mesa/src/broadcom/compiler/nir_to_vir.c

4704 lines
182 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright © 2016 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <inttypes.h>
#include "util/format/u_format.h"
#include "util/u_helpers.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "util/ralloc.h"
#include "util/hash_table.h"
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_builder.h"
#include "common/v3d_device_info.h"
#include "v3d_compiler.h"
/* We don't do any address packing. */
#define __gen_user_data void
#define __gen_address_type uint32_t
#define __gen_address_offset(reloc) (*reloc)
#define __gen_emit_reloc(cl, reloc)
#include "cle/v3d_packet_v41_pack.h"
#define GENERAL_TMU_LOOKUP_PER_QUAD (0 << 7)
#define GENERAL_TMU_LOOKUP_PER_PIXEL (1 << 7)
#define GENERAL_TMU_LOOKUP_TYPE_8BIT_I (0 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_16BIT_I (1 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_VEC2 (2 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_VEC3 (3 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_VEC4 (4 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_8BIT_UI (5 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_16BIT_UI (6 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_32BIT_UI (7 << 0)
#define V3D_TSY_SET_QUORUM 0
#define V3D_TSY_INC_WAITERS 1
#define V3D_TSY_DEC_WAITERS 2
#define V3D_TSY_INC_QUORUM 3
#define V3D_TSY_DEC_QUORUM 4
#define V3D_TSY_FREE_ALL 5
#define V3D_TSY_RELEASE 6
#define V3D_TSY_ACQUIRE 7
#define V3D_TSY_WAIT 8
#define V3D_TSY_WAIT_INC 9
#define V3D_TSY_WAIT_CHECK 10
#define V3D_TSY_WAIT_INC_CHECK 11
#define V3D_TSY_WAIT_CV 12
#define V3D_TSY_INC_SEMAPHORE 13
#define V3D_TSY_DEC_SEMAPHORE 14
#define V3D_TSY_SET_QUORUM_FREE_ALL 15
enum v3d_tmu_op_type
{
V3D_TMU_OP_TYPE_REGULAR,
V3D_TMU_OP_TYPE_ATOMIC,
V3D_TMU_OP_TYPE_CACHE
};
static enum v3d_tmu_op_type
v3d_tmu_get_type_from_op(uint32_t tmu_op, bool is_write)
{
switch(tmu_op) {
case V3D_TMU_OP_WRITE_ADD_READ_PREFETCH:
case V3D_TMU_OP_WRITE_SUB_READ_CLEAR:
case V3D_TMU_OP_WRITE_XCHG_READ_FLUSH:
case V3D_TMU_OP_WRITE_CMPXCHG_READ_FLUSH:
case V3D_TMU_OP_WRITE_UMIN_FULL_L1_CLEAR:
return is_write ? V3D_TMU_OP_TYPE_ATOMIC : V3D_TMU_OP_TYPE_CACHE;
case V3D_TMU_OP_WRITE_UMAX:
case V3D_TMU_OP_WRITE_SMIN:
case V3D_TMU_OP_WRITE_SMAX:
assert(is_write);
FALLTHROUGH;
case V3D_TMU_OP_WRITE_AND_READ_INC:
case V3D_TMU_OP_WRITE_OR_READ_DEC:
case V3D_TMU_OP_WRITE_XOR_READ_NOT:
return V3D_TMU_OP_TYPE_ATOMIC;
case V3D_TMU_OP_REGULAR:
return V3D_TMU_OP_TYPE_REGULAR;
default:
unreachable("Unknown tmu_op\n");
}
}
static void
ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list);
static void
resize_qreg_array(struct v3d_compile *c,
struct qreg **regs,
uint32_t *size,
uint32_t decl_size)
{
if (*size >= decl_size)
return;
uint32_t old_size = *size;
*size = MAX2(*size * 2, decl_size);
*regs = reralloc(c, *regs, struct qreg, *size);
if (!*regs) {
fprintf(stderr, "Malloc failure\n");
abort();
}
for (uint32_t i = old_size; i < *size; i++)
(*regs)[i] = c->undef;
}
static void
resize_interp_array(struct v3d_compile *c,
struct v3d_interp_input **regs,
uint32_t *size,
uint32_t decl_size)
{
if (*size >= decl_size)
return;
uint32_t old_size = *size;
*size = MAX2(*size * 2, decl_size);
*regs = reralloc(c, *regs, struct v3d_interp_input, *size);
if (!*regs) {
fprintf(stderr, "Malloc failure\n");
abort();
}
for (uint32_t i = old_size; i < *size; i++) {
(*regs)[i].vp = c->undef;
(*regs)[i].C = c->undef;
}
}
void
vir_emit_thrsw(struct v3d_compile *c)
{
if (c->threads == 1)
return;
/* Always thread switch after each texture operation for now.
*
* We could do better by batching a bunch of texture fetches up and
* then doing one thread switch and collecting all their results
* afterward.
*/
c->last_thrsw = vir_NOP(c);
c->last_thrsw->qpu.sig.thrsw = true;
c->last_thrsw_at_top_level = !c->in_control_flow;
/* We need to lock the scoreboard before any tlb acess happens. If this
* thread switch comes after we have emitted a tlb load, then it means
* that we can't lock on the last thread switch any more.
*/
if (c->emitted_tlb_load)
c->lock_scoreboard_on_first_thrsw = true;
}
uint32_t
v3d_get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
{
if (nir_src_is_const(instr->src[src])) {
int64_t add_val = nir_src_as_int(instr->src[src]);
if (add_val == 1)
return V3D_TMU_OP_WRITE_AND_READ_INC;
else if (add_val == -1)
return V3D_TMU_OP_WRITE_OR_READ_DEC;
}
return V3D_TMU_OP_WRITE_ADD_READ_PREFETCH;
}
static uint32_t
v3d_general_tmu_op(nir_intrinsic_instr *instr)
{
switch (instr->intrinsic) {
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_uniform:
case nir_intrinsic_load_shared:
case nir_intrinsic_load_scratch:
case nir_intrinsic_load_global_2x32:
case nir_intrinsic_store_ssbo:
case nir_intrinsic_store_shared:
case nir_intrinsic_store_scratch:
case nir_intrinsic_store_global_2x32:
return V3D_TMU_OP_REGULAR;
case nir_intrinsic_ssbo_atomic_add:
return v3d_get_op_for_atomic_add(instr, 2);
case nir_intrinsic_shared_atomic_add:
case nir_intrinsic_global_atomic_add_2x32:
return v3d_get_op_for_atomic_add(instr, 1);
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_global_atomic_imin_2x32:
case nir_intrinsic_shared_atomic_imin:
return V3D_TMU_OP_WRITE_SMIN;
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_global_atomic_umin_2x32:
case nir_intrinsic_shared_atomic_umin:
return V3D_TMU_OP_WRITE_UMIN_FULL_L1_CLEAR;
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_global_atomic_imax_2x32:
case nir_intrinsic_shared_atomic_imax:
return V3D_TMU_OP_WRITE_SMAX;
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_global_atomic_umax_2x32:
case nir_intrinsic_shared_atomic_umax:
return V3D_TMU_OP_WRITE_UMAX;
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_global_atomic_and_2x32:
case nir_intrinsic_shared_atomic_and:
return V3D_TMU_OP_WRITE_AND_READ_INC;
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_global_atomic_or_2x32:
case nir_intrinsic_shared_atomic_or:
return V3D_TMU_OP_WRITE_OR_READ_DEC;
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_global_atomic_xor_2x32:
case nir_intrinsic_shared_atomic_xor:
return V3D_TMU_OP_WRITE_XOR_READ_NOT;
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_global_atomic_exchange_2x32:
case nir_intrinsic_shared_atomic_exchange:
return V3D_TMU_OP_WRITE_XCHG_READ_FLUSH;
case nir_intrinsic_ssbo_atomic_comp_swap:
case nir_intrinsic_global_atomic_comp_swap_2x32:
case nir_intrinsic_shared_atomic_comp_swap:
return V3D_TMU_OP_WRITE_CMPXCHG_READ_FLUSH;
default:
unreachable("unknown intrinsic op");
}
}
/**
* Checks if pipelining a new TMU operation requiring 'components' LDTMUs
* would overflow the Output TMU fifo.
*
* It is not allowed to overflow the Output fifo, however, we can overflow
* Input and Config fifos. Doing that makes the shader stall, but only for as
* long as it needs to be able to continue so it is better for pipelining to
* let the QPU stall on these if needed than trying to emit TMU flushes in the
* driver.
*/
bool
ntq_tmu_fifo_overflow(struct v3d_compile *c, uint32_t components)
{
if (c->tmu.flush_count >= MAX_TMU_QUEUE_SIZE)
return true;
return components > 0 &&
c->tmu.output_fifo_size + components > 16 / c->threads;
}
/**
* Emits the thread switch and LDTMU/TMUWT for all outstanding TMU operations,
* popping all TMU fifo entries.
*/
void
ntq_flush_tmu(struct v3d_compile *c)
{
if (c->tmu.flush_count == 0)
return;
vir_emit_thrsw(c);
bool emitted_tmuwt = false;
for (int i = 0; i < c->tmu.flush_count; i++) {
if (c->tmu.flush[i].component_mask > 0) {
nir_dest *dest = c->tmu.flush[i].dest;
assert(dest);
for (int j = 0; j < 4; j++) {
if (c->tmu.flush[i].component_mask & (1 << j)) {
ntq_store_dest(c, dest, j,
vir_MOV(c, vir_LDTMU(c)));
}
}
} else if (!emitted_tmuwt) {
vir_TMUWT(c);
emitted_tmuwt = true;
}
}
c->tmu.output_fifo_size = 0;
c->tmu.flush_count = 0;
_mesa_set_clear(c->tmu.outstanding_regs, NULL);
}
/**
* Queues a pending thread switch + LDTMU/TMUWT for a TMU operation. The caller
* is reponsible for ensuring that doing this doesn't overflow the TMU fifos,
* and more specifically, the output fifo, since that can't stall.
*/
void
ntq_add_pending_tmu_flush(struct v3d_compile *c,
nir_dest *dest,
uint32_t component_mask)
{
const uint32_t num_components = util_bitcount(component_mask);
assert(!ntq_tmu_fifo_overflow(c, num_components));
if (num_components > 0) {
c->tmu.output_fifo_size += num_components;
if (!dest->is_ssa)
_mesa_set_add(c->tmu.outstanding_regs, dest->reg.reg);
}
c->tmu.flush[c->tmu.flush_count].dest = dest;
c->tmu.flush[c->tmu.flush_count].component_mask = component_mask;
c->tmu.flush_count++;
if (c->disable_tmu_pipelining)
ntq_flush_tmu(c);
else if (c->tmu.flush_count > 1)
c->pipelined_any_tmu = true;
}
enum emit_mode {
MODE_COUNT = 0,
MODE_EMIT,
MODE_LAST,
};
/**
* For a TMU general store instruction:
*
* In MODE_COUNT mode, records the number of TMU writes required and flushes
* any outstanding TMU operations the instruction depends on, but it doesn't
* emit any actual register writes.
*
* In MODE_EMIT mode, emits the data register writes required by the
* instruction.
*/
static void
emit_tmu_general_store_writes(struct v3d_compile *c,
enum emit_mode mode,
nir_intrinsic_instr *instr,
uint32_t base_const_offset,
uint32_t *writemask,
uint32_t *const_offset,
uint32_t *type_size,
uint32_t *tmu_writes)
{
struct qreg tmud = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUD);
/* Find the first set of consecutive components that
* are enabled in the writemask and emit the TMUD
* instructions for them.
*/
assert(*writemask != 0);
uint32_t first_component = ffs(*writemask) - 1;
uint32_t last_component = first_component;
while (*writemask & BITFIELD_BIT(last_component + 1))
last_component++;
assert(first_component <= last_component &&
last_component < instr->num_components);
for (int i = first_component; i <= last_component; i++) {
struct qreg data = ntq_get_src(c, instr->src[0], i);
if (mode == MODE_COUNT)
(*tmu_writes)++;
else
vir_MOV_dest(c, tmud, data);
}
if (mode == MODE_EMIT) {
/* Update the offset for the TMU write based on the
* the first component we are writing.
*/
*type_size = nir_src_bit_size(instr->src[0]) / 8;
*const_offset =
base_const_offset + first_component * (*type_size);
/* Clear these components from the writemask */
uint32_t written_mask =
BITFIELD_RANGE(first_component, *tmu_writes);
(*writemask) &= ~written_mask;
}
}
/**
* For a TMU general atomic instruction:
*
* In MODE_COUNT mode, records the number of TMU writes required and flushes
* any outstanding TMU operations the instruction depends on, but it doesn't
* emit any actual register writes.
*
* In MODE_EMIT mode, emits the data register writes required by the
* instruction.
*/
static void
emit_tmu_general_atomic_writes(struct v3d_compile *c,
enum emit_mode mode,
nir_intrinsic_instr *instr,
uint32_t tmu_op,
bool has_index,
uint32_t *tmu_writes)
{
struct qreg tmud = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUD);
struct qreg data = ntq_get_src(c, instr->src[1 + has_index], 0);
if (mode == MODE_COUNT)
(*tmu_writes)++;
else
vir_MOV_dest(c, tmud, data);
if (tmu_op == V3D_TMU_OP_WRITE_CMPXCHG_READ_FLUSH) {
data = ntq_get_src(c, instr->src[2 + has_index], 0);
if (mode == MODE_COUNT)
(*tmu_writes)++;
else
vir_MOV_dest(c, tmud, data);
}
}
/**
* For any TMU general instruction:
*
* In MODE_COUNT mode, records the number of TMU writes required to emit the
* address parameter and flushes any outstanding TMU operations the instruction
* depends on, but it doesn't emit any actual register writes.
*
* In MODE_EMIT mode, emits register writes required to emit the address.
*/
static void
emit_tmu_general_address_write(struct v3d_compile *c,
enum emit_mode mode,
nir_intrinsic_instr *instr,
uint32_t config,
bool dynamic_src,
int offset_src,
struct qreg base_offset,
uint32_t const_offset,
uint32_t *tmu_writes)
{
if (mode == MODE_COUNT) {
(*tmu_writes)++;
if (dynamic_src)
ntq_get_src(c, instr->src[offset_src], 0);
return;
}
if (vir_in_nonuniform_control_flow(c)) {
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
}
struct qreg tmua;
if (config == ~0)
tmua = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUA);
else
tmua = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUAU);
struct qinst *tmu;
if (dynamic_src) {
struct qreg offset = base_offset;
if (const_offset != 0) {
offset = vir_ADD(c, offset,
vir_uniform_ui(c, const_offset));
}
struct qreg data = ntq_get_src(c, instr->src[offset_src], 0);
tmu = vir_ADD_dest(c, tmua, offset, data);
} else {
if (const_offset != 0) {
tmu = vir_ADD_dest(c, tmua, base_offset,
vir_uniform_ui(c, const_offset));
} else {
tmu = vir_MOV_dest(c, tmua, base_offset);
}
}
if (config != ~0) {
tmu->uniform =
vir_get_uniform_index(c, QUNIFORM_CONSTANT, config);
}
if (vir_in_nonuniform_control_flow(c))
vir_set_cond(tmu, V3D_QPU_COND_IFA);
}
/**
* Implements indirect uniform loads and SSBO accesses through the TMU general
* memory access interface.
*/
static void
ntq_emit_tmu_general(struct v3d_compile *c, nir_intrinsic_instr *instr,
bool is_shared_or_scratch, bool is_global)
{
uint32_t tmu_op = v3d_general_tmu_op(instr);
/* If we were able to replace atomic_add for an inc/dec, then we
* need/can to do things slightly different, like not loading the
* amount to add/sub, as that is implicit.
*/
bool atomic_add_replaced =
((instr->intrinsic == nir_intrinsic_ssbo_atomic_add ||
instr->intrinsic == nir_intrinsic_shared_atomic_add ||
instr->intrinsic == nir_intrinsic_global_atomic_add_2x32) &&
(tmu_op == V3D_TMU_OP_WRITE_AND_READ_INC ||
tmu_op == V3D_TMU_OP_WRITE_OR_READ_DEC));
bool is_store = (instr->intrinsic == nir_intrinsic_store_ssbo ||
instr->intrinsic == nir_intrinsic_store_scratch ||
instr->intrinsic == nir_intrinsic_store_shared ||
instr->intrinsic == nir_intrinsic_store_global_2x32);
bool is_load = (instr->intrinsic == nir_intrinsic_load_uniform ||
instr->intrinsic == nir_intrinsic_load_ubo ||
instr->intrinsic == nir_intrinsic_load_ssbo ||
instr->intrinsic == nir_intrinsic_load_scratch ||
instr->intrinsic == nir_intrinsic_load_shared ||
instr->intrinsic == nir_intrinsic_load_global_2x32);
if (!is_load)
c->tmu_dirty_rcl = true;
if (is_global)
c->has_global_address = true;
bool has_index = !is_shared_or_scratch && !is_global;
int offset_src;
if (instr->intrinsic == nir_intrinsic_load_uniform) {
offset_src = 0;
} else if (instr->intrinsic == nir_intrinsic_load_ssbo ||
instr->intrinsic == nir_intrinsic_load_ubo ||
instr->intrinsic == nir_intrinsic_load_scratch ||
instr->intrinsic == nir_intrinsic_load_shared ||
instr->intrinsic == nir_intrinsic_load_global_2x32 ||
atomic_add_replaced) {
offset_src = 0 + has_index;
} else if (is_store) {
offset_src = 1 + has_index;
} else {
offset_src = 0 + has_index;
}
bool dynamic_src = !nir_src_is_const(instr->src[offset_src]);
uint32_t const_offset = 0;
if (!dynamic_src)
const_offset = nir_src_as_uint(instr->src[offset_src]);
struct qreg base_offset;
if (instr->intrinsic == nir_intrinsic_load_uniform) {
const_offset += nir_intrinsic_base(instr);
base_offset = vir_uniform(c, QUNIFORM_UBO_ADDR,
v3d_unit_data_create(0, const_offset));
const_offset = 0;
} else if (instr->intrinsic == nir_intrinsic_load_ubo) {
uint32_t index = nir_src_as_uint(instr->src[0]);
/* On OpenGL QUNIFORM_UBO_ADDR takes a UBO index
* shifted up by 1 (0 is gallium's constant buffer 0).
*/
if (c->key->environment == V3D_ENVIRONMENT_OPENGL)
index++;
base_offset =
vir_uniform(c, QUNIFORM_UBO_ADDR,
v3d_unit_data_create(index, const_offset));
const_offset = 0;
} else if (is_shared_or_scratch) {
/* Shared and scratch variables have no buffer index, and all
* start from a common base that we set up at the start of
* dispatch.
*/
if (instr->intrinsic == nir_intrinsic_load_scratch ||
instr->intrinsic == nir_intrinsic_store_scratch) {
base_offset = c->spill_base;
} else {
base_offset = c->cs_shared_offset;
const_offset += nir_intrinsic_base(instr);
}
} else if (is_global) {
/* Global load/store intrinsics use gloal addresses, so the
* offset is the target address and we don't need to add it
* to a base offset.
