIPTOR_SET);
if (!set)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
}
set->pool = pool;
set->layout = layout;
/* FIXME: VK_EXT_descriptor_indexing introduces
* VARIABLE_DESCRIPTOR_LAYOUT_COUNT. That would affect the layout_size used
* below for bo allocation
*/
uint32_t offset = 0;
uint32_t index = pool->entry_count;
if (layout->bo_size) {
if (!pool->host_memory_base && pool->entry_count == pool->max_entry_count) {
vk_object_free(&device->vk, NULL, set);
return out_of_pool_memory(device, pool);
}
/* We first try to allocate linearly fist, so that we don't spend time
* looking for gaps if the app only allocates & resets via the pool.
*
* If that fails, we try to find a gap from previously freed subregions
* iterating through the descriptor pool entries. Note that we are not
* doing that if we have a pool->host_memory_base. We only have that if
* VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT is not set, so in
* that case the user can't free subregions, so it doesn't make sense to
* even try (or track those subregions).
*/
if (pool->current_offset + layout->bo_size <= pool->bo->size) {
offset = pool->current_offset;
pool->current_offset += layout->bo_size;
} else if (!pool->host_memory_base) {
for (index = 0; index < pool->entry_count; index++) {
if (pool->entries[index].offset - offset >= layout->bo_size)
break;
offset = pool->entries[index].offset + pool->entries[index].size;
}
if (pool->bo->size - offset < layout->bo_size) {
vk_object_free(&device->vk, NULL, set);
return out_of_pool_memory(device, pool);
}
memmove(&pool->entries[index + 1], &pool->entries[index],
sizeof(pool->entries[0]) * (pool->entry_count - index));
} else {
assert(pool->host_memory_base);
return out_of_pool_memory(device, pool);
}
set->base_offset = offset;
}
if (!pool->host_memory_base) {
pool->entries[index].set = set;
pool->entries[index].offset = offset;
pool->entries[index].size = layout->bo_size;
pool->entry_count++;
}
/* Go through and fill out immutable samplers if we have any */
for (uint32_t b = 0; b < layout->binding_count; b++) {
if (layout->binding[b].immutable_samplers_offset == 0)
continue;
const struct v3dv_sampler *samplers =
(const struct v3dv_sampler *)((const char *)layout +
layout->binding[b].immutable_samplers_offset);
for (uint32_t i = 0; i < layout->binding[b].array_size; i++) {
uint32_t combined_offset =
layout->binding[b].type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ?
v3dv_X(device, combined_image_sampler_sampler_state_offset)() : 0;
void *desc_map = descriptor_bo_map(device, set, &layout->binding[b], i);
desc_map += combined_offset;
memcpy(desc_map,
samplers[i].sampler_state,
sizeof(samplers[i].sampler_state));
}
}
v3dv_descriptor_set_layout_ref(layout);
*out_set = set;
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
v3dv_AllocateDescriptorSets(VkDevice _device,
const VkDescriptorSetAllocateInfo *pAllocateInfo,
VkDescriptorSet *pDescriptorSets)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
V3DV_FROM_HANDLE(v3dv_descriptor_pool, pool, pAllocateInfo->descriptorPool);
VkResult result = VK_SUCCESS;
struct v3dv_descriptor_set *set = NULL;
uint32_t i = 0;
for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
V3DV_FROM_HANDLE(v3dv_descriptor_set_layout, layout,
pAllocateInfo->pSetLayouts[i]);
result = descriptor_set_create(device, pool, layout, &set);
if (result != VK_SUCCESS)
break;
pDescriptorSets[i] = v3dv_descriptor_set_to_handle(set);
}
if (result != VK_SUCCESS) {
v3dv_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool,
i, pDescriptorSets);
for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
pDescriptorSets[i] = VK_NULL_HANDLE;
}
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
v3dv_FreeDescriptorSets(VkDevice _device,
VkDescriptorPool descriptorPool,
uint32_t count,
const VkDescriptorSet *pDescriptorSets)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
