mesa/src/amd/llvm/ac_llvm_helper.cpp

329 lines
10 KiB
C++

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*/
#include <llvm-c/Core.h>
#include <llvm/Analysis/TargetLibraryInfo.h>
#include <llvm/IR/IRBuilder.h>
#include <llvm/IR/LegacyPassManager.h>
#include <llvm/Target/TargetMachine.h>
#include <llvm/MC/MCSubtargetInfo.h>
#include <llvm/Support/CommandLine.h>
#include <llvm/Transforms/IPO.h>
#include <cstring>
/* DO NOT REORDER THE HEADERS
* The LLVM headers need to all be included before any Mesa header,
* as they use the `restrict` keyword in ways that are incompatible
* with our #define in include/c99_compat.h
*/
#include "ac_binary.h"
#include "ac_llvm_util.h"
#include "ac_llvm_build.h"
#include "util/macros.h"
bool ac_is_llvm_processor_supported(LLVMTargetMachineRef tm, const char *processor)
{
llvm::TargetMachine *TM = reinterpret_cast<llvm::TargetMachine *>(tm);
return TM->getMCSubtargetInfo()->isCPUStringValid(processor);
}
void ac_reset_llvm_all_options_occurences()
{
llvm::cl::ResetAllOptionOccurrences();
}
void ac_add_attr_dereferenceable(LLVMValueRef val, uint64_t bytes)
{
llvm::Argument *A = llvm::unwrap<llvm::Argument>(val);
A->addAttr(llvm::Attribute::getWithDereferenceableBytes(A->getContext(), bytes));
}
void ac_add_attr_alignment(LLVMValueRef val, uint64_t bytes)
{
llvm::Argument *A = llvm::unwrap<llvm::Argument>(val);
A->addAttr(llvm::Attribute::getWithAlignment(A->getContext(), llvm::Align(bytes)));
}
bool ac_is_sgpr_param(LLVMValueRef arg)
{
llvm::Argument *A = llvm::unwrap<llvm::Argument>(arg);
llvm::AttributeList AS = A->getParent()->getAttributes();
unsigned ArgNo = A->getArgNo();
return AS.hasParamAttr(ArgNo, llvm::Attribute::InReg);
}
LLVMModuleRef ac_create_module(LLVMTargetMachineRef tm, LLVMContextRef ctx)
{
llvm::TargetMachine *TM = reinterpret_cast<llvm::TargetMachine *>(tm);
LLVMModuleRef module = LLVMModuleCreateWithNameInContext("mesa-shader", ctx);
llvm::unwrap(module)->setTargetTriple(TM->getTargetTriple().getTriple());
llvm::unwrap(module)->setDataLayout(TM->createDataLayout());
return module;
}
LLVMBuilderRef ac_create_builder(LLVMContextRef ctx, enum ac_float_mode float_mode)
{
LLVMBuilderRef builder = LLVMCreateBuilderInContext(ctx);
llvm::FastMathFlags flags;
switch (float_mode) {
case AC_FLOAT_MODE_DEFAULT:
case AC_FLOAT_MODE_DENORM_FLUSH_TO_ZERO:
break;
case AC_FLOAT_MODE_DEFAULT_OPENGL:
/* Allow optimizations to treat the sign of a zero argument or
* result as insignificant.
*/
flags.setNoSignedZeros(); /* nsz */
/* Allow optimizations to use the reciprocal of an argument
* rather than perform division.
*/
flags.setAllowReciprocal(); /* arcp */
llvm::unwrap(builder)->setFastMathFlags(flags);
break;
}
return builder;
}
void ac_enable_signed_zeros(struct ac_llvm_context *ctx)
{
if (ctx->float_mode == AC_FLOAT_MODE_DEFAULT_OPENGL) {
auto *b = llvm::unwrap(ctx->builder);
llvm::FastMathFlags flags = b->getFastMathFlags();
/* This disables the optimization of (x + 0), which is used
* to convert negative zero to positive zero.
*/
flags.setNoSignedZeros(false);
b->setFastMathFlags(flags);
}
}
void ac_disable_signed_zeros(struct ac_llvm_context *ctx)
{
if (ctx->float_mode == AC_FLOAT_MODE_DEFAULT_OPENGL) {
auto *b = llvm::unwrap(ctx->builder);
llvm::FastMathFlags flags = b->getFastMathFlags();
flags.setNoSignedZeros();
b->setFastMathFlags(flags);
}
}
LLVMTargetLibraryInfoRef ac_create_target_library_info(const char *triple)
{
return reinterpret_cast<LLVMTargetLibraryInfoRef>(
new llvm::TargetLibraryInfoImpl(llvm::Triple(triple)));
}
void ac_dispose_target_library_info(LLVMTargetLibraryInfoRef library_info)
{
delete reinterpret_cast<llvm::TargetLibraryInfoImpl *>(library_info);
}
/* Implementation of raw_pwrite_stream that works on malloc()ed memory for
* better compatibility with C code. */
struct raw_memory_ostream : public llvm::raw_pwrite_stream {
char *buffer;
size_t written;
size_t bufsize;
raw_memory_ostream()
{
buffer = NULL;
written = 0;
bufsize = 0;
SetUnbuffered();
}
~raw_memory_ostream()
{
free(buffer);
}
void clear()
{
written = 0;
}
void take(char *&out_buffer, size_t &out_size)
{
out_buffer = buffer;
out_size = written;
buffer = NULL;
written = 0;
bufsize = 0;
}
void flush() = delete;
void write_impl(const char *ptr, size_t size) override
{
if (unlikely(written + size < written))
abort();
if (written + size > bufsize) {
bufsize = MAX3(1024, written + size, bufsize / 3 * 4);
buffer = (char *)realloc(buffer, bufsize);
if (!buffer) {
fprintf(stderr, "amd: out of memory allocating ELF buffer\n");
abort();
}
}
memcpy(buffer + written, ptr, size);
written += size;
}
void pwrite_impl(const char *ptr, size_t size, uint64_t offset) override
{
assert(offset == (size_t)offset && offset + size >= offset && offset + size <= written);
memcpy(buffer + offset, ptr, size);
}
uint64_t current_pos() const override
{
return written;
}
};
/* The LLVM compiler is represented as a pass manager containing passes for
* optimizations, instruction selection, and code generation.