*/
base_offset = vir_uniform_ui(c, 0);
} else {
base_offset = vir_uniform(c, QUNIFORM_SSBO_OFFSET,
nir_src_as_uint(instr->src[is_store ?
1 : 0]));
}
/* We are ready to emit TMU register writes now, but before we actually
* emit them we need to flush outstanding TMU operations if any of our
* writes reads from the result of an outstanding TMU operation before
* we start the TMU sequence for this operation, since otherwise the
* flush could happen in the middle of the TMU sequence we are about to
* emit, which is illegal. To do this we run this logic twice, the
* first time it will count required register writes and flush pending
* TMU requests if necessary due to a dependency, and the second one
* will emit the actual TMU writes.
*/
const uint32_t dest_components = nir_intrinsic_dest_components(instr);
uint32_t base_const_offset = const_offset;
uint32_t writemask = is_store ? nir_intrinsic_write_mask(instr) : 0;
uint32_t tmu_writes = 0;
for (enum emit_mode mode = MODE_COUNT; mode != MODE_LAST; mode++) {
assert(mode == MODE_COUNT || tmu_writes > 0);
uint32_t type_size = 4;
if (is_store) {
emit_tmu_general_store_writes(c, mode, instr,
base_const_offset,
&writemask,
&const_offset,
&type_size,
&tmu_writes);
} else if (!is_load && !atomic_add_replaced) {
emit_tmu_general_atomic_writes(c, mode, instr,
tmu_op, has_index,
&tmu_writes);
} else if (is_load) {
type_size = nir_dest_bit_size(instr->dest) / 8;
}
/* For atomics we use 32bit except for CMPXCHG, that we need
* to use VEC2. For the rest of the cases we use the number of
* tmud writes we did to decide the type. For cache operations
* the type is ignored.
*/
uint32_t config = 0;
if (mode == MODE_EMIT) {
uint32_t num_components;
if (is_load || atomic_add_replaced) {
num_components = instr->num_components;
} else {
assert(tmu_writes > 0);
num_components = tmu_writes - 1;
}
bool is_atomic =
v3d_tmu_get_type_from_op(tmu_op, !is_load) ==
V3D_TMU_OP_TYPE_ATOMIC;
uint32_t perquad =
is_load && !vir_in_nonuniform_control_flow(c)
? GENERAL_TMU_LOOKUP_PER_QUAD
: GENERAL_TMU_LOOKUP_PER_PIXEL;
config = 0xffffff00 | tmu_op << 3 | perquad;
if (tmu_op == V3D_TMU_OP_WRITE_CMPXCHG_READ_FLUSH) {
config |= GENERAL_TMU_LOOKUP_TYPE_VEC2;
} else if (is_atomic || num_components == 1) {
switch (type_size) {
case 4:
config |= GENERAL_TMU_LOOKUP_TYPE_32BIT_UI;
break;
case 2:
config |= GENERAL_TMU_LOOKUP_TYPE_16BIT_UI;
break;
case 1:
config |= GENERAL_TMU_LOOKUP_TYPE_8BIT_UI;
break;
default:
unreachable("Unsupported bitsize");
}
} else {
assert(type_size == 4);
config |= GENERAL_TMU_LOOKUP_TYPE_VEC2 +
num_components - 2;
}
}
emit_tmu_general_address_write(c, mode, instr, config,
dynamic_src, offset_src,
base_offset, const_offset,
&tmu_writes);
assert(tmu_writes > 0);
if (mode == MODE_COUNT) {
/* Make sure we won't exceed the 16-entry TMU
* fifo if each thread is storing at the same
* time.
*/
while (tmu_writes > 16 / c->threads)
c->threads /= 2;
/* If pipelining this TMU operation would
* overflow TMU fifos, we need to flush.
*/
if (ntq_tmu_fifo_overflow(c, dest_components))
ntq_flush_tmu(c);
} else {
/* Delay emission of the thread switch and
* LDTMU/TMUWT until we really need to do it to
* improve pipelining.
*/
const uint32_t component_mask =
(1 << dest_components) - 1;
ntq_add_pending_tmu_flush(c, &instr->dest,
component_mask);
}
}
/* nir_lower_wrmasks should've ensured that any writemask on a store
* operation only has consecutive bits set, in which case we should've
* processed the full writemask above.
*/
assert(writemask == 0);
}
static struct qreg *
ntq_init_ssa_def(struct v3d_compile *c, nir_ssa_def *def)
{
struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
def->num_components);
_mesa_hash_table_insert(c->def_ht, def, qregs);
return qregs;
}
static bool
is_ld_signal(const struct v3d_qpu_sig *sig)
{
return (sig->ldunif ||
sig->ldunifa ||
sig->ldunifrf ||
sig->ldunifarf ||
sig->ldtmu ||
sig->ldvary ||
sig->ldvpm ||
sig->ldtlb ||
sig->ldtlbu);
}
static inline bool
is_ldunif_signal(const struct v3d_qpu_sig *sig)
{
return sig->ldunif || sig->ldunifrf;
}
/**
* This function is responsible for getting VIR results into the associated
* storage for a NIR instruction.
*
* If it's a NIR SSA def, then we just set the associated hash table entry to
* the new result.
*
* If it's a NIR reg, then we need to update the existing qreg assigned to the
* NIR destination with the incoming value. To do that without introducing
* new MOVs, we require that the incoming qreg either be a uniform, or be
* SSA-defined by the previous VIR instruction in the block and rewritable by
* this function. That lets us sneak ahead and insert the SF flag beforehand
* (knowing that the previous instruction doesn't depend on flags) and rewrite
* its destination to be the NIR reg's destination
*/
void
ntq_store_dest(struct v3d_compile *c, nir_dest *dest, int chan,
struct qreg result)
{
struct qinst *last_inst = NULL;
if (!list_is_empty(&c->cur_block->instructions))
last_inst = (struct qinst *)c->cur_block->instructions.prev;
bool is_reused_uniform =
is_ldunif_signal(&c->defs[result.index]->qpu.sig) &&
last_inst != c->defs[result.index];
assert(result.file == QFILE_TEMP && last_inst &&
(last_inst == c->defs[result.index] || is_reused_uniform));
if (dest->is_ssa) {
assert(chan < dest->ssa.num_components);
struct qreg *qregs;
struct hash_entry *entry =
_mesa_hash_table_search(c->def_ht, &dest->ssa);
if (entry)
qregs = entry->data;
else
qregs = ntq_init_ssa_def(c, &dest->ssa);
qregs[chan] = result;
} else {
nir_register *reg = dest->reg.reg;
assert(dest->reg.base_offset == 0);
assert(reg->num_array_elems == 0);
struct hash_entry *entry =
_mesa_hash_table_search(c->def_ht, reg);
struct qreg *qregs = entry->data;
/* If the previous instruction can't be predicated for
* the store into the nir_register, then emit a MOV
* that can be.
*/
if (is_reused_uniform ||
(vir_in_nonuniform_control_flow(c) &&
is_ld_signal(&c->defs[last_inst->dst.index]->qpu.sig))) {
result = vir_MOV(c, result);
last_inst = c->defs[result.index];
}
/* We know they're both temps, so just rewrite index. */
c->defs[last_inst->dst.index] = NULL;
last_inst->dst.index = qregs[chan].index;
/* If we're in control flow, then make this update of the reg
* conditional on the execution mask.
*/
if (vir_in_nonuniform_control_flow(c)) {
last_inst->dst.index = qregs[chan].index;
/* Set the flags to the current exec mask.
*/
c->cursor = vir_before_inst(last_inst);
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
c->cursor = vir_after_inst(last_inst);
vir_set_cond(last_inst, V3D_QPU_COND_IFA);
}
}
}
/**
* This looks up the qreg associated with a particular ssa/reg used as a source
* in any instruction.
*
* It is expected that the definition for any NIR value read as a source has
* been emitted by a previous instruction, however, in the case of TMU
* operations we may have postponed emission of the thread switch and LDTMUs
* required to read the TMU results until the results are actually used to
* improve pipelining, which then would lead to us not finding them here
* (for SSA defs) or finding them in the list of registers awaiting a TMU flush
* (for registers), meaning that we need to flush outstanding TMU operations
* to read the correct value.
*/
struct qreg
ntq_get_src(struct v3d_compile *c, nir_src src, int i)
{
struct hash_entry *entry;
if (src.is_ssa) {
assert(i < src.ssa->num_components);
entry = _mesa_hash_table_search(c->def_ht, src.ssa);
if (!entry) {
ntq_flush_tmu(c);
entry = _mesa_hash_table_search(c->def_ht, src.ssa);
}
} else {
nir_register *reg = src.reg.reg;
assert(reg->num_array_elems == 0);
assert(src.reg.base_offset == 0);
assert(i < reg->num_components);
if (_mesa_set_search(c->tmu.outstanding_regs, reg))
ntq_flush_tmu(c);
entry = _mesa_hash_table_search(c->def_ht, reg);
}
assert(entry);
struct qreg *qregs = entry->data;
return qregs[i];
}
static struct qreg
ntq_get_alu_src(struct v3d_compile *c, nir_alu_instr *instr,
unsigned src)
{
assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
unsigned chan = ffs(instr->dest.write_mask) - 1;
struct qreg r = ntq_get_src(c, instr->src[src].src,
instr->src[src].swizzle[chan]);
assert(!instr->src[src].abs);
assert(!instr->src[src].negate);
return r;
};
static struct qreg
ntq_minify(struct v3d_compile *c, struct qreg size, struct qreg level)
{
return vir_MAX(c, vir_SHR(c, size, level), vir_uniform_ui(c, 1));
}
static void
ntq_emit_txs(struct v3d_compile *c, nir_tex_instr *instr)
{
unsigned unit = instr->texture_index;
int lod_index = nir_tex_instr_src_index(instr, nir_tex_src_lod);
int dest_size = nir_tex_instr_dest_size(instr);
struct qreg lod = c->undef;
if (lod_index != -1)
lod = ntq_get_src(c, instr->src[lod_index].src, 0);
for (int i = 0; i < dest_size; i++) {
assert(i < 3);
enum quniform_contents contents;
if (instr->is_array && i == dest_size - 1)
contents = QUNIFORM_TEXTURE_ARRAY_SIZE;
else
contents = QUNIFORM_TEXTURE_WIDTH + i;
struct qreg size = vir_uniform(c, contents, unit);
switch (instr->sampler_dim) {
case GLSL_SAMPLER_DIM_1D:
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_MS:
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
case GLSL_SAMPLER_DIM_BUF:
/* Don't minify the array size. */
if (!(instr->is_array && i == dest_size - 1)) {
size = ntq_minify(c, size, lod);
}
break;
case GLSL_SAMPLER_DIM_RECT:
/* There's no LOD field for rects */
break;
default:
unreachable("Bad sampler type");
}
ntq_store_dest(c, &instr->dest, i, size);
}
}
static void
ntq_emit_tex(struct v3d_compile *c, nir_tex_instr *instr)
{
unsigned unit = instr->texture_index;
/* Since each texture sampling op requires uploading uniforms to
* reference the texture, there's no HW support for texture size and
* you just upload uniforms containing the size.
*/
switch (instr->op) {
case nir_texop_query_levels:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_TEXTURE_LEVELS, unit));
return;
case nir_texop_texture_samples:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_TEXTURE_SAMPLES, unit));
return;
case nir_texop_txs:
ntq_emit_txs(c, instr);
return;
default:
break;
}
if (c->devinfo->ver >= 40)
v3d40_vir_emit_tex(c, instr);
else
v3d33_vir_emit_tex(c, instr);
}
static struct qreg
ntq_fsincos(struct v3d_compile *c, struct qreg src, bool is_cos)
{
struct qreg input = vir_FMUL(c, src, vir_uniform_f(c, 1.0f / M_PI));
if (is_cos)
input = vir_FADD(c, input, vir_uniform_f(c, 0.5));
struct qreg periods = vir_FROUND(c, input);
struct qreg sin_output = vir_SIN(c, vir_FSUB(c, input, periods));
return vir_XOR(c, sin_output, vir_SHL(c,
vir_FTOIN(c, periods),
vir_uniform_ui(c, -1)));
}
static struct qreg
ntq_fsign(struct v3d_compile *c, struct qreg src)
{
struct qreg t = vir_get_temp(c);
vir_MOV_dest(c, t, vir_uniform_f(c, 0.0));
vir_set_pf(c, vir_FMOV_dest(c, vir_nop_reg(), src), V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFNA, t, vir_uniform_f(c, 1.0));
vir_set_pf(c, vir_FMOV_dest(c, vir_nop_reg(), src), V3D_QPU_PF_PUSHN);
vir_MOV_cond(c, V3D_QPU_COND_IFA, t, vir_uniform_f(c, -1.0));
return vir_MOV(c, t);
}
static void
emit_fragcoord_input(struct v3d_compile *c, int attr)
{
c->inputs[attr * 4 + 0] = vir_FXCD(c);
c->inputs[attr * 4 + 1] = vir_FYCD(c);
c->inputs[attr * 4 + 2] = c->payload_z;
c->inputs[attr * 4 + 3] = vir_RECIP(c, c->payload_w);
}
static struct qreg
emit_smooth_varying(struct v3d_compile *c,
struct qreg vary, struct qreg w, struct qreg r5)
{
return vir_FADD(c, vir_FMUL(c, vary, w), r5);
}
static struct qreg
emit_noperspective_varying(struct v3d_compile *c,
struct qreg vary, struct qreg r5)
{
return vir_FADD(c, vir_MOV(c, vary), r5);
}
static struct qreg
emit_flat_varying(struct v3d_compile *c,
struct qreg vary, struct qreg r5)
{
vir_MOV_dest(c, c->undef, vary);
return vir_MOV(c, r5);
}
static struct qreg
emit_fragment_varying(struct v3d_compile *c, nir_variable *var,
int8_t input_idx, uint8_t swizzle, int array_index)
{
struct qreg r3 = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R3);
struct qreg r5 = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R5);
struct qinst *ldvary = NULL;
struct qreg vary;
if (c->devinfo->ver >= 41) {
ldvary = vir_add_inst(V3D_QPU_A_NOP, c->undef,
c->undef, c->undef);
ldvary->qpu.sig.ldvary = true;
vary = vir_emit_def(c, ldvary);
} else {
vir_NOP(c)->qpu.sig.ldvary = true;
vary = r3;
}
/* Store the input value before interpolation so we can implement
* GLSL's interpolateAt functions if the shader uses them.
*/
if (input_idx >= 0) {
assert(var);
c->interp[input_idx].vp = vary;
c->interp[input_idx].C = vir_MOV(c, r5);
c->interp[input_idx].mode = var->data.interpolation;
}
/* For gl_PointCoord input or distance along a line, we'll be called
* with no nir_variable, and we don't count toward VPM size so we
* don't track an input slot.
*/
if (!var) {
assert(input_idx < 0);
return emit_smooth_varying(c, vary, c->payload_w, r5);
}
int i = c->num_inputs++;
c->input_slots[i] =
v3d_slot_from_slot_and_component(var->data.location +
array_index, swizzle);
struct qreg result;
switch (var->data.interpolation) {
case INTERP_MODE_NONE:
case INTERP_MODE_SMOOTH:
if (var->data.centroid) {
BITSET_SET(c->centroid_flags, i);
result = emit_smooth_varying(c, vary,
c->payload_w_centroid, r5);
} else {
result = emit_smooth_varying(c, vary, c->payload_w, r5);
}
break;
case INTERP_MODE_NOPERSPECTIVE:
BITSET_SET(c->noperspective_flags, i);
result = emit_noperspective_varying(c, vary, r5);
break;
case INTERP_MODE_FLAT:
BITSET_SET(c->flat_shade_flags, i);
result = emit_flat_varying(c, vary, r5);
break;
default:
unreachable("Bad interp mode");
}
if (input_idx >= 0)
c->inputs[input_idx] = result;
return result;
}
static void
emit_fragment_input(struct v3d_compile *c, int base_attr, nir_variable *var,
int array_index, unsigned nelem)
{
for (int i = 0; i < nelem ; i++) {
int chan = var->data.location_frac + i;
int input_idx = (base_attr + array_index) * 4 + chan;
emit_fragment_varying(c, var, input_idx, chan, array_index);
}
}
static void
emit_compact_fragment_input(struct v3d_compile *c, int attr, nir_variable *var,
int array_index)
{
/* Compact variables are scalar arrays where each set of 4 elements
* consumes a single location.
*/
int loc_offset = array_index / 4;
int chan = var->data.location_frac + array_index % 4;
int input_idx = (attr + loc_offset) * 4 + chan;
emit_fragment_varying(c, var, input_idx, chan, loc_offset);
}
static void
add_output(struct v3d_compile *c,
uint32_t decl_offset,
uint8_t slot,
uint8_t swizzle)
{
uint32_t old_array_size = c->outputs_array_size;
resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
decl_offset + 1);
if (old_array_size != c->outputs_array_size) {
c->output_slots = reralloc(c,
c->output_slots,
struct v3d_varying_slot,
c->outputs_array_size);
}
c->output_slots[decl_offset] =
v3d_slot_from_slot_and_component(slot, swizzle);
}
/**
* If compare_instr is a valid comparison instruction, emits the
* compare_instr's comparison and returns the sel_instr's return value based
* on the compare_instr's result.
*/
static bool
ntq_emit_comparison(struct v3d_compile *c,
nir_alu_instr *compare_instr,
enum v3d_qpu_cond *out_cond)
{
struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
struct qreg src1;
if (nir_op_infos[compare_instr->op].num_inputs > 1)
src1 = ntq_get_alu_src(c, compare_instr, 1);
bool cond_invert = false;
struct qreg nop = vir_nop_reg();
switch (compare_instr->op) {
case nir_op_feq32:
case nir_op_seq:
vir_set_pf(c, vir_FCMP_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
break;
case nir_op_ieq32:
vir_set_pf(c, vir_XOR_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
break;
case nir_op_fneu32:
case nir_op_sne:
vir_set_pf(c, vir_FCMP_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
cond_invert = true;
break;
case nir_op_ine32:
vir_set_pf(c, vir_XOR_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
cond_invert = true;
break;
case nir_op_fge32:
case nir_op_sge:
vir_set_pf(c, vir_FCMP_dest(c, nop, src1, src0), V3D_QPU_PF_PUSHC);
break;
case nir_op_ige32:
vir_set_pf(c, vir_MIN_dest(c, nop, src1, src0), V3D_QPU_PF_PUSHC);
cond_invert = true;
break;
case nir_op_uge32:
vir_set_pf(c, vir_SUB_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHC);
cond_invert = true;
break;
case nir_op_slt:
case nir_op_flt32:
vir_set_pf(c, vir_FCMP_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHN);
break;
case nir_op_ilt32:
vir_set_pf(c, vir_MIN_dest(c, nop, src1, src0), V3D_QPU_PF_PUSHC);
break;
case nir_op_ult32:
vir_set_pf(c, vir_SUB_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHC);
break;
case nir_op_i2b32:
vir_set_pf(c, vir_MOV_dest(c, nop, src0), V3D_QPU_PF_PUSHZ);
cond_invert = true;
break;
case nir_op_f2b32:
vir_set_pf(c, vir_FMOV_dest(c, nop, src0), V3D_QPU_PF_PUSHZ);
cond_invert = true;
break;
default:
return false;
}
*out_cond = cond_invert ? V3D_QPU_COND_IFNA : V3D_QPU_COND_IFA;
return true;
}
/* Finds an ALU instruction that generates our src value that could
* (potentially) be greedily emitted in the consuming instruction.
