mesa/src/amd/compiler/aco_print_ir.cpp

911 lines
32 KiB
C++

/*
* Copyright © 2018 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "aco_builder.h"
#include "aco_ir.h"
#include "common/ac_shader_util.h"
#include "common/sid.h"
#include <array>
namespace aco {
const std::array<const char*, num_reduce_ops> reduce_ops = []()
{
std::array<const char*, num_reduce_ops> ret{};
ret[iadd8] = "iadd8";
ret[iadd16] = "iadd16";
ret[iadd32] = "iadd32";
ret[iadd64] = "iadd64";
ret[imul8] = "imul8";
ret[imul16] = "imul16";
ret[imul32] = "imul32";
ret[imul64] = "imul64";
ret[fadd16] = "fadd16";
ret[fadd32] = "fadd32";
ret[fadd64] = "fadd64";
ret[fmul16] = "fmul16";
ret[fmul32] = "fmul32";
ret[fmul64] = "fmul64";
ret[imin8] = "imin8";
ret[imin16] = "imin16";
ret[imin32] = "imin32";
ret[imin64] = "imin64";
ret[imax8] = "imax8";
ret[imax16] = "imax16";
ret[imax32] = "imax32";
ret[imax64] = "imax64";
ret[umin8] = "umin8";
ret[umin16] = "umin16";
ret[umin32] = "umin32";
ret[umin64] = "umin64";
ret[umax8] = "umax8";
ret[umax16] = "umax16";
ret[umax32] = "umax32";
ret[umax64] = "umax64";
ret[fmin16] = "fmin16";
ret[fmin32] = "fmin32";
ret[fmin64] = "fmin64";
ret[fmax16] = "fmax16";
ret[fmax32] = "fmax32";
ret[fmax64] = "fmax64";
ret[iand8] = "iand8";
ret[iand16] = "iand16";
ret[iand32] = "iand32";
ret[iand64] = "iand64";
ret[ior8] = "ior8";
ret[ior16] = "ior16";
ret[ior32] = "ior32";
ret[ior64] = "ior64";
ret[ixor8] = "ixor8";
ret[ixor16] = "ixor16";
ret[ixor32] = "ixor32";
ret[ixor64] = "ixor64";
return ret;
}();
static void
print_reg_class(const RegClass rc, FILE* output)
{
if (rc.is_subdword()) {
fprintf(output, " v%ub: ", rc.bytes());
} else if (rc.type() == RegType::sgpr) {
fprintf(output, " s%u: ", rc.size());
} else if (rc.is_linear()) {
fprintf(output, " lv%u: ", rc.size());
} else {
fprintf(output, " v%u: ", rc.size());
}
}
void
print_physReg(PhysReg reg, unsigned bytes, FILE* output, unsigned flags)
{
if (reg == 124) {
fprintf(output, "m0");
} else if (reg == 106) {
fprintf(output, "vcc");
} else if (reg == 253) {
fprintf(output, "scc");
} else if (reg == 126) {
fprintf(output, "exec");
} else {
bool is_vgpr = reg / 256;
unsigned r = reg % 256;
unsigned size = DIV_ROUND_UP(bytes, 4);
if (size == 1 && (flags & print_no_ssa)) {
fprintf(output, "%c%d", is_vgpr ? 'v' : 's', r);
} else {
fprintf(output, "%c[%d", is_vgpr ? 'v' : 's', r);
if (size > 1)
fprintf(output, "-%d]", r + size - 1);
else
fprintf(output, "]");
}
if (reg.byte() || bytes % 4)
fprintf(output, "[%d:%d]", reg.byte() * 8, (reg.byte() + bytes) * 8);
}
}
static void
print_constant(uint8_t reg, FILE* output)
{
if (reg >= 128 && reg <= 192) {
fprintf(output, "%d", reg - 128);
return;
} else if (reg >= 192 && reg <= 208) {
fprintf(output, "%d", 192 - reg);
return;
}
switch (reg) {
case 240: fprintf(output, "0.5"); break;
case 241: fprintf(output, "-0.5"); break;
case 242: fprintf(output, "1.0"); break;
case 243: fprintf(output, "-1.0"); break;
case 244: fprintf(output, "2.0"); break;
case 245: fprintf(output, "-2.0"); break;
case 246: fprintf(output, "4.0"); break;
case 247: fprintf(output, "-4.0"); break;
case 248: fprintf(output, "1/(2*PI)"); break;
}
}
void
aco_print_operand(const Operand* operand, FILE* output, unsigned flags)
{
if (operand->isLiteral() || (operand->isConstant() && operand->bytes() == 1)) {
if (operand->bytes() == 1)
fprintf(output, "0x%.2x", operand->constantValue());