*/
struct ac_compiler_passes {
raw_memory_ostream ostream; /* ELF shader binary stream */
llvm::legacy::PassManager passmgr; /* list of passes */
};
struct ac_compiler_passes *ac_create_llvm_passes(LLVMTargetMachineRef tm)
{
struct ac_compiler_passes *p = new ac_compiler_passes();
if (!p)
return NULL;
llvm::TargetMachine *TM = reinterpret_cast<llvm::TargetMachine *>(tm);
if (TM->addPassesToEmitFile(p->passmgr, p->ostream, nullptr,
llvm::CGFT_ObjectFile)) {
fprintf(stderr, "amd: TargetMachine can't emit a file of this type!\n");
delete p;
return NULL;
}
return p;
}
void ac_destroy_llvm_passes(struct ac_compiler_passes *p)
{
delete p;
}
/* This returns false on failure. */
bool ac_compile_module_to_elf(struct ac_compiler_passes *p, LLVMModuleRef module,
char **pelf_buffer, size_t *pelf_size)
{
p->passmgr.run(*llvm::unwrap(module));
p->ostream.take(*pelf_buffer, *pelf_size);
return true;
}
void ac_llvm_add_barrier_noop_pass(LLVMPassManagerRef passmgr)
{
llvm::unwrap(passmgr)->add(llvm::createBarrierNoopPass());
}
LLVMValueRef ac_build_atomic_rmw(struct ac_llvm_context *ctx, LLVMAtomicRMWBinOp op,
LLVMValueRef ptr, LLVMValueRef val, const char *sync_scope)
{
llvm::AtomicRMWInst::BinOp binop;
switch (op) {
case LLVMAtomicRMWBinOpXchg:
binop = llvm::AtomicRMWInst::Xchg;
break;
case LLVMAtomicRMWBinOpAdd:
binop = llvm::AtomicRMWInst::Add;
break;
case LLVMAtomicRMWBinOpSub:
binop = llvm::AtomicRMWInst::Sub;
break;
case LLVMAtomicRMWBinOpAnd:
binop = llvm::AtomicRMWInst::And;
break;
case LLVMAtomicRMWBinOpNand:
binop = llvm::AtomicRMWInst::Nand;
break;
case LLVMAtomicRMWBinOpOr:
binop = llvm::AtomicRMWInst::Or;
break;
case LLVMAtomicRMWBinOpXor:
binop = llvm::AtomicRMWInst::Xor;
break;
case LLVMAtomicRMWBinOpMax:
binop = llvm::AtomicRMWInst::Max;
break;
case LLVMAtomicRMWBinOpMin:
binop = llvm::AtomicRMWInst::Min;
break;
case LLVMAtomicRMWBinOpUMax:
binop = llvm::AtomicRMWInst::UMax;
break;
case LLVMAtomicRMWBinOpUMin:
binop = llvm::AtomicRMWInst::UMin;
break;
case LLVMAtomicRMWBinOpFAdd:
binop = llvm::AtomicRMWInst::FAdd;
break;
default:
unreachable("invalid LLVMAtomicRMWBinOp");
break;
}
unsigned SSID = llvm::unwrap(ctx->context)->getOrInsertSyncScopeID(sync_scope);
return llvm::wrap(llvm::unwrap(ctx->builder)
->CreateAtomicRMW(binop, llvm::unwrap(ptr), llvm::unwrap(val),
#if LLVM_VERSION_MAJOR >= 13
llvm::MaybeAlign(0),
#endif
llvm::AtomicOrdering::SequentiallyConsistent, SSID));
}
LLVMValueRef ac_build_atomic_cmp_xchg(struct ac_llvm_context *ctx, LLVMValueRef ptr,
LLVMValueRef cmp, LLVMValueRef val, const char *sync_scope)
{
unsigned SSID = llvm::unwrap(ctx->context)->getOrInsertSyncScopeID(sync_scope);
return llvm::wrap(llvm::unwrap(ctx->builder)
->CreateAtomicCmpXchg(llvm::unwrap(ptr), llvm::unwrap(cmp),
llvm::unwrap(val),
#if LLVM_VERSION_MAJOR >= 13
llvm::MaybeAlign(0),
#endif
llvm::AtomicOrdering::SequentiallyConsistent,
llvm::AtomicOrdering::SequentiallyConsistent, SSID));
}