*/
static struct nir_alu_instr *
ntq_get_alu_parent(nir_src src)
{
if (!src.is_ssa || src.ssa->parent_instr->type != nir_instr_type_alu)
return NULL;
nir_alu_instr *instr = nir_instr_as_alu(src.ssa->parent_instr);
if (!instr)
return NULL;
/* If the ALU instr's srcs are non-SSA, then we would have to avoid
* moving emission of the ALU instr down past another write of the
* src.
*/
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
if (!instr->src[i].src.is_ssa)
return NULL;
}
return instr;
}
/* Turns a NIR bool into a condition code to predicate on. */
static enum v3d_qpu_cond
ntq_emit_bool_to_cond(struct v3d_compile *c, nir_src src)
{
struct qreg qsrc = ntq_get_src(c, src, 0);
/* skip if we already have src in the flags */
if (qsrc.file == QFILE_TEMP && c->flags_temp == qsrc.index)
return c->flags_cond;
nir_alu_instr *compare = ntq_get_alu_parent(src);
if (!compare)
goto out;
enum v3d_qpu_cond cond;
if (ntq_emit_comparison(c, compare, &cond))
return cond;
out:
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), ntq_get_src(c, src, 0)),
V3D_QPU_PF_PUSHZ);
return V3D_QPU_COND_IFNA;
}
static struct qreg
ntq_emit_cond_to_bool(struct v3d_compile *c, enum v3d_qpu_cond cond)
{
struct qreg result =
vir_MOV(c, vir_SEL(c, cond,
vir_uniform_ui(c, ~0),
vir_uniform_ui(c, 0)));
c->flags_temp = result.index;
c->flags_cond = cond;
return result;
}
static struct qreg
ntq_emit_cond_to_int(struct v3d_compile *c, enum v3d_qpu_cond cond)
{
struct qreg result =
vir_MOV(c, vir_SEL(c, cond,
vir_uniform_ui(c, 1),
vir_uniform_ui(c, 0)));
c->flags_temp = result.index;
c->flags_cond = cond;
return result;
}
static struct qreg
f2f16_rtz(struct v3d_compile *c, struct qreg f32)
{
/* The GPU doesn't provide a mechanism to modify the f32->f16 rounding
* method and seems to be using RTE by default, so we need to implement
* RTZ rounding in software :-(
*
* The implementation identifies the cases where RTZ applies and
* returns the correct result and for everything else, it just uses
* the default RTE conversion.
*/
static bool _first = true;
if (_first && unlikely(V3D_DEBUG & V3D_DEBUG_PERF)) {
fprintf(stderr, "Shader uses round-toward-zero f32->f16 "
"conversion which is not supported in hardware.\n");
_first = false;
}
struct qinst *inst;
struct qreg tmp;
struct qreg result = vir_get_temp(c);
struct qreg mantissa32 = vir_AND(c, f32, vir_uniform_ui(c, 0x007fffff));
/* Compute sign bit of result */
struct qreg sign = vir_AND(c, vir_SHR(c, f32, vir_uniform_ui(c, 16)),
vir_uniform_ui(c, 0x8000));
/* Check the cases were RTZ rounding is relevant based on exponent */
struct qreg exp32 = vir_AND(c, vir_SHR(c, f32, vir_uniform_ui(c, 23)),
vir_uniform_ui(c, 0xff));
struct qreg exp16 = vir_ADD(c, exp32, vir_uniform_ui(c, -127 + 15));
/* if (exp16 > 30) */
inst = vir_MIN_dest(c, vir_nop_reg(), exp16, vir_uniform_ui(c, 30));
vir_set_pf(c, inst, V3D_QPU_PF_PUSHC);
inst = vir_OR_dest(c, result, sign, vir_uniform_ui(c, 0x7bff));
vir_set_cond(inst, V3D_QPU_COND_IFA);
/* if (exp16 <= 30) */
inst = vir_OR_dest(c, result,
vir_OR(c, sign,
vir_SHL(c, exp16, vir_uniform_ui(c, 10))),
vir_SHR(c, mantissa32, vir_uniform_ui(c, 13)));
vir_set_cond(inst, V3D_QPU_COND_IFNA);
/* if (exp16 <= 0) */
inst = vir_MIN_dest(c, vir_nop_reg(), exp16, vir_uniform_ui(c, 0));
vir_set_pf(c, inst, V3D_QPU_PF_PUSHC);
tmp = vir_OR(c, mantissa32, vir_uniform_ui(c, 0x800000));
tmp = vir_SHR(c, tmp, vir_SUB(c, vir_uniform_ui(c, 14), exp16));
inst = vir_OR_dest(c, result, sign, tmp);
vir_set_cond(inst, V3D_QPU_COND_IFNA);
/* Cases where RTZ mode is not relevant: use default RTE conversion.
*
* The cases that are not affected by RTZ are:
*
* exp16 < - 10 || exp32 == 0 || exp32 == 0xff
*
* In V3D we can implement this condition as:
*
* !((exp16 >= -10) && !(exp32 == 0) && !(exp32 == 0xff)))
*/
/* exp16 >= -10 */
inst = vir_MIN_dest(c, vir_nop_reg(), exp16, vir_uniform_ui(c, -10));
vir_set_pf(c, inst, V3D_QPU_PF_PUSHC);
/* && !(exp32 == 0) */
inst = vir_MOV_dest(c, vir_nop_reg(), exp32);
vir_set_uf(c, inst, V3D_QPU_UF_ANDNZ);
/* && !(exp32 == 0xff) */
inst = vir_XOR_dest(c, vir_nop_reg(), exp32, vir_uniform_ui(c, 0xff));
vir_set_uf(c, inst, V3D_QPU_UF_ANDNZ);
/* Use regular RTE conversion if condition is False */
inst = vir_FMOV_dest(c, result, f32);
vir_set_pack(inst, V3D_QPU_PACK_L);
vir_set_cond(inst, V3D_QPU_COND_IFNA);
return vir_MOV(c, result);
}
/**
* Takes the result value of a signed integer width conversion from a smaller
* type to a larger type and if needed, it applies sign extension to it.
*/
static struct qreg
sign_extend(struct v3d_compile *c,
struct qreg value,
uint32_t src_bit_size,
uint32_t dst_bit_size)
{
assert(src_bit_size < dst_bit_size);
struct qreg tmp = vir_MOV(c, value);
/* Do we need to sign-extend? */
uint32_t sign_mask = 1 << (src_bit_size - 1);
struct qinst *sign_check =
vir_AND_dest(c, vir_nop_reg(),
tmp, vir_uniform_ui(c, sign_mask));
vir_set_pf(c, sign_check, V3D_QPU_PF_PUSHZ);
/* If so, fill in leading sign bits */
uint32_t extend_bits = ~(((1 << src_bit_size) - 1)) &
((1ull << dst_bit_size) - 1);
struct qinst *extend_inst =
vir_OR_dest(c, tmp, tmp,
vir_uniform_ui(c, extend_bits));
vir_set_cond(extend_inst, V3D_QPU_COND_IFNA);
return tmp;
}
static void
ntq_emit_alu(struct v3d_compile *c, nir_alu_instr *instr)
{
/* This should always be lowered to ALU operations for V3D. */
assert(!instr->dest.saturate);
/* Vectors are special in that they have non-scalarized writemasks,
* and just take the first swizzle channel for each argument in order
* into each writemask channel.
*/
if (instr->op == nir_op_vec2 ||
instr->op == nir_op_vec3 ||
instr->op == nir_op_vec4) {
struct qreg srcs[4];
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
srcs[i] = ntq_get_src(c, instr->src[i].src,
instr->src[i].swizzle[0]);
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
ntq_store_dest(c, &instr->dest.dest, i,
vir_MOV(c, srcs[i]));
return;
}
/* General case: We can just grab the one used channel per src. */
struct qreg src[nir_op_infos[instr->op].num_inputs];
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
src[i] = ntq_get_alu_src(c, instr, i);
}
struct qreg result;
switch (instr->op) {
case nir_op_mov:
result = vir_MOV(c, src[0]);
break;
case nir_op_fneg:
result = vir_XOR(c, src[0], vir_uniform_ui(c, 1 << 31));
break;
case nir_op_ineg:
result = vir_NEG(c, src[0]);
break;
case nir_op_fmul:
result = vir_FMUL(c, src[0], src[1]);
break;
case nir_op_fadd:
result = vir_FADD(c, src[0], src[1]);
break;
case nir_op_fsub:
result = vir_FSUB(c, src[0], src[1]);
break;
case nir_op_fmin:
result = vir_FMIN(c, src[0], src[1]);
break;
case nir_op_fmax:
result = vir_FMAX(c, src[0], src[1]);
break;
case nir_op_f2i32: {
nir_alu_instr *src0_alu = ntq_get_alu_parent(instr->src[0].src);
if (src0_alu && src0_alu->op == nir_op_fround_even) {
result = vir_FTOIN(c, ntq_get_alu_src(c, src0_alu, 0));
} else {
result = vir_FTOIZ(c, src[0]);
}
break;
}
case nir_op_f2u32:
result = vir_FTOUZ(c, src[0]);
break;
case nir_op_i2f32:
result = vir_ITOF(c, src[0]);
break;
case nir_op_u2f32:
result = vir_UTOF(c, src[0]);
break;
case nir_op_b2f32:
result = vir_AND(c, src[0], vir_uniform_f(c, 1.0));
break;
case nir_op_b2i32:
result = vir_AND(c, src[0], vir_uniform_ui(c, 1));
break;
case nir_op_f2f16:
case nir_op_f2f16_rtne:
assert(nir_src_bit_size(instr->src[0].src) == 32);
result = vir_FMOV(c, src[0]);
vir_set_pack(c->defs[result.index], V3D_QPU_PACK_L);
break;
case nir_op_f2f16_rtz:
assert(nir_src_bit_size(instr->src[0].src) == 32);
result = f2f16_rtz(c, src[0]);
break;
case nir_op_f2f32:
assert(nir_src_bit_size(instr->src[0].src) == 16);
result = vir_FMOV(c, src[0]);
vir_set_unpack(c->defs[result.index], 0, V3D_QPU_UNPACK_L);
break;
case nir_op_i2i16: {
uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
assert(bit_size == 32 || bit_size == 8);
if (bit_size == 32) {
/* We don't have integer pack/unpack methods for
* converting between 16-bit and 32-bit, so we implement
* the conversion manually by truncating the src.
*/
result = vir_AND(c, src[0], vir_uniform_ui(c, 0xffff));
} else {
struct qreg tmp = vir_AND(c, src[0],
vir_uniform_ui(c, 0xff));
result = vir_MOV(c, sign_extend(c, tmp, bit_size, 16));
}
break;
}
case nir_op_u2u16: {
uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
assert(bit_size == 32 || bit_size == 8);
/* We don't have integer pack/unpack methods for converting
* between 16-bit and 32-bit, so we implement the conversion
* manually by truncating the src. For the 8-bit case, we
* want to make sure we don't copy garbage from any of the
* 24 MSB bits.
*/
if (bit_size == 32)
result = vir_AND(c, src[0], vir_uniform_ui(c, 0xffff));
else
result = vir_AND(c, src[0], vir_uniform_ui(c, 0xff));
break;
}
case nir_op_i2i8:
case nir_op_u2u8:
assert(nir_src_bit_size(instr->src[0].src) == 32 ||
nir_src_bit_size(instr->src[0].src) == 16);
/* We don't have integer pack/unpack methods for converting
* between 8-bit and 32-bit, so we implement the conversion
* manually by truncating the src.
*/
result = vir_AND(c, src[0], vir_uniform_ui(c, 0xff));
break;
case nir_op_u2u32: {
uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
assert(bit_size == 16 || bit_size == 8);
/* we don't have a native 8-bit/16-bit MOV so we copy all 32-bit
* from the src but we make sure to clear any garbage bits that
* may be present in the invalid src bits.
*/
uint32_t mask = (1 << bit_size) - 1;
result = vir_AND(c, src[0], vir_uniform_ui(c, mask));
break;
}
case nir_op_i2i32: {
uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
assert(bit_size == 16 || bit_size == 8);
uint32_t mask = (1 << bit_size) - 1;
struct qreg tmp = vir_AND(c, src[0],
vir_uniform_ui(c, mask));
result = vir_MOV(c, sign_extend(c, tmp, bit_size, 32));
break;
}
case nir_op_iadd:
result = vir_ADD(c, src[0], src[1]);
break;
case nir_op_ushr:
result = vir_SHR(c, src[0], src[1]);
break;
case nir_op_isub:
result = vir_SUB(c, src[0], src[1]);
break;
case nir_op_ishr:
result = vir_ASR(c, src[0], src[1]);
break;
case nir_op_ishl:
result = vir_SHL(c, src[0], src[1]);
break;
case nir_op_imin:
result = vir_MIN(c, src[0], src[1]);
break;
case nir_op_umin:
result = vir_UMIN(c, src[0], src[1]);
break;
case nir_op_imax:
result = vir_MAX(c, src[0], src[1]);
break;
case nir_op_umax:
result = vir_UMAX(c, src[0], src[1]);
break;
case nir_op_iand:
result = vir_AND(c, src[0], src[1]);
break;
case nir_op_ior:
result = vir_OR(c, src[0], src[1]);
break;
case nir_op_ixor:
result = vir_XOR(c, src[0], src[1]);
break;
case nir_op_inot:
result = vir_NOT(c, src[0]);
break;
case nir_op_ufind_msb:
result = vir_SUB(c, vir_uniform_ui(c, 31), vir_CLZ(c, src[0]));
break;
case nir_op_imul:
result = vir_UMUL(c, src[0], src[1]);
break;
case nir_op_seq:
case nir_op_sne:
case nir_op_sge:
case nir_op_slt: {
enum v3d_qpu_cond cond;
ASSERTED bool ok = ntq_emit_comparison(c, instr, &cond);
assert(ok);
result = vir_MOV(c, vir_SEL(c, cond,
vir_uniform_f(c, 1.0),
vir_uniform_f(c, 0.0)));
c->flags_temp = result.index;
c->flags_cond = cond;
break;
}
case nir_op_i2b32:
case nir_op_f2b32:
case nir_op_feq32:
case nir_op_fneu32:
case nir_op_fge32:
case nir_op_flt32:
case nir_op_ieq32:
case nir_op_ine32:
case nir_op_ige32:
case nir_op_uge32:
case nir_op_ilt32:
case nir_op_ult32: {
enum v3d_qpu_cond cond;
ASSERTED bool ok = ntq_emit_comparison(c, instr, &cond);
assert(ok);
result = ntq_emit_cond_to_bool(c, cond);
break;
}
case nir_op_b32csel:
result = vir_MOV(c,
vir_SEL(c,
ntq_emit_bool_to_cond(c, instr->src[0].src),
src[1], src[2]));
break;
case nir_op_fcsel:
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), src[0]),
V3D_QPU_PF_PUSHZ);
result = vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFNA,
src[1], src[2]));
break;
case nir_op_frcp:
result = vir_RECIP(c, src[0]);
break;
case nir_op_frsq:
result = vir_RSQRT(c, src[0]);
break;
case nir_op_fexp2:
result = vir_EXP(c, src[0]);
break;
case nir_op_flog2:
result = vir_LOG(c, src[0]);
break;
case nir_op_fceil:
result = vir_FCEIL(c, src[0]);
break;
case nir_op_ffloor:
result = vir_FFLOOR(c, src[0]);
break;
case nir_op_fround_even:
result = vir_FROUND(c, src[0]);
break;
case nir_op_ftrunc:
result = vir_FTRUNC(c, src[0]);
break;
case nir_op_fsin:
result = ntq_fsincos(c, src[0], false);
break;
case nir_op_fcos:
result = ntq_fsincos(c, src[0], true);
break;
case nir_op_fsign:
result = ntq_fsign(c, src[0]);
break;
case nir_op_fabs: {
result = vir_FMOV(c, src[0]);
vir_set_unpack(c->defs[result.index], 0, V3D_QPU_UNPACK_ABS);
break;
}
case nir_op_iabs:
result = vir_MAX(c, src[0], vir_NEG(c, src[0]));
break;
case nir_op_fddx:
case nir_op_fddx_coarse:
case nir_op_fddx_fine:
result = vir_FDX(c, src[0]);
break;
case nir_op_fddy:
case nir_op_fddy_coarse:
case nir_op_fddy_fine:
result = vir_FDY(c, src[0]);
break;
case nir_op_uadd_carry:
vir_set_pf(c, vir_ADD_dest(c, vir_nop_reg(), src[0], src[1]),
V3D_QPU_PF_PUSHC);
result = ntq_emit_cond_to_int(c, V3D_QPU_COND_IFA);
break;
case nir_op_usub_borrow:
vir_set_pf(c, vir_SUB_dest(c, vir_nop_reg(), src[0], src[1]),
V3D_QPU_PF_PUSHC);
result = ntq_emit_cond_to_int(c, V3D_QPU_COND_IFA);
break;
case nir_op_pack_half_2x16_split:
result = vir_VFPACK(c, src[0], src[1]);
break;
case nir_op_unpack_half_2x16_split_x:
result = vir_FMOV(c, src[0]);
vir_set_unpack(c->defs[result.index], 0, V3D_QPU_UNPACK_L);
break;
case nir_op_unpack_half_2x16_split_y:
result = vir_FMOV(c, src[0]);
vir_set_unpack(c->defs[result.index], 0, V3D_QPU_UNPACK_H);
break;
case nir_op_fquantize2f16: {
/* F32 -> F16 -> F32 conversion */
struct qreg tmp = vir_FMOV(c, src[0]);
vir_set_pack(c->defs[tmp.index], V3D_QPU_PACK_L);
tmp = vir_FMOV(c, tmp);
vir_set_unpack(c->defs[tmp.index], 0, V3D_QPU_UNPACK_L);
/* Check for denorm */
struct qreg abs_src = vir_FMOV(c, src[0]);
vir_set_unpack(c->defs[abs_src.index], 0, V3D_QPU_UNPACK_ABS);
struct qreg threshold = vir_uniform_f(c, ldexpf(1.0, -14));
vir_set_pf(c, vir_FCMP_dest(c, vir_nop_reg(), abs_src, threshold),
V3D_QPU_PF_PUSHC);
/* Return +/-0 for denorms */
struct qreg zero =
vir_AND(c, src[0], vir_uniform_ui(c, 0x80000000));
result = vir_FMOV(c, vir_SEL(c, V3D_QPU_COND_IFNA, tmp, zero));
break;
}
default:
fprintf(stderr, "unknown NIR ALU inst: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
abort();
}
/* We have a scalar result, so the instruction should only have a
* single channel written to.