else if (operand->bytes() == 2)
fprintf(output, "0x%.4x", operand->constantValue());
else
fprintf(output, "0x%x", operand->constantValue());
} else if (operand->isConstant()) {
print_constant(operand->physReg().reg(), output);
} else if (operand->isUndefined()) {
print_reg_class(operand->regClass(), output);
fprintf(output, "undef");
} else {
if (operand->isLateKill())
fprintf(output, "(latekill)");
if (operand->is16bit())
fprintf(output, "(is16bit)");
if (operand->is24bit())
fprintf(output, "(is24bit)");
if ((flags & print_kill) && operand->isKill())
fprintf(output, "(kill)");
if (!(flags & print_no_ssa))
fprintf(output, "%%%d%s", operand->tempId(), operand->isFixed() ? ":" : "");
if (operand->isFixed())
print_physReg(operand->physReg(), operand->bytes(), output, flags);
}
}
static void
print_definition(const Definition* definition, FILE* output, unsigned flags)
{
if (!(flags & print_no_ssa))
print_reg_class(definition->regClass(), output);
if (definition->isPrecise())
fprintf(output, "(precise)");
if (definition->isNUW())
fprintf(output, "(nuw)");
if (definition->isNoCSE())
fprintf(output, "(noCSE)");
if ((flags & print_kill) && definition->isKill())
fprintf(output, "(kill)");
if (!(flags & print_no_ssa))
fprintf(output, "%%%d%s", definition->tempId(), definition->isFixed() ? ":" : "");
if (definition->isFixed())
print_physReg(definition->physReg(), definition->bytes(), output, flags);
}
static void
print_storage(storage_class storage, FILE* output)
{
fprintf(output, " storage:");
int printed = 0;
if (storage & storage_buffer)
printed += fprintf(output, "%sbuffer", printed ? "," : "");
if (storage & storage_atomic_counter)
printed += fprintf(output, "%satomic_counter", printed ? "," : "");
if (storage & storage_image)
printed += fprintf(output, "%simage", printed ? "," : "");
if (storage & storage_shared)
printed += fprintf(output, "%sshared", printed ? "," : "");
if (storage & storage_task_payload)
printed += fprintf(output, "%stask_payload", printed ? "," : "");
if (storage & storage_vmem_output)
printed += fprintf(output, "%svmem_output", printed ? "," : "");
if (storage & storage_scratch)
printed += fprintf(output, "%sscratch", printed ? "," : "");
if (storage & storage_vgpr_spill)
printed += fprintf(output, "%svgpr_spill", printed ? "," : "");
}
static void
print_semantics(memory_semantics sem, FILE* output)
{
fprintf(output, " semantics:");
int printed = 0;
if (sem & semantic_acquire)
printed += fprintf(output, "%sacquire", printed ? "," : "");
if (sem & semantic_release)
printed += fprintf(output, "%srelease", printed ? "," : "");
if (sem & semantic_volatile)
printed += fprintf(output, "%svolatile", printed ? "," : "");
if (sem & semantic_private)
printed += fprintf(output, "%sprivate", printed ? "," : "");
if (sem & semantic_can_reorder)
printed += fprintf(output, "%sreorder", printed ? "," : "");
if (sem & semantic_atomic)
printed += fprintf(output, "%satomic", printed ? "," : "");
if (sem & semantic_rmw)
printed += fprintf(output, "%srmw", printed ? "," : "");
}
static void
print_scope(sync_scope scope, FILE* output, const char* prefix = "scope")
{
fprintf(output, " %s:", prefix);
switch (scope) {
case scope_invocation: fprintf(output, "invocation"); break;
case scope_subgroup: fprintf(output, "subgroup"); break;
case scope_workgroup: fprintf(output, "workgroup"); break;
case scope_queuefamily: fprintf(output, "queuefamily"); break;