V3DV_FROM_HANDLE(v3dv_descriptor_pool, pool, descriptorPool);
for (uint32_t i = 0; i < count; i++) {
V3DV_FROM_HANDLE(v3dv_descriptor_set, set, pDescriptorSets[i]);
if (set && !pool->host_memory_base)
descriptor_set_destroy(device, pool, set, true);
}
return VK_SUCCESS;
}
static void
descriptor_bo_copy(struct v3dv_device *device,
struct v3dv_descriptor_set *dst_set,
const struct v3dv_descriptor_set_binding_layout *dst_binding_layout,
uint32_t dst_array_index,
struct v3dv_descriptor_set *src_set,
const struct v3dv_descriptor_set_binding_layout *src_binding_layout,
uint32_t src_array_index)
{
assert(dst_binding_layout->type == src_binding_layout->type);
void *dst_map = descriptor_bo_map(device, dst_set, dst_binding_layout, dst_array_index);
void *src_map = descriptor_bo_map(device, src_set, src_binding_layout, src_array_index);
memcpy(dst_map, src_map, v3dv_X(device, descriptor_bo_size)(src_binding_layout->type));
}
static void
write_buffer_descriptor(struct v3dv_descriptor *descriptor,
VkDescriptorType desc_type,
const VkDescriptorBufferInfo *buffer_info)
{
V3DV_FROM_HANDLE(v3dv_buffer, buffer, buffer_info->buffer);
descriptor->type = desc_type;
descriptor->buffer = buffer;
descriptor->offset = buffer_info->offset;
if (buffer_info->range == VK_WHOLE_SIZE) {
descriptor->range = buffer->size - buffer_info->offset;
} else {
assert(descriptor->range <= UINT32_MAX);
descriptor->range = buffer_info->range;
}
}
static void
write_image_descriptor(struct v3dv_device *device,
struct v3dv_descriptor *descriptor,
VkDescriptorType desc_type,
struct v3dv_descriptor_set *set,
const struct v3dv_descriptor_set_binding_layout *binding_layout,
struct v3dv_image_view *iview,
struct v3dv_sampler *sampler,
uint32_t array_index)
{
descriptor->type = desc_type;
descriptor->sampler = sampler;
descriptor->image_view = iview;
void *desc_map = descriptor_bo_map(device, set,
binding_layout, array_index);
if (iview) {
const uint32_t tex_state_index =
iview->vk.view_type != VK_IMAGE_VIEW_TYPE_CUBE_ARRAY ||
desc_type != VK_DESCRIPTOR_TYPE_STORAGE_IMAGE ? 0 : 1;
memcpy(desc_map,
iview->texture_shader_state[tex_state_index],
sizeof(iview->texture_shader_state[0]));
desc_map += v3dv_X(device, combined_image_sampler_sampler_state_offset)();
}
if (sampler && !binding_layout->immutable_samplers_offset) {
/* For immutable samplers this was already done as part of the
* descriptor set create, as that info can't change later
*/
memcpy(desc_map,
sampler->sampler_state,
sizeof(sampler->sampler_state));
}
}
static void
write_buffer_view_descriptor(struct v3dv_device *device,
struct v3dv_descriptor *descriptor,
VkDescriptorType desc_type,
struct v3dv_descriptor_set *set,
const struct v3dv_descriptor_set_binding_layout *binding_layout,
struct v3dv_buffer_view *bview,
uint32_t array_index)
{
assert(bview);
descriptor->type = desc_type;
descriptor->buffer_view = bview;
void *desc_map = descriptor_bo_map(device, set, binding_layout, array_index);
memcpy(desc_map,
bview->texture_shader_state,
sizeof(bview->texture_shader_state));
}
static void
write_inline_uniform_descriptor(struct v3dv_device *device,
struct v3dv_descriptor *descriptor,
struct v3dv_descriptor_set *set,
const struct v3dv_descriptor_set_binding_layout *binding_layout,
const void *data,
size_t offset,
size_t size)
{
assert(binding_layout->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK);
descriptor->type = VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK;
descriptor->buffer = NULL;
void *desc_map = descriptor_bo_map(device, set, binding_layout, 0);
memcpy(desc_map + offset, data, size);
/* Inline uniform buffers allocate BO space in the pool for all inline
* buffers it may allocate and then this space is assigned to individual
* descriptors when they are written, so we define the range of an inline
* buffer as the largest range of data that the client has written to it.