*/
assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
ntq_store_dest(c, &instr->dest.dest,
ffs(instr->dest.write_mask) - 1, result);
}
/* Each TLB read/write setup (a render target or depth buffer) takes an 8-bit
* specifier. They come from a register that's preloaded with 0xffffffff
* (0xff gets you normal vec4 f16 RT0 writes), and when one is neaded the low
* 8 bits are shifted off the bottom and 0xff shifted in from the top.
*/
#define TLB_TYPE_F16_COLOR (3 << 6)
#define TLB_TYPE_I32_COLOR (1 << 6)
#define TLB_TYPE_F32_COLOR (0 << 6)
#define TLB_RENDER_TARGET_SHIFT 3 /* Reversed! 7 = RT 0, 0 = RT 7. */
#define TLB_SAMPLE_MODE_PER_SAMPLE (0 << 2)
#define TLB_SAMPLE_MODE_PER_PIXEL (1 << 2)
#define TLB_F16_SWAP_HI_LO (1 << 1)
#define TLB_VEC_SIZE_4_F16 (1 << 0)
#define TLB_VEC_SIZE_2_F16 (0 << 0)
#define TLB_VEC_SIZE_MINUS_1_SHIFT 0
/* Triggers Z/Stencil testing, used when the shader state's "FS modifies Z"
* flag is set.
*/
#define TLB_TYPE_DEPTH ((2 << 6) | (0 << 4))
#define TLB_DEPTH_TYPE_INVARIANT (0 << 2) /* Unmodified sideband input used */
#define TLB_DEPTH_TYPE_PER_PIXEL (1 << 2) /* QPU result used */
#define TLB_V42_DEPTH_TYPE_INVARIANT (0 << 3) /* Unmodified sideband input used */
#define TLB_V42_DEPTH_TYPE_PER_PIXEL (1 << 3) /* QPU result used */
/* Stencil is a single 32-bit write. */
#define TLB_TYPE_STENCIL_ALPHA ((2 << 6) | (1 << 4))
static void
vir_emit_tlb_color_write(struct v3d_compile *c, unsigned rt)
{
if (!(c->fs_key->cbufs & (1 << rt)) || !c->output_color_var[rt])
return;
struct qreg tlb_reg = vir_magic_reg(V3D_QPU_WADDR_TLB);
struct qreg tlbu_reg = vir_magic_reg(V3D_QPU_WADDR_TLBU);
nir_variable *var = c->output_color_var[rt];
int num_components = glsl_get_vector_elements(var->type);
uint32_t conf = 0xffffff00;
struct qinst *inst;
conf |= c->msaa_per_sample_output ? TLB_SAMPLE_MODE_PER_SAMPLE :
TLB_SAMPLE_MODE_PER_PIXEL;
conf |= (7 - rt) << TLB_RENDER_TARGET_SHIFT;
if (c->fs_key->swap_color_rb & (1 << rt))
num_components = MAX2(num_components, 3);
assert(num_components != 0);
enum glsl_base_type type = glsl_get_base_type(var->type);
bool is_int_format = type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT;
bool is_32b_tlb_format = is_int_format ||
(c->fs_key->f32_color_rb & (1 << rt));
if (is_int_format) {
/* The F32 vs I32 distinction was dropped in 4.2. */
if (c->devinfo->ver < 42)
conf |= TLB_TYPE_I32_COLOR;
else
conf |= TLB_TYPE_F32_COLOR;
conf |= ((num_components - 1) << TLB_VEC_SIZE_MINUS_1_SHIFT);
} else {
if (c->fs_key->f32_color_rb & (1 << rt)) {
conf |= TLB_TYPE_F32_COLOR;
conf |= ((num_components - 1) <<
TLB_VEC_SIZE_MINUS_1_SHIFT);
} else {
conf |= TLB_TYPE_F16_COLOR;
conf |= TLB_F16_SWAP_HI_LO;
if (num_components >= 3)
conf |= TLB_VEC_SIZE_4_F16;
else
conf |= TLB_VEC_SIZE_2_F16;
}
}
int num_samples = c->msaa_per_sample_output ? V3D_MAX_SAMPLES : 1;
for (int i = 0; i < num_samples; i++) {
struct qreg *color = c->msaa_per_sample_output ?
&c->sample_colors[(rt * V3D_MAX_SAMPLES + i) * 4] :
&c->outputs[var->data.driver_location * 4];
struct qreg r = color[0];
struct qreg g = color[1];
struct qreg b = color[2];
struct qreg a = color[3];
if (c->fs_key->swap_color_rb & (1 << rt)) {
r = color[2];
b = color[0];
}
if (c->fs_key->sample_alpha_to_one)
a = vir_uniform_f(c, 1.0);
if (is_32b_tlb_format) {
if (i == 0) {
inst = vir_MOV_dest(c, tlbu_reg, r);
inst->uniform =
vir_get_uniform_index(c,
QUNIFORM_CONSTANT,
conf);
} else {
vir_MOV_dest(c, tlb_reg, r);
}
if (num_components >= 2)
vir_MOV_dest(c, tlb_reg, g);
if (num_components >= 3)
vir_MOV_dest(c, tlb_reg, b);
if (num_components >= 4)
vir_MOV_dest(c, tlb_reg, a);
} else {
inst = vir_VFPACK_dest(c, tlb_reg, r, g);
if (conf != ~0 && i == 0) {
inst->dst = tlbu_reg;
inst->uniform =
vir_get_uniform_index(c,
QUNIFORM_CONSTANT,
conf);
}
if (num_components >= 3)
vir_VFPACK_dest(c, tlb_reg, b, a);
}
}
}
static void
emit_frag_end(struct v3d_compile *c)
{
if (c->output_sample_mask_index != -1) {
vir_SETMSF_dest(c, vir_nop_reg(),
vir_AND(c,
vir_MSF(c),
c->outputs[c->output_sample_mask_index]));
}
bool has_any_tlb_color_write = false;
for (int rt = 0; rt < V3D_MAX_DRAW_BUFFERS; rt++) {
if (c->fs_key->cbufs & (1 << rt) && c->output_color_var[rt])
has_any_tlb_color_write = true;
}
if (c->fs_key->sample_alpha_to_coverage && c->output_color_var[0]) {
struct nir_variable *var = c->output_color_var[0];
struct qreg *color = &c->outputs[var->data.driver_location * 4];
vir_SETMSF_dest(c, vir_nop_reg(),
vir_AND(c,
vir_MSF(c),
vir_FTOC(c, color[3])));
}
struct qreg tlbu_reg = vir_magic_reg(V3D_QPU_WADDR_TLBU);
/* If the shader has no non-TLB side effects and doesn't write Z
* we can promote it to enabling early_fragment_tests even
* if the user didn't.
*/
if (c->output_position_index == -1 &&
!(c->s->info.num_images || c->s->info.num_ssbos) &&
!c->s->info.fs.uses_discard &&
!c->fs_key->sample_alpha_to_coverage &&
c->output_sample_mask_index == -1 &&
has_any_tlb_color_write) {
c->s->info.fs.early_fragment_tests = true;
}
/* By default, Z buffer writes are implicit using the Z values produced
* from FEP (Z value produced from rasterization). When this is not
* desirable (shader writes Z explicitly, has discards, etc) we need
* to let the hardware know by setting c->writes_z to true, in which
* case we always need to write a Z value from the QPU, even if it is
* just the passthrough Z value produced from FEP.
*
* Also, from the V3D 4.2 spec:
*
* "If a shader performs a Z read the “Fragment shader does Z writes”
* bit in the shader record must be enabled to ensure deterministic
* results"
*
* So if c->reads_z is set we always need to write Z, even if it is
* a passthrough from the Z value produced from FEP.
*/
if (!c->s->info.fs.early_fragment_tests || c->reads_z) {
c->writes_z = true;
uint8_t tlb_specifier = TLB_TYPE_DEPTH;
struct qinst *inst;
if (c->output_position_index != -1) {
/* Shader writes to gl_FragDepth, use that */
inst = vir_MOV_dest(c, tlbu_reg,
c->outputs[c->output_position_index]);
if (c->devinfo->ver >= 42) {
tlb_specifier |= (TLB_V42_DEPTH_TYPE_PER_PIXEL |
TLB_SAMPLE_MODE_PER_PIXEL);
} else {
tlb_specifier |= TLB_DEPTH_TYPE_PER_PIXEL;
}
} else {
/* Shader doesn't write to gl_FragDepth, take Z from
* FEP.
*/
c->writes_z_from_fep = true;
inst = vir_MOV_dest(c, tlbu_reg, vir_nop_reg());
if (c->devinfo->ver >= 42) {
/* The spec says the PER_PIXEL flag is ignored
* for invariant writes, but the simulator
* demands it.
*/
tlb_specifier |= (TLB_V42_DEPTH_TYPE_INVARIANT |
TLB_SAMPLE_MODE_PER_PIXEL);
} else {
tlb_specifier |= TLB_DEPTH_TYPE_INVARIANT;
}
/* Since (single-threaded) fragment shaders always need
* a TLB write, if we dond't have any we emit a
* passthrouh Z and flag us as potentially discarding,
* so that we can use Z as the required TLB write.
*/
if (!has_any_tlb_color_write)
c->s->info.fs.uses_discard = true;
}
inst->uniform = vir_get_uniform_index(c, QUNIFORM_CONSTANT,
tlb_specifier |
0xffffff00);
inst->is_tlb_z_write = true;
}
/* XXX: Performance improvement: Merge Z write and color writes TLB
* uniform setup
*/
for (int rt = 0; rt < V3D_MAX_DRAW_BUFFERS; rt++)
vir_emit_tlb_color_write(c, rt);
}
static inline void
vir_VPM_WRITE_indirect(struct v3d_compile *c,
struct qreg val,
struct qreg vpm_index,
bool uniform_vpm_index)
{
assert(c->devinfo->ver >= 40);
if (uniform_vpm_index)
vir_STVPMV(c, vpm_index, val);
else
vir_STVPMD(c, vpm_index, val);
}
static void
vir_VPM_WRITE(struct v3d_compile *c, struct qreg val, uint32_t vpm_index)
{
if (c->devinfo->ver >= 40) {
vir_VPM_WRITE_indirect(c, val,
vir_uniform_ui(c, vpm_index), true);
} else {
/* XXX: v3d33_vir_vpm_write_setup(c); */
vir_MOV_dest(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_VPM), val);
}
}
static void
emit_vert_end(struct v3d_compile *c)
{
/* GFXH-1684: VPM writes need to be complete by the end of the shader.
*/
if (c->devinfo->ver >= 40 && c->devinfo->ver <= 42)
vir_VPMWT(c);
}
static void
emit_geom_end(struct v3d_compile *c)
{
/* GFXH-1684: VPM writes need to be complete by the end of the shader.
*/
if (c->devinfo->ver >= 40 && c->devinfo->ver <= 42)
vir_VPMWT(c);
}
static bool
mem_vectorize_callback(unsigned align_mul, unsigned align_offset,
unsigned bit_size,
unsigned num_components,
nir_intrinsic_instr *low,
nir_intrinsic_instr *high,
void *data)
{
/* TMU general access only supports 32-bit vectors */
if (bit_size > 32)
return false;
if ((bit_size == 8 || bit_size == 16) && num_components > 1)
return false;
if (align_mul % 4 != 0 || align_offset % 4 != 0)
return false;
/* Vector accesses wrap at 16-byte boundaries so we can't vectorize
* if the resulting vector crosses a 16-byte boundary.
*/
assert(util_is_power_of_two_nonzero(align_mul));
align_mul = MIN2(align_mul, 16);
align_offset &= 0xf;
if (16 - align_mul + align_offset + num_components * 4 > 16)
return false;
return true;
}
void
v3d_optimize_nir(struct v3d_compile *c, struct nir_shader *s)
{
bool progress;
unsigned lower_flrp =
(s->options->lower_flrp16 ? 16 : 0) |
(s->options->lower_flrp32 ? 32 : 0) |
(s->options->lower_flrp64 ? 64 : 0);
do {
progress = false;
NIR_PASS(progress, s, nir_lower_vars_to_ssa);
NIR_PASS(progress, s, nir_lower_alu_to_scalar, NULL, NULL);
NIR_PASS(progress, s, nir_lower_phis_to_scalar, false);
NIR_PASS(progress, s, nir_copy_prop);
NIR_PASS(progress, s, nir_opt_remove_phis);
NIR_PASS(progress, s, nir_opt_dce);
NIR_PASS(progress, s, nir_opt_dead_cf);
NIR_PASS(progress, s, nir_opt_cse);
NIR_PASS(progress, s, nir_opt_peephole_select, 8, true, true);
NIR_PASS(progress, s, nir_opt_algebraic);
NIR_PASS(progress, s, nir_opt_constant_folding);
/* Note that vectorization may undo the load/store scalarization
* pass we run for non 32-bit TMU general load/store by
* converting, for example, 2 consecutive 16-bit loads into a
* single 32-bit load. This is fine (and desirable) as long as
* the resulting 32-bit load meets 32-bit alignment requirements,
* which mem_vectorize_callback() should be enforcing.
*/
nir_load_store_vectorize_options vectorize_opts = {
.modes = nir_var_mem_ssbo | nir_var_mem_ubo |
nir_var_mem_push_const | nir_var_mem_shared |
nir_var_mem_global,
.callback = mem_vectorize_callback,
.robust_modes = 0,
};
bool vectorize_progress = false;
NIR_PASS(vectorize_progress, s, nir_opt_load_store_vectorize,
&vectorize_opts);
if (vectorize_progress) {
NIR_PASS(progress, s, nir_lower_alu_to_scalar, NULL, NULL);
NIR_PASS(progress, s, nir_lower_pack);
progress = true;
}
if (lower_flrp != 0) {
bool lower_flrp_progress = false;
NIR_PASS(lower_flrp_progress, s, nir_lower_flrp,
lower_flrp,
false /* always_precise */);
if (lower_flrp_progress) {
NIR_PASS(progress, s, nir_opt_constant_folding);
progress = true;
}
/* Nothing should rematerialize any flrps, so we only
* need to do this lowering once.
*/
lower_flrp = 0;
}
NIR_PASS(progress, s, nir_opt_undef);
NIR_PASS(progress, s, nir_lower_undef_to_zero);
if (c && !c->disable_loop_unrolling &&
s->options->max_unroll_iterations > 0) {
bool local_progress = false;
NIR_PASS(local_progress, s, nir_opt_loop_unroll);
c->unrolled_any_loops |= local_progress;
progress |= local_progress;
}
} while (progress);
nir_move_options sink_opts =
nir_move_const_undef | nir_move_comparisons | nir_move_copies |
nir_move_load_ubo | nir_move_load_ssbo | nir_move_load_uniform;
NIR_PASS(progress, s, nir_opt_sink, sink_opts);
}
static int
driver_location_compare(const nir_variable *a, const nir_variable *b)
{
return a->data.driver_location == b->data.driver_location ?
a->data.location_frac - b->data.location_frac :
a->data.driver_location - b->data.driver_location;
}
static struct qreg
ntq_emit_vpm_read(struct v3d_compile *c,
uint32_t *num_components_queued,
uint32_t *remaining,
uint32_t vpm_index)
{
struct qreg vpm = vir_reg(QFILE_VPM, vpm_index);
if (c->devinfo->ver >= 40 ) {
return vir_LDVPMV_IN(c,
vir_uniform_ui(c,
(*num_components_queued)++));
}
if (*num_components_queued != 0) {
(*num_components_queued)--;
return vir_MOV(c, vpm);
}
uint32_t num_components = MIN2(*remaining, 32);
v3d33_vir_vpm_read_setup(c, num_components);
*num_components_queued = num_components - 1;
*remaining -= num_components;
return vir_MOV(c, vpm);
}
static void
ntq_setup_vs_inputs(struct v3d_compile *c)
{
/* Figure out how many components of each vertex attribute the shader
* uses. Each variable should have been split to individual
* components and unused ones DCEed. The vertex fetcher will load
* from the start of the attribute to the number of components we
* declare we need in c->vattr_sizes[].
*
* BGRA vertex attributes are a bit special: since we implement these
* as RGBA swapping R/B components we always need at least 3 components
* if component 0 is read.
*/
nir_foreach_shader_in_variable(var, c->s) {
/* No VS attribute array support. */
assert(MAX2(glsl_get_length(var->type), 1) == 1);
unsigned loc = var->data.driver_location;
int start_component = var->data.location_frac;
int num_components = glsl_get_components(var->type);
c->vattr_sizes[loc] = MAX2(c->vattr_sizes[loc],
start_component + num_components);
/* Handle BGRA inputs */
if (start_component == 0 &&
c->vs_key->va_swap_rb_mask & (1 << var->data.location)) {
c->vattr_sizes[loc] = MAX2(3, c->vattr_sizes[loc]);
}
}
unsigned num_components = 0;
uint32_t vpm_components_queued = 0;
bool uses_iid = BITSET_TEST(c->s->info.system_values_read,
SYSTEM_VALUE_INSTANCE_ID) ||
BITSET_TEST(c->s->info.system_values_read,
SYSTEM_VALUE_INSTANCE_INDEX);
bool uses_biid = BITSET_TEST(c->s->info.system_values_read,
SYSTEM_VALUE_BASE_INSTANCE);
bool uses_vid = BITSET_TEST(c->s->info.system_values_read,
SYSTEM_VALUE_VERTEX_ID) ||
BITSET_TEST(c->s->info.system_values_read,
SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
num_components += uses_iid;
num_components += uses_biid;
num_components += uses_vid;
for (int i = 0; i < ARRAY_SIZE(c->vattr_sizes); i++)
num_components += c->vattr_sizes[i];
if (uses_iid) {
c->iid = ntq_emit_vpm_read(c, &vpm_components_queued,
&num_components, ~0);
}
if (uses_biid) {
c->biid = ntq_emit_vpm_read(c, &vpm_components_queued,
&num_components, ~0);
}
if (uses_vid) {
c->vid = ntq_emit_vpm_read(c, &vpm_components_queued,
&num_components, ~0);
}
/* The actual loads will happen directly in nir_intrinsic_load_input
* on newer versions.
*/
if (c->devinfo->ver >= 40)
return;
for (int loc = 0; loc < ARRAY_SIZE(c->vattr_sizes); loc++) {
resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
(loc + 1) * 4);
for (int i = 0; i < c->vattr_sizes[loc]; i++) {
c->inputs[loc * 4 + i] =
ntq_emit_vpm_read(c,
&vpm_components_queued,
&num_components,
loc * 4 + i);
}
}
if (c->devinfo->ver >= 40) {
assert(vpm_components_queued == num_components);
} else {
assert(vpm_components_queued == 0);
assert(num_components == 0);
}
}
static bool
program_reads_point_coord(struct v3d_compile *c)
{
nir_foreach_shader_in_variable(var, c->s) {
if (util_varying_is_point_coord(var->data.location,
c->fs_key->point_sprite_mask)) {
return true;
}
}
return false;
}
static void
ntq_setup_gs_inputs(struct v3d_compile *c)
{
nir_sort_variables_with_modes(c->s, driver_location_compare,
nir_var_shader_in);
nir_foreach_shader_in_variable(var, c->s) {
/* All GS inputs are arrays with as many entries as vertices
* in the input primitive, but here we only care about the
* per-vertex input type.