case scope_device: fprintf(output, "device"); break;
}
}
static void
print_sync(memory_sync_info sync, FILE* output)
{
print_storage(sync.storage, output);
print_semantics(sync.semantics, output);
print_scope(sync.scope, output);
}
static void
print_instr_format_specific(const Instruction* instr, FILE* output)
{
switch (instr->format) {
case Format::SOPK: {
const SOPK_instruction& sopk = instr->sopk();
fprintf(output, " imm:%d", sopk.imm & 0x8000 ? (sopk.imm - 65536) : sopk.imm);
break;
}
case Format::SOPP: {
uint16_t imm = instr->sopp().imm;
switch (instr->opcode) {
case aco_opcode::s_waitcnt: {
/* we usually should check the gfx level for vmcnt/lgkm, but
* insert_waitcnt() should fill it in regardless. */
unsigned vmcnt = (imm & 0xF) | ((imm & (0x3 << 14)) >> 10);
if (vmcnt != 63)
fprintf(output, " vmcnt(%d)", vmcnt);
if (((imm >> 4) & 0x7) < 0x7)
fprintf(output, " expcnt(%d)", (imm >> 4) & 0x7);
if (((imm >> 8) & 0x3F) < 0x3F)
fprintf(output, " lgkmcnt(%d)", (imm >> 8) & 0x3F);
break;
}
case aco_opcode::s_endpgm:
case aco_opcode::s_endpgm_saved:
case aco_opcode::s_endpgm_ordered_ps_done:
case aco_opcode::s_wakeup:
case aco_opcode::s_barrier:
case aco_opcode::s_icache_inv:
case aco_opcode::s_ttracedata:
case aco_opcode::s_set_gpr_idx_off: {
break;
}
case aco_opcode::s_sendmsg: {
unsigned id = imm & sendmsg_id_mask;
switch (id) {
case sendmsg_none: fprintf(output, " sendmsg(MSG_NONE)"); break;
case _sendmsg_gs:
fprintf(output, " sendmsg(gs%s%s, %u)", imm & 0x10 ? ", cut" : "",
imm & 0x20 ? ", emit" : "", imm >> 8);
break;
case _sendmsg_gs_done:
fprintf(output, " sendmsg(gs_done%s%s, %u)", imm & 0x10 ? ", cut" : "",
imm & 0x20 ? ", emit" : "", imm >> 8);
break;
case sendmsg_save_wave: fprintf(output, " sendmsg(save_wave)"); break;
case sendmsg_stall_wave_gen: fprintf(output, " sendmsg(stall_wave_gen)"); break;
case sendmsg_halt_waves: fprintf(output, " sendmsg(halt_waves)"); break;
case sendmsg_ordered_ps_done: fprintf(output, " sendmsg(ordered_ps_done)"); break;
case sendmsg_early_prim_dealloc: fprintf(output, " sendmsg(early_prim_dealloc)"); break;
case sendmsg_gs_alloc_req: fprintf(output, " sendmsg(gs_alloc_req)"); break;
}
break;
}
default: {
if (imm)
fprintf(output, " imm:%u", imm);
break;
}
}
if (instr->sopp().block != -1)
fprintf(output, " block:BB%d", instr->sopp().block);
break;
}
case Format::SMEM: {
const SMEM_instruction& smem = instr->smem();
if (smem.glc)
fprintf(output, " glc");
if (smem.dlc)
fprintf(output, " dlc");
if (smem.nv)
fprintf(output, " nv");
print_sync(smem.sync, output);
break;
}
case Format::VINTRP: {
const Interp_instruction& vintrp = instr->vintrp();
fprintf(output, " attr%d.%c", vintrp.attribute, "xyzw"[vintrp.component]);
break;
}
case Format::DS: {
const DS_instruction& ds = instr->ds();
if (ds.offset0)
fprintf(output, " offset0:%u", ds.offset0);
if (ds.offset1)
fprintf(output, " offset1:%u", ds.offset1);
if (ds.gds)
fprintf(output, " gds");
print_sync(ds.sync, output);
break;
}
case Format::MUBUF: {
const MUBUF_instruction& mubuf = instr->mubuf();
if (mubuf.offset)
fprintf(output, " offset:%u", mubuf.offset);
if (mubuf.offen)
fprintf(output, " offen");
if (mubuf.idxen)
fprintf(output, " idxen");
if (mubuf.addr64)
fprintf(output, " addr64");
if (mubuf.glc)
fprintf(output, " glc");
if (mubuf.dlc)
fprintf(output, " dlc");
if (mubuf.slc)
fprintf(output, " slc");
