/* * Copyright © 2019 Google LLC * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #ifndef TU_CS_H #define TU_CS_H #include "tu_private.h" #include "registers/adreno_pm4.xml.h" void tu_cs_init(struct tu_cs *cs, struct tu_device *device, enum tu_cs_mode mode, uint32_t initial_size); void tu_cs_init_external(struct tu_cs *cs, uint32_t *start, uint32_t *end); void tu_cs_finish(struct tu_cs *cs); void tu_cs_begin(struct tu_cs *cs); void tu_cs_end(struct tu_cs *cs); VkResult tu_cs_begin_sub_stream(struct tu_cs *cs, uint32_t size, struct tu_cs *sub_cs); VkResult tu_cs_alloc(struct tu_cs *cs, uint32_t count, uint32_t size, struct tu_cs_memory *memory); struct tu_cs_entry tu_cs_end_sub_stream(struct tu_cs *cs, struct tu_cs *sub_cs); static inline struct tu_draw_state tu_cs_end_draw_state(struct tu_cs *cs, struct tu_cs *sub_cs) { struct tu_cs_entry entry = tu_cs_end_sub_stream(cs, sub_cs); return (struct tu_draw_state) { .iova = entry.bo->iova + entry.offset, .size = entry.size / sizeof(uint32_t), }; } VkResult tu_cs_reserve_space(struct tu_cs *cs, uint32_t reserved_size); static inline struct tu_draw_state tu_cs_draw_state(struct tu_cs *sub_cs, struct tu_cs *cs, uint32_t size) { struct tu_cs_memory memory; /* TODO: clean this up */ tu_cs_alloc(sub_cs, size, 1, &memory); tu_cs_init_external(cs, memory.map, memory.map + size); tu_cs_begin(cs); tu_cs_reserve_space(cs, size); return (struct tu_draw_state) { .iova = memory.iova, .size = size, }; } void tu_cs_reset(struct tu_cs *cs); VkResult tu_cs_add_entries(struct tu_cs *cs, struct tu_cs *target); /** * Get the size of the command packets emitted since the last call to * tu_cs_add_entry. */ static inline uint32_t tu_cs_get_size(const struct tu_cs *cs) { return cs->cur - cs->start; } /** * Return true if there is no command packet emitted since the last call to * tu_cs_add_entry. */ static inline uint32_t tu_cs_is_empty(const struct tu_cs *cs) { return tu_cs_get_size(cs) == 0; } /** * Discard all entries. This allows \a cs to be reused while keeping the * existing BOs and command packets intact. */ static inline void tu_cs_discard_entries(struct tu_cs *cs) { assert(cs->mode == TU_CS_MODE_GROW); cs->entry_count = 0; } /** * Get the size needed for tu_cs_emit_call. */ static inline uint32_t tu_cs_get_call_size(const struct tu_cs *cs) { assert(cs->mode == TU_CS_MODE_GROW); /* each CP_INDIRECT_BUFFER needs 4 dwords */ return cs->entry_count * 4; } /** * Assert that we did not exceed the reserved space. */ static inline void tu_cs_sanity_check(const struct tu_cs *cs) { assert(cs->start <= cs->cur); assert(cs->cur <= cs->reserved_end); assert(cs->reserved_end <= cs->end); } /** * Emit a uint32_t value into a command stream, without boundary checking. */ static inline void tu_cs_emit(struct tu_cs *cs, uint32_t value) { assert(cs->cur < cs->reserved_end); *cs->cur = value; ++cs->cur; } /** * Emit an array of uint32_t into a command stream, without boundary checking. */ static inline void tu_cs_emit_array(struct tu_cs *cs, const uint32_t *values, uint32_t length) { assert(cs->cur + length <= cs->reserved_end); memcpy(cs->cur, values, sizeof(uint32_t) * length); cs->cur += length; } static inline unsigned tu_odd_parity_bit(unsigned val) { /* See: http://graphics.stanford.edu/~seander/bithacks.html#ParityParallel * note that we want odd parity so 0x6996 is inverted. */ val ^= val >> 16; val ^= val >> 8; val ^= val >> 4; val &= 0xf; return (~0x6996 >> val) & 1; } /** * Get the size of the remaining space in the current BO. */ static inline uint32_t tu_cs_get_space(const struct tu_cs *cs) { return cs->end - cs->cur; } static inline void tu_cs_reserve(struct tu_cs *cs, uint32_t reserved_size) { if (cs->mode != TU_CS_MODE_GROW) { assert(tu_cs_get_space(cs) >= reserved_size); assert(cs->reserved_end == cs->end); return; } if (tu_cs_get_space(cs) >= reserved_size && cs->entry_count < cs->entry_capacity) { cs->reserved_end = cs->cur + reserved_size; return; } VkResult result = tu_cs_reserve_space(cs, reserved_size); /* TODO: set this error in tu_cs and use it */ assert(result == VK_SUCCESS); } /** * Emit a type-4 command packet header into a command stream. */ static inline void tu_cs_emit_pkt4(struct tu_cs *cs, uint16_t regindx, uint16_t cnt) { tu_cs_reserve(cs, cnt + 1); tu_cs_emit(cs, CP_TYPE4_PKT | cnt | (tu_odd_parity_bit(cnt) << 7) | ((regindx & 0x3ffff) << 8) | ((tu_odd_parity_bit(regindx) << 27))); } /** * Emit a type-7 command packet header into a command stream. */ static inline void tu_cs_emit_pkt7(struct tu_cs *cs, uint8_t opcode, uint16_t cnt) { tu_cs_reserve(cs, cnt + 1); tu_cs_emit(cs, CP_TYPE7_PKT | cnt | (tu_odd_parity_bit(cnt) << 15) | ((opcode & 0x7f) << 16) | ((tu_odd_parity_bit(opcode) << 23))); } static inline void tu_cs_emit_wfi(struct tu_cs *cs) { tu_cs_emit_pkt7(cs, CP_WAIT_FOR_IDLE, 0); } static inline void tu_cs_emit_qw(struct tu_cs *cs, uint64_t value) { tu_cs_emit(cs, (uint32_t) value); tu_cs_emit(cs, (uint32_t) (value >> 32)); } static inline void tu_cs_emit_write_reg(struct tu_cs *cs, uint16_t reg, uint32_t value) { tu_cs_emit_pkt4(cs, reg, 1); tu_cs_emit(cs, value); } /** * Emit a CP_INDIRECT_BUFFER command packet. */ static inline void tu_cs_emit_ib(struct tu_cs *cs, const struct tu_cs_entry *entry) { assert(entry->bo); assert(entry->size && entry->offset + entry->size <= entry->bo->size); assert(entry->size % sizeof(uint32_t) == 0); assert(entry->offset % sizeof(uint32_t) == 0); tu_cs_emit_pkt7(cs, CP_INDIRECT_BUFFER, 3); tu_cs_emit_qw(cs, entry->bo->iova + entry->offset); tu_cs_emit(cs, entry->size / sizeof(uint32_t)); } /* for compute which isn't using SET_DRAW_STATE */ static inline void tu_cs_emit_state_ib(struct tu_cs *cs, struct tu_draw_state state) { if (state.size) { tu_cs_emit_pkt7(cs, CP_INDIRECT_BUFFER, 3); tu_cs_emit_qw(cs, state.iova); tu_cs_emit(cs, state.size); } } /** * Emit a CP_INDIRECT_BUFFER command packet for each entry in the target * command stream. */ static inline void tu_cs_emit_call(struct tu_cs *cs, const struct tu_cs *target) { assert(target->mode == TU_CS_MODE_GROW); for (uint32_t i = 0; i < target->entry_count; i++) tu_cs_emit_ib(cs, target->entries + i); } /* Helpers for bracketing a large sequence of commands of unknown size inside * a CP_COND_REG_EXEC packet. */ static inline void tu_cond_exec_start(struct tu_cs *cs, uint32_t cond_flags) { assert(cs->mode == TU_CS_MODE_GROW); assert(!cs->cond_flags && cond_flags); tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2); tu_cs_emit(cs, cond_flags); cs->cond_flags = cond_flags; cs->cond_dwords = cs->cur; /* Emit dummy DWORD field here */ tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(0)); } #define CP_COND_EXEC_0_RENDER_MODE_GMEM \ (CP_COND_REG_EXEC_0_MODE(RENDER_MODE) | CP_COND_REG_EXEC_0_GMEM) #define CP_COND_EXEC_0_RENDER_MODE_SYSMEM \ (CP_COND_REG_EXEC_0_MODE(RENDER_MODE) | CP_COND_REG_EXEC_0_SYSMEM) static inline void tu_cond_exec_end(struct tu_cs *cs) { assert(cs->cond_flags); cs->cond_flags = 0; /* Subtract one here to account for the DWORD field itself. */ *cs->cond_dwords = cs->cur - cs->cond_dwords - 1; } #define fd_reg_pair tu_reg_value #define __bo_type struct tu_bo * #include "a6xx.xml.h" #include "a6xx-pack.xml.h" #define __assert_eq(a, b) \ do { \ if ((a) != (b)) { \ fprintf(stderr, "assert failed: " #a " (0x%x) != " #b " (0x%x)\n", a, b); \ assert((a) == (b)); \ } \ } while (0) #define __ONE_REG(i, regs) \ do { \ if (i < ARRAY_SIZE(regs) && regs[i].reg > 0) { \ __assert_eq(regs[0].reg + i, regs[i].reg); \ if (regs[i].bo) { \ uint64_t v = regs[i].bo->iova + regs[i].bo_offset; \ v >>= regs[i].bo_shift; \ v |= regs[i].value; \ \ *p++ = v; \ *p++ = v >> 32; \ } else { \ *p++ = regs[i].value; \ if (regs[i].is_address) \ *p++ = regs[i].value >> 32; \ } \ } \ } while (0) /* Emits a sequence of register writes in order using a pkt4. This will check * (at runtime on a !NDEBUG build) that the registers were actually set up in * order in the code. * * Note that references to buffers aren't automatically added to the CS, * unlike in freedreno. We are clever in various places to avoid duplicating * the reference add work. * * Also, 64-bit address registers don't have a way (currently) to set a 64-bit * address without having a reference to a BO, since the .dword field in the * register's struct is only 32-bit wide. We should fix this in the pack * codegen later. */ #define tu_cs_emit_regs(cs, ...) do { \ const struct fd_reg_pair regs[] = { __VA_ARGS__ }; \ unsigned count = ARRAY_SIZE(regs); \ \ STATIC_ASSERT(count > 0); \ STATIC_ASSERT(count <= 16); \ \ tu_cs_emit_pkt4((cs), regs[0].reg, count); \ uint32_t *p = (cs)->cur; \ __ONE_REG( 0, regs); \ __ONE_REG( 1, regs); \ __ONE_REG( 2, regs); \ __ONE_REG( 3, regs); \ __ONE_REG( 4, regs); \ __ONE_REG( 5, regs); \ __ONE_REG( 6, regs); \ __ONE_REG( 7, regs); \ __ONE_REG( 8, regs); \ __ONE_REG( 9, regs); \ __ONE_REG(10, regs); \ __ONE_REG(11, regs); \ __ONE_REG(12, regs); \ __ONE_REG(13, regs); \ __ONE_REG(14, regs); \ __ONE_REG(15, regs); \ (cs)->cur = p; \ } while (0) #endif /* TU_CS_H */