mesa/src/amd/common/ac_nir.c

111 lines
4.5 KiB
C

/*
* Copyright © 2016 Bas Nieuwenhuizen
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "ac_nir.h"
#include "nir_builder.h"
nir_ssa_def *
ac_nir_load_arg(nir_builder *b, const struct ac_shader_args *ac_args, struct ac_arg arg)
{
unsigned num_components = ac_args->args[arg.arg_index].size;
if (ac_args->args[arg.arg_index].file == AC_ARG_SGPR)
return nir_load_scalar_arg_amd(b, num_components, .base = arg.arg_index);
else
return nir_load_vector_arg_amd(b, num_components, .base = arg.arg_index);
}
/**
* This function takes an I/O intrinsic like load/store_input,
* and emits a sequence that calculates the full offset of that instruction,
* including a stride to the base and component offsets.
*/
nir_ssa_def *
ac_nir_calc_io_offset(nir_builder *b,
nir_intrinsic_instr *intrin,
nir_ssa_def *base_stride,
unsigned component_stride,
ac_nir_map_io_driver_location map_io)
{
unsigned base = nir_intrinsic_base(intrin);
unsigned semantic = nir_intrinsic_io_semantics(intrin).location;
unsigned mapped_driver_location = map_io ? map_io(semantic) : base;
/* base is the driver_location, which is in slots (1 slot = 4x4 bytes) */
nir_ssa_def *base_op = nir_imul_imm(b, base_stride, mapped_driver_location);
/* offset should be interpreted in relation to the base,
* so the instruction effectively reads/writes another input/output
* when it has an offset
*/
nir_ssa_def *offset_op = nir_imul(b, base_stride, nir_ssa_for_src(b, *nir_get_io_offset_src(intrin), 1));
/* component is in bytes */
unsigned const_op = nir_intrinsic_component(intrin) * component_stride;
return nir_iadd_imm_nuw(b, nir_iadd_nuw(b, base_op, offset_op), const_op);
}
bool
ac_nir_lower_indirect_derefs(nir_shader *shader,
enum amd_gfx_level gfx_level)
{
bool progress = false;
/* Lower large variables to scratch first so that we won't bloat the
* shader by generating large if ladders for them. We later lower
* scratch to alloca's, assuming LLVM won't generate VGPR indexing.
*/
NIR_PASS(progress, shader, nir_lower_vars_to_scratch, nir_var_function_temp, 256,
glsl_get_natural_size_align_bytes);
/* LLVM doesn't support VGPR indexing on GFX9. */
bool llvm_has_working_vgpr_indexing = gfx_level != GFX9;
/* TODO: Indirect indexing of GS inputs is unimplemented.
*
* TCS and TES load inputs directly from LDS or offchip memory, so
* indirect indexing is trivial.
*/
nir_variable_mode indirect_mask = 0;
if (shader->info.stage == MESA_SHADER_GEOMETRY ||
(shader->info.stage != MESA_SHADER_TESS_CTRL && shader->info.stage != MESA_SHADER_TESS_EVAL &&
!llvm_has_working_vgpr_indexing)) {
indirect_mask |= nir_var_shader_in;
}
if (!llvm_has_working_vgpr_indexing && shader->info.stage != MESA_SHADER_TESS_CTRL)
indirect_mask |= nir_var_shader_out;
/* TODO: We shouldn't need to do this, however LLVM isn't currently
* smart enough to handle indirects without causing excess spilling
* causing the gpu to hang.
*
* See the following thread for more details of the problem:
* https://lists.freedesktop.org/archives/mesa-dev/2017-July/162106.html
*/
indirect_mask |= nir_var_function_temp;
NIR_PASS(progress, shader, nir_lower_indirect_derefs, indirect_mask, UINT32_MAX);
return progress;
}