if (mubuf.tfe)
fprintf(output, " tfe");
if (mubuf.lds)
fprintf(output, " lds");
if (mubuf.disable_wqm)
fprintf(output, " disable_wqm");
print_sync(mubuf.sync, output);
break;
}
case Format::MIMG: {
const MIMG_instruction& mimg = instr->mimg();
unsigned identity_dmask =
!instr->definitions.empty() ? (1 << instr->definitions[0].size()) - 1 : 0xf;
if ((mimg.dmask & identity_dmask) != identity_dmask)
fprintf(output, " dmask:%s%s%s%s", mimg.dmask & 0x1 ? "x" : "",
mimg.dmask & 0x2 ? "y" : "", mimg.dmask & 0x4 ? "z" : "",
mimg.dmask & 0x8 ? "w" : "");
switch (mimg.dim) {
case ac_image_1d: fprintf(output, " 1d"); break;
case ac_image_2d: fprintf(output, " 2d"); break;
case ac_image_3d: fprintf(output, " 3d"); break;
case ac_image_cube: fprintf(output, " cube"); break;
case ac_image_1darray: fprintf(output, " 1darray"); break;
case ac_image_2darray: fprintf(output, " 2darray"); break;
case ac_image_2dmsaa: fprintf(output, " 2dmsaa"); break;
case ac_image_2darraymsaa: fprintf(output, " 2darraymsaa"); break;
}
if (mimg.unrm)
fprintf(output, " unrm");
if (mimg.glc)
fprintf(output, " glc");
if (mimg.dlc)
fprintf(output, " dlc");
if (mimg.slc)
fprintf(output, " slc");
if (mimg.tfe)
fprintf(output, " tfe");
if (mimg.da)
fprintf(output, " da");
if (mimg.lwe)
fprintf(output, " lwe");
if (mimg.r128)
fprintf(output, " r128");
if (mimg.a16)
fprintf(output, " a16");
if (mimg.d16)
fprintf(output, " d16");
if (mimg.disable_wqm)
fprintf(output, " disable_wqm");
print_sync(mimg.sync, output);
break;
}
case Format::EXP: {
const Export_instruction& exp = instr->exp();
unsigned identity_mask = exp.compressed ? 0x5 : 0xf;
if ((exp.enabled_mask & identity_mask) != identity_mask)
fprintf(output, " en:%c%c%c%c", exp.enabled_mask & 0x1 ? 'r' : '*',
exp.enabled_mask & 0x2 ? 'g' : '*', exp.enabled_mask & 0x4 ? 'b' : '*',
exp.enabled_mask & 0x8 ? 'a' : '*');
if (exp.compressed)
fprintf(output, " compr");
if (exp.done)
fprintf(output, " done");
if (exp.valid_mask)
fprintf(output, " vm");
if (exp.dest <= V_008DFC_SQ_EXP_MRT + 7)
fprintf(output, " mrt%d", exp.dest - V_008DFC_SQ_EXP_MRT);
else if (exp.dest == V_008DFC_SQ_EXP_MRTZ)
fprintf(output, " mrtz");
else if (exp.dest == V_008DFC_SQ_EXP_NULL)
fprintf(output, " null");
else if (exp.dest >= V_008DFC_SQ_EXP_POS && exp.dest <= V_008DFC_SQ_EXP_POS + 3)
fprintf(output, " pos%d", exp.dest - V_008DFC_SQ_EXP_POS);
else if (exp.dest >= V_008DFC_SQ_EXP_PARAM && exp.dest <= V_008DFC_SQ_EXP_PARAM + 31)
fprintf(output, " param%d", exp.dest - V_008DFC_SQ_EXP_PARAM);
break;
}
case Format::PSEUDO_BRANCH: {
const Pseudo_branch_instruction& branch = instr->branch();
/* Note: BB0 cannot be a branch target */
if (branch.target[0] != 0)
fprintf(output, " BB%d", branch.target[0]);
if (branch.target[1] != 0)
fprintf(output, ", BB%d", branch.target[1]);
break;
}
case Format::PSEUDO_REDUCTION: {
const Pseudo_reduction_instruction& reduce = instr->reduction();
fprintf(output, " op:%s", reduce_ops[reduce.reduce_op]);
if (reduce.cluster_size)
fprintf(output, " cluster_size:%u", reduce.cluster_size);
break;
}
case Format::PSEUDO_BARRIER: {
const Pseudo_barrier_instruction& barrier = instr->barrier();
print_sync(barrier.sync, output);
print_scope(barrier.exec_scope, output, "exec_scope");
break;
}
case Format::FLAT:
case Format::GLOBAL:
case Format::SCRATCH: {
const FLAT_instruction& flat = instr->flatlike();
if (flat.offset)