*/
assert(glsl_type_is_array(var->type));
const struct glsl_type *type = glsl_get_array_element(var->type);
unsigned var_len = glsl_count_vec4_slots(type, false, false);
unsigned loc = var->data.driver_location;
resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
(loc + var_len) * 4);
if (var->data.compact) {
for (unsigned j = 0; j < var_len; j++) {
unsigned input_idx = c->num_inputs++;
unsigned loc_frac = var->data.location_frac + j;
unsigned loc = var->data.location + loc_frac / 4;
unsigned comp = loc_frac % 4;
c->input_slots[input_idx] =
v3d_slot_from_slot_and_component(loc, comp);
}
continue;
}
for (unsigned j = 0; j < var_len; j++) {
unsigned num_elements =
glsl_type_is_struct(glsl_without_array(type)) ?
4 : glsl_get_vector_elements(type);
for (unsigned k = 0; k < num_elements; k++) {
unsigned chan = var->data.location_frac + k;
unsigned input_idx = c->num_inputs++;
struct v3d_varying_slot slot =
v3d_slot_from_slot_and_component(var->data.location + j, chan);
c->input_slots[input_idx] = slot;
}
}
}
}
static void
ntq_setup_fs_inputs(struct v3d_compile *c)
{
nir_sort_variables_with_modes(c->s, driver_location_compare,
nir_var_shader_in);
nir_foreach_shader_in_variable(var, c->s) {
unsigned var_len = glsl_count_vec4_slots(var->type, false, false);
unsigned loc = var->data.driver_location;
uint32_t inputs_array_size = c->inputs_array_size;
uint32_t inputs_array_required_size = (loc + var_len) * 4;
resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
inputs_array_required_size);
resize_interp_array(c, &c->interp, &inputs_array_size,
inputs_array_required_size);
if (var->data.location == VARYING_SLOT_POS) {
emit_fragcoord_input(c, loc);
} else if (var->data.location == VARYING_SLOT_PRIMITIVE_ID &&
!c->fs_key->has_gs) {
/* If the fragment shader reads gl_PrimitiveID and we
* don't have a geometry shader in the pipeline to write
* it then we program the hardware to inject it as
* an implicit varying. Take it from there.
*/
c->inputs[loc * 4] = c->primitive_id;
} else if (util_varying_is_point_coord(var->data.location,
c->fs_key->point_sprite_mask)) {
c->inputs[loc * 4 + 0] = c->point_x;
c->inputs[loc * 4 + 1] = c->point_y;
} else if (var->data.compact) {
for (int j = 0; j < var_len; j++)
emit_compact_fragment_input(c, loc, var, j);
} else if (glsl_type_is_struct(glsl_without_array(var->type))) {
for (int j = 0; j < var_len; j++) {
emit_fragment_input(c, loc, var, j, 4);
}
} else {
for (int j = 0; j < var_len; j++) {
emit_fragment_input(c, loc, var, j, glsl_get_vector_elements(var->type));
}
}
}
}
static void
ntq_setup_outputs(struct v3d_compile *c)
{
if (c->s->info.stage != MESA_SHADER_FRAGMENT)
return;
nir_foreach_shader_out_variable(var, c->s) {
unsigned array_len = MAX2(glsl_get_length(var->type), 1);
unsigned loc = var->data.driver_location * 4;
assert(array_len == 1);
(void)array_len;
for (int i = 0; i < 4 - var->data.location_frac; i++) {
add_output(c, loc + var->data.location_frac + i,
var->data.location,
var->data.location_frac + i);
}
switch (var->data.location) {
case FRAG_RESULT_COLOR:
c->output_color_var[0] = var;
c->output_color_var[1] = var;
c->output_color_var[2] = var;
c->output_color_var[3] = var;
break;
case FRAG_RESULT_DATA0:
case FRAG_RESULT_DATA1:
case FRAG_RESULT_DATA2:
case FRAG_RESULT_DATA3:
c->output_color_var[var->data.location -
FRAG_RESULT_DATA0] = var;
break;
case FRAG_RESULT_DEPTH:
c->output_position_index = loc;
break;
case FRAG_RESULT_SAMPLE_MASK:
c->output_sample_mask_index = loc;
break;
}
}
}
/**
* Sets up the mapping from nir_register to struct qreg *.
*
* Each nir_register gets a struct qreg per 32-bit component being stored.
*/
static void
ntq_setup_registers(struct v3d_compile *c, struct exec_list *list)
{
foreach_list_typed(nir_register, nir_reg, node, list) {
unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
array_len *
nir_reg->num_components);
_mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
for (int i = 0; i < array_len * nir_reg->num_components; i++)
qregs[i] = vir_get_temp(c);
}
}
static void
ntq_emit_load_const(struct v3d_compile *c, nir_load_const_instr *instr)
{
/* XXX perf: Experiment with using immediate loads to avoid having
* these end up in the uniform stream. Watch out for breaking the
* small immediates optimization in the process!
*/
struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
for (int i = 0; i < instr->def.num_components; i++)
qregs[i] = vir_uniform_ui(c, instr->value[i].u32);
_mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
}
static void
ntq_emit_image_size(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
unsigned image_index = nir_src_as_uint(instr->src[0]);
bool is_array = nir_intrinsic_image_array(instr);
assert(nir_src_as_uint(instr->src[1]) == 0);
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_IMAGE_WIDTH, image_index));
if (instr->num_components > 1) {
ntq_store_dest(c, &instr->dest, 1,
vir_uniform(c,
instr->num_components == 2 && is_array ?
QUNIFORM_IMAGE_ARRAY_SIZE :
QUNIFORM_IMAGE_HEIGHT,
image_index));
}
if (instr->num_components > 2) {
ntq_store_dest(c, &instr->dest, 2,
vir_uniform(c,
is_array ?
QUNIFORM_IMAGE_ARRAY_SIZE :
QUNIFORM_IMAGE_DEPTH,
image_index));
}
}
static void
vir_emit_tlb_color_read(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
assert(c->s->info.stage == MESA_SHADER_FRAGMENT);
int rt = nir_src_as_uint(instr->src[0]);
assert(rt < V3D_MAX_DRAW_BUFFERS);
int sample_index = nir_intrinsic_base(instr) ;
assert(sample_index < V3D_MAX_SAMPLES);
int component = nir_intrinsic_component(instr);
assert(component < 4);
/* We need to emit our TLB reads after we have acquired the scoreboard
* lock, or the GPU will hang. Usually, we do our scoreboard locking on
* the last thread switch to improve parallelism, however, that is only
* guaranteed to happen before the tlb color writes.
*
* To fix that, we make sure we always emit a thread switch before the
* first tlb color read. If that happens to be the last thread switch
* we emit, then everything is fine, but otherwsie, if any code after
* this point needs to emit additional thread switches, then we will
* switch the strategy to locking the scoreboard on the first thread
* switch instead -- see vir_emit_thrsw().
*/
if (!c->emitted_tlb_load) {
if (!c->last_thrsw_at_top_level) {
assert(c->devinfo->ver >= 41);
vir_emit_thrsw(c);
}
c->emitted_tlb_load = true;
}
struct qreg *color_reads_for_sample =
&c->color_reads[(rt * V3D_MAX_SAMPLES + sample_index) * 4];
if (color_reads_for_sample[component].file == QFILE_NULL) {
enum pipe_format rt_format = c->fs_key->color_fmt[rt].format;
int num_components =
util_format_get_nr_components(rt_format);
const bool swap_rb = c->fs_key->swap_color_rb & (1 << rt);
if (swap_rb)
num_components = MAX2(num_components, 3);
nir_variable *var = c->output_color_var[rt];
enum glsl_base_type type = glsl_get_base_type(var->type);
bool is_int_format = type == GLSL_TYPE_INT ||
type == GLSL_TYPE_UINT;
bool is_32b_tlb_format = is_int_format ||
(c->fs_key->f32_color_rb & (1 << rt));
int num_samples = c->fs_key->msaa ? V3D_MAX_SAMPLES : 1;
uint32_t conf = 0xffffff00;
conf |= c->fs_key->msaa ? TLB_SAMPLE_MODE_PER_SAMPLE :
TLB_SAMPLE_MODE_PER_PIXEL;
conf |= (7 - rt) << TLB_RENDER_TARGET_SHIFT;
if (is_32b_tlb_format) {
/* The F32 vs I32 distinction was dropped in 4.2. */
conf |= (c->devinfo->ver < 42 && is_int_format) ?
TLB_TYPE_I32_COLOR : TLB_TYPE_F32_COLOR;
conf |= ((num_components - 1) <<
TLB_VEC_SIZE_MINUS_1_SHIFT);
} else {
conf |= TLB_TYPE_F16_COLOR;
conf |= TLB_F16_SWAP_HI_LO;
if (num_components >= 3)
conf |= TLB_VEC_SIZE_4_F16;
else
conf |= TLB_VEC_SIZE_2_F16;
}
for (int i = 0; i < num_samples; i++) {
struct qreg r, g, b, a;
if (is_32b_tlb_format) {
r = conf != 0xffffffff && i == 0?
vir_TLBU_COLOR_READ(c, conf) :
vir_TLB_COLOR_READ(c);
if (num_components >= 2)
g = vir_TLB_COLOR_READ(c);
if (num_components >= 3)
b = vir_TLB_COLOR_READ(c);
if (num_components >= 4)
a = vir_TLB_COLOR_READ(c);
} else {
struct qreg rg = conf != 0xffffffff && i == 0 ?
vir_TLBU_COLOR_READ(c, conf) :
vir_TLB_COLOR_READ(c);
r = vir_FMOV(c, rg);
vir_set_unpack(c->defs[r.index], 0,
V3D_QPU_UNPACK_L);
g = vir_FMOV(c, rg);
vir_set_unpack(c->defs[g.index], 0,
V3D_QPU_UNPACK_H);
if (num_components > 2) {
struct qreg ba = vir_TLB_COLOR_READ(c);
b = vir_FMOV(c, ba);
vir_set_unpack(c->defs[b.index], 0,
V3D_QPU_UNPACK_L);
a = vir_FMOV(c, ba);
vir_set_unpack(c->defs[a.index], 0,
V3D_QPU_UNPACK_H);
}
}
struct qreg *color_reads =
&c->color_reads[(rt * V3D_MAX_SAMPLES + i) * 4];
color_reads[0] = swap_rb ? b : r;
if (num_components >= 2)
color_reads[1] = g;
if (num_components >= 3)
color_reads[2] = swap_rb ? r : b;
if (num_components >= 4)
color_reads[3] = a;
}
}
assert(color_reads_for_sample[component].file != QFILE_NULL);
ntq_store_dest(c, &instr->dest, 0,
vir_MOV(c, color_reads_for_sample[component]));
}
static bool
ntq_emit_load_unifa(struct v3d_compile *c, nir_intrinsic_instr *instr);
static bool
try_emit_uniform(struct v3d_compile *c,
int offset,
int num_components,
nir_dest *dest,
enum quniform_contents contents)
{
/* Even though ldunif is strictly 32-bit we can still use it
* to load scalar 8-bit/16-bit uniforms so long as their offset
* is 32-bit aligned. In this case, ldunif would still load
* 32-bit into the destination with the 8-bit/16-bit uniform
* data in the LSB and garbage in the MSB, but that is fine
* because we should only be accessing the valid bits of the
* destination.
*
* FIXME: if in the future we improve our register allocator to
* pack 2 16-bit variables in the MSB and LSB of the same
* register then this optimization would not be valid as is,
* since the load clobbers the MSB.
*/
if (offset % 4 != 0)
return false;
/* We need dwords */
offset = offset / 4;
for (int i = 0; i < num_components; i++) {
ntq_store_dest(c, dest, i,
vir_uniform(c, contents, offset + i));
}
return true;
}
static void
ntq_emit_load_uniform(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
/* We scalarize general TMU access for anything that is not 32-bit. */
assert(nir_dest_bit_size(instr->dest) == 32 ||
instr->num_components == 1);
/* Try to emit ldunif if possible, otherwise fallback to general TMU */
if (nir_src_is_const(instr->src[0])) {
int offset = (nir_intrinsic_base(instr) +
nir_src_as_uint(instr->src[0]));
if (try_emit_uniform(c, offset, instr->num_components,
&instr->dest, QUNIFORM_UNIFORM)) {
return;
}
}
if (!ntq_emit_load_unifa(c, instr)) {
ntq_emit_tmu_general(c, instr, false, false);
c->has_general_tmu_load = true;
}
}
static bool
ntq_emit_inline_ubo_load(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
if (c->compiler->max_inline_uniform_buffers <= 0)
return false;
/* On Vulkan we use indices 1..MAX_INLINE_UNIFORM_BUFFERS for inline
* uniform buffers which we want to handle more like push constants
* than regular UBO. OpenGL doesn't implement this feature.
*/
assert(c->key->environment == V3D_ENVIRONMENT_VULKAN);
uint32_t index = nir_src_as_uint(instr->src[0]);
if (index == 0 || index > c->compiler->max_inline_uniform_buffers)
return false;
/* We scalarize general TMU access for anything that is not 32-bit */
assert(nir_dest_bit_size(instr->dest) == 32 ||
instr->num_components == 1);
if (nir_src_is_const(instr->src[1])) {
/* Index 0 is reserved for push constants */
assert(index > 0);
uint32_t inline_index = index - 1;
int offset = nir_src_as_uint(instr->src[1]);
if (try_emit_uniform(c, offset, instr->num_components,
&instr->dest,
QUNIFORM_INLINE_UBO_0 + inline_index)) {
return true;
}
}
/* Fallback to regular UBO load */
return false;
}
static void
ntq_emit_load_input(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
/* XXX: Use ldvpmv (uniform offset) or ldvpmd (non-uniform offset).
*
* Right now the driver sets PIPE_SHADER_CAP_INDIRECT_INPUT_ADDR even
* if we don't support non-uniform offsets because we also set the
* lower_all_io_to_temps option in the NIR compiler. This ensures that
* any indirect indexing on in/out variables is turned into indirect
* indexing on temporary variables instead, that we handle by lowering
* to scratch. If we implement non-uniform offset here we might be able
* to avoid the temp and scratch lowering, which involves copying from
* the input to the temp variable, possibly making code more optimal.
*/
unsigned offset =
nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[0]);
if (c->s->info.stage != MESA_SHADER_FRAGMENT && c->devinfo->ver >= 40) {
/* Emit the LDVPM directly now, rather than at the top
* of the shader like we did for V3D 3.x (which needs
* vpmsetup when not just taking the next offset).
*
* Note that delaying like this may introduce stalls,
* as LDVPMV takes a minimum of 1 instruction but may
* be slower if the VPM unit is busy with another QPU.
*/
int index = 0;
if (BITSET_TEST(c->s->info.system_values_read,
SYSTEM_VALUE_INSTANCE_ID)) {
index++;
}
if (BITSET_TEST(c->s->info.system_values_read,
SYSTEM_VALUE_BASE_INSTANCE)) {
index++;
}
if (BITSET_TEST(c->s->info.system_values_read,
SYSTEM_VALUE_VERTEX_ID)) {
index++;
}
for (int i = 0; i < offset; i++)
index += c->vattr_sizes[i];
index += nir_intrinsic_component(instr);
for (int i = 0; i < instr->num_components; i++) {
struct qreg vpm_offset = vir_uniform_ui(c, index++);
ntq_store_dest(c, &instr->dest, i,
vir_LDVPMV_IN(c, vpm_offset));
}
} else {
for (int i = 0; i < instr->num_components; i++) {
int comp = nir_intrinsic_component(instr) + i;
struct qreg input = c->inputs[offset * 4 + comp];
ntq_store_dest(c, &instr->dest, i, vir_MOV(c, input));
if (c->s->info.stage == MESA_SHADER_FRAGMENT &&
input.file == c->payload_z.file &&
input.index == c->payload_z.index) {
c->reads_z = true;
}
}
}
}
static void
ntq_emit_per_sample_color_write(struct v3d_compile *c,
nir_intrinsic_instr *instr)
{
assert(instr->intrinsic == nir_intrinsic_store_tlb_sample_color_v3d);
unsigned rt = nir_src_as_uint(instr->src[1]);
assert(rt < V3D_MAX_DRAW_BUFFERS);
unsigned sample_idx = nir_intrinsic_base(instr);
assert(sample_idx < V3D_MAX_SAMPLES);
unsigned offset = (rt * V3D_MAX_SAMPLES + sample_idx) * 4;
for (int i = 0; i < instr->num_components; i++) {
c->sample_colors[offset + i] =
vir_MOV(c, ntq_get_src(c, instr->src[0], i));
}
}
static void
ntq_emit_color_write(struct v3d_compile *c,
nir_intrinsic_instr *instr)
{
unsigned offset = (nir_intrinsic_base(instr) +
nir_src_as_uint(instr->src[1])) * 4 +
nir_intrinsic_component(instr);
for (int i = 0; i < instr->num_components; i++) {
c->outputs[offset + i] =
vir_MOV(c, ntq_get_src(c, instr->src[0], i));
}
}
static void
emit_store_output_gs(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
assert(instr->num_components == 1);
struct qreg offset = ntq_get_src(c, instr->src[1], 0);
uint32_t base_offset = nir_intrinsic_base(instr);
if (base_offset)
offset = vir_ADD(c, vir_uniform_ui(c, base_offset), offset);
/* Usually, for VS or FS, we only emit outputs once at program end so
* our VPM writes are never in non-uniform control flow, but this
* is not true for GS, where we are emitting multiple vertices.
*/
if (vir_in_nonuniform_control_flow(c)) {
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
}
struct qreg val = ntq_get_src(c, instr->src[0], 0);
/* The offset isnt necessarily dynamically uniform for a geometry
* shader. This can happen if the shader sometimes doesnt emit one of
* the vertices. In that case subsequent vertices will be written to
* different offsets in the VPM and we need to use the scatter write
* instruction to have a different offset for each lane.
*/
bool is_uniform_offset =
!vir_in_nonuniform_control_flow(c) &&
!nir_src_is_divergent(instr->src[1]);
vir_VPM_WRITE_indirect(c, val, offset, is_uniform_offset);
if (vir_in_nonuniform_control_flow(c)) {
struct qinst *last_inst =
(struct qinst *)c->cur_block->instructions.prev;
vir_set_cond(last_inst, V3D_QPU_COND_IFA);
}
}
static void
emit_store_output_vs(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
assert(c->s->info.stage == MESA_SHADER_VERTEX);
assert(instr->num_components == 1);
uint32_t base = nir_intrinsic_base(instr);
struct qreg val = ntq_get_src(c, instr->src[0], 0);
if (nir_src_is_const(instr->src[1])) {
vir_VPM_WRITE(c, val,
base + nir_src_as_uint(instr->src[1]));
} else {
struct qreg offset = vir_ADD(c,
ntq_get_src(c, instr->src[1], 1),
vir_uniform_ui(c, base));
bool is_uniform_offset =
!vir_in_nonuniform_control_flow(c) &&
!nir_src_is_divergent(instr->src[1]);
vir_VPM_WRITE_indirect(c, val, offset, is_uniform_offset);
}
}
static void
ntq_emit_store_output(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
if (c->s->info.stage == MESA_SHADER_FRAGMENT)
ntq_emit_color_write(c, instr);
else if (c->s->info.stage == MESA_SHADER_GEOMETRY)
emit_store_output_gs(c, instr);
else
emit_store_output_vs(c, instr);
}
/**
* This implementation is based on v3d_sample_{x,y}_offset() from
* v3d_sample_offset.h.
