/* * C11 emulation library * * (C) Copyright yohhoy 2012. * Distributed under the Boost Software License, Version 1.0. * * Permission is hereby granted, free of charge, to any person or organization * obtaining a copy of the software and accompanying documentation covered by * this license (the "Software") to use, reproduce, display, distribute, * execute, and transmit the Software, and to prepare [[derivative work]]s of the * Software, and to permit third-parties to whom the Software is furnished to * do so, all subject to the following: * * The copyright notices in the Software and this entire statement, including * the above license grant, this restriction and the following disclaimer, * must be included in all copies of the Software, in whole or in part, and * all derivative works of the Software, unless such copies or derivative * works are solely in the form of machine-executable object code generated by * a source language processor. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT * SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE * FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include // MSVCRT #include #include "c11/threads.h" #ifndef WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN 1 #endif #include /* Configuration macro: EMULATED_THREADS_USE_NATIVE_CALL_ONCE Use native WindowsAPI one-time initialization function. (requires WinVista or later) Otherwise emulate by mtx_trylock() + *busy loop* for WinXP. EMULATED_THREADS_TSS_DTOR_SLOTNUM Max registerable TSS dtor number. */ #if _WIN32_WINNT >= 0x0600 // Prefer native WindowsAPI on newer environment. #if !defined(__MINGW32__) #define EMULATED_THREADS_USE_NATIVE_CALL_ONCE #endif #endif #define EMULATED_THREADS_TSS_DTOR_SLOTNUM 64 // see TLS_MINIMUM_AVAILABLE // check configuration #if defined(EMULATED_THREADS_USE_NATIVE_CALL_ONCE) && (_WIN32_WINNT < 0x0600) #error EMULATED_THREADS_USE_NATIVE_CALL_ONCE requires _WIN32_WINNT>=0x0600 #endif static_assert(sizeof(cnd_t) == sizeof(CONDITION_VARIABLE), "The size of cnd_t must equal to CONDITION_VARIABLE"); static_assert(sizeof(thrd_t) == sizeof(HANDLE), "The size of thrd_t must equal to HANDLE"); static_assert(sizeof(tss_t) == sizeof(DWORD), "The size of tss_t must equal to DWORD"); static_assert(sizeof(mtx_t) == sizeof(CRITICAL_SECTION), "The size of mtx_t must equal to CRITICAL_SECTION"); static_assert(sizeof(once_flag) == sizeof(INIT_ONCE), "The size of once_flag must equal to INIT_ONCE"); /* Implementation limits: - Conditionally emulation for "Initialization functions" (see EMULATED_THREADS_USE_NATIVE_CALL_ONCE macro) - Emulated `mtx_timelock()' with mtx_trylock() + *busy loop* */ static void impl_tss_dtor_invoke(void); // forward decl. struct impl_thrd_param { thrd_start_t func; void *arg; }; static unsigned __stdcall impl_thrd_routine(void *p) { struct impl_thrd_param pack; int code; memcpy(&pack, p, sizeof(struct impl_thrd_param)); free(p); code = pack.func(pack.arg); impl_tss_dtor_invoke(); return (unsigned)code; } static time_t impl_timespec2msec(const struct timespec *ts) { return (ts->tv_sec * 1000U) + (ts->tv_nsec / 1000000L); } static DWORD impl_abs2relmsec(const struct timespec *abs_time) { const time_t abs_ms = impl_timespec2msec(abs_time); struct timespec now; timespec_get(&now, TIME_UTC); const time_t now_ms = impl_timespec2msec(&now); const DWORD rel_ms = (abs_ms > now_ms) ? (DWORD)(abs_ms - now_ms) : 0; return rel_ms; } #ifdef EMULATED_THREADS_USE_NATIVE_CALL_ONCE struct impl_call_once_param { void (*func)(void); }; static