fprintf(output, " offset:%d", flat.offset);
if (flat.glc)
fprintf(output, " glc");
if (flat.dlc)
fprintf(output, " dlc");
if (flat.slc)
fprintf(output, " slc");
if (flat.lds)
fprintf(output, " lds");
if (flat.nv)
fprintf(output, " nv");
if (flat.disable_wqm)
fprintf(output, " disable_wqm");
print_sync(flat.sync, output);
break;
}
case Format::MTBUF: {
const MTBUF_instruction& mtbuf = instr->mtbuf();
fprintf(output, " dfmt:");
switch (mtbuf.dfmt) {
case V_008F0C_BUF_DATA_FORMAT_8: fprintf(output, "8"); break;
case V_008F0C_BUF_DATA_FORMAT_16: fprintf(output, "16"); break;
case V_008F0C_BUF_DATA_FORMAT_8_8: fprintf(output, "8_8"); break;
case V_008F0C_BUF_DATA_FORMAT_32: fprintf(output, "32"); break;
case V_008F0C_BUF_DATA_FORMAT_16_16: fprintf(output, "16_16"); break;
case V_008F0C_BUF_DATA_FORMAT_10_11_11: fprintf(output, "10_11_11"); break;
case V_008F0C_BUF_DATA_FORMAT_11_11_10: fprintf(output, "11_11_10"); break;
case V_008F0C_BUF_DATA_FORMAT_10_10_10_2: fprintf(output, "10_10_10_2"); break;
case V_008F0C_BUF_DATA_FORMAT_2_10_10_10: fprintf(output, "2_10_10_10"); break;
case V_008F0C_BUF_DATA_FORMAT_8_8_8_8: fprintf(output, "8_8_8_8"); break;
case V_008F0C_BUF_DATA_FORMAT_32_32: fprintf(output, "32_32"); break;
case V_008F0C_BUF_DATA_FORMAT_16_16_16_16: fprintf(output, "16_16_16_16"); break;
case V_008F0C_BUF_DATA_FORMAT_32_32_32: fprintf(output, "32_32_32"); break;
case V_008F0C_BUF_DATA_FORMAT_32_32_32_32: fprintf(output, "32_32_32_32"); break;
case V_008F0C_BUF_DATA_FORMAT_RESERVED_15: fprintf(output, "reserved15"); break;
}
fprintf(output, " nfmt:");
switch (mtbuf.nfmt) {
case V_008F0C_BUF_NUM_FORMAT_UNORM: fprintf(output, "unorm"); break;
case V_008F0C_BUF_NUM_FORMAT_SNORM: fprintf(output, "snorm"); break;
case V_008F0C_BUF_NUM_FORMAT_USCALED: fprintf(output, "uscaled"); break;
case V_008F0C_BUF_NUM_FORMAT_SSCALED: fprintf(output, "sscaled"); break;
case V_008F0C_BUF_NUM_FORMAT_UINT: fprintf(output, "uint"); break;
case V_008F0C_BUF_NUM_FORMAT_SINT: fprintf(output, "sint"); break;
case V_008F0C_BUF_NUM_FORMAT_SNORM_OGL: fprintf(output, "snorm"); break;
case V_008F0C_BUF_NUM_FORMAT_FLOAT: fprintf(output, "float"); break;
}
if (mtbuf.offset)
fprintf(output, " offset:%u", mtbuf.offset);
if (mtbuf.offen)
fprintf(output, " offen");
if (mtbuf.idxen)
fprintf(output, " idxen");
if (mtbuf.glc)
fprintf(output, " glc");
if (mtbuf.dlc)
fprintf(output, " dlc");
if (mtbuf.slc)
fprintf(output, " slc");
if (mtbuf.tfe)
fprintf(output, " tfe");
if (mtbuf.disable_wqm)
fprintf(output, " disable_wqm");
print_sync(mtbuf.sync, output);
break;
}
case Format::VOP3P: {
if (instr->vop3p().clamp)
fprintf(output, " clamp");
break;
}
default: {
break;
}
}
if (instr->isVOP3()) {
const VOP3_instruction& vop3 = instr->vop3();
switch (vop3.omod) {
case 1: fprintf(output, " *2"); break;
case 2: fprintf(output, " *4"); break;
case 3: fprintf(output, " *0.5"); break;
}
if (vop3.clamp)
fprintf(output, " clamp");
if (vop3.opsel & (1 << 3))
fprintf(output, " opsel_hi");
} else if (instr->isDPP16()) {
const DPP16_instruction& dpp = instr->dpp16();
if (dpp.dpp_ctrl <= 0xff) {
fprintf(output, " quad_perm:[%d,%d,%d,%d]", dpp.dpp_ctrl & 0x3, (dpp.dpp_ctrl >> 2) & 0x3,
(dpp.dpp_ctrl >> 4) & 0x3, (dpp.dpp_ctrl >> 6) & 0x3);
} else if (dpp.dpp_ctrl >= 0x101 && dpp.dpp_ctrl <= 0x10f) {
fprintf(output, " row_shl:%d", dpp.dpp_ctrl & 0xf);
} else if (dpp.dpp_ctrl >= 0x111 && dpp.dpp_ctrl <= 0x11f) {