*/
static void
ntq_get_sample_offset(struct v3d_compile *c, struct qreg sample_idx,
struct qreg *sx, struct qreg *sy)
{
sample_idx = vir_ITOF(c, sample_idx);
struct qreg offset_x =
vir_FADD(c, vir_uniform_f(c, -0.125f),
vir_FMUL(c, sample_idx,
vir_uniform_f(c, 0.5f)));
vir_set_pf(c, vir_FCMP_dest(c, vir_nop_reg(),
vir_uniform_f(c, 2.0f), sample_idx),
V3D_QPU_PF_PUSHC);
offset_x = vir_SEL(c, V3D_QPU_COND_IFA,
vir_FSUB(c, offset_x, vir_uniform_f(c, 1.25f)),
offset_x);
struct qreg offset_y =
vir_FADD(c, vir_uniform_f(c, -0.375f),
vir_FMUL(c, sample_idx,
vir_uniform_f(c, 0.25f)));
*sx = offset_x;
*sy = offset_y;
}
/**
* This implementation is based on get_centroid_offset() from fep.c.
*/
static void
ntq_get_barycentric_centroid(struct v3d_compile *c,
struct qreg *out_x,
struct qreg *out_y)
{
struct qreg sample_mask;
if (c->output_sample_mask_index != -1)
sample_mask = c->outputs[c->output_sample_mask_index];
else
sample_mask = vir_MSF(c);
struct qreg i0 = vir_uniform_ui(c, 0);
struct qreg i1 = vir_uniform_ui(c, 1);
struct qreg i2 = vir_uniform_ui(c, 2);
struct qreg i3 = vir_uniform_ui(c, 3);
struct qreg i4 = vir_uniform_ui(c, 4);
struct qreg i8 = vir_uniform_ui(c, 8);
/* sN = TRUE if sample N enabled in sample mask, FALSE otherwise */
struct qreg F = vir_uniform_ui(c, 0);
struct qreg T = vir_uniform_ui(c, ~0);
struct qreg s0 = vir_XOR(c, vir_AND(c, sample_mask, i1), i1);
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), s0), V3D_QPU_PF_PUSHZ);
s0 = vir_SEL(c, V3D_QPU_COND_IFA, T, F);
struct qreg s1 = vir_XOR(c, vir_AND(c, sample_mask, i2), i2);
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), s1), V3D_QPU_PF_PUSHZ);
s1 = vir_SEL(c, V3D_QPU_COND_IFA, T, F);
struct qreg s2 = vir_XOR(c, vir_AND(c, sample_mask, i4), i4);
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), s2), V3D_QPU_PF_PUSHZ);
s2 = vir_SEL(c, V3D_QPU_COND_IFA, T, F);
struct qreg s3 = vir_XOR(c, vir_AND(c, sample_mask, i8), i8);
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), s3), V3D_QPU_PF_PUSHZ);
s3 = vir_SEL(c, V3D_QPU_COND_IFA, T, F);
/* sample_idx = s0 ? 0 : s2 ? 2 : s1 ? 1 : 3 */
struct qreg sample_idx = i3;
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), s1), V3D_QPU_PF_PUSHZ);
sample_idx = vir_SEL(c, V3D_QPU_COND_IFNA, i1, sample_idx);
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), s2), V3D_QPU_PF_PUSHZ);
sample_idx = vir_SEL(c, V3D_QPU_COND_IFNA, i2, sample_idx);
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), s0), V3D_QPU_PF_PUSHZ);
sample_idx = vir_SEL(c, V3D_QPU_COND_IFNA, i0, sample_idx);
/* Get offset at selected sample index */
struct qreg offset_x, offset_y;
ntq_get_sample_offset(c, sample_idx, &offset_x, &offset_y);
/* Select pixel center [offset=(0,0)] if two opposing samples (or none)
* are selected.
*/
struct qreg s0_and_s3 = vir_AND(c, s0, s3);
struct qreg s1_and_s2 = vir_AND(c, s1, s2);
struct qreg use_center = vir_XOR(c, sample_mask, vir_uniform_ui(c, 0));
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), use_center), V3D_QPU_PF_PUSHZ);
use_center = vir_SEL(c, V3D_QPU_COND_IFA, T, F);
use_center = vir_OR(c, use_center, s0_and_s3);
use_center = vir_OR(c, use_center, s1_and_s2);
struct qreg zero = vir_uniform_f(c, 0.0f);
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), use_center), V3D_QPU_PF_PUSHZ);
offset_x = vir_SEL(c, V3D_QPU_COND_IFNA, zero, offset_x);
offset_y = vir_SEL(c, V3D_QPU_COND_IFNA, zero, offset_y);
*out_x = offset_x;
*out_y = offset_y;
}
static struct qreg
ntq_emit_load_interpolated_input(struct v3d_compile *c,
struct qreg p,
struct qreg C,
struct qreg offset_x,
struct qreg offset_y,
unsigned mode)
{
if (mode == INTERP_MODE_FLAT)
return C;
struct qreg sample_offset_x =
vir_FSUB(c, vir_FXCD(c), vir_ITOF(c, vir_XCD(c)));
struct qreg sample_offset_y =
vir_FSUB(c, vir_FYCD(c), vir_ITOF(c, vir_YCD(c)));
struct qreg scaleX =
vir_FADD(c, vir_FSUB(c, vir_uniform_f(c, 0.5f), sample_offset_x),
offset_x);
struct qreg scaleY =
vir_FADD(c, vir_FSUB(c, vir_uniform_f(c, 0.5f), sample_offset_y),
offset_y);
struct qreg pInterp =
vir_FADD(c, p, vir_FADD(c, vir_FMUL(c, vir_FDX(c, p), scaleX),
vir_FMUL(c, vir_FDY(c, p), scaleY)));
if (mode == INTERP_MODE_NOPERSPECTIVE)
return vir_FADD(c, pInterp, C);
struct qreg w = c->payload_w;
struct qreg wInterp =
vir_FADD(c, w, vir_FADD(c, vir_FMUL(c, vir_FDX(c, w), scaleX),
vir_FMUL(c, vir_FDY(c, w), scaleY)));
return vir_FADD(c, vir_FMUL(c, pInterp, wInterp), C);
}
static void
emit_ldunifa(struct v3d_compile *c, struct qreg *result)
{
struct qinst *ldunifa =
vir_add_inst(V3D_QPU_A_NOP, c->undef, c->undef, c->undef);
ldunifa->qpu.sig.ldunifa = true;
if (result)
*result = vir_emit_def(c, ldunifa);
else
vir_emit_nondef(c, ldunifa);
c->current_unifa_offset += 4;
}
static bool
ntq_emit_load_unifa(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
assert(instr->intrinsic == nir_intrinsic_load_ubo ||
instr->intrinsic == nir_intrinsic_load_ssbo ||
instr->intrinsic == nir_intrinsic_load_uniform);
bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
bool is_ssbo = instr->intrinsic == nir_intrinsic_load_ssbo;
/* Every ldunifa auto-increments the unifa address by 4 bytes, so our
* current unifa offset is 4 bytes ahead of the offset of the last load.
*/
static const int32_t max_unifa_skip_dist =
MAX_UNIFA_SKIP_DISTANCE - 4;
/* We can only use unifa if the offset is uniform */
nir_src offset = is_uniform ? instr->src[0] : instr->src[1];
if (nir_src_is_divergent(offset))
return false;
/* We can only use unifa with SSBOs if they are read-only. Otherwise
* ldunifa won't see the shader writes to that address (possibly
* because ldunifa doesn't read from the L2T cache).
*/
if (is_ssbo && !(nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE))
return false;
/* Just as with SSBOs, we can't use ldunifa to read indirect uniforms
* that we may have been written to scratch using the TMU.
*/
bool dynamic_src = !nir_src_is_const(offset);
if (is_uniform && dynamic_src && c->s->scratch_size > 0)
return false;
uint32_t const_offset = dynamic_src ? 0 : nir_src_as_uint(offset);
if (is_uniform)
const_offset += nir_intrinsic_base(instr);
/* ldunifa is a 32-bit load instruction so we can only use it with
* 32-bit aligned addresses. We always produce 32-bit aligned addresses
* except for types smaller than 32-bit, so in these cases we can only
* use ldunifa if we can verify alignment, which we can only do for
* loads with a constant offset.
*/
uint32_t bit_size = nir_dest_bit_size(instr->dest);
uint32_t value_skips = 0;
if (bit_size < 32) {
if (dynamic_src) {
return false;
} else if (const_offset % 4 != 0) {
/* If we are loading from an unaligned offset, fix
* alignment and skip over unused elements in result.
*/
value_skips = (const_offset % 4) / (bit_size / 8);
const_offset &= ~0x3;
}
}
assert((bit_size == 32 && value_skips == 0) ||
(bit_size == 16 && value_skips <= 1) ||
(bit_size == 8 && value_skips <= 3));
/* Both Vulkan and OpenGL reserve index 0 for uniforms / push
* constants.
*/
uint32_t index = is_uniform ? 0 : nir_src_as_uint(instr->src[0]);
/* On OpenGL QUNIFORM_UBO_ADDR takes a UBO index
* shifted up by 1 (0 is gallium's constant buffer 0).
*/
if (is_ubo && c->key->environment == V3D_ENVIRONMENT_OPENGL)
index++;
/* We can only keep track of the last unifa address we used with
* constant offset loads. If the new load targets the same buffer and
* is close enough to the previous load, we can skip the unifa register
* write by emitting dummy ldunifa instructions to update the unifa
* address.
*/
bool skip_unifa = false;
uint32_t ldunifa_skips = 0;
if (dynamic_src) {
c->current_unifa_block = NULL;
} else if (c->cur_block == c->current_unifa_block &&
c->current_unifa_is_ubo == !is_ssbo &&
c->current_unifa_index == index &&
c->current_unifa_offset <= const_offset &&
c->current_unifa_offset + max_unifa_skip_dist >= const_offset) {
skip_unifa = true;
ldunifa_skips = (const_offset - c->current_unifa_offset) / 4;
} else {
c->current_unifa_block = c->cur_block;
c->current_unifa_is_ubo = !is_ssbo;
c->current_unifa_index = index;
c->current_unifa_offset = const_offset;
}
if (!skip_unifa) {
struct qreg base_offset = !is_ssbo ?
vir_uniform(c, QUNIFORM_UBO_ADDR,
v3d_unit_data_create(index, const_offset)) :
vir_uniform(c, QUNIFORM_SSBO_OFFSET, index);
struct qreg unifa = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_UNIFA);
if (!dynamic_src) {
if (!is_ssbo) {
vir_MOV_dest(c, unifa, base_offset);
} else {
vir_ADD_dest(c, unifa, base_offset,
vir_uniform_ui(c, const_offset));
}
} else {
vir_ADD_dest(c, unifa, base_offset,
ntq_get_src(c, offset, 0));
}
} else {
for (int i = 0; i < ldunifa_skips; i++)
emit_ldunifa(c, NULL);
}
uint32_t num_components = nir_intrinsic_dest_components(instr);
for (uint32_t i = 0; i < num_components; ) {
struct qreg data;
emit_ldunifa(c, &data);
if (bit_size == 32) {
assert(value_skips == 0);
ntq_store_dest(c, &instr->dest, i, vir_MOV(c, data));
i++;
} else {
assert((bit_size == 16 && value_skips <= 1) ||
(bit_size == 8 && value_skips <= 3));
/* If we have any values to skip, shift to the first
* valid value in the ldunifa result.
*/
if (value_skips > 0) {
data = vir_SHR(c, data,
vir_uniform_ui(c, bit_size *
value_skips));
}
/* Check how many valid components we have discounting
* read components to skip.
*/
uint32_t valid_count = (32 / bit_size) - value_skips;
assert((bit_size == 16 && valid_count <= 2) ||
(bit_size == 8 && valid_count <= 4));
assert(valid_count > 0);
/* Process the valid components */
do {
struct qreg tmp;
uint32_t mask = (1 << bit_size) - 1;
tmp = vir_AND(c, vir_MOV(c, data),
vir_uniform_ui(c, mask));
ntq_store_dest(c, &instr->dest, i,
vir_MOV(c, tmp));
i++;
valid_count--;
/* Shift to next component */
if (i < num_components && valid_count > 0) {
data = vir_SHR(c, data,
vir_uniform_ui(c, bit_size));
}
} while (i < num_components && valid_count > 0);
}
}
return true;
}
static inline struct qreg
emit_load_local_invocation_index(struct v3d_compile *c)
{
return vir_SHR(c, c->cs_payload[1],
vir_uniform_ui(c, 32 - c->local_invocation_index_bits));
}
/* Various subgroup operations rely on the A flags, so this helper ensures that
* A flags represents currently active lanes in the subgroup.
*/
static void
set_a_flags_for_subgroup(struct v3d_compile *c)
{
/* MSF returns 0 for disabled lanes in compute shaders so
* PUSHZ will set A=1 for disabled lanes. We want the inverse
* of this but we don't have any means to negate the A flags
* directly, but we can do it by repeating the same operation
* with NORZ (A = ~A & ~Z).
*/
assert(c->s->info.stage == MESA_SHADER_COMPUTE);
vir_set_pf(c, vir_MSF_dest(c, vir_nop_reg()), V3D_QPU_PF_PUSHZ);
vir_set_uf(c, vir_MSF_dest(c, vir_nop_reg()), V3D_QPU_UF_NORZ);
/* If we are under non-uniform control flow we also need to
* AND the A flags with the current execute mask.
*/
if (vir_in_nonuniform_control_flow(c)) {
const uint32_t bidx = c->cur_block->index;
vir_set_uf(c, vir_XOR_dest(c, vir_nop_reg(),
c->execute,
vir_uniform_ui(c, bidx)),
V3D_QPU_UF_ANDZ);
}
}
static void
ntq_emit_intrinsic(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
switch (instr->intrinsic) {
case nir_intrinsic_load_uniform:
ntq_emit_load_uniform(c, instr);
break;
case nir_intrinsic_load_global_2x32:
ntq_emit_tmu_general(c, instr, false, true);
c->has_general_tmu_load = true;
break;
case nir_intrinsic_load_ubo:
if (ntq_emit_inline_ubo_load(c, instr))
break;
FALLTHROUGH;
case nir_intrinsic_load_ssbo:
if (!ntq_emit_load_unifa(c, instr)) {
ntq_emit_tmu_general(c, instr, false, false);
c->has_general_tmu_load = true;
}
break;
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
case nir_intrinsic_store_ssbo:
ntq_emit_tmu_general(c, instr, false, false);
break;
case nir_intrinsic_global_atomic_add_2x32:
case nir_intrinsic_global_atomic_imin_2x32:
case nir_intrinsic_global_atomic_umin_2x32:
case nir_intrinsic_global_atomic_imax_2x32:
case nir_intrinsic_global_atomic_umax_2x32:
case nir_intrinsic_global_atomic_and_2x32:
case nir_intrinsic_global_atomic_or_2x32:
case nir_intrinsic_global_atomic_xor_2x32:
case nir_intrinsic_global_atomic_exchange_2x32:
case nir_intrinsic_global_atomic_comp_swap_2x32:
case nir_intrinsic_store_global_2x32:
ntq_emit_tmu_general(c, instr, false, true);
break;
case nir_intrinsic_shared_atomic_add:
case nir_intrinsic_shared_atomic_imin:
case nir_intrinsic_shared_atomic_umin:
case nir_intrinsic_shared_atomic_imax:
case nir_intrinsic_shared_atomic_umax:
case nir_intrinsic_shared_atomic_and:
case nir_intrinsic_shared_atomic_or:
case nir_intrinsic_shared_atomic_xor:
case nir_intrinsic_shared_atomic_exchange:
case nir_intrinsic_shared_atomic_comp_swap:
case nir_intrinsic_store_shared:
case nir_intrinsic_store_scratch:
ntq_emit_tmu_general(c, instr, true, false);
break;
case nir_intrinsic_load_scratch:
case nir_intrinsic_load_shared:
ntq_emit_tmu_general(c, instr, true, false);
c->has_general_tmu_load = true;
break;
case nir_intrinsic_image_store:
case nir_intrinsic_image_atomic_add:
case nir_intrinsic_image_atomic_imin:
case nir_intrinsic_image_atomic_umin:
case nir_intrinsic_image_atomic_imax:
case nir_intrinsic_image_atomic_umax:
case nir_intrinsic_image_atomic_and:
case nir_intrinsic_image_atomic_or:
case nir_intrinsic_image_atomic_xor:
case nir_intrinsic_image_atomic_exchange:
case nir_intrinsic_image_atomic_comp_swap:
v3d40_vir_emit_image_load_store(c, instr);
break;
case nir_intrinsic_image_load:
v3d40_vir_emit_image_load_store(c, instr);
/* Not really a general TMU load, but we only use this flag
* for NIR scheduling and we do schedule these under the same
* policy as general TMU.
*/
c->has_general_tmu_load = true;
break;
case nir_intrinsic_get_ssbo_size:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_GET_SSBO_SIZE,
nir_src_comp_as_uint(instr->src[0], 0)));
break;
case nir_intrinsic_get_ubo_size:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_GET_UBO_SIZE,
nir_src_comp_as_uint(instr->src[0], 0)));
break;
case nir_intrinsic_load_user_clip_plane:
for (int i = 0; i < nir_intrinsic_dest_components(instr); i++) {
ntq_store_dest(c, &instr->dest, i,
vir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
nir_intrinsic_ucp_id(instr) *
4 + i));
}
break;
case nir_intrinsic_load_viewport_x_scale:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE, 0));
break;
case nir_intrinsic_load_viewport_y_scale:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_VIEWPORT_Y_SCALE, 0));
break;
case nir_intrinsic_load_viewport_z_scale:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0));
break;
case nir_intrinsic_load_viewport_z_offset:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0));
break;
case nir_intrinsic_load_line_coord:
ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->line_x));
break;
case nir_intrinsic_load_line_width:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_LINE_WIDTH, 0));
break;
case nir_intrinsic_load_aa_line_width:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_AA_LINE_WIDTH, 0));
break;
case nir_intrinsic_load_sample_mask_in:
ntq_store_dest(c, &instr->dest, 0, vir_MSF(c));
break;
case nir_intrinsic_load_helper_invocation:
vir_set_pf(c, vir_MSF_dest(c, vir_nop_reg()), V3D_QPU_PF_PUSHZ);
struct qreg qdest = ntq_emit_cond_to_bool(c, V3D_QPU_COND_IFA);
ntq_store_dest(c, &instr->dest, 0, qdest);
break;
case nir_intrinsic_load_front_face:
/* The register contains 0 (front) or 1 (back), and we need to
* turn it into a NIR bool where true means front.