*/
descriptor->offset = 0;
descriptor->range = MAX2(descriptor->range, offset + size);
}
VKAPI_ATTR void VKAPI_CALL
v3dv_UpdateDescriptorSets(VkDevice _device,
uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites,
uint32_t descriptorCopyCount,
const VkCopyDescriptorSet *pDescriptorCopies)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
for (uint32_t i = 0; i < descriptorWriteCount; i++) {
const VkWriteDescriptorSet *writeset = &pDescriptorWrites[i];
V3DV_FROM_HANDLE(v3dv_descriptor_set, set, writeset->dstSet);
const struct v3dv_descriptor_set_binding_layout *binding_layout =
set->layout->binding + writeset->dstBinding;
struct v3dv_descriptor *descriptor = set->descriptors;
descriptor += binding_layout->descriptor_index;
/* Inline uniform blocks are not arrayed, instead they use dstArrayElement
* to specify the byte offset of the uniform update and descriptorCount
* to specify the size (in bytes) of the update.
*/
uint32_t descriptor_count;
if (writeset->descriptorType != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
descriptor += writeset->dstArrayElement;
descriptor_count = writeset->descriptorCount;
} else {
descriptor_count = 1;
}
for (uint32_t j = 0; j < descriptor_count; ++j) {
switch(writeset->descriptorType) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: {
const VkDescriptorBufferInfo *buffer_info = writeset->pBufferInfo + j;
write_buffer_descriptor(descriptor, writeset->descriptorType,
buffer_info);
break;
}
case VK_DESCRIPTOR_TYPE_SAMPLER: {
/* If we are here we shouldn't be modifying a immutable sampler,
* so we don't ensure that would work or not crash. But let the
* validation layers check that
*/
const VkDescriptorImageInfo *image_info = writeset->pImageInfo + j;
V3DV_FROM_HANDLE(v3dv_sampler, sampler, image_info->sampler);
write_image_descriptor(device, descriptor, writeset->descriptorType,
set, binding_layout, NULL, sampler,
writeset->dstArrayElement + j);
break;
}
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
const VkDescriptorImageInfo *image_info = writeset->pImageInfo + j;
V3DV_FROM_HANDLE(v3dv_image_view, iview, image_info->imageView);
write_image_descriptor(device, descriptor, writeset->descriptorType,
set, binding_layout, iview, NULL,
writeset->dstArrayElement + j);
break;
}
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: {
const VkDescriptorImageInfo *image_info = writeset->pImageInfo + j;
V3DV_FROM_HANDLE(v3dv_image_view, iview, image_info->imageView);
V3DV_FROM_HANDLE(v3dv_sampler, sampler, image_info->sampler);
write_image_descriptor(device, descriptor, writeset->descriptorType,
set, binding_layout, iview, sampler,
writeset->dstArrayElement + j);
break;
}
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: {
V3DV_FROM_HANDLE(v3dv_buffer_view, buffer_view,
writeset->pTexelBufferView[j]);
write_buffer_view_descriptor(device, descriptor, writeset->descriptorType,
set, binding_layout, buffer_view,
writeset->dstArrayElement + j);
break;
}
case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK: {
const VkWriteDescriptorSetInlineUniformBlock *inline_write =
vk_find_struct_const(writeset->pNext,
WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK);
assert(inline_write->dataSize == writeset->descriptorCount);
write_inline_uniform_descriptor(device, descriptor, set,
binding_layout,
inline_write->pData,
writeset->dstArrayElement, /* offset */
inline_write->dataSize);
break;
}
default:
unreachable("unimplemented descriptor type");
break;
}
descriptor++;
}
}
for (uint32_t i = 0; i < descriptorCopyCount; i++) {
const VkCopyDescriptorSet *copyset = &pDescriptorCopies[i];
V3DV_FROM_HANDLE(v3dv_descriptor_set, src_set,
copyset->srcSet);
V3DV_FROM_HANDLE(v3dv_descriptor_set, dst_set,
copyset->dstSet);
const struct v3dv_descriptor_set_binding_layout *src_binding_layout =
src_set->layout->binding + copyset->srcBinding;
const struct v3dv_descriptor_set_binding_layout *dst_binding_layout =
dst_set->layout->binding + copyset->dstBinding;
assert(src_binding_layout->type == dst_binding_layout->type);
struct v3dv_descriptor *src_descriptor = src_set->descriptors;
struct v3dv_descriptor *dst_descriptor = dst_set->descriptors;
src_descriptor += src_binding_layout->descriptor_index;
dst_descriptor += dst_binding_layout->descriptor_index;
if (src_binding_layout->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
/* {src,dst}ArrayElement specifies src/dst start offset and
* descriptorCount specifies size (in bytes) to copy.