fprintf(output, " row_shr:%d", dpp.dpp_ctrl & 0xf);
} else if (dpp.dpp_ctrl >= 0x121 && dpp.dpp_ctrl <= 0x12f) {
fprintf(output, " row_ror:%d", dpp.dpp_ctrl & 0xf);
} else if (dpp.dpp_ctrl == dpp_wf_sl1) {
fprintf(output, " wave_shl:1");
} else if (dpp.dpp_ctrl == dpp_wf_rl1) {
fprintf(output, " wave_rol:1");
} else if (dpp.dpp_ctrl == dpp_wf_sr1) {
fprintf(output, " wave_shr:1");
} else if (dpp.dpp_ctrl == dpp_wf_rr1) {
fprintf(output, " wave_ror:1");
} else if (dpp.dpp_ctrl == dpp_row_mirror) {
fprintf(output, " row_mirror");
} else if (dpp.dpp_ctrl == dpp_row_half_mirror) {
fprintf(output, " row_half_mirror");
} else if (dpp.dpp_ctrl == dpp_row_bcast15) {
fprintf(output, " row_bcast:15");
} else if (dpp.dpp_ctrl == dpp_row_bcast31) {
fprintf(output, " row_bcast:31");
} else {
fprintf(output, " dpp_ctrl:0x%.3x", dpp.dpp_ctrl);
}
if (dpp.row_mask != 0xf)
fprintf(output, " row_mask:0x%.1x", dpp.row_mask);
if (dpp.bank_mask != 0xf)
fprintf(output, " bank_mask:0x%.1x", dpp.bank_mask);
if (dpp.bound_ctrl)
fprintf(output, " bound_ctrl:1");
} else if (instr->isDPP8()) {
const DPP8_instruction& dpp = instr->dpp8();
fprintf(output, " dpp8:[%d,%d,%d,%d,%d,%d,%d,%d]", dpp.lane_sel[0], dpp.lane_sel[1],
dpp.lane_sel[2], dpp.lane_sel[3], dpp.lane_sel[4], dpp.lane_sel[5], dpp.lane_sel[6],
dpp.lane_sel[7]);
} else if (instr->isSDWA()) {
const SDWA_instruction& sdwa = instr->sdwa();
switch (sdwa.omod) {
case 1: fprintf(output, " *2"); break;
case 2: fprintf(output, " *4"); break;
case 3: fprintf(output, " *0.5"); break;
}
if (sdwa.clamp)
fprintf(output, " clamp");
if (!instr->isVOPC()) {
char sext = sdwa.dst_sel.sign_extend() ? 's' : 'u';
unsigned offset = sdwa.dst_sel.offset();
if (instr->definitions[0].isFixed())
offset += instr->definitions[0].physReg().byte();
switch (sdwa.dst_sel.size()) {
case 1: fprintf(output, " dst_sel:%cbyte%u", sext, offset); break;
case 2: fprintf(output, " dst_sel:%cword%u", sext, offset >> 1); break;
case 4: fprintf(output, " dst_sel:dword"); break;
default: break;
}
if (instr->definitions[0].bytes() < 4)
fprintf(output, " dst_preserve");
}
for (unsigned i = 0; i < std::min<unsigned>(2, instr->operands.size()); i++) {
char sext = sdwa.sel[i].sign_extend() ? 's' : 'u';
unsigned offset = sdwa.sel[i].offset();
if (instr->operands[i].isFixed())
offset += instr->operands[i].physReg().byte();
switch (sdwa.sel[i].size()) {
case 1: fprintf(output, " src%d_sel:%cbyte%u", i, sext, offset); break;
case 2: fprintf(output, " src%d_sel:%cword%u", i, sext, offset >> 1); break;
case 4: fprintf(output, " src%d_sel:dword", i); break;
default: break;
}
}
}
}
void
aco_print_instr(const Instruction* instr, FILE* output, unsigned flags)
{
if (!instr->definitions.empty()) {
for (unsigned i = 0; i < instr->definitions.size(); ++i) {
print_definition(&instr->definitions[i], output, flags);
if (i + 1 != instr->definitions.size())
fprintf(output, ", ");
}
fprintf(output, " = ");
}
fprintf(output, "%s", instr_info.name[(int)instr->opcode]);
if (instr->operands.size()) {
const unsigned num_operands = instr->operands.size();
bool* const abs = (bool*)alloca(num_operands * sizeof(bool));
bool* const neg = (bool*)alloca(num_operands * sizeof(bool));
bool* const opsel = (bool*)alloca(num_operands * sizeof(bool));
bool* const f2f32 = (bool*)alloca(num_operands * sizeof(bool));
for (unsigned i = 0; i < num_operands; ++i) {
abs[i] = false;