*/
ntq_store_dest(c, &instr->dest, 0,
vir_ADD(c,
vir_uniform_ui(c, -1),
vir_REVF(c)));
break;
case nir_intrinsic_load_base_instance:
ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->biid));
break;
case nir_intrinsic_load_instance_id:
ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->iid));
break;
case nir_intrinsic_load_vertex_id:
ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->vid));
break;
case nir_intrinsic_load_tlb_color_v3d:
vir_emit_tlb_color_read(c, instr);
break;
case nir_intrinsic_load_input:
ntq_emit_load_input(c, instr);
break;
case nir_intrinsic_store_tlb_sample_color_v3d:
ntq_emit_per_sample_color_write(c, instr);
break;
case nir_intrinsic_store_output:
ntq_emit_store_output(c, instr);
break;
case nir_intrinsic_image_size:
ntq_emit_image_size(c, instr);
break;
case nir_intrinsic_discard:
ntq_flush_tmu(c);
if (vir_in_nonuniform_control_flow(c)) {
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
vir_set_cond(vir_SETMSF_dest(c, vir_nop_reg(),
vir_uniform_ui(c, 0)),
V3D_QPU_COND_IFA);
} else {
vir_SETMSF_dest(c, vir_nop_reg(),
vir_uniform_ui(c, 0));
}
break;
case nir_intrinsic_discard_if: {
ntq_flush_tmu(c);
enum v3d_qpu_cond cond = ntq_emit_bool_to_cond(c, instr->src[0]);
if (vir_in_nonuniform_control_flow(c)) {
struct qinst *exec_flag = vir_MOV_dest(c, vir_nop_reg(),
c->execute);
if (cond == V3D_QPU_COND_IFA) {
vir_set_uf(c, exec_flag, V3D_QPU_UF_ANDZ);
} else {
vir_set_uf(c, exec_flag, V3D_QPU_UF_NORNZ);
cond = V3D_QPU_COND_IFA;
}
}
vir_set_cond(vir_SETMSF_dest(c, vir_nop_reg(),
vir_uniform_ui(c, 0)), cond);
break;
}
case nir_intrinsic_memory_barrier:
case nir_intrinsic_memory_barrier_buffer:
case nir_intrinsic_memory_barrier_image:
case nir_intrinsic_memory_barrier_shared:
case nir_intrinsic_memory_barrier_tcs_patch:
case nir_intrinsic_group_memory_barrier:
/* We don't do any instruction scheduling of these NIR
* instructions between each other, so we just need to make
* sure that the TMU operations before the barrier are flushed
* before the ones after the barrier.
*/
ntq_flush_tmu(c);
break;
case nir_intrinsic_control_barrier:
/* Emit a TSY op to get all invocations in the workgroup
* (actually supergroup) to block until the last invocation
* reaches the TSY op.
*/
ntq_flush_tmu(c);
if (c->devinfo->ver >= 42) {
vir_BARRIERID_dest(c, vir_reg(QFILE_MAGIC,
V3D_QPU_WADDR_SYNCB));
} else {
struct qinst *sync =
vir_BARRIERID_dest(c,
vir_reg(QFILE_MAGIC,
V3D_QPU_WADDR_SYNCU));
sync->uniform =
vir_get_uniform_index(c, QUNIFORM_CONSTANT,
0xffffff00 |
V3D_TSY_WAIT_INC_CHECK);
}
/* The blocking of a TSY op only happens at the next thread
* switch. No texturing may be outstanding at the time of a
* TSY blocking operation.
*/
vir_emit_thrsw(c);
break;
case nir_intrinsic_load_num_workgroups:
for (int i = 0; i < 3; i++) {
ntq_store_dest(c, &instr->dest, i,
vir_uniform(c, QUNIFORM_NUM_WORK_GROUPS,
i));
}
break;
case nir_intrinsic_load_workgroup_id: {
struct qreg x = vir_AND(c, c->cs_payload[0],
vir_uniform_ui(c, 0xffff));
struct qreg y = vir_SHR(c, c->cs_payload[0],
vir_uniform_ui(c, 16));
struct qreg z = vir_AND(c, c->cs_payload[1],
vir_uniform_ui(c, 0xffff));
/* We only support dispatch base in Vulkan */
if (c->key->environment == V3D_ENVIRONMENT_VULKAN) {
x = vir_ADD(c, x,
vir_uniform(c, QUNIFORM_WORK_GROUP_BASE, 0));
y = vir_ADD(c, y,
vir_uniform(c, QUNIFORM_WORK_GROUP_BASE, 1));
z = vir_ADD(c, z,
vir_uniform(c, QUNIFORM_WORK_GROUP_BASE, 2));
}
ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, x));
ntq_store_dest(c, &instr->dest, 1, vir_MOV(c, y));
ntq_store_dest(c, &instr->dest, 2, vir_MOV(c, z));
break;
}
case nir_intrinsic_load_local_invocation_index:
ntq_store_dest(c, &instr->dest, 0,
emit_load_local_invocation_index(c));
break;
case nir_intrinsic_load_subgroup_id: {
/* This is basically the batch index, which is the Local
* Invocation Index divided by the SIMD width).
*/
STATIC_ASSERT(IS_POT(V3D_CHANNELS) && V3D_CHANNELS > 0);
const uint32_t divide_shift = ffs(V3D_CHANNELS) - 1;
struct qreg lii = emit_load_local_invocation_index(c);
ntq_store_dest(c, &instr->dest, 0,
vir_SHR(c, lii,
vir_uniform_ui(c, divide_shift)));
break;
}
case nir_intrinsic_load_per_vertex_input: {
/* The vertex shader writes all its used outputs into
* consecutive VPM offsets, so if any output component is
* unused, its VPM offset is used by the next used
* component. This means that we can't assume that each
* location will use 4 consecutive scalar offsets in the VPM
* and we need to compute the VPM offset for each input by
* going through the inputs and finding the one that matches
* our location and component.
*
* col: vertex index, row = varying index
*/
assert(nir_src_is_const(instr->src[1]));
uint32_t location =
nir_intrinsic_io_semantics(instr).location +
nir_src_as_uint(instr->src[1]);
uint32_t component = nir_intrinsic_component(instr);
int32_t row_idx = -1;
for (int i = 0; i < c->num_inputs; i++) {
struct v3d_varying_slot slot = c->input_slots[i];
if (v3d_slot_get_slot(slot) == location &&
v3d_slot_get_component(slot) == component) {
row_idx = i;
break;
}
}
assert(row_idx != -1);
struct qreg col = ntq_get_src(c, instr->src[0], 0);
for (int i = 0; i < instr->num_components; i++) {
struct qreg row = vir_uniform_ui(c, row_idx++);
ntq_store_dest(c, &instr->dest, i,
vir_LDVPMG_IN(c, row, col));
}
break;
}
case nir_intrinsic_emit_vertex:
case nir_intrinsic_end_primitive:
unreachable("Should have been lowered in v3d_nir_lower_io");
break;
case nir_intrinsic_load_primitive_id: {
/* gl_PrimitiveIdIn is written by the GBG in the first word of
* VPM output header. According to docs, we should read this
* using ldvpm(v,d)_in (See Table 71).
*/
assert(c->s->info.stage == MESA_SHADER_GEOMETRY);
ntq_store_dest(c, &instr->dest, 0,
vir_LDVPMV_IN(c, vir_uniform_ui(c, 0)));
break;
}
case nir_intrinsic_load_invocation_id:
ntq_store_dest(c, &instr->dest, 0, vir_IID(c));
break;
case nir_intrinsic_load_fb_layers_v3d:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_FB_LAYERS, 0));
break;
case nir_intrinsic_load_sample_id:
ntq_store_dest(c, &instr->dest, 0, vir_SAMPID(c));
break;
case nir_intrinsic_load_sample_pos:
ntq_store_dest(c, &instr->dest, 0,
vir_FSUB(c, vir_FXCD(c), vir_ITOF(c, vir_XCD(c))));
ntq_store_dest(c, &instr->dest, 1,
vir_FSUB(c, vir_FYCD(c), vir_ITOF(c, vir_YCD(c))));
break;
case nir_intrinsic_load_barycentric_at_offset:
ntq_store_dest(c, &instr->dest, 0,
vir_MOV(c, ntq_get_src(c, instr->src[0], 0)));
ntq_store_dest(c, &instr->dest, 1,
vir_MOV(c, ntq_get_src(c, instr->src[0], 1)));
break;
case nir_intrinsic_load_barycentric_pixel:
ntq_store_dest(c, &instr->dest, 0, vir_uniform_f(c, 0.0f));
ntq_store_dest(c, &instr->dest, 1, vir_uniform_f(c, 0.0f));
break;
case nir_intrinsic_load_barycentric_at_sample: {
if (!c->fs_key->msaa) {
ntq_store_dest(c, &instr->dest, 0, vir_uniform_f(c, 0.0f));
ntq_store_dest(c, &instr->dest, 1, vir_uniform_f(c, 0.0f));
return;
}
struct qreg offset_x, offset_y;
struct qreg sample_idx = ntq_get_src(c, instr->src[0], 0);
ntq_get_sample_offset(c, sample_idx, &offset_x, &offset_y);
ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, offset_x));
ntq_store_dest(c, &instr->dest, 1, vir_MOV(c, offset_y));
break;
}
case nir_intrinsic_load_barycentric_sample: {
struct qreg offset_x =
vir_FSUB(c, vir_FXCD(c), vir_ITOF(c, vir_XCD(c)));
struct qreg offset_y =
vir_FSUB(c, vir_FYCD(c), vir_ITOF(c, vir_YCD(c)));
ntq_store_dest(c, &instr->dest, 0,
vir_FSUB(c, offset_x, vir_uniform_f(c, 0.5f)));
ntq_store_dest(c, &instr->dest, 1,
vir_FSUB(c, offset_y, vir_uniform_f(c, 0.5f)));
break;
}
case nir_intrinsic_load_barycentric_centroid: {
struct qreg offset_x, offset_y;
ntq_get_barycentric_centroid(c, &offset_x, &offset_y);
ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, offset_x));
ntq_store_dest(c, &instr->dest, 1, vir_MOV(c, offset_y));
break;
}
case nir_intrinsic_load_interpolated_input: {
assert(nir_src_is_const(instr->src[1]));
const uint32_t offset = nir_src_as_uint(instr->src[1]);
for (int i = 0; i < instr->num_components; i++) {
const uint32_t input_idx =
(nir_intrinsic_base(instr) + offset) * 4 +
nir_intrinsic_component(instr) + i;
/* If we are not in MSAA or if we are not interpolating
* a user varying, just return the pre-computed
* interpolated input.
*/
if (!c->fs_key->msaa ||
c->interp[input_idx].vp.file == QFILE_NULL) {
ntq_store_dest(c, &instr->dest, i,
vir_MOV(c, c->inputs[input_idx]));
continue;
}
/* Otherwise compute interpolation at the specified
* offset.
*/
struct qreg p = c->interp[input_idx].vp;
struct qreg C = c->interp[input_idx].C;
unsigned interp_mode = c->interp[input_idx].mode;
struct qreg offset_x = ntq_get_src(c, instr->src[0], 0);
struct qreg offset_y = ntq_get_src(c, instr->src[0], 1);
struct qreg result =
ntq_emit_load_interpolated_input(c, p, C,
offset_x, offset_y,
interp_mode);
ntq_store_dest(c, &instr->dest, i, result);
}
break;
}
case nir_intrinsic_load_subgroup_size:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform_ui(c, V3D_CHANNELS));
break;
case nir_intrinsic_load_subgroup_invocation:
ntq_store_dest(c, &instr->dest, 0, vir_EIDX(c));
break;
case nir_intrinsic_elect: {
set_a_flags_for_subgroup(c);
struct qreg first = vir_FLAFIRST(c);
/* Produce a boolean result from Flafirst */
vir_set_pf(c, vir_XOR_dest(c, vir_nop_reg(),
first, vir_uniform_ui(c, 1)),
V3D_QPU_PF_PUSHZ);
struct qreg result = ntq_emit_cond_to_bool(c, V3D_QPU_COND_IFA);
ntq_store_dest(c, &instr->dest, 0, result);
break;
}
case nir_intrinsic_load_num_subgroups:
unreachable("Should have been lowered");
break;
case nir_intrinsic_load_view_index:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_VIEW_INDEX, 0));
break;
default:
fprintf(stderr, "Unknown intrinsic: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
break;
}
}
/* Clears (activates) the execute flags for any channels whose jump target
* matches this block.
*
* XXX perf: Could we be using flpush/flpop somehow for our execution channel
* enabling?
*
*/
static void
ntq_activate_execute_for_block(struct v3d_compile *c)
{
vir_set_pf(c, vir_XOR_dest(c, vir_nop_reg(),
c->execute, vir_uniform_ui(c, c->cur_block->index)),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute, vir_uniform_ui(c, 0));
}
static void
ntq_emit_uniform_if(struct v3d_compile *c, nir_if *if_stmt)
{
nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
bool empty_else_block =
(nir_else_block == nir_if_last_else_block(if_stmt) &&
exec_list_is_empty(&nir_else_block->instr_list));
struct qblock *then_block = vir_new_block(c);
struct qblock *after_block = vir_new_block(c);
struct qblock *else_block;
if (empty_else_block)
else_block = after_block;
else
else_block = vir_new_block(c);
/* Check if this if statement is really just a conditional jump with
* the form:
*
* if (cond) {
* break/continue;
* } else {
* }
*
* In which case we can skip the jump to ELSE we emit before the THEN
* block and instead just emit the break/continue directly.
*/
nir_jump_instr *conditional_jump = NULL;
if (empty_else_block) {
nir_block *nir_then_block = nir_if_first_then_block(if_stmt);
struct nir_instr *inst = nir_block_first_instr(nir_then_block);
if (inst && inst->type == nir_instr_type_jump)
conditional_jump = nir_instr_as_jump(inst);
}
/* Set up the flags for the IF condition (taking the THEN branch). */
enum v3d_qpu_cond cond = ntq_emit_bool_to_cond(c, if_stmt->condition);
if (!conditional_jump) {
/* Jump to ELSE. */
struct qinst *branch = vir_BRANCH(c, cond == V3D_QPU_COND_IFA ?
V3D_QPU_BRANCH_COND_ANYNA :
V3D_QPU_BRANCH_COND_ANYA);
/* Pixels that were not dispatched or have been discarded
* should not contribute to the ANYA/ANYNA condition.
*/
branch->qpu.branch.msfign = V3D_QPU_MSFIGN_P;
vir_link_blocks(c->cur_block, else_block);
vir_link_blocks(c->cur_block, then_block);
/* Process the THEN block. */
vir_set_emit_block(c, then_block);
ntq_emit_cf_list(c, &if_stmt->then_list);
if (!empty_else_block) {
/* At the end of the THEN block, jump to ENDIF, unless
* the block ended in a break or continue.
*/
if (!c->cur_block->branch_emitted) {
vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALWAYS);
vir_link_blocks(c->cur_block, after_block);
}
/* Emit the else block. */
vir_set_emit_block(c, else_block);
ntq_emit_cf_list(c, &if_stmt->else_list);
}
} else {
/* Emit the conditional jump directly.
*
* Use ALL with breaks and ANY with continues to ensure that
* we always break and never continue when all lanes have been
* disabled (for example because of discards) to prevent
* infinite loops.
*/
assert(conditional_jump &&
(conditional_jump->type == nir_jump_continue ||
conditional_jump->type == nir_jump_break));
struct qinst *branch = vir_BRANCH(c, cond == V3D_QPU_COND_IFA ?
(conditional_jump->type == nir_jump_break ?
V3D_QPU_BRANCH_COND_ALLA :
V3D_QPU_BRANCH_COND_ANYA) :
(conditional_jump->type == nir_jump_break ?
V3D_QPU_BRANCH_COND_ALLNA :
V3D_QPU_BRANCH_COND_ANYNA));
branch->qpu.branch.msfign = V3D_QPU_MSFIGN_P;
vir_link_blocks(c->cur_block,
conditional_jump->type == nir_jump_break ?
c->loop_break_block :
c->loop_cont_block);
}
vir_link_blocks(c->cur_block, after_block);
vir_set_emit_block(c, after_block);
}
static void
ntq_emit_nonuniform_if(struct v3d_compile *c, nir_if *if_stmt)
{
nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
bool empty_else_block =
(nir_else_block == nir_if_last_else_block(if_stmt) &&
exec_list_is_empty(&nir_else_block->instr_list));
struct qblock *then_block = vir_new_block(c);
struct qblock *after_block = vir_new_block(c);
struct qblock *else_block;
if (empty_else_block)
else_block = after_block;
else
else_block = vir_new_block(c);
bool was_uniform_control_flow = false;
if (!vir_in_nonuniform_control_flow(c)) {
c->execute = vir_MOV(c, vir_uniform_ui(c, 0));
was_uniform_control_flow = true;
}
/* Set up the flags for the IF condition (taking the THEN branch). */
enum v3d_qpu_cond cond = ntq_emit_bool_to_cond(c, if_stmt->condition);
/* Update the flags+cond to mean "Taking the ELSE branch (!cond) and
* was previously active (execute Z) for updating the exec flags.
*/
if (was_uniform_control_flow) {
cond = v3d_qpu_cond_invert(cond);
} else {
struct qinst *inst = vir_MOV_dest(c, vir_nop_reg(), c->execute);
if (cond == V3D_QPU_COND_IFA) {
vir_set_uf(c, inst, V3D_QPU_UF_NORNZ);
} else {
vir_set_uf(c, inst, V3D_QPU_UF_ANDZ);
cond = V3D_QPU_COND_IFA;
}
}
vir_MOV_cond(c, cond,
c->execute,
vir_uniform_ui(c, else_block->index));
/* Jump to ELSE if nothing is active for THEN, otherwise fall
* through.
