mesa/src/amd/compiler/aco_reduce_assign.cpp

169 lines
6.9 KiB
C++

/*
* Copyright © 2018 Valve Corporation
* Copyright © 2018 Google
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "aco_builder.h"
#include "aco_ir.h"
#include <vector>
/*
* Insert p_linear_start instructions right before RA to correctly allocate
* temporaries for reductions that have to disrespect EXEC by executing in
* WWM.
*/
namespace aco {
void
setup_reduce_temp(Program* program)
{
unsigned last_top_level_block_idx = 0;
unsigned maxSize = 0;
std::vector<bool> hasReductions(program->blocks.size());
for (Block& block : program->blocks) {
for (aco_ptr<Instruction>& instr : block.instructions) {
if (instr->format != Format::PSEUDO_REDUCTION)
continue;
maxSize = MAX2(maxSize, instr->operands[0].size());
hasReductions[block.index] = true;
}
}
if (maxSize == 0)
return;
assert(maxSize == 1 || maxSize == 2);
Temp reduceTmp(0, RegClass(RegType::vgpr, maxSize).as_linear());
Temp vtmp(0, RegClass(RegType::vgpr, maxSize).as_linear());
int inserted_at = -1;
int vtmp_inserted_at = -1;
bool reduceTmp_in_loop = false;
bool vtmp_in_loop = false;
for (Block& block : program->blocks) {
/* insert p_end_linear_vgpr after the outermost loop */
if (reduceTmp_in_loop && block.loop_nest_depth == 0) {
assert(inserted_at == (int)last_top_level_block_idx);
aco_ptr<Instruction> end{create_instruction<Instruction>(
aco_opcode::p_end_linear_vgpr, Format::PSEUDO, vtmp_in_loop ? 2 : 1, 0)};
end->operands[0] = Operand(reduceTmp);
if (vtmp_in_loop)
end->operands[1] = Operand(vtmp);
/* insert after the phis of the loop exit block */
std::vector<aco_ptr<Instruction>>::iterator it = block.instructions.begin();
while ((*it)->opcode == aco_opcode::p_linear_phi || (*it)->opcode == aco_opcode::p_phi)
++it;
block.instructions.insert(it, std::move(end));
reduceTmp_in_loop = false;
}
if (block.kind & block_kind_top_level)
last_top_level_block_idx = block.index;
if (!hasReductions[block.index])
continue;
std::vector<aco_ptr<Instruction>>::iterator it;
for (it = block.instructions.begin(); it != block.instructions.end(); ++it) {
Instruction* instr = (*it).get();
if (instr->format != Format::PSEUDO_REDUCTION)
continue;
ReduceOp op = instr->reduction().reduce_op;
reduceTmp_in_loop |= block.loop_nest_depth > 0;
if ((int)last_top_level_block_idx != inserted_at) {
reduceTmp = program->allocateTmp(reduceTmp.regClass());
aco_ptr<Pseudo_instruction> create{create_instruction<Pseudo_instruction>(
aco_opcode::p_start_linear_vgpr, Format::PSEUDO, 0, 1)};
create->definitions[0] = Definition(reduceTmp);
/* find the right place to insert this definition */
if (last_top_level_block_idx == block.index) {
/* insert right before the current instruction */
it = block.instructions.insert(it, std::move(create));
it++;
/* inserted_at is intentionally not updated here, so later blocks
* would insert at the end instead of using this one. */
} else {
assert(last_top_level_block_idx < block.index);
/* insert before the branch at last top level block */
std::vector<aco_ptr<Instruction>>& instructions =
program->blocks[last_top_level_block_idx].instructions;
instructions.insert(std::next(instructions.begin(), instructions.size() - 1),
std::move(create));
inserted_at = last_top_level_block_idx;
}
}
/* same as before, except for the vector temporary instead of the reduce temporary */
unsigned cluster_size = instr->reduction().cluster_size;
bool need_vtmp = op == imul32 || op == fadd64 || op == fmul64 || op == fmin64 ||
op == fmax64 || op == umin64 || op == umax64 || op == imin64 ||
op == imax64 || op == imul64;
bool gfx10_need_vtmp = op == imul8 || op == imax8 || op == imin8 || op == umin8 ||
op == imul16 || op == imax16 || op == imin16 || op == umin16 ||
op == iadd64;
if (program->gfx_level >= GFX10 && cluster_size == 64)
need_vtmp = true;
if (program->gfx_level >= GFX10 && gfx10_need_vtmp)
need_vtmp = true;
if (program->gfx_level <= GFX7)
need_vtmp = true;
need_vtmp |= cluster_size == 32;
vtmp_in_loop |= need_vtmp && block.loop_nest_depth > 0;
if (need_vtmp && (int)last_top_level_block_idx != vtmp_inserted_at) {
vtmp = program->allocateTmp(vtmp.regClass());
aco_ptr<Pseudo_instruction> create{create_instruction<Pseudo_instruction>(
aco_opcode::p_start_linear_vgpr, Format::PSEUDO, 0, 1)};
create->definitions[0] = Definition(vtmp);
if (last_top_level_block_idx == block.index) {
it = block.instructions.insert(it, std::move(create));
it++;
} else {
assert(last_top_level_block_idx < block.index);
std::vector<aco_ptr<Instruction>>& instructions =
program->blocks[last_top_level_block_idx].instructions;
instructions.insert(std::next(instructions.begin(), instructions.size() - 1),
std::move(create));
vtmp_inserted_at = last_top_level_block_idx;
}
}
instr->operands[1] = Operand(reduceTmp);
if (need_vtmp)
instr->operands[2] = Operand(vtmp);
}
}
}
}; // namespace aco