neg[i] = false;
opsel[i] = false;
f2f32[i] = false;
}
bool is_mad_mix = instr->opcode == aco_opcode::v_fma_mix_f32 ||
instr->opcode == aco_opcode::v_fma_mixlo_f16 ||
instr->opcode == aco_opcode::v_fma_mixhi_f16;
if (instr->isVOP3()) {
const VOP3_instruction& vop3 = instr->vop3();
for (unsigned i = 0; i < MIN2(num_operands, 3); ++i) {
abs[i] = vop3.abs[i];
neg[i] = vop3.neg[i];
opsel[i] = vop3.opsel & (1 << i);
}
} else if (instr->isDPP16()) {
const DPP16_instruction& dpp = instr->dpp16();
for (unsigned i = 0; i < MIN2(num_operands, 2); ++i) {
abs[i] = dpp.abs[i];
neg[i] = dpp.neg[i];
opsel[i] = false;
}
} else if (instr->isSDWA()) {
const SDWA_instruction& sdwa = instr->sdwa();
for (unsigned i = 0; i < MIN2(num_operands, 2); ++i) {
abs[i] = sdwa.abs[i];
neg[i] = sdwa.neg[i];
opsel[i] = false;
}
} else if (instr->isVOP3P() && is_mad_mix) {
const VOP3P_instruction& vop3p = instr->vop3p();
for (unsigned i = 0; i < MIN2(num_operands, 3); ++i) {
abs[i] = vop3p.neg_hi[i];
neg[i] = vop3p.neg_lo[i];
f2f32[i] = vop3p.opsel_hi & (1 << i);
opsel[i] = f2f32[i] && (vop3p.opsel_lo & (1 << i));
}
}
for (unsigned i = 0; i < num_operands; ++i) {
if (i)
fprintf(output, ", ");
else
fprintf(output, " ");
if (neg[i])
fprintf(output, "-");
if (abs[i])
fprintf(output, "|");
if (opsel[i])
fprintf(output, "hi(");
else if (f2f32[i])
fprintf(output, "lo(");
aco_print_operand(&instr->operands[i], output, flags);
if (f2f32[i] || opsel[i])
fprintf(output, ")");
if (abs[i])
fprintf(output, "|");
if (instr->isVOP3P() && !is_mad_mix) {
const VOP3P_instruction& vop3 = instr->vop3p();
if ((vop3.opsel_lo & (1 << i)) || !(vop3.opsel_hi & (1 << i))) {
fprintf(output, ".%c%c", vop3.opsel_lo & (1 << i) ? 'y' : 'x',
vop3.opsel_hi & (1 << i) ? 'y' : 'x');
}
if (vop3.neg_lo[i] && vop3.neg_hi[i])
fprintf(output, "*[-1,-1]");
else if (vop3.neg_lo[i])
fprintf(output, "*[-1,1]");
else if (vop3.neg_hi[i])
fprintf(output, "*[1,-1]");
}
}
}
print_instr_format_specific(instr, output);
}
static void
print_block_kind(uint16_t kind, FILE* output)
{
if (kind & block_kind_uniform)
fprintf(output, "uniform, ");
if (kind & block_kind_top_level)
fprintf(output, "top-level, ");
if (kind & block_kind_loop_preheader)
fprintf(output, "loop-preheader, ");
if (kind & block_kind_loop_header)
fprintf(output, "loop-header, ");
if (kind & block_kind_loop_exit)
fprintf(output, "loop-exit, ");
if (kind & block_kind_continue)
fprintf(output, "continue, ");
if (kind & block_kind_break)
fprintf(output, "break, ");
if (kind & block_kind_continue_or_break)
fprintf(output, "continue_or_break, ");
if (kind & block_kind_branch)
fprintf(output, "branch, ");
if (kind & block_kind_merge)
fprintf(output, "merge, ");
if (kind & block_kind_invert)
fprintf(output, "invert, ");
if (kind & block_kind_uses_discard)
fprintf(output, "discard, ");
if (kind & block_kind_needs_lowering)
fprintf(output, "needs_lowering, ");
if (kind & block_kind_export_end)
fprintf(output, "export_end, ");
}
static void
print_stage(Stage stage, FILE* output)
{
fprintf(output, "ACO shader stage: ");
if (stage == compute_cs)
fprintf(output, "compute_cs");
else if (stage == fragment_fs)
fprintf(output, "fragment_fs");
else if (stage == gs_copy_vs)
fprintf(output, "gs_copy_vs");
else if (stage == vertex_ls)
fprintf(output, "vertex_ls");
else if (stage == vertex_es)
fprintf(output, "vertex_es");
else if (stage == vertex_vs)