*/
const void *src_data = src_set->pool->bo->map +
src_set->base_offset +
src_binding_layout->descriptor_offset +
copyset->srcArrayElement;
write_inline_uniform_descriptor(device, dst_descriptor, dst_set,
dst_binding_layout,
src_data,
copyset->dstArrayElement,
copyset->descriptorCount);
continue;
}
src_descriptor += copyset->srcArrayElement;
dst_descriptor += copyset->dstArrayElement;
for (uint32_t j = 0; j < copyset->descriptorCount; j++) {
*dst_descriptor = *src_descriptor;
dst_descriptor++;
src_descriptor++;
if (v3dv_X(device, descriptor_bo_size)(src_binding_layout->type) > 0) {
descriptor_bo_copy(device,
dst_set, dst_binding_layout,
j + copyset->dstArrayElement,
src_set, src_binding_layout,
j + copyset->srcArrayElement);
}
}
}
}
VKAPI_ATTR void VKAPI_CALL
v3dv_GetDescriptorSetLayoutSupport(
VkDevice _device,
const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
VkDescriptorSetLayoutSupport *pSupport)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
VkDescriptorSetLayoutBinding *bindings = NULL;
VkResult result = vk_create_sorted_bindings(
pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings);
if (result != VK_SUCCESS) {
pSupport->supported = false;
return;
}
bool supported = true;
uint32_t desc_host_size = sizeof(struct v3dv_descriptor);
uint32_t host_size = sizeof(struct v3dv_descriptor_set);
uint32_t bo_size = 0;
for (uint32_t i = 0; i < pCreateInfo->bindingCount; i++) {
const VkDescriptorSetLayoutBinding *binding = bindings + i;
if ((UINT32_MAX - host_size) / desc_host_size < binding->descriptorCount) {
supported = false;
break;
}
uint32_t desc_bo_size = v3dv_X(device, descriptor_bo_size)(binding->descriptorType);
if (desc_bo_size > 0 &&
(UINT32_MAX - bo_size) / desc_bo_size < binding->descriptorCount) {
supported = false;
break;
}
host_size += binding->descriptorCount * desc_host_size;
bo_size += binding->descriptorCount * desc_bo_size;
}
free(bindings);
pSupport->supported = supported;
}
VkResult
v3dv_CreateDescriptorUpdateTemplate(
VkDevice _device,
const VkDescriptorUpdateTemplateCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkDescriptorUpdateTemplate *pDescriptorUpdateTemplate)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
struct v3dv_descriptor_update_template *template;
size_t size = sizeof(*template) +
pCreateInfo->descriptorUpdateEntryCount * sizeof(template->entries[0]);
template = vk_object_alloc(&device->vk, pAllocator, size,
VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE);
if (template == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
template->bind_point = pCreateInfo->pipelineBindPoint;
assert(pCreateInfo->templateType ==
VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET);
template->set = pCreateInfo->set;
template->entry_count = pCreateInfo->descriptorUpdateEntryCount;
for (uint32_t i = 0; i < template->entry_count; i++) {
const VkDescriptorUpdateTemplateEntry *pEntry =
&pCreateInfo->pDescriptorUpdateEntries[i];
template->entries[i] = (struct v3dv_descriptor_template_entry) {
.type = pEntry->descriptorType,
.binding = pEntry->dstBinding,
.array_element = pEntry->dstArrayElement,
.array_count = pEntry->descriptorCount,