*/
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), c->execute), V3D_QPU_PF_PUSHZ);
vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALLNA);
vir_link_blocks(c->cur_block, else_block);
vir_link_blocks(c->cur_block, then_block);
/* Process the THEN block. */
vir_set_emit_block(c, then_block);
ntq_emit_cf_list(c, &if_stmt->then_list);
if (!empty_else_block) {
/* Handle the end of the THEN block. First, all currently
* active channels update their execute flags to point to
* ENDIF
*/
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
vir_uniform_ui(c, after_block->index));
/* If everything points at ENDIF, then jump there immediately. */
vir_set_pf(c, vir_XOR_dest(c, vir_nop_reg(),
c->execute,
vir_uniform_ui(c, after_block->index)),
V3D_QPU_PF_PUSHZ);
vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALLA);
vir_link_blocks(c->cur_block, after_block);
vir_link_blocks(c->cur_block, else_block);
vir_set_emit_block(c, else_block);
ntq_activate_execute_for_block(c);
ntq_emit_cf_list(c, &if_stmt->else_list);
}
vir_link_blocks(c->cur_block, after_block);
vir_set_emit_block(c, after_block);
if (was_uniform_control_flow)
c->execute = c->undef;
else
ntq_activate_execute_for_block(c);
}
static void
ntq_emit_if(struct v3d_compile *c, nir_if *nif)
{
bool was_in_control_flow = c->in_control_flow;
c->in_control_flow = true;
if (!vir_in_nonuniform_control_flow(c) &&
!nir_src_is_divergent(nif->condition)) {
ntq_emit_uniform_if(c, nif);
} else {
ntq_emit_nonuniform_if(c, nif);
}
c->in_control_flow = was_in_control_flow;
}
static void
ntq_emit_jump(struct v3d_compile *c, nir_jump_instr *jump)
{
switch (jump->type) {
case nir_jump_break:
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
vir_uniform_ui(c, c->loop_break_block->index));
break;
case nir_jump_continue:
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
vir_uniform_ui(c, c->loop_cont_block->index));
break;
case nir_jump_return:
unreachable("All returns should be lowered\n");
break;
case nir_jump_halt:
case nir_jump_goto:
case nir_jump_goto_if:
unreachable("not supported\n");
break;
}
}
static void
ntq_emit_uniform_jump(struct v3d_compile *c, nir_jump_instr *jump)
{
switch (jump->type) {
case nir_jump_break:
vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALWAYS);
vir_link_blocks(c->cur_block, c->loop_break_block);
c->cur_block->branch_emitted = true;
break;
case nir_jump_continue:
vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALWAYS);
vir_link_blocks(c->cur_block, c->loop_cont_block);
c->cur_block->branch_emitted = true;
break;
case nir_jump_return:
unreachable("All returns should be lowered\n");
break;
case nir_jump_halt:
case nir_jump_goto:
case nir_jump_goto_if:
unreachable("not supported\n");
break;
}
}
static void
ntq_emit_instr(struct v3d_compile *c, nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_alu:
ntq_emit_alu(c, nir_instr_as_alu(instr));
break;
case nir_instr_type_intrinsic:
ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_load_const:
ntq_emit_load_const(c, nir_instr_as_load_const(instr));
break;
case nir_instr_type_ssa_undef:
unreachable("Should've been lowered by nir_lower_undef_to_zero");
break;
case nir_instr_type_tex:
ntq_emit_tex(c, nir_instr_as_tex(instr));
break;
case nir_instr_type_jump:
/* Always flush TMU before jumping to another block, for the
* same reasons as in ntq_emit_block.
*/
ntq_flush_tmu(c);
if (vir_in_nonuniform_control_flow(c))
ntq_emit_jump(c, nir_instr_as_jump(instr));
else
ntq_emit_uniform_jump(c, nir_instr_as_jump(instr));
break;
default:
fprintf(stderr, "Unknown NIR instr type: ");
nir_print_instr(instr, stderr);
fprintf(stderr, "\n");
abort();
}
}
static void
ntq_emit_block(struct v3d_compile *c, nir_block *block)
{
nir_foreach_instr(instr, block) {
ntq_emit_instr(c, instr);
}
/* Always process pending TMU operations in the same block they were
* emitted: we can't emit TMU operations in a block and then emit a
* thread switch and LDTMU/TMUWT for them in another block, possibly
* under control flow.
*/
ntq_flush_tmu(c);
}
static void ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list);
static void
ntq_emit_nonuniform_loop(struct v3d_compile *c, nir_loop *loop)
{
bool was_uniform_control_flow = false;
if (!vir_in_nonuniform_control_flow(c)) {
c->execute = vir_MOV(c, vir_uniform_ui(c, 0));
was_uniform_control_flow = true;
}
c->loop_cont_block = vir_new_block(c);
c->loop_break_block = vir_new_block(c);
vir_link_blocks(c->cur_block, c->loop_cont_block);
vir_set_emit_block(c, c->loop_cont_block);
ntq_activate_execute_for_block(c);
ntq_emit_cf_list(c, &loop->body);
/* Re-enable any previous continues now, so our ANYA check below
* works.
*
* XXX: Use the .ORZ flags update, instead.
*/
vir_set_pf(c, vir_XOR_dest(c,
vir_nop_reg(),
c->execute,
vir_uniform_ui(c, c->loop_cont_block->index)),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute, vir_uniform_ui(c, 0));
vir_set_pf(c, vir_MOV_dest(c, vir_nop_reg(), c->execute), V3D_QPU_PF_PUSHZ);
struct qinst *branch = vir_BRANCH(c, V3D_QPU_BRANCH_COND_ANYA);
/* Pixels that were not dispatched or have been discarded should not
* contribute to looping again.
*/
branch->qpu.branch.msfign = V3D_QPU_MSFIGN_P;
vir_link_blocks(c->cur_block, c->loop_cont_block);
vir_link_blocks(c->cur_block, c->loop_break_block);
vir_set_emit_block(c, c->loop_break_block);
if (was_uniform_control_flow)
c->execute = c->undef;
else
ntq_activate_execute_for_block(c);
}
static void
ntq_emit_uniform_loop(struct v3d_compile *c, nir_loop *loop)
{
c->loop_cont_block = vir_new_block(c);
c->loop_break_block = vir_new_block(c);
vir_link_blocks(c->cur_block, c->loop_cont_block);
vir_set_emit_block(c, c->loop_cont_block);
ntq_emit_cf_list(c, &loop->body);
if (!c->cur_block->branch_emitted) {
vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALWAYS);
vir_link_blocks(c->cur_block, c->loop_cont_block);
}
vir_set_emit_block(c, c->loop_break_block);
}
static void
ntq_emit_loop(struct v3d_compile *c, nir_loop *loop)
{
/* Disable flags optimization for loop conditions. The problem here is
* that we can have code like this:
*
* // block_0
* vec1 32 con ssa_9 = ine32 ssa_8, ssa_2
* loop {
* // block_1
* if ssa_9 {
*
* In this example we emit flags to compute ssa_9 and the optimization
* will skip regenerating them again for the loop condition in the
* loop continue block (block_1). However, this is not safe after the
* first iteration because the loop body can stomp the flags if it has
* any conditionals.
*/
c->flags_temp = -1;
bool was_in_control_flow = c->in_control_flow;
c->in_control_flow = true;
struct qblock *save_loop_cont_block = c->loop_cont_block;
struct qblock *save_loop_break_block = c->loop_break_block;
if (vir_in_nonuniform_control_flow(c) || loop->divergent) {
ntq_emit_nonuniform_loop(c, loop);
} else {
ntq_emit_uniform_loop(c, loop);
}
c->loop_break_block = save_loop_break_block;
c->loop_cont_block = save_loop_cont_block;
c->loops++;
c->in_control_flow = was_in_control_flow;
}
static void
ntq_emit_function(struct v3d_compile *c, nir_function_impl *func)
{
fprintf(stderr, "FUNCTIONS not handled.\n");
abort();
}
static void
ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block:
ntq_emit_block(c, nir_cf_node_as_block(node));
break;
case nir_cf_node_if:
ntq_emit_if(c, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
ntq_emit_loop(c, nir_cf_node_as_loop(node));
break;
case nir_cf_node_function:
ntq_emit_function(c, nir_cf_node_as_function(node));
break;
default:
fprintf(stderr, "Unknown NIR node type\n");
abort();
}
}
}
static void
ntq_emit_impl(struct v3d_compile *c, nir_function_impl *impl)
{
ntq_setup_registers(c, &impl->registers);
ntq_emit_cf_list(c, &impl->body);
}
static void
nir_to_vir(struct v3d_compile *c)
{
switch (c->s->info.stage) {
case MESA_SHADER_FRAGMENT:
c->payload_w = vir_MOV(c, vir_reg(QFILE_REG, 0));
c->payload_w_centroid = vir_MOV(c, vir_reg(QFILE_REG, 1));
c->payload_z = vir_MOV(c, vir_reg(QFILE_REG, 2));
/* V3D 4.x can disable implicit varyings if they are not used */
c->fs_uses_primitive_id =
nir_find_variable_with_location(c->s, nir_var_shader_in,
VARYING_SLOT_PRIMITIVE_ID);
if (c->fs_uses_primitive_id && !c->fs_key->has_gs) {
c->primitive_id =
emit_fragment_varying(c, NULL, -1, 0, 0);
}
if (c->fs_key->is_points &&
(c->devinfo->ver < 40 || program_reads_point_coord(c))) {
c->point_x = emit_fragment_varying(c, NULL, -1, 0, 0);
c->point_y = emit_fragment_varying(c, NULL, -1, 0, 0);
c->uses_implicit_point_line_varyings = true;
} else if (c->fs_key->is_lines &&
(c->devinfo->ver < 40 ||
BITSET_TEST(c->s->info.system_values_read,
SYSTEM_VALUE_LINE_COORD))) {
c->line_x = emit_fragment_varying(c, NULL, -1, 0, 0);
c->uses_implicit_point_line_varyings = true;
}
c->force_per_sample_msaa =
c->s->info.fs.uses_sample_qualifier ||
BITSET_TEST(c->s->info.system_values_read,
SYSTEM_VALUE_SAMPLE_ID) ||
BITSET_TEST(c->s->info.system_values_read,
SYSTEM_VALUE_SAMPLE_POS);
break;
case MESA_SHADER_COMPUTE:
/* Set up the TSO for barriers, assuming we do some. */
if (c->devinfo->ver < 42) {
vir_BARRIERID_dest(c, vir_reg(QFILE_MAGIC,
V3D_QPU_WADDR_SYNC));
}
c->cs_payload[0] = vir_MOV(c, vir_reg(QFILE_REG, 0));
c->cs_payload[1] = vir_MOV(c, vir_reg(QFILE_REG, 2));
/* Set up the division between gl_LocalInvocationIndex and
* wg_in_mem in the payload reg.
*/
int wg_size = (c->s->info.workgroup_size[0] *
c->s->info.workgroup_size[1] *
c->s->info.workgroup_size[2]);
c->local_invocation_index_bits =
ffs(util_next_power_of_two(MAX2(wg_size, 64))) - 1;
assert(c->local_invocation_index_bits <= 8);
if (c->s->info.shared_size) {
struct qreg wg_in_mem = vir_SHR(c, c->cs_payload[1],
vir_uniform_ui(c, 16));
if (c->s->info.workgroup_size[0] != 1 ||
c->s->info.workgroup_size[1] != 1 ||
c->s->info.workgroup_size[2] != 1) {
int wg_bits = (16 -
c->local_invocation_index_bits);
int wg_mask = (1 << wg_bits) - 1;
wg_in_mem = vir_AND(c, wg_in_mem,
vir_uniform_ui(c, wg_mask));
}
struct qreg shared_per_wg =
vir_uniform_ui(c, c->s->info.shared_size);
c->cs_shared_offset =
vir_ADD(c,
vir_uniform(c, QUNIFORM_SHARED_OFFSET,0),
vir_UMUL(c, wg_in_mem, shared_per_wg));
}
break;
default:
break;
}
if (c->s->scratch_size) {
v3d_setup_spill_base(c);
c->spill_size += V3D_CHANNELS * c->s->scratch_size;
}
switch (c->s->info.stage) {
case MESA_SHADER_VERTEX:
ntq_setup_vs_inputs(c);
break;
case MESA_SHADER_GEOMETRY:
ntq_setup_gs_inputs(c);
break;
case MESA_SHADER_FRAGMENT:
ntq_setup_fs_inputs(c);
break;
case MESA_SHADER_COMPUTE:
break;
default:
unreachable("unsupported shader stage");
}
ntq_setup_outputs(c);
/* Find the main function and emit the body. */
nir_foreach_function(function, c->s) {
assert(function->is_entrypoint);
assert(function->impl);
ntq_emit_impl(c, function->impl);
}
}
/**
* When demoting a shader down to single-threaded, removes the THRSW
* instructions (one will still be inserted at v3d_vir_to_qpu() for the
* program end).
*/
static void
vir_remove_thrsw(struct v3d_compile *c)
{
vir_for_each_block(block, c) {
vir_for_each_inst_safe(inst, block) {
if (inst->qpu.sig.thrsw)
vir_remove_instruction(c, inst);
}
}
c->last_thrsw = NULL;
}
/**
* This makes sure we have a top-level last thread switch which signals the
* start of the last thread section, which may include adding a new thrsw
* instruction if needed. We don't allow spilling in the last thread section, so
* if we need to do any spills that inject additional thread switches later on,
* we ensure this thread switch will still be the last thread switch in the
* program, which makes last thread switch signalling a lot easier when we have
* spilling. If in the end we don't need to spill to compile the program and we
* injected a new thread switch instruction here only for that, we will
* eventually restore the previous last thread switch and remove the one we
* added here.
*/
static void
vir_emit_last_thrsw(struct v3d_compile *c,
struct qinst **restore_last_thrsw,
bool *restore_scoreboard_lock)
{
*restore_last_thrsw = c->last_thrsw;
/* On V3D before 4.1, we need a TMU op to be outstanding when thread
* switching, so disable threads if we didn't do any TMU ops (each of
* which would have emitted a THRSW).
*/
if (!c->last_thrsw_at_top_level && c->devinfo->ver < 41) {
c->threads = 1;
if (c->last_thrsw)
vir_remove_thrsw(c);
*restore_last_thrsw = NULL;
}
/* If we're threaded and the last THRSW was in conditional code, then
* we need to emit another one so that we can flag it as the last
* thrsw.
*/
if (c->last_thrsw && !c->last_thrsw_at_top_level) {
assert(c->devinfo->ver >= 41);
vir_emit_thrsw(c);
}
/* If we're threaded, then we need to mark the last THRSW instruction
* so we can emit a pair of them at QPU emit time.
*
* For V3D 4.x, we can spawn the non-fragment shaders already in the
* post-last-THRSW state, so we can skip this.
*/
if (!c->last_thrsw && c->s->info.stage == MESA_SHADER_FRAGMENT) {
assert(c->devinfo->ver >= 41);
vir_emit_thrsw(c);
}
/* If we have not inserted a last thread switch yet, do it now to ensure
* any potential spilling we do happens before this. If we don't spill
* in the end, we will restore the previous one.
*/
if (*restore_last_thrsw == c->last_thrsw) {
if (*restore_last_thrsw)
(*restore_last_thrsw)->is_last_thrsw = false;
*restore_scoreboard_lock = c->lock_scoreboard_on_first_thrsw;
vir_emit_thrsw(c);
} else {
*restore_last_thrsw = c->last_thrsw;
}
assert(c->last_thrsw);
c->last_thrsw->is_last_thrsw = true;
}
static void
vir_restore_last_thrsw(struct v3d_compile *c,
struct qinst *thrsw,
bool scoreboard_lock)
{
assert(c->last_thrsw);
vir_remove_instruction(c, c->last_thrsw);
c->last_thrsw = thrsw;
if (c->last_thrsw)
c->last_thrsw->is_last_thrsw = true;
c->lock_scoreboard_on_first_thrsw = scoreboard_lock;
}
/* There's a flag in the shader for "center W is needed for reasons other than
* non-centroid varyings", so we just walk the program after VIR optimization
* to see if it's used. It should be harmless to set even if we only use
* center W for varyings.
*/
static void
vir_check_payload_w(struct v3d_compile *c)
{
if (c->s->info.stage != MESA_SHADER_FRAGMENT)
return;
vir_for_each_inst_inorder(inst, c) {
for (int i = 0; i < vir_get_nsrc(inst); i++) {
if (inst->src[i].file == QFILE_REG &&
inst->src[i].index == 0) {
c->uses_center_w = true;
return;
}
}
}
}
void
v3d_nir_to_vir(struct v3d_compile *c)
{
if (V3D_DEBUG & (V3D_DEBUG_NIR |
v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
fprintf(stderr, "%s prog %d/%d NIR:\n",
vir_get_stage_name(c),
c->program_id, c->variant_id);
nir_print_shader(c->s, stderr);
}
nir_to_vir(c);
bool restore_scoreboard_lock = false;
struct qinst *restore_last_thrsw;
/* Emit the last THRSW before STVPM and TLB writes. */
vir_emit_last_thrsw(c,
&restore_last_thrsw,
&restore_scoreboard_lock);
switch (c->s->info.stage) {
case MESA_SHADER_FRAGMENT:
emit_frag_end(c);
break;
case MESA_SHADER_GEOMETRY:
emit_geom_end(c);
break;
case MESA_SHADER_VERTEX:
emit_vert_end(c);
break;
case MESA_SHADER_COMPUTE:
break;
default:
unreachable("bad stage");
}
if (V3D_DEBUG & (V3D_DEBUG_VIR |
v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
fprintf(stderr, "%s prog %d/%d pre-opt VIR:\n",
vir_get_stage_name(c),
c->program_id, c->variant_id);
vir_dump(c);
fprintf(stderr, "\n");
}
vir_optimize(c);
vir_check_payload_w(c);
/* XXX perf: On VC4, we do a VIR-level instruction scheduling here.
* We used that on that platform to pipeline TMU writes and reduce the
* number of thread switches, as well as try (mostly successfully) to
* reduce maximum register pressure to allow more threads. We should
* do something of that sort for V3D -- either instruction scheduling
* here, or delay the the THRSW and LDTMUs from our texture
* instructions until the results are needed.
*/
if (V3D_DEBUG & (V3D_DEBUG_VIR |
v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
fprintf(stderr, "%s prog %d/%d VIR:\n",
vir_get_stage_name(c),
c->program_id, c->variant_id);
vir_dump(c);
fprintf(stderr, "\n");
}
/* Attempt to allocate registers for the temporaries. If we fail,
* reduce thread count and try again.
*/
int min_threads = (c->devinfo->ver >= 41) ? 2 : 1;
struct qpu_reg *temp_registers;
while (true) {
temp_registers = v3d_register_allocate(c);
if (temp_registers) {
assert(c->spills + c->fills <= c->max_tmu_spills);
break;
}
if (c->threads == min_threads &&
(V3D_DEBUG & V3D_DEBUG_RA)) {
fprintf(stderr,
"Failed to register allocate using %s\n",
c->fallback_scheduler ? "the fallback scheduler:" :
"the normal scheduler: \n");
vir_dump(c);
char *shaderdb;
int ret = v3d_shaderdb_dump(c, &shaderdb);
if (ret > 0) {
fprintf(stderr, "%s\n", shaderdb);
free(shaderdb);
}
}
if (c->threads <= MAX2(c->min_threads_for_reg_alloc, min_threads)) {
if (V3D_DEBUG & V3D_DEBUG_PERF) {
fprintf(stderr,
"Failed to register allocate %s "
"prog %d/%d at %d threads.\n",
vir_get_stage_name(c),
c->program_id, c->variant_id, c->threads);
}
c->compilation_result =
V3D_COMPILATION_FAILED_REGISTER_ALLOCATION;
return;
}
c->spills = 0;
c->fills = 0;
c->threads /= 2;
if (c->threads == 1)
vir_remove_thrsw(c);
}
/* If we didn't spill, then remove the last thread switch we injected
* artificially (if any) and restore the previous one.
*/
if (!c->spills && c->last_thrsw != restore_last_thrsw)
vir_restore_last_thrsw(c, restore_last_thrsw, restore_scoreboard_lock);
if (c->spills &&
(V3D_DEBUG & (V3D_DEBUG_VIR |
v3d_debug_flag_for_shader_stage(c->s->info.stage)))) {
fprintf(stderr, "%s prog %d/%d spilled VIR:\n",
vir_get_stage_name(c),
c->program_id, c->variant_id);
vir_dump(c);
fprintf(stderr, "\n");
}
v3d_vir_to_qpu(c, temp_registers);
}