fprintf(output, "vertex_vs");
else if (stage == tess_control_hs)
fprintf(output, "tess_control_hs");
else if (stage == vertex_tess_control_hs)
fprintf(output, "vertex_tess_control_hs");
else if (stage == tess_eval_es)
fprintf(output, "tess_eval_es");
else if (stage == tess_eval_vs)
fprintf(output, "tess_eval_vs");
else if (stage == geometry_gs)
fprintf(output, "geometry_gs");
else if (stage == vertex_geometry_gs)
fprintf(output, "vertex_geometry_gs");
else if (stage == tess_eval_geometry_gs)
fprintf(output, "tess_eval_geometry_gs");
else if (stage == vertex_ngg)
fprintf(output, "vertex_ngg");
else if (stage == tess_eval_ngg)
fprintf(output, "tess_eval_ngg");
else if (stage == vertex_geometry_ngg)
fprintf(output, "vertex_geometry_ngg");
else if (stage == tess_eval_geometry_ngg)
fprintf(output, "tess_eval_geometry_ngg");
else if (stage == mesh_ngg)
fprintf(output, "mesh_ngg");
else if (stage == task_cs)
fprintf(output, "task_cs");
else
fprintf(output, "unknown");
fprintf(output, "\n");
}
void
aco_print_block(const Block* block, FILE* output, unsigned flags, const live& live_vars)
{
fprintf(output, "BB%d\n", block->index);
fprintf(output, "/* logical preds: ");
for (unsigned pred : block->logical_preds)
fprintf(output, "BB%d, ", pred);
fprintf(output, "/ linear preds: ");
for (unsigned pred : block->linear_preds)
fprintf(output, "BB%d, ", pred);
fprintf(output, "/ kind: ");
print_block_kind(block->kind, output);
fprintf(output, "*/\n");
if (flags & print_live_vars) {
fprintf(output, "\tlive out:");
for (unsigned id : live_vars.live_out[block->index])
fprintf(output, " %%%d", id);
fprintf(output, "\n");
RegisterDemand demand = block->register_demand;
fprintf(output, "\tdemand: %u vgpr, %u sgpr\n", demand.vgpr, demand.sgpr);
}
unsigned index = 0;
for (auto const& instr : block->instructions) {
fprintf(output, "\t");
if (flags & print_live_vars) {
RegisterDemand demand = live_vars.register_demand[block->index][index];
fprintf(output, "(%3u vgpr, %3u sgpr) ", demand.vgpr, demand.sgpr);
}
if (flags & print_perf_info)
fprintf(output, "(%3u clk) ", instr->pass_flags);
aco_print_instr(instr.get(), output, flags);
fprintf(output, "\n");
index++;
}
}
void
aco_print_program(const Program* program, FILE* output, const live& live_vars, unsigned flags)
{
switch (program->progress) {
case CompilationProgress::after_isel: fprintf(output, "After Instruction Selection:\n"); break;
case CompilationProgress::after_spilling:
fprintf(output, "After Spilling:\n");
flags |= print_kill;
break;
case CompilationProgress::after_ra: fprintf(output, "After RA:\n"); break;
}
print_stage(program->stage, output);
for (Block const& block : program->blocks)
aco_print_block(&block, output, flags, live_vars);
if (program->constant_data.size()) {
fprintf(output, "\n/* constant data */\n");
for (unsigned i = 0; i < program->constant_data.size(); i += 32) {
fprintf(output, "[%06d] ", i);
unsigned line_size = std::min<size_t>(program->constant_data.size() - i, 32);
for (unsigned j = 0; j < line_size; j += 4) {
unsigned size = std::min<size_t>(program->constant_data.size() - (i + j), 4);
uint32_t v = 0;
memcpy(&v, &program->constant_data[i + j], size);
fprintf(output, " %08x", v);
}
fprintf(output, "\n");
}
}
fprintf(output, "\n");
}
void
aco_print_program(const Program* program, FILE* output, unsigned flags)
{
aco_print_program(program, output, live(), flags);
}
} // namespace aco