.offset = pEntry->offset,
.stride = pEntry->stride,
};
}
*pDescriptorUpdateTemplate =
v3dv_descriptor_update_template_to_handle(template);
return VK_SUCCESS;
}
void
v3dv_DestroyDescriptorUpdateTemplate(
VkDevice _device,
VkDescriptorUpdateTemplate descriptorUpdateTemplate,
const VkAllocationCallbacks *pAllocator)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
V3DV_FROM_HANDLE(v3dv_descriptor_update_template, template,
descriptorUpdateTemplate);
if (!template)
return;
vk_object_free(&device->vk, pAllocator, template);
}
void
v3dv_UpdateDescriptorSetWithTemplate(
VkDevice _device,
VkDescriptorSet descriptorSet,
VkDescriptorUpdateTemplate descriptorUpdateTemplate,
const void *pData)
{
V3DV_FROM_HANDLE(v3dv_device, device, _device);
V3DV_FROM_HANDLE(v3dv_descriptor_set, set, descriptorSet);
V3DV_FROM_HANDLE(v3dv_descriptor_update_template, template,
descriptorUpdateTemplate);
for (int i = 0; i < template->entry_count; i++) {
const struct v3dv_descriptor_template_entry *entry =
&template->entries[i];
const struct v3dv_descriptor_set_binding_layout *binding_layout =
set->layout->binding + entry->binding;
struct v3dv_descriptor *descriptor =
set->descriptors +
binding_layout->descriptor_index;
switch (entry->type) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
for (uint32_t j = 0; j < entry->array_count; j++) {
const VkDescriptorBufferInfo *info =
pData + entry->offset + j * entry->stride;
write_buffer_descriptor(descriptor + entry->array_element + j,
entry->type, info);
}
break;
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
for (uint32_t j = 0; j < entry->array_count; j++) {
const VkDescriptorImageInfo *info =
pData + entry->offset + j * entry->stride;
V3DV_FROM_HANDLE(v3dv_image_view, iview, info->imageView);
V3DV_FROM_HANDLE(v3dv_sampler, sampler, info->sampler);
write_image_descriptor(device, descriptor + entry->array_element + j,
entry->type, set, binding_layout, iview,
sampler, entry->array_element + j);
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
for (uint32_t j = 0; j < entry->array_count; j++) {
const VkBufferView *_bview =
pData + entry->offset + j * entry->stride;
V3DV_FROM_HANDLE(v3dv_buffer_view, bview, *_bview);
write_buffer_view_descriptor(device,
descriptor + entry->array_element + j,
entry->type, set, binding_layout, bview,
entry->array_element + j);
}
break;
case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK: {
write_inline_uniform_descriptor(device, descriptor, set,
binding_layout,
pData + entry->offset,
entry->array_element, /* offset */
entry->array_count); /* size */
break;
}
default:
unreachable("Unsupported descriptor type");
}
}
}
VKAPI_ATTR VkResult VKAPI_CALL
v3dv_CreateSamplerYcbcrConversion(
VkDevice _device,
const VkSamplerYcbcrConversionCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkSamplerYcbcrConversion *pYcbcrConversion)
{
unreachable("Ycbcr sampler conversion is not supported");
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
v3dv_DestroySamplerYcbcrConversion(
VkDevice _device,
VkSamplerYcbcrConversion YcbcrConversion,
const VkAllocationCallbacks *pAllocator)
{
unreachable("Ycbcr sampler conversion is not supported");
}