BOOL CALLBACK impl_call_once_callback(PINIT_ONCE InitOnce, PVOID Parameter, PVOID *Context) { struct impl_call_once_param *param = (struct impl_call_once_param*)Parameter; (param->func)(); ((void)InitOnce); ((void)Context); // suppress warning return TRUE; } #endif // ifdef EMULATED_THREADS_USE_NATIVE_CALL_ONCE static struct impl_tss_dtor_entry { tss_t key; tss_dtor_t dtor; } impl_tss_dtor_tbl[EMULATED_THREADS_TSS_DTOR_SLOTNUM]; static int impl_tss_dtor_register(tss_t key, tss_dtor_t dtor) { int i; for (i = 0; i < EMULATED_THREADS_TSS_DTOR_SLOTNUM; i++) { if (!impl_tss_dtor_tbl[i].dtor) break; } if (i == EMULATED_THREADS_TSS_DTOR_SLOTNUM) return 1; impl_tss_dtor_tbl[i].key = key; impl_tss_dtor_tbl[i].dtor = dtor; return 0; } static void impl_tss_dtor_invoke(void) { int i; for (i = 0; i < EMULATED_THREADS_TSS_DTOR_SLOTNUM; i++) { if (impl_tss_dtor_tbl[i].dtor) { void* val = tss_get(impl_tss_dtor_tbl[i].key); if (val) (impl_tss_dtor_tbl[i].dtor)(val); } } } /*--------------- 7.25.2 Initialization functions ---------------*/ // 7.25.2.1 void call_once(once_flag *flag, void (*func)(void)) { assert(flag && func); #ifdef EMULATED_THREADS_USE_NATIVE_CALL_ONCE { struct impl_call_once_param param; param.func = func; InitOnceExecuteOnce((PINIT_ONCE)flag, impl_call_once_callback, (PVOID)¶m, NULL); } #else if (InterlockedCompareExchangePointer((PVOID volatile *)&flag->status, (PVOID)1, (PVOID)0) == 0) { (func)(); InterlockedExchangePointer((PVOID volatile *)&flag->status, (PVOID)2); } else { while (flag->status == 1) { // busy loop! thrd_yield(); } } #endif } /*------------- 7.25.3 Condition variable functions -------------*/ // 7.25.3.1 int cnd_broadcast(cnd_t *cond) { assert(cond != NULL); WakeAllConditionVariable((PCONDITION_VARIABLE)cond); return thrd_success; } // 7.25.3.2 void cnd_destroy(cnd_t *cond) { (void)cond; assert(cond != NULL); // do nothing } // 7.25.3.3 int cnd_init(cnd_t *cond) { assert(cond != NULL); InitializeConditionVariable((PCONDITION_VARIABLE)cond); return thrd_success; } // 7.25.3.4 int cnd_signal(cnd_t *cond) { assert(cond != NULL); WakeConditionVariable((PCONDITION_VARIABLE)cond); return thrd_success; } // 7.25.3.5 int cnd_timedwait(cnd_t *cond, mtx_t *mtx, const struct timespec *abs_time) { assert(cond != NULL); assert(mtx != NULL); assert(abs_time != NULL); const DWORD timeout = impl_abs2relmsec(abs_time); if (SleepConditionVariableCS((PCONDITION_VARIABLE)cond, (PCRITICAL_SECTION)mtx, timeout)) return thrd_success; return (GetLastError() == ERROR_TIMEOUT) ? thrd_timedout : thrd_error; } // 7.25.3.6 int cnd_wait(cnd_t *cond, mtx_t *mtx) { assert(cond != NULL); assert(mtx != NULL); SleepConditionVariableCS((PCONDITION_VARIABLE)cond, (PCRITICAL_SECTION)mtx, INFINITE); return thrd_success; } /*-------------------- 7.25.4 Mutex functions --------------------*/ // 7.25.4.1 void mtx_destroy(mtx_t *mtx) { assert(mtx); DeleteCriticalSection((PCRITICAL_SECTION)mtx); } // 7.25.4.2 int mtx_init(mtx_t *mtx, int type) { assert(mtx != NULL); if (type != mtx_plain && type != mtx_timed && type != mtx_try && type != (mtx_plain|mtx_recursive) && type != (mtx_timed|mtx_recursive) && type != (mtx_try|mtx_recursive)) return thrd_error; InitializeCriticalSection((PCRITICAL_SECTION)mtx); return thrd_success; } // 7.25.4.3 int mtx_lock(mtx_t *mtx) { assert(mtx != NULL); EnterCriticalSection((PCRITICAL_SECTION)mtx); return thrd_success; } // 7.25.4.4 int mtx_timedlock(mtx_t *mtx, const struct timespec *ts) { assert(mtx != NULL); assert(ts != NULL); while (mtx_trylock(mtx) != thrd_success) { if (impl_abs2relmsec(ts) == 0) return thrd_timedout; // busy loop! thrd_yield(); } return thrd_success; } // 7.25.4.5 int mtx_trylock(mtx_t *mtx) { assert(mtx != NULL); return TryEnterCriticalSection((PCRITICAL_SECTION)mtx) ? thrd_success : thrd_busy; } // 7.25.4.6 int mtx_unlock(mtx_t *mtx) { assert(mtx != NULL); LeaveCriticalSection((PCRITICAL_SECTION)mtx); return thrd_success; } /*------------------- 7.25.5 Thread functions -------------------*/ // 7.25.5.1 int thrd_create(thrd_t *thr, thrd_start_t func, void *arg) { struct impl_thrd_param *pack; uintptr_t handle; assert(thr != NULL); pack = (struct impl_thrd_param *)malloc(sizeof(struct impl_thrd_param)); if (!pack) return thrd_nomem; pack->func = func; pack->arg = arg; handle = _beginthreadex(NULL, 0, impl_thrd_routine, pack, 0, NULL); if (handle == 0) { if (errno == EAGAIN || errno == EACCES) return thrd_nomem; return thrd_error; } *thr = (thrd_t)handle; return thrd_success; } #if 0 // 7.25.5.2 static inline thrd_t thrd_current(void) { HANDLE hCurrentThread; BOOL bRet; /* GetCurrentThread() returns a pseudo-handle, which we need * to pass to DuplicateHandle(). Only the resulting handle can be used * from other threads. * * Note that neither handle can be compared to the one by thread_create. * Only the thread IDs - as returned by GetThreadId() and GetCurrentThreadId() * can be compared directly. * * Other potential solutions would be: * - define thrd_t as a thread Ids, but this would mean we'd need to OpenThread for many operations * - use malloc'ed memory for thrd_t. This would imply using TLS for current thread. * * Neither is particularly nice. * * Life would be much easier if C11 threads had different abstractions for * threads and thread IDs, just like C++11 threads does... */ bRet = DuplicateHandle(GetCurrentProcess(), // source process (pseudo) handle GetCurrentThread(), // source (pseudo) handle GetCurrentProcess(), // target process &hCurrentThread, // target handle 0, FALSE, DUPLICATE_SAME_ACCESS); assert(bRet); if (!bRet) { hCurrentThread = GetCurrentThread(); } return hCurrentThread; } #endif // 7.25.5.3 int thrd_detach(thrd_t thr) { CloseHandle(thr); return thrd_success; } // 7.25.5.4 int thrd_equal(thrd_t thr0, thrd_t thr1) { return GetThreadId(thr0) == GetThreadId(thr1); } // 7.25.5.5 _Noreturn void thrd_exit(int res) { impl_tss_dtor_invoke(); _endthreadex((unsigned)res); } // 7.25.5.6 int thrd_join(thrd_t thr, int *res) { DWORD w, code; w = WaitForSingleObject(thr, INFINITE); if (w != WAIT_OBJECT_0) return thrd_error; if (res) { if (!GetExitCodeThread(thr, &code)) { CloseHandle(thr); return thrd_error; } *res = (int)code; } CloseHandle(thr); return thrd_success; } // 7.25.5.7 int thrd_sleep(const struct timespec *time_point, struct timespec *remaining) { (void)remaining; assert(time_point); assert(!remaining); /* not implemented */ Sleep((DWORD)impl_timespec2msec(time_point)); return 0; } // 7.25.5.8 void thrd_yield(void) { SwitchToThread(); } /*----------- 7.25.6 Thread-specific storage functions -----------*/ // 7.25.6.1 int tss_create(tss_t *key, tss_dtor_t dtor) { assert(key != NULL); *key = TlsAlloc(); if (dtor) { if (impl_tss_dtor_register(*key, dtor)) { TlsFree(*key); return thrd_error; } } return (*key != 0xFFFFFFFF) ? thrd_success : thrd_error; } // 7.25.6.2 void tss_delete(tss_t key) { TlsFree(key); } // 7.25.6.3 void * tss_get(tss_t key) { return TlsGetValue(key); } // 7.25.6.4 int tss_set(tss_t key, void *val) { return TlsSetValue(key, val) ? thrd_success : thrd_error; }